This is emit-rtl.c in view mode; [Download] [Up]
/* Emit RTL for the GNU C-Compiler expander. Copyright (C) 1987, 1988 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Middle-to-low level generation of rtx code and insns. This file contains the functions `gen_rtx', `gen_reg_rtx' and `gen_label_rtx' that are the usual ways of creating rtl expressions for most purposes. It also has the functions for creating insns and linking them in the doubly-linked chain. The patterns of the insns are created by machine-dependent routines in insn-emit.c, which is generated automatically from the machine description. These routines use `gen_rtx' to make the individual rtx's of the pattern; what is machine dependent is the kind of rtx's they make and what arguments they use. */ #include "config.h" #include <stdio.h> #include "gvarargs.h" #include "rtl.h" #include "regs.h" #include "insn-config.h" #include "real.h" #define max(A,B) ((A) > (B) ? (A) : (B)) #define min(A,B) ((A) < (B) ? (A) : (B)) /* This is reset to FIRST_PSEUDO_REGISTER at the start each function. After rtl generation, it is 1 plus the largest register number used. */ int reg_rtx_no = FIRST_PSEUDO_REGISTER; /* This is *not* reset after each function. It gives each CODE_LABEL in the entire compilation a unique label number. */ static int label_num = 1; /* Value of `label_num' at start of current function. */ static int first_label_num; /* Nonzero means do not generate NOTEs for source line numbers. */ static int no_line_numbers; /* Commonly used rtx's, so that we only need space for one copy. These are initialized once for the entire compilation. All of these except perhaps fconst0_rtx and dconst0_rtx are unique; no other rtx-object will be equal to any of these. */ rtx pc_rtx; /* (PC) */ rtx cc0_rtx; /* (CC0) */ rtx cc1_rtx; /* (CC1) (not actually used nowadays) */ rtx const0_rtx; /* (CONST_INT 0) */ rtx const1_rtx; /* (CONST_INT 1) */ rtx fconst0_rtx; /* (CONST_DOUBLE:SF 0) */ rtx dconst0_rtx; /* (CONST_DOUBLE:DF 0) */ /* All references to the following fixed hard registers go through these unique rtl objects. On machines where the frame-pointer and arg-pointer are the same register, they use the same unique object. After register allocation, other rtl objects which used to be pseudo-regs may be clobbered to refer to the frame-pointer register. But references that were originally to the frame-pointer can be distinguished from the others because they contain frame_pointer_rtx. In an inline procedure, the stack and frame pointer rtxs may not be used for anything else. */ rtx stack_pointer_rtx; /* (REG:Pmode STACK_POINTER_REGNUM) */ rtx frame_pointer_rtx; /* (REG:Pmode FRAME_POINTER_REGNUM) */ rtx arg_pointer_rtx; /* (REG:Pmode ARG_POINTER_REGNUM) */ rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */ rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */ rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */ rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */ /* The ends of the doubly-linked chain of rtl for the current function. Both are reset to null at the start of rtl generation for the function. start_sequence saves both of these on `sequence_stack' and then starts a new, nested sequence of insns. */ static rtx first_insn = NULL; static rtx last_insn = NULL; /* Stack of pending (incomplete) sequences saved by `start_sequence'. This looks like (INSN_LIST saved-first-insn (INSN_LIST saved-last-insn ...more saved sequences...)). The main insn-chain is saved in the last two links of the chain, unless the chain is empty. */ rtx sequence_stack = 0; /* INSN_UID for next insn emitted. Reset to 1 for each function compiled. */ static int cur_insn_uid = 1; /* Line number and source file of the last line-number NOTE emitted. This is used to avoid generating duplicates. */ static int last_linenum = 0; static char *last_filename = 0; /* A vector indexed by pseudo reg number. The allocated length of this vector is regno_pointer_flag_length. Since this vector is needed during the expansion phase when the total number of registers in the function is not yet known, it is copied and made bigger when necessary. */ char *regno_pointer_flag; int regno_pointer_flag_length; /* Indexed by pseudo register number, gives the rtx for that pseudo. Allocated in parallel with regno_pointer_flag. */ rtx *regno_reg_rtx; /* Filename and line number of last line-number note, whether we actually emitted it or not. */ extern char *emit_filename; extern int