ftp.nice.ch/pub/next/developer/languages/c/djgpp-NS.s.tar.gz#/djgpp/src/gas-2.3/gas/config/tc-i960.c

This is tc-i960.c in view mode; [Download] [Up]

/* tc-i960.c - All the i80960-specific stuff
   Copyright (C) 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.

   This file is part of GAS.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to
   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* See comment on md_parse_option for 80960-specific invocation options. */

/******************************************************************************
 * i80690 NOTE!!!:
 *	Header, symbol, and relocation info will be used on the host machine
 *	only -- only executable code is actually downloaded to the i80960.
 *	Therefore, leave all such information in host byte order.
 *
 *	(That's a slight lie -- we DO download some header information, but
 *	the downloader converts the file format and corrects the byte-ordering
 *	of the relevant fields while doing so.)
 *
 * ==> THIS IS NO LONGER TRUE USING BFD.  WE CAN GENERATE ANY BYTE ORDER
 *     FOR THE HEADER, AND READ ANY BYTE ORDER.  PREFERENCE WOULD BE TO
 *     USE LITTLE-ENDIAN BYTE ORDER THROUGHOUT, REGARDLESS OF HOST.  <==
 *
 ***************************************************************************** */

/* There are 4 different lengths of (potentially) symbol-based displacements
 * in the 80960 instruction set, each of which could require address fix-ups
 * and (in the case of external symbols) emission of relocation directives:
 *
 * 32-bit (MEMB)
 *	This is a standard length for the base assembler and requires no
 *	special action.
 *
 * 13-bit (COBR)
 *	This is a non-standard length, but the base assembler has a hook for
 *	bit field address fixups:  the fixS structure can point to a descriptor
 *	of the field, in which case our md_number_to_field() routine gets called
 *	to process it.
 *
 *	I made the hook a little cleaner by having fix_new() (in the base
 *	assembler) return a pointer to the fixS in question.  And I made it a
 *	little simpler by storing the field size (in this case 13) instead of
 *	of a pointer to another structure:  80960 displacements are ALWAYS
 *	stored in the low-order bits of a 4-byte word.
 *
 *	Since the target of a COBR cannot be external, no relocation directives
 *	for this size displacement have to be generated.  But the base assembler
 *	had to be modified to issue error messages if the symbol did turn out
 *	to be external.
 *
 * 24-bit (CTRL)
 *	Fixups are handled as for the 13-bit case (except that 24 is stored
 *	in the fixS).
 *
 *	The relocation directive generated is the same as that for the 32-bit
 *	displacement, except that it's PC-relative (the 32-bit displacement
 *	never is).   The i80960 version of the linker needs a mod to
 *	distinguish and handle the 24-bit case.
 *
 * 12-bit (MEMA)
 *	MEMA formats are always promoted to MEMB (32-bit) if the displacement
 *	is based on a symbol, because it could be relocated at link time.
 *	The only time we use the 12-bit format is if an absolute value of
 *	less than 4096 is specified, in which case we need neither a fixup nor
 *	a relocation directive.
 */

#include <stdio.h>
#include <ctype.h>

#include "as.h"

#include "obstack.h"

#include "opcode/i960.h"

extern char *strchr ();

extern char *input_line_pointer;
extern struct hash_control *po_hash;
extern char *next_object_file_charP;

#if !defined (BFD_ASSEMBLER) && !defined (BFD)
#ifdef OBJ_COFF
const int md_reloc_size = sizeof (struct reloc);
#else /* OBJ_COFF */
const int md_reloc_size = sizeof (struct relocation_info);
#endif /* OBJ_COFF */
#endif

/***************************
 *  Local i80960 routines  *
 ************************** */

static void brcnt_emit ();	/* Emit branch-prediction instrumentation code */
static char *brlab_next ();	/* Return next branch local label */
void brtab_emit ();		/* Emit br-predict instrumentation table */
static void cobr_fmt ();	/* Generate COBR instruction */
static void ctrl_fmt ();	/* Generate CTRL instruction */
static char *emit ();		/* Emit (internally) binary */
static int get_args ();		/* Break arguments out of comma-separated list */
static void get_cdisp ();	/* Handle COBR or CTRL displacement */
static char *get_ispec ();	/* Find index specification string */
static int get_regnum ();	/* Translate text to register number */
static int i_scan ();		/* Lexical scan of instruction source */
static void mem_fmt ();		/* Generate MEMA or MEMB instruction */
static void mema_to_memb ();	/* Convert MEMA instruction to MEMB format */
static void parse_expr ();	/* Parse an expression */
static int parse_ldconst ();	/* Parse and replace a 'ldconst' pseudo-op */
static void parse_memop ();	/* Parse a memory operand */
static void parse_po ();	/* Parse machine-dependent pseudo-op */
static void parse_regop ();	/* Parse a register operand */
static void reg_fmt ();		/* Generate a REG format instruction */
void reloc_callj ();		/* Relocate a 'callj' instruction */
static void relax_cobr ();	/* "De-optimize" cobr into compare/branch */
static void s_leafproc ();	/* Process '.leafproc' pseudo-op */
static void s_sysproc ();	/* Process '.sysproc' pseudo-op */
static int shift_ok ();		/* Will a 'shlo' substiture for a 'ldconst'? */
static void syntax ();		/* Give syntax error */
static int targ_has_sfr ();	/* Target chip supports spec-func register? */
static int targ_has_iclass ();	/* Target chip supports instruction set? */
/* static void	unlink_sym(); *//* Remove a symbol from the symbol list */

/* See md_parse_option() for meanings of these options */
static char norelax;		/* True if -norelax switch seen */
static char instrument_branches;/* True if -b switch seen */

/* Characters that always start a comment.
 * If the pre-processor is disabled, these aren't very useful.
 */
const char comment_chars[] = "#";

/* Characters that only start a comment at the beginning of
 * a line.  If the line seems to have the form '# 123 filename'
 * .line and .file directives will appear in the pre-processed output.
 *
 * Note that input_file.c hand checks for '#' at the beginning of the
 * first line of the input file.  This is because the compiler outputs
 * #NO_APP at the beginning of its output.
 */

/* Also note that comments started like this one will always work. */

const char line_comment_chars[1];

const char line_separator_chars[1];

/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";

/* Chars that mean this number is a floating point constant,
 * as in 0f12.456 or 0d1.2345e12
 */
const char FLT_CHARS[] = "fFdDtT";


/* Table used by base assembler to relax addresses based on varying length
 * instructions.  The fields are:
 *   1) most positive reach of this state,
 *   2) most negative reach of this state,
 *   3) how many bytes this mode will add to the size of the current frag
 *   4) which index into the table to try if we can't fit into this one.
 *
 * For i80960, the only application is the (de-)optimization of cobr
 * instructions into separate compare and branch instructions when a 13-bit
 * displacement won't hack it.
 */
const relax_typeS
  md_relax_table[] =
{
  {0, 0, 0, 0},			/* State 0 => no more relaxation possible */
  {4088, -4096, 0, 2},		/* State 1: conditional branch (cobr) */
  {0x800000 - 8, -0x800000, 4, 0},	/* State 2: compare (reg) & branch (ctrl) */
};


/* These are the machine dependent pseudo-ops.
 *
 * This table describes all the machine specific pseudo-ops the assembler
 * has to support.  The fields are:
 *	pseudo-op name without dot
 *	function to call to execute this pseudo-op
 *	integer arg to pass to the function
 */
#define S_LEAFPROC	1
#define S_SYSPROC	2

const pseudo_typeS md_pseudo_table[] =
{
  {"bss", s_lcomm, 1},
  {"extended", float_cons, 't'},
  {"leafproc", parse_po, S_LEAFPROC},
  {"sysproc", parse_po, S_SYSPROC},

  {"word", cons, 4},
  {"quad", cons, 16},

  {0, 0, 0}
};

/* Macros to extract info from an 'expressionS' structure 'e' */
#define adds(e)	e.X_add_symbol
#define offs(e)	e.X_add_number


/* Branch-prediction bits for CTRL/COBR format opcodes */
#define BP_MASK		0x00000002	/* Mask for branch-prediction bit */
#define BP_TAKEN	0x00000000	/* Value to OR in to predict branch */
#define BP_NOT_TAKEN	0x00000002	/* Value to OR in to predict no branch */


/* Some instruction opcodes that we need explicitly */
#define BE	0x12000000
#define BG	0x11000000
#define BGE	0x13000000
#define BL	0x14000000
#define BLE	0x16000000
#define BNE	0x15000000
#define BNO	0x10000000
#define BO	0x17000000
#define CHKBIT	0x5a002700
#define CMPI	0x5a002080
#define CMPO	0x5a002000

#define B	0x08000000
#define BAL	0x0b000000
#define CALL	0x09000000
#define CALLS	0x66003800
#define RET	0x0a000000


/* These masks are used to build up a set of MEMB mode bits. */
#define	A_BIT		0x0400
#define	I_BIT		0x0800
#define MEMB_BIT	0x1000
#define	D_BIT		0x2000


/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
   used).  */
#define MEMA_ABASE	0x2000

/* Info from which a MEMA or MEMB format instruction can be generated */
typedef struct
  {
    /* (First) 32 bits of instruction */
    long opcode;
    /* 0-(none), 12- or, 32-bit displacement needed */
    int disp;
    /* The expression in the source instruction from which the
       displacement should be determined.  */
    char *e;
  }

memS;


/* The two pieces of info we need to generate a register operand */
struct regop
  {
    int mode;			/* 0 =>local/global/spec reg; 1=> literal or fp reg */
    int special;		/* 0 =>not a sfr;  1=> is a sfr (not valid w/mode=0) */
    int n;			/* Register number or literal value */
  };


/* Number and assembler mnemonic for all registers that can appear in operands */
static struct
  {
    char *reg_name;
    int reg_num;
  }

regnames[] =
{
  { "pfp", 0 },
  { "sp", 1 },
  { "rip", 2 },
  { "r3", 3 },
  { "r4", 4 },
  { "r5", 5 },
  { "r6", 6 },
  { "r7", 7 },
  { "r8", 8 },
  { "r9", 9 },
  { "r10", 10 },
  { "r11", 11 },
  { "r12", 12 },
  { "r13", 13 },
  { "r14", 14 },
  { "r15", 15 },
  { "g0", 16 },
  { "g1", 17 },
  { "g2", 18 },
  { "g3", 19 },
  { "g4", 20 },
  { "g5", 21 },
  { "g6", 22 },
  { "g7", 23 },
  { "g8", 24 },
  { "g9", 25 },
  { "g10", 26 },
  { "g11", 27 },
  { "g12", 28 },
  { "g13", 29 },
  { "g14", 30 },
  { "fp", 31 },

  /* Numbers for special-function registers are for assembler internal
     use only: they are scaled back to range [0-31] for binary output.  */
#define SF0	32

  { "sf0", 32 },
  { "sf1", 33 },
  { "sf2", 34 },
  { "sf3", 35 },
  { "sf4", 36 },
  { "sf5", 37 },
  { "sf6", 38 },
  { "sf7", 39 },
  { "sf8", 40 },
  { "sf9", 41 },
  { "sf10", 42 },
  { "sf11", 43 },
  { "sf12", 44 },
  { "sf13", 45 },
  { "sf14", 46 },
  { "sf15", 47 },
  { "sf16", 48 },
  { "sf17", 49 },
  { "sf18", 50 },
  { "sf19", 51 },
  { "sf20", 52 },
  { "sf21", 53 },
  { "sf22", 54 },
  { "sf23", 55 },
  { "sf24", 56 },
  { "sf25", 57 },
  { "sf26", 58 },
  { "sf27", 59 },
  { "sf28", 60 },
  { "sf29", 61 },
  { "sf30", 62 },
  { "sf31", 63 },

  /* Numbers for floating point registers are for assembler internal use
	 * only: they are scaled back to [0-3] for binary output.
	 */
#define FP0	64

  { "fp0", 64 },
  { "fp1", 65 },
  { "fp2", 66 },
  { "fp3", 67 },

  { NULL, 0 },				/* END OF LIST */
};

#define	IS_RG_REG(n)	((0 <= (n)) && ((n) < SF0))
#define	IS_SF_REG(n)	((SF0 <= (n)) && ((n) < FP0))
#define	IS_FP_REG(n)	((n) >= FP0)

/* Number and assembler mnemonic for all registers that can appear as 'abase'
 * (indirect addressing) registers.
 */
static struct
  {
    char *areg_name;
    int areg_num;
  }

aregs[] =
{
  { "(pfp)", 0 },
  { "(sp)", 1 },
  { "(rip)", 2 },
  { "(r3)", 3 },
  { "(r4)", 4 },
  { "(r5)", 5 },
  { "(r6)", 6 },
  { "(r7)", 7 },
  { "(r8)", 8 },
  { "(r9)", 9 },
  { "(r10)", 10 },
  { "(r11)", 11 },
  { "(r12)", 12 },
  { "(r13)", 13 },
  { "(r14)", 14 },
  { "(r15)", 15 },
  { "(g0)", 16 },
  { "(g1)", 17 },
  { "(g2)", 18 },
  { "(g3)", 19 },
  { "(g4)", 20 },
  { "(g5)", 21 },
  { "(g6)", 22 },
  { "(g7)", 23 },
  { "(g8)", 24 },
  { "(g9)", 25 },
  { "(g10)", 26 },
  { "(g11)", 27 },
  { "(g12)", 28 },
  { "(g13)", 29 },
  { "(g14)", 30 },
  { "(fp)", 31 },