emit_lineno; rtx change_address (); /* rtx gen_rtx (code, mode, [element1, ..., elementn]) ** ** This routine generates an RTX of the size specified by ** <code>, which is an RTX code. The RTX structure is initialized ** from the arguments <element1> through <elementn>, which are ** interpreted according to the specific RTX type's format. The ** special machine mode associated with the rtx (if any) is specified ** in <mode>. ** ** gen_rtx() can be invoked in a way which resembles the lisp-like ** rtx it will generate. For example, the following rtx structure: ** ** (plus:QI (mem:QI (reg:SI 1)) ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3)))) ** ** ...would be generated by the following C code: ** ** gen_rtx (PLUS, QImode, ** gen_rtx (MEM, QImode, ** gen_rtx (REG, SImode, 1)), ** gen_rtx (MEM, QImode, ** gen_rtx (PLUS, SImode, ** gen_rtx (REG, SImode, 2), ** gen_rtx (REG, SImode, 3)))), */ /*VARARGS2*/ rtx gen_rtx (va_alist) va_dcl { va_list p; enum rtx_code code; enum machine_mode mode; register int i; /* Array indices... */ register char *fmt; /* Current rtx's format... */ register rtx rt_val; /* RTX to return to caller... */ va_start (p); code = va_arg (p, enum rtx_code); mode = va_arg (p, enum machine_mode); if (code == CONST_INT) { int arg = va_arg (p, int); if (arg == 0) return const0_rtx; if (arg == 1) return const1_rtx; rt_val = rtx_alloc (code); INTVAL (rt_val) = arg; } else { rt_val = rtx_alloc (code); /* Allocate the storage space. */ rt_val->mode = mode; /* Store the machine mode... */ fmt = GET_RTX_FORMAT (code); /* Find the right format... */ for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*fmt++) { case '0': /* Unused field. */ break; case 'i': /* An integer? */ XINT (rt_val, i) = va_arg (p, int); break; case 's': /* A string? */ XSTR (rt_val, i) = va_arg (p, char *); break; case 'e': /* An expression? */ case 'u': /* An insn? Same except when printing. */ XEXP (rt_val, i) = va_arg (p, rtx); break; case 'E': /* An RTX vector? */ XVEC (rt_val, i) = va_arg (p, rtvec); break; default: abort(); } } } va_end (p); return rt_val; /* Return the new RTX... */ } /* gen_rtvec (n, [rt1, ..., rtn]) ** ** This routine creates an rtvec and stores within it the ** pointers to rtx's which are its arguments. */ /*VARARGS1*/ rtvec gen_rtvec (va_alist) va_dcl { int n, i; va_list p; rtx *vector; va_start (p); n = va_arg (p, int); if (n == 0) return NULL_RTVEC; /* Don't allocate an empty rtvec... */ vector = (rtx *) alloca (n * sizeof (rtx)); for (i = 0; i < n; i++) vector[i] = va_arg (p, rtx); va_end (p); return gen_rtvec_v (n, vector); } rtvec gen_rtvec_v (n, argp) int n; rtx *argp; { register int i; register rtvec rt_val; if (n == 0) return NULL_RTVEC; /* Don't allocate an empty rtvec... */ rt_val = rtvec_alloc (n); /* Allocate an rtvec... */ for (i = 0; i < n; i++) rt_val->elem[i].rtx = *argp++; return rt_val; } /* Generate a REG rtx for a new pseudo register of mode MODE. This pseudo is assigned the next sequential register number. */ rtx gen_reg_rtx (mode) enum machine_mode mode; { register rtx val; /* Make sure regno_pointer_flag and regno_reg_rtx are large enough to have an element for this pseudo reg number. */ if (reg_rtx_no == regno_pointer_flag_length) { rtx *new1; char *new = (char *) oballoc (regno_pointer_flag_length * 2); bzero (new, regno_pointer_flag_length * 2); bcopy (regno_pointer_flag, new, regno_pointer_flag_length); regno_pointer_flag = new; new1 = (rtx *) oballoc (regno_pointer_flag_length * 2 * sizeof (rtx)); bzero (new1, regno_pointer_flag_length * 2 * sizeof (rtx)); bcopy (regno_reg_rtx, new1, regno_pointer_flag_length * sizeof (rtx)); regno_reg_rtx = new1; regno_pointer_flag_length *= 2; } val = gen_rtx (REG, mode, reg_rtx_no); regno_reg_rtx[reg_rtx_no++] = val; return val; } /* Identify REG as a probable pointer register. */ void mark_reg_pointer (reg) rtx reg; { REGNO_POINTER_FLAG (REGNO (reg)) = 1; } /* Return 1 plus largest pseudo reg number used in the current function. */ int max_reg_num () { return reg_rtx_no; } /* Return 1 + the largest label number used so far. */ int max_label_num () { return label_num; } /* Return first label number used in this function (if any were used). */ int get_first_label_num () { return first_label_num; } /* Assuming that X is an rtx (MEM, REG or SUBREG) for a fixed-point number, return a MEM or SUBREG rtx that refers to the least-significant part of X. MODE specifies how big a part of X to return; it must not be larger than a word. If X is a MEM whose address is a QUEUED, the value may be so also. */ rtx gen_lowpart (mode, x) enum machine_mode mode; register rtx x; { /* This case loses if X is a subreg. To catch bugs early, complain if an invalid MODE is used even in other cases. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x))) abort (); if (GET_MODE (x) == mode) return x; if (GET_CODE (x) == CONST_INT) return gen_rtx (CONST_INT, VOIDmode, INTVAL (x) & GET_MODE_MASK (mode)); if (GET_CODE (x) == CONST_DOUBLE) /* In version 1.37, try this: */ /* if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) abort (); */ /* Assume it's an int, so ..._LOW means the low-order word. */ return gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (x) & GET_MODE_MASK (mode)); if (GET_CODE (x) == MEM) { register int offset = 0; #ifdef WORDS_BIG_ENDIAN offset = (max (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD) - max (GET_MODE_SIZE (mode), UNITS_PER_WORD)); #endif #ifdef BYTES_BIG_ENDIAN /* Adjust the address so that the address-after-the-data is unchanged. */ offset -= (min (UNITS_PER_WORD, GET_MODE_SIZE (mode)) - min (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))); #endif return change_address (x, mode, plus_constant (XEXP (x, 0), offset)); } else if (GET_CODE (x) == SUBREG) return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0 ? SUBREG_REG (x) : gen_rtx (SUBREG, mode, SUBREG_REG (x), SUBREG_WORD (x))); else if (GET_CODE (x) == REG) { #ifdef WORDS_BIG_ENDIAN if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) { return gen_rtx (SUBREG, mode, x, ((GET_MODE_SIZE (GET_MODE (x)) - max (GET_MODE_SIZE (mode), UNITS_PER_WORD)) / UNITS_PER_WORD)); } #endif return gen_rtx (SUBREG, mode, x, 0); } else abort (); } /* Like `gen_lowpart', but refer to the most significant part. */ rtx gen_highpart (mode, x) enum machine_mode mode; register rtx x; { if (GET_CODE (x) == MEM) { register int offset = 0; #ifndef WORDS_BIG_ENDIAN offset = (max (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD) - max (GET_MODE_SIZE (mode), UNITS_PER_WORD)); #endif #ifndef BYTES_BIG_ENDIAN if (GET_MODE_SIZE (mode) < UNITS_PER_WORD) offset -= (GET_MODE_SIZE (mode) - min (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))); #endif return change_address (x, mode, plus_constant (XEXP (x, 0), offset)); } else if (GET_CODE (x) == REG) { #ifndef WORDS_BIG_ENDIAN if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) { return gen_rtx (SUBREG, mode, x, ((GET_MODE_SIZE (GET_MODE (x)) - max (GET_MODE_SIZE (mode), UNITS_PER_WORD)) / UNITS_PER_WORD)); } #endif return gen_rtx (SUBREG, mode, x, 0); } else abort (); } /* Return 1 iff X, assumed to be a SUBREG, refers to the least significant part of its containing reg. If X is not a SUBREG, always return 1 (it is its own low part!). */ int subreg_lowpart_p (x) rtx x; { if (GET_CODE (x) != SUBREG) return 1; #ifdef WORDS_BIG_ENDIAN if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) { register enum machine_mode mode = GET_MODE (SUBREG_REG (x)); return (SUBREG_WORD (x) == ((GET_MODE_SIZE (GET_MODE (x)) - max (GET_MODE_SIZE (mode), UNITS_PER_WORD)) / UNITS_PER_WORD)); } #endif return SUBREG_WORD (x) == 0; } /* Return a memory reference like MEMREF, but with its mode changed to MODE and its address changed to ADDR. (VOIDmode means don't change the mode. NULL for ADDR means don't change the address.) */ rtx change_address (memref, mode, addr) rtx memref; enum machine_mode mode; rtx addr; { rtx new; if (GET_CODE (memref) != MEM) abort (); if (mode == VOIDmode) mode = GET_MODE (memref); if (addr == 0) addr = XEXP (memref, 0); new = gen_rtx (MEM, mode, memory_address (mode, addr)); MEM_VOLATILE_P (new) = MEM_VOLATILE_P (memref); RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (memref); MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (memref); return new; } /* Return a newly created CODE_LABEL rtx with a unique label number. */ rtx gen_label_rtx () { register rtx label = gen_rtx (CODE_LABEL, VOIDmode, 0, 0, 0, label_num++); LABEL_NUSES (label) = 0; return label; } /* For procedure integration. */ /* Return a newly created INLINE_HEADER rtx. Should allocate this from a permanent obstack when the opportunity arises. */ rtx gen_inline_header_rtx (insn, last_insn, first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size, stack_slots) rtx insn, last_insn; int first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size; rtx stack_slots; { rtx header = gen_rtx (INLINE_HEADER, VOIDmode, cur_insn_uid++, NULL, insn, last_insn, first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size, stack_slots); return header; } /* Install new pointers to the first and last insns in the chain. Used for an inline-procedure after copying the insn chain. */ void set_new_first_and_last_insn (first, last) rtx first, last; { first_insn = first; last_insn = last; } /* Go through all the RTL insn bodies and copy any invalid shared structure. It does not work to do this twice, because the mark bits set here are not cleared afterwards. */ static int unshare_copies = 0; /* Count rtx's that were copied. */ static rtx copy_rtx_if_shared (); void unshare_all_rtl (insn) register rtx insn; { extern rtx stack_slot_list; for (; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN) { PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn)); REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn)); LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn)); } /* Make sure the addresses of stack slots are not shared with anything in the insn chain. That could happen if the stack slot is referenced only by its address. */ copy_rtx_if_shared (stack_slot_list); } /* Mark ORIG as in use, and return a copy of it if it was already in use. Recursively does the same for subexpressions. */ static rtx copy_rtx_if_shared (orig) rtx orig; { register rtx x = orig; register int i; register enum rtx_code code; register char *format_ptr; int copied = 0; if (x == 0) return 0; code = GET_CODE (x); /* These types may be freely shared. */ switch (code) { case REG: case QUEUED: case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: return x; case INSN: case JUMP_INSN: case CALL_INSN: case NOTE: case LABEL_REF: case BARRIER: /* The chain of insns is not being copied. */ return x; case MEM: /* A MEM is allowed to be shared if its address is constant or is a constant plus one of the special registers. */ if (CONSTANT_ADDRESS_P (XEXP (x, 0))) return x; if (GET_CODE (XEXP (x, 0)) == PLUS && (XEXP (XEXP (x, 0), 0) == frame_pointer_rtx || XEXP (XEXP (x, 0), 0) == arg_pointer_rtx) && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1))) { /* This MEM can appear in more than one place, but its address better not be shared with anything else. */ if (! x->used) XEXP (x, 0) = copy_rtx_if_shared (XEXP (x, 0)); x->used = 1; return x; } if (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx) return x; } /* This rtx may not be shared. If it has already been seen, replace it with a copy of itself. */ if (x->used) { register rtx copy; unshare_copies++; copy = rtx_alloc (code); bcopy (x, copy, (sizeof (*copy) - sizeof (copy->fld) + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code))); x = copy; copied = 1; } x->used = 1; /* Now scan the subexpressions recursively. We can store any replaced subexpressions directly into X since we know X is not shared! Any vectors in X must be copied if X was copied. */ format_ptr = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case 'e': XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i)); break; case 'E': if (XVEC (x, i) != NULL) { register int j; if (copied) XVEC (x, i) = gen_rtvec_v (XVECLEN (x, i), &XVECEXP (x, i, 0)); for (j = 0; j < XVECLEN (x, i); j++) XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j)); } break; } } return x; } /* Copy X if necessary so that it won't be altered by changes in OTHER. Return X or the rtx for the pseudo reg the value of X was copied into. OTHER must be valid as a SET_DEST. */ rtx make_safe_from (x, other) rtx x, other; { while (1) switch (GET_CODE (other)) { case SUBREG: other = SUBREG_REG (other); break; case STRICT_LOW_PART: case SIGN_EXTEND: case ZERO_EXTEND: other = XEXP (other, 0); break; default: goto done; } done: if ((GET_CODE (other) == MEM && ! CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE && GET_CODE (x) != REG && GET_CODE (x) != SUBREG) || (GET_CODE (other) == REG && (REGNO (other) < FIRST_PSEUDO_REGISTER || reg_mentioned_p (other, x)))) { rtx temp = gen_reg_rtx (GET_MODE (x)); emit_move_insn (temp, x); return temp; } return x; } /* Emission of insns (adding them to the doubly-linked list). */ /* Return the first insn of the current sequence or current function. */ rtx get_insns () { return first_insn; } /* Return the last insn emitted in current sequence or current function. */ rtx get_last_insn () { return last_insn; } /* Specify a new insn as the last in the chain. */ void set_last_insn (insn) rtx