#define IPREL	32
  /* For assembler internal use only: this number never appears in binary
     output.  */
  { "(ip)", IPREL },

  { NULL, 0 },				/* END OF LIST */
};


/* Hash tables */
static struct hash_control *op_hash;	/* Opcode mnemonics */
static struct hash_control *reg_hash;	/* Register name hash table */
static struct hash_control *areg_hash;	/* Abase register hash table */


/* Architecture for which we are assembling */
#define ARCH_ANY	0	/* Default: no architecture checking done */
#define ARCH_KA		1
#define ARCH_KB		2
#define ARCH_MC		3
#define ARCH_CA		4
int architecture = ARCH_ANY;	/* Architecture requested on invocation line */
int iclasses_seen;		/* OR of instruction classes (I_* constants)
				 *	for which we've actually assembled
				 *	instructions.
				 */


/* BRANCH-PREDICTION INSTRUMENTATION
 *
 *	The following supports generation of branch-prediction instrumentation
 *	(turned on by -b switch).  The instrumentation collects counts
 *	of branches taken/not-taken for later input to a utility that will
 *	set the branch prediction bits of the instructions in accordance with
 *	the behavior observed.  (Note that the KX series does not have
 *	brach-prediction.)
 *
 *	The instrumentation consists of:
 *
 *	(1) before and after each conditional branch, a call to an external
 *	    routine that increments and steps over an inline counter.  The
 *	    counter itself, initialized to 0, immediately follows the call
 *	    instruction.  For each branch, the counter following the branch
 *	    is the number of times the branch was not taken, and the difference
 *	    between the counters is the number of times it was taken.  An
 *	    example of an instrumented conditional branch:
 *
 *				call	BR_CNT_FUNC
 *				.word	0
 *		LBRANCH23:	be	label
 *				call	BR_CNT_FUNC
 *				.word	0
 *
 *	(2) a table of pointers to the instrumented branches, so that an
 *	    external postprocessing routine can locate all of the counters.
 *	    the table begins with a 2-word header: a pointer to the next in
 *	    a linked list of such tables (initialized to 0);  and a count
 *	    of the number of entries in the table (exclusive of the header.
 *
 *	    Note that input source code is expected to already contain calls
 *	    an external routine that will link the branch local table into a
 *	    list of such tables.
 */

static int br_cnt;		/* Number of branches instrumented so far.
				 * Also used to generate unique local labels
				 * for each instrumented branch
				 */

#define BR_LABEL_BASE	"LBRANCH"
/* Basename of local labels on instrumented
 * branches, to avoid conflict with compiler-
 * generated local labels.
 */

#define BR_CNT_FUNC	"__inc_branch"
/* Name of the external routine that will
 * increment (and step over) an inline counter.
 */

#define BR_TAB_NAME	"__BRANCH_TABLE__"
/* Name of the table of pointers to branches.
 * A local (i.e., non-external) symbol.
 */

/*****************************************************************************
 * md_begin:  One-time initialization.
 *
 *	Set up hash tables.
 *
 **************************************************************************** */
void
md_begin ()
{
  int i;			/* Loop counter */
  const struct i960_opcode *oP;	/* Pointer into opcode table */
  const char *retval;		/* Value returned by hash functions */

  op_hash = hash_new ();
  reg_hash = hash_new ();
  areg_hash = hash_new ();

  /* For some reason, the base assembler uses an empty string for "no
     error message", instead of a NULL pointer.  */
  retval = 0;

  for (oP = i960_opcodes; oP->name && !retval; oP++)
    retval = hash_insert (op_hash, oP->name, (PTR) oP);

  for (i = 0; regnames[i].reg_name && !retval; i++)
    retval = hash_insert (reg_hash, regnames[i].reg_name,
			  &regnames[i].reg_num);

  for (i = 0; aregs[i].areg_name && !retval; i++)
    retval = hash_insert (areg_hash, aregs[i].areg_name,
			  &aregs[i].areg_num);

  if (retval)
    as_fatal ("Hashing returned \"%s\".", retval);
}

/*****************************************************************************
 * md_assemble:  Assemble an instruction
 *
 * Assumptions about the passed-in text:
 *	- all comments, labels removed
 *	- text is an instruction
 *	- all white space compressed to single blanks
 *	- all character constants have been replaced with decimal
 *
 **************************************************************************** */
void
md_assemble (textP)
     char *textP;		/* Source text of instruction */
{
  /* Parsed instruction text, containing NO whitespace:
   *	arg[0]->opcode mnemonic
   *	arg[1-3]->operands, with char constants
   *			replaced by decimal numbers
   */
  char *args[4];

  int n_ops;			/* Number of instruction operands */
  /* Pointer to instruction description */
  struct i960_opcode *oP;
  /* TRUE iff opcode mnemonic included branch-prediction
   *	suffix (".f" or ".t")
   */
  int branch_predict;
  /* Setting of branch-prediction bit(s) to be OR'd
   *	into instruction opcode of CTRL/COBR format
   *	instructions.
   */
  long bp_bits;

  int n;			/* Offset of last character in opcode mnemonic */

  static const char bp_error_msg[] = "branch prediction invalid on this opcode";


  /* Parse instruction into opcode and operands */
  memset (args, '\0', sizeof (args));
  n_ops = i_scan (textP, args);
  if (n_ops == -1)
    {
      return;			/* Error message already issued */
    }

  /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
  if (!strcmp (args[0], "ldconst"))
    {
      n_ops = parse_ldconst (args);
      if (n_ops == -1)
	{
	  return;
	}
    }



  /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
  n = strlen (args[0]) - 1;
  branch_predict = 0;
  bp_bits = 0;
  if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
    {
      /* We could check here to see if the target architecture
       * supports branch prediction, but why bother?  The bit
       * will just be ignored by processors that don't use it.
       */
      branch_predict = 1;
      bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
      args[0][n - 1] = '\0';	/* Strip suffix from opcode mnemonic */
    }