insn; { if (NEXT_INSN (insn) != 0) abort (); last_insn = insn; } /* Return a number larger than any instruction's uid in this function. */ int get_max_uid () { return cur_insn_uid; } rtx next_insn (insn) rtx insn; { if (insn) return NEXT_INSN (insn); return 0; } rtx previous_insn (insn) rtx insn; { if (insn) return PREV_INSN (insn); return 0; } /* Make and return an INSN rtx, initializing all its slots. Store PATTERN in the pattern slots. PAT_FORMALS is an idea that never really went anywhere. */ static rtx make_insn_raw (pattern, pat_formals) rtx pattern; rtvec pat_formals; { register rtx insn; insn = rtx_alloc(INSN); INSN_UID(insn) = cur_insn_uid++; PATTERN (insn) = pattern; INSN_CODE (insn) = -1; LOG_LINKS(insn) = NULL; REG_NOTES(insn) = NULL; return insn; } /* Like `make_insn' but make a JUMP_INSN instead of an insn. */ static rtx make_jump_insn_raw (pattern, pat_formals) rtx pattern; rtvec pat_formals; { register rtx insn; insn = rtx_alloc(JUMP_INSN); INSN_UID(insn) = cur_insn_uid++; PATTERN (insn) = pattern; INSN_CODE (insn) = -1; LOG_LINKS(insn) = NULL; REG_NOTES(insn) = NULL; JUMP_LABEL(insn) = NULL; return insn; } /* Add INSN to the end of the doubly-linked list. INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */ static void add_insn (insn) register rtx insn; { PREV_INSN (insn) = last_insn; NEXT_INSN (insn) = 0; if (NULL != last_insn) NEXT_INSN (last_insn) = insn; if (NULL == first_insn) first_insn = insn; last_insn = insn; } /* Add INSN, an rtx of code INSN, into the doubly-linked list after insn AFTER. */ static void add_insn_after (insn, after) rtx insn, after; { NEXT_INSN (insn) = NEXT_INSN (after); PREV_INSN (insn) = after; if (NEXT_INSN (insn)) PREV_INSN (NEXT_INSN (insn)) = insn; else if (last_insn == after) last_insn = insn; else { rtx stack = sequence_stack; /* Scan all pending sequences too. */ for (; stack; stack = XEXP (XEXP (stack, 1), 1)) if (after == XEXP (XEXP (stack, 1), 0)) XEXP (XEXP (stack, 1), 0) = insn; } NEXT_INSN (after) = insn; } /* Delete all insns made since FROM. FROM becomes the new last instruction. */ void delete_insns_since (from) rtx from; { if (from == 0) first_insn = 0; else NEXT_INSN (from) = 0; last_insn = from; } /* Move a consecutive bunch of insns to a different place in the chain. The insns to be moved are those between FROM and TO. They are moved to a new position after the insn AFTER. */ void reorder_insns (from, to, after) rtx from, to, after; { /* Splice this bunch out of where it is now. */ if (PREV_INSN (from)) NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to); if (NEXT_INSN (to)) PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from); if (last_insn == to) last_insn = PREV_INSN (from); if (first_insn == from) first_insn = NEXT_INSN (to); /* Make the new neighbors point to it and it to them. */ if (NEXT_INSN (after)) { PREV_INSN (NEXT_INSN (after)) = to; NEXT_INSN (to) = NEXT_INSN (after); } PREV_INSN (from) = after; NEXT_INSN (after) = from; if (after == last_insn) last_insn = to; } /* Emit an insn of given code and pattern at a specified place within the doubly-linked list. */ /* Make an instruction with body PATTERN and output it before the instruction BEFORE. */ rtx emit_insn_before (pattern, before) register rtx pattern, before; { register rtx insn; if (GET_CODE (pattern) == SEQUENCE) { register int i; /* For an empty sequence, emit nothing. */ if (XVEC (pattern, 0)) for (i = 0; i < XVECLEN (pattern, 0); i++) add_insn_after (XVECEXP (pattern, 0, i), PREV_INSN (before)); return PREV_INSN (before); } insn = make_insn_raw (pattern, 0); PREV_INSN (insn) = PREV_INSN (before); NEXT_INSN (insn) = before; if (PREV_INSN (insn)) NEXT_INSN (PREV_INSN (insn)) = insn; else first_insn = insn; PREV_INSN (before) = insn; return insn; } /* Make an instruction with body PATTERN and code JUMP_INSN and output it before the instruction BEFORE. */ rtx emit_jump_insn_before (pattern, before) register rtx pattern, before; { register rtx insn = make_jump_insn_raw (pattern, 0); PREV_INSN (insn) = PREV_INSN (before); NEXT_INSN (insn) = before; if (PREV_INSN (insn)) NEXT_INSN (PREV_INSN (insn)) = insn; else first_insn = insn; PREV_INSN (before) = insn; return insn; } /* Make an instruction with body PATTERN and code CALL_INSN and output it before the instruction BEFORE. */ rtx emit_call_insn_before (pattern, before) register rtx pattern, before; { rtx insn = emit_insn_before (pattern, before); PUT_CODE (insn, CALL_INSN); return insn; } /* Make