  /* Look up opcode mnemonic in table and check number of operands.
   * Check that opcode is legal for the target architecture.
   * If all looks good, assemble instruction.
   */
  oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
  if (!oP || !targ_has_iclass (oP->iclass))
    {
      as_bad ("invalid opcode, \"%s\".", args[0]);

    }
  else if (n_ops != oP->num_ops)
    {
      as_bad ("improper number of operands.  expecting %d, got %d",
	      oP->num_ops, n_ops);
    }
  else
    {
      switch (oP->format)
	{
	case FBRA:
	case CTRL:
	  ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
	  if (oP->format == FBRA)
	    {
	      /* Now generate a 'bno' to same arg */
	      ctrl_fmt (args[1], BNO | bp_bits, 1);
	    }
	  break;
	case COBR:
	case COJ:
	  cobr_fmt (args, oP->opcode | bp_bits, oP);
	  break;
	case REG:
	  if (branch_predict)
	    {
	      as_warn (bp_error_msg);
	    }
	  reg_fmt (args, oP);
	  break;
	case MEM1:
	  if (args[0][0] == 'c' && args[0][1] == 'a')
	    {
	      if (branch_predict)
		{
		  as_warn (bp_error_msg);
		}
	      mem_fmt (args, oP, 1);
	      break;
	    }
	case MEM2:
	case MEM4:
	case MEM8:
	case MEM12:
	case MEM16:
	  if (branch_predict)
	    {
	      as_warn (bp_error_msg);
	    }
	  mem_fmt (args, oP, 0);
	  break;
	case CALLJ:
	  if (branch_predict)
	    {
	      as_warn (bp_error_msg);
	    }
	  /* Output opcode & set up "fixup" (relocation); flag
	     relocation as 'callj' type.  */
	  know (oP->num_ops == 1);
	  get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
	  break;
	default:
	  BAD_CASE (oP->format);
	  break;
	}
    }
}				/* md_assemble() */

/*****************************************************************************
 * md_number_to_chars:  convert a number to target byte order
 *
 **************************************************************************** */
void
md_number_to_chars (buf, value, n)
     char *buf;
     valueT value;
     int n;
{
  number_to_chars_littleendian (buf, value, n);
}

/*****************************************************************************
 * md_chars_to_number:  convert from target byte order to host byte order.
 *
 **************************************************************************** */
int
md_chars_to_number (val, n)
     unsigned char *val;	/* Value in target byte order */
     int n;			/* Number of bytes in the input */
{
  int retval;

  for (retval = 0; n--;)
    {
      retval <<= 8;
      retval |= val[n];
    }
  return retval;
}


#define MAX_LITTLENUMS	6
#define LNUM_SIZE	sizeof(LITTLENUM_TYPE)

/*****************************************************************************
 * md_atof:	convert ascii to floating point
 *
 * Turn a string at input_line_pointer into a floating point constant of type
 * 'type', and store the appropriate bytes at *litP.  The number of LITTLENUMS
 * emitted is returned at 'sizeP'.  An error message is returned, or a pointer
 * to an empty message if OK.
 *
 * Note we call the i386 floating point routine, rather than complicating
 * things with more files or symbolic links.
 *
 **************************************************************************** */
char *
md_atof (type, litP, sizeP)
     int type;
     char *litP;
     int *sizeP;
{
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  LITTLENUM_TYPE *wordP;
  int prec;
  char *t;
  char *atof_ieee ();

  switch (type)
    {
    case 'f':
    case 'F':
      prec = 2;
      break;

    case 'd':
    case 'D':
      prec = 4;
      break;

    case 't':
    case 'T':
      prec = 5;
      type = 'x';		/* That's what atof_ieee() understands */
      break;

    default:
      *sizeP = 0;
      return "Bad call to md_atof()";
    }

  t = atof_ieee (input_line_pointer, type, words);
  if (t)
    {
      input_line_pointer = t;
    }

  *sizeP = prec * LNUM_SIZE;

  /* Output the LITTLENUMs in REVERSE order in accord with i80960
     word-order.  (Dunno why atof_ieee doesn't do it in the right
     order in the first place -- probably because it's a hack of
     atof_m68k.)  */

  for (wordP = words + prec - 1; prec--;)
    {
      md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
      litP += sizeof (LITTLENUM_TYPE);
    }

  return 0;
}


/*****************************************************************************
 * md_number_to_imm
 *
 **************************************************************************** */
void
md_number_to_imm (buf, val, n)
     char *buf;
     long val;
     int n;
{
  md_number_to_chars (buf, val, n);
}


/*****************************************************************************
 * md_number_to_disp
 *
 **************************************************************************** */
void
md_number_to_disp (buf, val, n)
     char *buf;
     long val;
     int n;
{
  md_number_to_chars (buf, val, n);
}

/*****************************************************************************
 * md_number_to_field:
 *
 *	Stick a value (an address fixup) into a bit field of
 *	previously-generated instruction.
 *
 **************************************************************************** */
void
md_number_to_field (instrP, val, bfixP)
     char *instrP;		/* Pointer to instruction to be fixed */
     long val;			/* Address fixup value */
     bit_fixS *bfixP;		/* Description of bit field to be fixed up */
{
  int numbits;			/* Length of bit field to be fixed */
  long instr;			/* 32-bit instruction to be fixed-up */
  long sign;			/* 0 or -1, according to sign bit of 'val' */

  /* Convert instruction back to host byte order
	 */
  instr = md_chars_to_number (instrP, 4);

  /* Surprise! -- we stored the number of bits
	 * to be modified rather than a pointer to a structure.
	 */
  numbits = (int) bfixP;
  if (numbits == 1)
    {
      /* This is a no-op, stuck here by reloc_callj() */
      return;
    }

  know ((numbits == 13) || (numbits == 24));

  /* Propagate sign bit of 'val' for the given number of bits.
	 * Result should be all 0 or all 1
	 */
  sign = val >> ((int) numbits - 1);
  if (((val < 0) && (sign != -1))
      || ((val > 0) && (sign != 0)))
    {
      as_bad ("Fixup of %ld too large for field width of %d",
	      val, numbits);
    }
  else
    {
      /* Put bit field into instruction and write back in target
		 * byte order.
		 */
      val &= ~(-1 << (int) numbits);	/* Clear unused sign bits */
      instr |= val;
      md_number_to_chars (instrP, instr, 4);
    }
}				/* md_number_to_field() */


/*****************************************************************************
 * md_parse_option
 *	Invocation line includes a switch not recognized by the base assembler.
 *	See if it's a processor-specific option.  For the 960, these are:
 *
 *	-norelax:
 *		Conditional branch instructions that require displacements
 *		greater than 13 bits (or that have external targets) should
 *		generate errors.  The default is to replace each such
 *		instruction with the corresponding compare (or chkbit) and
 *		branch instructions.  Note that the Intel "j" cobr directives
 *		are ALWAYS "de-optimized" in this way when necessary,
 *		regardless of the setting of this option.
 *
 *	-b:
 *		Add code to collect information about branches taken, for
 *		later optimization of branch prediction bits by a separate
 *		tool.  COBR and CNTL format instructions have branch
 *		prediction bits (in the CX architecture);  if "BR" represents
 *		an instruction in one of these classes, the following rep-
 *		resents the code generated by the assembler:
 *
 *			call	<increment routine>
 *			.word	0	# pre-counter
 *		Label:  BR
 *			call	<increment routine>
 *			.word	0	# post-counter
 *
 *		A table of all such "Labels" is also generated.
 *
 *
 *	-AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
 *		Select the 80960 architecture.  Instructions or features not
 *		supported by the selected architecture cause fatal errors.
 *		The default is to generate code for any instruction or feature
 *		that is supported by SOME version of the 960 (even if this
 *		means mixing architectures!).
 *
 **************************************************************************** */
int
md_parse_option (argP, cntP, vecP)
     char **argP;
     int *cntP;
     char ***vecP;
{
  char *p;
  struct tabentry
    {
      char *flag;
      int arch;
    };
  static struct tabentry arch_tab[] =
  {
    { "KA", ARCH_KA },
    { "KB", ARCH_KB },
    { "SA", ARCH_KA },		/* Synonym for KA */
    { "SB", ARCH_KB },		/* Synonym for KB */
    { "KC", ARCH_MC },		/* Synonym for MC */
    { "MC", ARCH_MC },
    { "CA", ARCH_CA },
    { NULL, 0 }
  };
  struct tabentry *tp;
  if (!strcmp (*argP, "linkrelax"))
    {
      linkrelax = 1;
      flagseen['L'] = 1;
    }
  else if (!strcmp (*argP, "norelax"))
    {
      norelax = 1;

    }
  else if (**argP == 'b')
    {
      instrument_branches = 1;

    }
  else if (**argP == 'A')
    {
      p = (*argP) + 1;

      for (tp = arch_tab; tp->flag != NULL; tp++)
	{
	  if (!strcmp (p, tp->flag))
	    {
	      break;
	    }
	}

      if (tp->flag == NULL)
	{
	  as_bad ("unknown architecture: %s", p);
	}
      else
	{
	  architecture = tp->arch;
	}
    }
  else
    {
      /* Unknown option */
      (*argP)++;
      return 0;
    }
  **argP = '\0';		/* Done parsing this switch */
  return 1;
}

/*****************************************************************************
 * md_convert_frag:
 *	Called by base assembler after address relaxation is finished:  modify
 *	variable fragments according to how much relaxation was done.
 *
 *	If the fragment substate is still 1, a 13-bit displacement was enough
 *	to reach the symbol in question.  Set up an address fixup, but otherwise
 *	leave the cobr instruction alone.
 *
 *	If the fragment substate is 2, a 13-bit displacement was not enough.
 *	Replace the cobr with a two instructions (a compare and a branch).
 *
 **************************************************************************** */
void
md_convert_frag (headers, fragP)
     object_headers *headers;
     fragS *fragP;
{
  fixS *fixP;			/* Structure describing needed address fix */

  switch (fragP->fr_subtype)
    {
    case 1:
      /* LEAVE SINGLE COBR INSTRUCTION */
      fixP = fix_new (fragP,
		      fragP->fr_opcode - fragP->fr_literal,
		      4,
		      fragP->fr_symbol,
		      fragP->fr_offset,
		      1,
		      NO_RELOC);

      fixP->fx_bit_fixP = (bit_fixS *) 13;	/* size of bit field */
      break;
    case 2:
      /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
      relax_cobr (fragP);
      break;
    default:
      BAD_CASE (fragP->fr_subtype);
      break;
    }
}

/*****************************************************************************
 * md_estimate_size_before_relax:  How much does it look like *fragP will grow?
 *
 *	Called by base assembler just before address relaxation.
 *	Return the amount by which the fragment will grow.
 *
 *	Any symbol that is now undefined will not become defined; cobr's
 *	based on undefined symbols will have to be replaced with a compare
 *	instruction and a branch instruction, and the code fragment will grow
 *	by 4 bytes.
 *
 **************************************************************************** */
int
md_estimate_size_before_relax (fragP, segment_type)
     register fragS *fragP;
     register segT segment_type;
{
  /* If symbol is undefined in this segment, go to "relaxed" state
	 * (compare and branch instructions instead of cobr) right now.
	 */
  if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
    {
      relax_cobr (fragP);
      return 4;
    }
  return 0;
}				/* md_estimate_size_before_relax() */


/*****************************************************************************
 * md_ri_to_chars:
 *	This routine exists in order to overcome machine byte-order problems
 *	when dealing with bit-field entries in the relocation_info struct.
 *
 *	But relocation info will be used on the host machine only (only
 *	executable code is actually downloaded to the i80960).  Therefore,
 *	we leave it in host byte order.
 *
 *	The above comment is no longer true.  This routine now really
 *	does do the reordering (Ian Taylor 28 Aug 92).
 *
 **************************************************************************** */
void
md_ri_to_chars (where, ri)
     char *where;
     struct relocation_info *ri;
{
  md_number_to_chars (where, ri->r_address,
		      sizeof (ri->r_address));
  where[4] = ri->r_index & 0x0ff;
  where[5] = (ri->r_index >> 8) & 0x0ff;
  where[6] = (ri->r_index >> 16) & 0x0ff;
  where[7] = ((ri->r_pcrel << 0)
	      | (ri->r_length << 1)
	      | (ri->r_extern << 3)
	      | (ri->r_bsr << 4)
	      | (ri->r_disp << 5)
	      | (ri->r_callj << 6));
}

#ifndef WORKING_DOT_WORD

int md_short_jump_size = 0;
int md_long_jump_size = 0;

void
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
     char *ptr;
     addressT from_addr;
     addressT to_addr;
     fragS *frag;
     symbolS *to_symbol;
{
  as_fatal ("failed sanity check.");
}

void
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
     char *ptr;
     addressT from_addr, to_addr;
     fragS *frag;
     symbolS *to_symbol;
{
  as_fatal ("failed sanity check.");
}

#endif

/*************************************************************
 *                                                           *
 *  FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER  *
 *                                                           *
 ************************************************************ */