an insn of code INSN with body PATTERN and output it after the insn AFTER. */ rtx emit_insn_after (pattern, after) register rtx pattern, after; { if (GET_CODE (pattern) == SEQUENCE) { register int i; /* For an empty sequence, emit nothing. */ if (XVEC (pattern, 0)) for (i = 0; i < XVECLEN (pattern, 0); i++) { add_insn_after (XVECEXP (pattern, 0, i), after); after = NEXT_INSN (after); } return after; } else { register rtx insn = make_insn_raw (pattern, 0); add_insn_after (insn, after); return insn; } } /* Make an insn of code JUMP_INSN with body PATTERN and output it after the insn AFTER. */ rtx emit_jump_insn_after (pattern, after) register rtx pattern, after; { register rtx insn = make_jump_insn_raw (pattern, 0); add_insn_after (insn, after); return insn; } /* Make an insn of code BARRIER and output it after the insn AFTER. */ rtx emit_barrier_after (after) register rtx after; { register rtx insn = rtx_alloc (BARRIER); INSN_UID (insn) = cur_insn_uid++; add_insn_after (insn, after); return insn; } /* Emit the label LABEL after the insn AFTER. */ void emit_label_after (label, after) rtx label, after; { /* This can be called twice for the same label as a result of the confusion that follows a syntax error! So make it harmless. */ if (INSN_UID (label) == 0) { INSN_UID (label) = cur_insn_uid++; add_insn_after (label, after); } } /* Emit a note of subtype SUBTYPE after the insn AFTER. */ void emit_note_after (subtype, after) int subtype; rtx after; { register rtx note = rtx_alloc (NOTE); INSN_UID (note) = cur_insn_uid++; XSTR (note, 3) = 0; XINT (note, 4) = subtype; add_insn_after (note, after); } /* Make an insn of code INSN with pattern PATTERN and add it to the end of the doubly-linked list. If PATTERN is a SEQUENCE, take the elements of it and emit an insn for each element. Returns the last insn emitted. */ rtx emit_insn (pattern) rtx pattern; { rtx insn; if (GET_CODE (pattern) == SEQUENCE) { register int i; /* For an empty sequence, emit nothing. */ if (XVEC (pattern, 0)) for (i = 0; i < XVECLEN (pattern, 0); i++) add_insn (insn = XVECEXP (pattern, 0, i)); } else { insn = make_insn_raw (pattern, NULL); add_insn (insn); } return insn; } /* Emit the insns in a chain starting with INSN. */ rtx emit_insns (insn) rtx insn; { while (insn) { rtx next = NEXT_INSN (insn); add_insn (insn); insn = next; } } /* Make an insn of code JUMP_INSN with pattern PATTERN and add it to the end of the doubly-linked list. */ rtx emit_jump_insn (pattern) rtx pattern; { if (GET_CODE (pattern) == SEQUENCE) return emit_insn (pattern); else { register rtx insn = make_jump_insn_raw (pattern, NULL); add_insn (insn); return insn; } } /* Make an insn of code CALL_INSN with pattern PATTERN and add it to the end of the doubly-linked list. */ rtx emit_call_insn (pattern) rtx pattern; { if (GET_CODE (pattern) == SEQUENCE) return emit_insn (pattern); else { register rtx insn = make_insn_raw (pattern, NULL); add_insn (insn); PUT_CODE (insn, CALL_INSN); return insn; } } /* Add the label LABEL to the end of the doubly-linked list. */ rtx emit_label (label) rtx label; { /* This can be called twice for the same label as a result of the confusion that follows a syntax error! So make it harmless. */ if (INSN_UID (label) == 0) { INSN_UID (label) = cur_insn_uid++; add_insn (label); } return label; } /* Make an insn of code BARRIER and add it to the end of the doubly-linked list. */ rtx emit_barrier () { register rtx barrier = rtx_alloc (BARRIER); INSN_UID (barrier) = cur_insn_uid++; add_insn (barrier); return barrier; } /* Make an insn of code NOTE with data-fields specified by FILE and LINE and add it to the end of the doubly-linked list, but only if line-numbers are desired for debugging info. */ rtx emit_line_note (file, line) char *file; int line; { emit_filename = file; emit_lineno = line; #if 0 if (no_line_numbers) return 0; #endif return emit_note (file, line); } /* Make an insn of code NOTE with data-fields specified by FILE and LINE and add it to the end of the doubly-linked list. If it is a line-number NOTE, omit it if it matches the previous one. */ rtx emit_note (file, line) char *file; int line; { register rtx note; if (line > 0) { if (file && last_filename && !strcmp (file, last_filename) && line == last_linenum) return 0; last_filename = file; last_linenum = line; } if (no_line_numbers && line > 0) { cur_insn_uid++; return 0; } note = rtx_alloc (NOTE); INSN_UID (note) = cur_insn_uid++; XSTR (note, 3) = file; XINT (note, 