/*****************************************************************************
 * brcnt_emit:	Emit code to increment inline branch counter.
 *
 *	See the comments above the declaration of 'br_cnt' for details on
 *	branch-prediction instrumentation.
 **************************************************************************** */
static void
brcnt_emit ()
{
  ctrl_fmt (BR_CNT_FUNC, CALL, 1);	/* Emit call to "increment" routine */
  emit (0);			/* Emit inline counter to be incremented */
}

/*****************************************************************************
 * brlab_next:	generate the next branch local label
 *
 *	See the comments above the declaration of 'br_cnt' for details on
 *	branch-prediction instrumentation.
 **************************************************************************** */
static char *
brlab_next ()
{
  static char buf[20];

  sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
  return buf;
}

/*****************************************************************************
 * brtab_emit:	generate the fetch-prediction branch table.
 *
 *	See the comments above the declaration of 'br_cnt' for details on
 *	branch-prediction instrumentation.
 *
 *	The code emitted here would be functionally equivalent to the following
 *	example assembler source.
 *
 *			.data
 *			.align	2
 *	   BR_TAB_NAME:
 *			.word	0		# link to next table
 *			.word	3		# length of table
 *			.word	LBRANCH0	# 1st entry in table proper
 *			.word	LBRANCH1
 *			.word	LBRANCH2
 ***************************************************************************** */
void
brtab_emit ()
{
  int i;
  char buf[20];
  char *p;			/* Where the binary was output to */
  fixS *fixP;			/*->description of deferred address fixup */

  if (!instrument_branches)
    {
      return;
    }

  subseg_set (SEG_DATA, 0);	/* 	.data */
  frag_align (2, 0);		/* 	.align 2 */
  record_alignment (now_seg, 2);
  colon (BR_TAB_NAME);		/* BR_TAB_NAME: */
  emit (0);			/* 	.word 0	#link to next table */
  emit (br_cnt);		/*	.word n #length of table */

  for (i = 0; i < br_cnt; i++)
    {
      sprintf (buf, "%s%d", BR_LABEL_BASE, i);
      p = emit (0);
      fixP = fix_new (frag_now,
		      p - frag_now->fr_literal,
		      4,
		      symbol_find (buf),
		      0,
		      0,
		      NO_RELOC);
      fixP->fx_im_disp = 2;	/* 32-bit displacement fix */
    }
}

/*****************************************************************************
 * cobr_fmt:	generate a COBR-format instruction
 *
 **************************************************************************** */
static
void
cobr_fmt (arg, opcode, oP)
     char *arg[];		/* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
     long opcode;		/* Opcode, with branch-prediction bits already set
		 *	if necessary.
		 */
     struct i960_opcode *oP;
     /*->description of instruction */
{
  long instr;			/* 32-bit instruction */
  struct regop regop;		/* Description of register operand */
  int n;			/* Number of operands */
  int var_frag;			/* 1 if varying length code fragment should
				 *	be emitted;  0 if an address fix
				 *	should be emitted.
				 */

  instr = opcode;
  n = oP->num_ops;

  if (n >= 1)
    {
      /* First operand (if any) of a COBR is always a register
		 * operand.  Parse it.
		 */
      parse_regop (&regop, arg[1], oP->operand[0]);
      instr |= (regop.n << 19) | (regop.mode << 13);
    }
  if (n >= 2)
    {
      /* Second operand (if any) of a COBR is always a register
		 * operand.  Parse it.
		 */
      parse_regop (&regop, arg[2], oP->operand[1]);
      instr |= (regop.n << 14) | regop.special;
    }


  if (n < 3)
    {
      emit (instr);

    }
  else
    {
      if (instrument_branches)
	{
	  brcnt_emit ();
	  colon (brlab_next ());
	}

      /* A third operand to a COBR is always a displacement.
		 * Parse it; if it's relaxable (a cobr "j" directive, or any
		 * cobr other than bbs/bbc when the "-norelax" option is not in
		 * use) set up a variable code fragment;  otherwise set up an
		 * address fix.
		 */
      var_frag = !norelax || (oP->format == COJ);	/* TRUE or FALSE */
      get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);

      if (instrument_branches)
	{
	  brcnt_emit ();
	}
    }
}				/* cobr_fmt() */


/*****************************************************************************
 * ctrl_fmt:	generate a CTRL-format instruction
 *
 **************************************************************************** */
static
void
ctrl_fmt (targP, opcode, num_ops)
     char *targP;		/* Pointer to text of lone operand (if any) */
     long opcode;		/* Template of instruction */
     int num_ops;		/* Number of operands */
{
  int instrument;		/* TRUE iff we should add instrumentation to track
			 * how often the branch is taken
			 */


  if (num_ops == 0)
    {
      emit (opcode);		/* Output opcode */
    }
  else
    {

      instrument = instrument_branches && (opcode != CALL)
	&& (opcode != B) && (opcode != RET) && (opcode != BAL);

      if (instrument)
	{
	  brcnt_emit ();
	  colon (brlab_next ());
	}

      /* The operand MUST be an ip-relative displacment. Parse it
		 * and set up address fix for the instruction we just output.
		 */
      get_cdisp (targP, "CTRL", opcode, 24, 0, 0);

      if (instrument)
	{
	  brcnt_emit ();
	}
    }

}


/*****************************************************************************
 * emit:	output instruction binary
 *
 *	Output instruction binary, in target byte order, 4 bytes at a time.
 *	Return pointer to where it was placed.
 *
 **************************************************************************** */
static
char *
emit (instr)
     long instr;		/* Word to be output, host byte order */
{
  char *toP;			/* Where to output it */

  toP = frag_more (4);		/* Allocate storage */
  md_number_to_chars (toP, instr, 4);	/* Convert to target byte order */
  return toP;
}


/*****************************************************************************
 * get_args:	break individual arguments out of comma-separated list
 *
 * Input assumptions:
 *	- all comments and labels have been removed
 *	- all strings of whitespace have been collapsed to a single blank.
 *	- all character constants ('x') have been replaced with decimal
 *
 * Output:
 *	args[0] is untouched. args[1] points to first operand, etc. All args:
 *	- are NULL-terminated
 *	- contain no whitespace
 *
 * Return value:
 *	Number of operands (0,1,2, or 3) or -1 on error.
 *
 **************************************************************************** */
static int
get_args (p, args)
     register char *p;		/* Pointer to comma-separated operands; MUCKED BY US */
     char *args[];		/* Output arg: pointers to operands placed in args[1-3].
		 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
		 */
{
  register int n;		/* Number of operands */
  register char *to;
  /*	char buf[4]; */
  /*	int len; */


  /* Skip lead white space */
  while (*p == ' ')
    {
      p++;
    }

  if (*p == '\0')
    {
      return 0;
    }

  n = 1;
  args[1] = p;

  /* Squeze blanks out by moving non-blanks toward start of string.
	 * Isolate operands, whenever comma is found.
	 */
  to = p;
  while (*p != '\0')
    {

      if (*p == ' ')
	{
	  p++;

	}
      else if (*p == ',')
	{

	  /* Start of operand */
	  if (n == 3)
	    {
	      as_bad ("too many operands");
	      return -1;
	    }
	  *to++ = '\0';		/* Terminate argument */
	  args[++n] = to;	/* Start next argument */
	  p++;

	}
      else
	{
	  *to++ = *p++;
	}
    }
  *to = '\0';
  return n;
}


/*****************************************************************************
 * get_cdisp:	handle displacement for a COBR or CTRL instruction.
 *
 *	Parse displacement for a COBR or CTRL instruction.
 *
 *	If successful, output the instruction opcode and set up for it,
 *	depending on the arg 'var_frag', either:
 *	    o an address fixup to be done when all symbol values are known, or
 *	    o a varying length code fragment, with address fixup info.  This
 *		will be done for cobr instructions that may have to be relaxed
 *		in to compare/branch instructions (8 bytes) if the final
 *		address displacement is greater than 13 bits.
 *
 *****************************************************************************/
static
void
get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
     /* displacement as specified in source instruction */
     char *dispP;
     /* "COBR" or "CTRL" (for use in error message) */
     char *ifmtP;
     /* Instruction needing the displacement */
     long instr;
     /* # bits of displacement (13 for COBR, 24 for CTRL) */
     int numbits;
     /* 1 if varying length code fragment should be emitted;
      *	0 if an address fix should be emitted.
      */
     int var_frag;
     /* 1 if callj relocation should be done; else 0 */
     int callj;
{
  expressionS e;		/* Parsed expression */
  fixS *fixP;			/* Structure describing needed address fix */
  char *outP;			/* Where instruction binary is output to */

  fixP = NULL;

  parse_expr (dispP, &e);
  switch (e.X_op)
    {
    case O_illegal:
      as_bad ("expression syntax error");

    case O_symbol:
      if (S_GET_SEGMENT (e.X_add_symbol) == text_section
	  || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
	{	
	  if (var_frag)
	    {
	      outP = frag_more (8); /* Allocate worst-case storage */
	      md_number_to_chars (outP, instr, 4);
	      frag_variant (rs_machine_dependent, 4, 4, 1,
			    adds (e), offs (e), outP, 0, 0);
	    }
	  else
	    {
	      /* Set up a new fix structure, so address can be updated
	       * when all symbol values are known.
	       */
	      outP = emit (instr);
	      fixP = fix_new (frag_now,
			      outP - frag_now->fr_literal,
			      4,
			      adds (e),
			      offs (e),
			      1,
			      NO_RELOC);

	      fixP->fx_tcbit = callj;

	      /* We want to modify a bit field when the address is
	       * known.  But we don't need all the garbage in the
	       * bit_fix structure.  So we're going to lie and store
	       * the number of bits affected instead of a pointer.
	       */
	      fixP->fx_bit_fixP = (bit_fixS *) numbits;
	    }
	}
      else
	as_bad ("attempt to branch into different segment");
      break;

    default:
      as_bad ("target of %s instruction must be a label", ifmtP);
      break;
    }
}


/*****************************************************************************
 * get_ispec:	parse a memory operand for an index specification
 *
 *	Here, an "index specification" is taken to be anything surrounded
 *	by square brackets and NOT followed by anything else.
 *
 *	If it's found, detach it from the input string, remove the surrounding
 *	square brackets, and return a pointer to it.  Otherwise, return NULL.
 *
 **************************************************************************** */
static
char *
get_ispec (textP)
     char *textP;		/*->memory operand from source instruction, no white space */
{
  char *start;			/*->start of index specification */
  char *end;			/*->end of index specification */

  /* Find opening square bracket, if any
	 */
  start = strchr (textP, '[');

  if (start != NULL)
    {

      /* Eliminate '[', detach from rest of operand */
      *start++ = '\0';

      end = strchr (start, ']');

      if (end == NULL)
	{
	  as_bad ("unmatched '['");

	}
      else
	{
	  /* Eliminate ']' and make sure it was the last thing
			 * in the string.
			 */
	  *end = '\0';
	  if (*(end + 1) != '\0')
	    {
	      as_bad ("garbage after index spec ignored");
	    }
	}
    }
  return start;
}

/*****************************************************************************
 * get_regnum:
 *
 *	Look up a (suspected) register name in the register table and return the
 *	associated register number (or -1 if not found).
 *
 **************************************************************************** */
static
int
get_regnum (regname)
     char *regname;		/* Suspected register name */
{
  int *rP;

  rP = (int *) hash_find (reg_hash, regname);
  return (rP == NULL) ? -1 : *rP;
}


/*****************************************************************************
 * i_scan:	perform lexical scan of ascii assembler instruction.
 *
 * Input assumptions:
 *	- input string is an i80960 instruction (not a pseudo-op)
 *	- all comments and labels have been removed
 *	- all strings of whitespace have been collapsed to a single blank.
 *
 * Output:
 *	args[0] points to opcode, other entries point to operands. All strings:
 *	- are NULL-terminated
 *	- contain no whitespace
 *	- have character constants ('x') replaced with a decimal number
 *
 * Return value:
 *	Number of operands (0,1,2, or 3) or -1 on error.
 *
 **************************************************************************** */
static int
i_scan (iP, args)
     register char *iP;		/* Pointer to ascii instruction;  MUCKED BY US. */
     char *args[];		/* Output arg: pointers to opcode and operands placed
		 *	here.  MUST ACCOMMODATE 4 ENTRIES.
		 */
{

  /* Isolate opcode */
  if (*(iP) == ' ')
    {
      iP++;
    }				/* Skip lead space, if any */
  args[0] = iP;
  for (; *iP != ' '; iP++)
    {
      if (*iP == '\0')
	{
	  /* There are no operands */
	  if (args[0] == iP)
	    {
	      /* We never moved: there was no opcode either! */
	      as_bad ("missing opcode");
	      return -1;
	    }
	  return 0;
	}
    }
  *iP++ = '\0';			/* Terminate opcode */
  return (get_args (iP, args));
}				/* i_scan() */