4) = line; add_insn (note); return note; } /* Emit a NOTE, and don't omit it even if LINE it the previous note. */ rtx emit_line_note_force (file, line) char *file; int line; { last_linenum = -1; return emit_line_note (file, line); } /* Cause next statement to emit a line note even if the line number has not changed. This is used at the beginning of a function. */ void force_next_line_note () { last_linenum = -1; } /* Return an indication of which type of insn should have X as a body. The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */ enum rtx_code classify_insn (x) rtx x; { if (GET_CODE (x) == CODE_LABEL) return CODE_LABEL; if (GET_CODE (x) == CALL) return CALL_INSN; if (GET_CODE (x) == RETURN) return JUMP_INSN; if (GET_CODE (x) == SET) { if (SET_DEST (x) == pc_rtx) return JUMP_INSN; else if (GET_CODE (SET_SRC (x)) == CALL) return CALL_INSN; else return INSN; } if (GET_CODE (x) == PARALLEL) { register int j; for (j = XVECLEN (x, 0) - 1; j >= 0; j--) if (GET_CODE (XVECEXP (x, 0, j)) == CALL) return CALL_INSN; else if (GET_CODE (XVECEXP (x, 0, j)) == SET && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx) return JUMP_INSN; else if (GET_CODE (XVECEXP (x, 0, j)) == SET && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL) return CALL_INSN; } return INSN; } /* Emit the rtl pattern X as an appropriate kind of insn. If X is a label, it is simply added into the insn chain. */ void emit (x) rtx x; { enum rtx_code code = classify_insn (x); if (code == CODE_LABEL) emit_label (x); else if (code == INSN) emit_insn (x); else if (code == JUMP_INSN) { register rtx insn = emit_jump_insn (x); if (simplejump_p (insn) || GET_CODE (x) == RETURN) emit_barrier (); } else if (code == CALL_INSN) emit_call_insn (x); } /* Begin emitting insns to a sequence which can be packaged in an RTL_EXPR. Return an rtx containing data on any sequence already in progress. */ rtx start_sequence () { sequence_stack = gen_rtx (INSN_LIST, VOIDmode, first_insn, gen_rtx (INSN_LIST, VOIDmode, last_insn, sequence_stack)); first_insn = 0; last_insn = 0; return sequence_stack; } /* Set up the insn chain starting with FIRST as the current sequence, saving the previously current one. */ void push_to_sequence (first) rtx first; { rtx last; for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last)); sequence_stack = gen_rtx (INSN_LIST, VOIDmode, first_insn, gen_rtx (INSN_LIST, VOIDmode, last_insn, sequence_stack)); first_insn = first; last_insn = last; } /* After emitting to a sequence, restore previous saved state. The argument SAVED is no longer used. To get the contents of the sequence just made, you must call `gen_sequence' *before* calling here. */ void end_sequence (saved) rtx saved; { first_insn = XEXP (sequence_stack, 0); last_insn = XEXP (XEXP (sequence_stack, 1), 0); sequence_stack = XEXP (XEXP (sequence_stack, 1), 1); } /* Generate a SEQUENCE rtx containing the insns already emitted to the current sequence. This is how the gen_... function from a DEFINE_EXPAND constructs the SEQUENCE that it returns. */ rtx gen_sequence () { rtx tem; rtvec newvec; int i; int len; /* Count the insns in the chain. */ len = 0; for (tem = first_insn; tem; tem = NEXT_INSN (tem)) len++; /* For an empty sequence... */ if (len == 0) return gen_rtx (SEQUENCE, VOIDmode, NULL); /* If only one insn, return its pattern rather than a SEQUENCE. */ if (len == 1 && (GET_CODE (first_insn) == INSN || GET_CODE (first_insn) == JUMP_INSN || GET_CODE (first_insn) == CALL_INSN)) return PATTERN (first_insn); /* Put them in a vector. */ newvec = rtvec_alloc (len); i = 0; for (tem = first_insn; tem; tem = NEXT_INSN (tem), i++) newvec->elem[i].rtx = tem; /* Make a SEQUENCE from this vector. */ return gen_rtx (SEQUENCE, VOIDmode, newvec); } /* Set up regno_reg_rtx, reg_rtx_no and regno_pointer_flag according to the chain of insns starting with FIRST. Also set cur_insn_uid to exceed the largest uid in that chain. This is used when an inline function's rtl is saved and passed to rest_of_compilation later. */ static void restore_reg_data_1 (); void restore_reg_data (first) rtx first; { register rtx insn; int i; register int max_uid = 0; for (insn = first; insn; insn = NEXT_INSN (insn)) { if (INSN_UID (insn) >= max_uid) max_uid = INSN_UID (insn); switch (GET_CODE (insn)) { case NOTE: case CODE_LABEL: case BARRIER: break; case JUMP_INSN: case CALL_INSN: case INSN: restore_reg_data_1 (PATTERN (insn)); break; } } /* Don't duplicate the uids already in use. */ cur_insn_uid = max_uid + 1; /* If any regs are missing, make them up. */ for (i = FIRST_PSEUDO_REGISTER; i < reg_rtx_no; i++) if (regno_reg_rtx[i] == 0) regno_reg_rtx[i] = gen_rtx (REG, SImode, i); } static void restore_reg_data_1 (orig) rtx orig; { register rtx x = orig; register int i; register enum rtx_code code; register char *format_ptr; code = GET_CODE (x); switch (code) { case QUEUED: case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: case LABEL_REF: return; case REG: if (REGNO (x) >= FIRST_PSEUDO_REGISTER) { /* Make sure regno_pointer_flag and regno_reg_rtx are large enough to have an element for this pseudo reg number. */ if (REGNO (x) >= reg_rtx_no) { reg_rtx_no = REGNO (x); if (reg_rtx_no >= regno_pointer_flag_length) { int newlen = max (regno_pointer_flag_length * 2, reg_rtx_no + 30); rtx *new1; char *new = (char *) oballoc (newlen); bzero (new, newlen); bcopy (regno_pointer_flag, new, regno_pointer_flag_length); new1 = (rtx *) oballoc (newlen * sizeof (rtx)); bzero (new1, newlen * sizeof (rtx)); bcopy (regno_reg_rtx, new1, regno_pointer_flag_length * sizeof (rtx)); regno_pointer_flag = new; regno_reg_rtx = new1; regno_pointer_flag_length = newlen; } reg_rtx_no ++; } regno_reg_rtx[REGNO (x)] = x; } return; case MEM: if (GET_CODE (XEXP (x, 0)) == REG) mark_reg_pointer (XEXP (x, 0)); restore_reg_data_1 (XEXP (x, 0)); return; } /* Now scan the subexpressions recursively. */ format_ptr = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case 'e': restore_reg_data_1 (XEXP (x, i)); break; case 'E': if (XVEC (x, i) != NULL) { register int j; for (j = 0; j < XVECLEN (x, i); j++) restore_reg_data_1 (XVECEXP (x, i, j)); } break; } } } /* Initialize data structures and variables in this file before generating rtl for each function. WRITE_SYMBOLS is nonzero if any kind of debugging info is to be generated. */ void init_emit (write_symbols) int write_symbols; { first_insn = NULL; last_insn = NULL; sequence_stack = NULL; cur_insn_uid = 1; reg_rtx_no = FIRST_PSEUDO_REGISTER; last_linenum = 0; last_filename = 0; first_label_num = label_num; no_line_numbers = ! write_symbols; /* Init the tables that describe all the pseudo regs. */ regno_pointer_flag_length = FIRST_PSEUDO_REGISTER + 100; regno_pointer_flag = (char *) oballoc (regno_pointer_flag_length); bzero (regno_pointer_flag, regno_pointer_flag_length); regno_reg_rtx = (rtx *) oballoc (regno_pointer_flag_length * sizeof (rtx)); bzero (regno_reg_rtx, regno_pointer_flag_length * sizeof (rtx)); } /* Create some permanent unique rtl objects shared between all functions. */ void init_emit_once () { /* Create the unique rtx's for certain rtx codes and operand values. */ pc_rtx = gen_rtx (PC, VOIDmode); cc0_rtx = gen_rtx (CC0, VOIDmode); /* Don't use gen_rtx here since gen_rtx in this case tries to use these variables. */ const0_rtx = rtx_alloc (CONST_INT); INTVAL (const0_rtx) = 0; const1_rtx = rtx_alloc (CONST_INT); INTVAL (const1_rtx) = 1; fconst0_rtx = rtx_alloc (CONST_DOUBLE); dconst0_rtx = rtx_alloc (CONST_DOUBLE); { union real_extract u; #ifdef REAL_IS_NOT_DOUBLE bzero (&u, sizeof u); u.d = REAL_VALUE_ATOF ("0"); #else u.d = 0; #endif bcopy (&u, &CONST_DOUBLE_LOW (fconst0_rtx), sizeof u); CONST_DOUBLE_MEM (fconst0_rtx) = cc0_rtx; PUT_MODE (fconst0_rtx, SFmode); bcopy (&u, &CONST_DOUBLE_LOW (dconst0_rtx), sizeof u); CONST_DOUBLE_MEM (dconst0_rtx) = cc0_rtx; PUT_MODE (dconst0_rtx, DFmode); } stack_pointer_rtx = gen_rtx (REG, Pmode, STACK_POINTER_REGNUM); frame_pointer_rtx = gen_rtx (REG, Pmode, FRAME_POINTER_REGNUM); #ifdef STRUCT_VALUE struct_value_rtx = STRUCT_VALUE; #else struct_value_rtx = gen_rtx (REG, Pmode, STRUCT_VALUE_REGNUM); #endif #ifdef STRUCT_VALUE_INCOMING struct_value_incoming_rtx = STRUCT_VALUE_INCOMING; #else #ifdef STRUCT_VALUE_INCOMING_REGNUM struct_value_incoming_rtx = gen_rtx (REG, Pmode, STRUCT_VALUE_INCOMING_REGNUM); #else struct_value_incoming_rtx = struct_value_rtx; #endif #endif static_chain_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_REGNUM); #ifdef STATIC_CHAIN_INCOMING_REGNUM if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM) static_chain_incoming_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_INCOMING_REGNUM); else #endif static_chain_incoming_rtx = static_chain_rtx; if (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM) arg_pointer_rtx = frame_pointer_rtx; else arg_pointer_rtx = gen_rtx (REG, Pmode, ARG_POINTER_REGNUM); }
These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.