/*****************************************************************************
 * mem_fmt:	generate a MEMA- or MEMB-format instruction
 *
 **************************************************************************** */
static void
mem_fmt (args, oP, callx)
     char *args[];		/* args[0]->opcode mnemonic, args[1-3]->operands */
     struct i960_opcode *oP;	/* Pointer to description of instruction */
     int callx;			/* Is this a callx opcode */
{
  int i;			/* Loop counter */
  struct regop regop;		/* Description of register operand */
  char opdesc;			/* Operand descriptor byte */
  memS instr;			/* Description of binary to be output */
  char *outP;			/* Where the binary was output to */
  expressionS expr;		/* Parsed expression */
  fixS *fixP;			/*->description of deferred address fixup */

#ifdef OBJ_COFF
  /* COFF support isn't in place yet for callx relaxing.  */
  callx = 0;
#endif

  memset (&instr, '\0', sizeof (memS));
  instr.opcode = oP->opcode;

  /* Process operands. */
  for (i = 1; i <= oP->num_ops; i++)
    {
      opdesc = oP->operand[i - 1];

      if (MEMOP (opdesc))
	{
	  parse_memop (&instr, args[i], oP->format);
	}
      else
	{
	  parse_regop (&regop, args[i], opdesc);
	  instr.opcode |= regop.n << 19;
	}
    }

  /* Output opcode */
  outP = emit (instr.opcode);

  if (instr.disp == 0)
    {
      return;
    }

  /* Parse and process the displacement */
  parse_expr (instr.e, &expr);
  switch (expr.X_op)
    {
    case O_illegal:
      as_bad ("expression syntax error");
      break;

    case O_constant:
      if (instr.disp == 32)
	{
	  (void) emit (offs (expr));	/* Output displacement */
	}
      else
	{
	  /* 12-bit displacement */
	  if (offs (expr) & ~0xfff)
	    {
	      /* Won't fit in 12 bits: convert already-output
	       * instruction to MEMB format, output
	       * displacement.
	       */
	      mema_to_memb (outP);
	      (void) emit (offs (expr));
	    }
	  else
	    {
	      /* WILL fit in 12 bits:  OR into opcode and
	       * overwrite the binary we already put out
	       */
	      instr.opcode |= offs (expr);
	      md_number_to_chars (outP, instr.opcode, 4);
	    }
	}
      break;

    default:
      if (instr.disp == 12)
	{
	  /* Displacement is dependent on a symbol, whose value
	   * may change at link time.  We HAVE to reserve 32 bits.
	   * Convert already-output opcode to MEMB format.
	   */
	  mema_to_memb (outP);
	}

      /* Output 0 displacement and set up address fixup for when
       * this symbol's value becomes known.
       */
      outP = emit ((long) 0);
      fixP = fix_new_exp (frag_now,
			  outP - frag_now->fr_literal,
			  4,
			  &expr,
			  0,
			  NO_RELOC);
      fixP->fx_im_disp = 2;	/* 32-bit displacement fix */
      /* Steve's linker relaxing hack.  Mark this 32-bit relocation as
	 being in the instruction stream, specifically as part of a callx
	 instruction.  */
      fixP->fx_bsr = callx;
      break;
    }
}				/* memfmt() */


/*****************************************************************************
 * mema_to_memb:	convert a MEMA-format opcode to a MEMB-format opcode.
 *
 * There are 2 possible MEMA formats:
 *	- displacement only
 *	- displacement + abase
 *
 * They are distinguished by the setting of the MEMA_ABASE bit.
 *
 **************************************************************************** */
static void
mema_to_memb (opcodeP)
     char *opcodeP;		/* Where to find the opcode, in target byte order */
{
  long opcode;			/* Opcode in host byte order */
  long mode;			/* Mode bits for MEMB instruction */

  opcode = md_chars_to_number (opcodeP, 4);
  know (!(opcode & MEMB_BIT));

  mode = MEMB_BIT | D_BIT;
  if (opcode & MEMA_ABASE)
    {
      mode |= A_BIT;
    }

  opcode &= 0xffffc000;		/* Clear MEMA offset and mode bits */
  opcode |= mode;		/* Set MEMB mode bits */

  md_number_to_chars (opcodeP, opcode, 4);
}				/* mema_to_memb() */


/*****************************************************************************
 * parse_expr:		parse an expression
 *
 *	Use base assembler's expression parser to parse an expression.
 *	It, unfortunately, runs off a global which we have to save/restore
 *	in order to make it work for us.
 *
 *	An empty expression string is treated as an absolute 0.
 *
 *	Sets O_illegal regardless of expression evaluation if entire input
 *	string is not consumed in the evaluation -- tolerate no dangling junk!
 *
 **************************************************************************** */
static void
parse_expr (textP, expP)
     char *textP;		/* Text of expression to be parsed */
     expressionS *expP;		/* Where to put the results of parsing */
{
  char *save_in;		/* Save global here */
  symbolS *symP;

  know (textP);

  if (*textP == '\0')
    {
      /* Treat empty string as absolute 0 */
      expP->X_add_symbol = expP->X_op_symbol = NULL;
      expP->X_add_number = 0;
      expP->X_op = O_constant;
    }
  else
    {
      save_in = input_line_pointer;	/* Save global */
      input_line_pointer = textP;	/* Make parser work for us */

      (void) expression (expP);
      if (input_line_pointer - textP != strlen (textP))
	{
	  /* Did not consume all of the input */
	  expP->X_op = O_illegal;
	}
      symP = expP->X_add_symbol;
      if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
	{
	  /* Register name in an expression */
	  /* FIXME: this isn't much of a check any more.  */
	  expP->X_op = O_illegal;
	}

      input_line_pointer = save_in;	/* Restore global */
    }
}


/*****************************************************************************
 * parse_ldcont:
 *	Parse and replace a 'ldconst' pseudo-instruction with an appropriate
 *	i80960 instruction.
 *
 *	Assumes the input consists of:
 *		arg[0]	opcode mnemonic ('ldconst')
 *		arg[1]  first operand (constant)
 *		arg[2]	name of register to be loaded
 *
 *	Replaces opcode and/or operands as appropriate.
 *
 *	Returns the new number of arguments, or -1 on failure.
 *
 **************************************************************************** */
static
int
parse_ldconst (arg)
     char *arg[];		/* See above */
{
  int n;			/* Constant to be loaded */
  int shift;			/* Shift count for "shlo" instruction */
  static char buf[5];		/* Literal for first operand */
  static char buf2[5];		/* Literal for second operand */
  expressionS e;		/* Parsed expression */


  arg[3] = NULL;		/* So we can tell at the end if it got used or not */

  parse_expr (arg[1], &e);
  switch (e.X_op)
    {
    default:
      /* We're dependent on one or more symbols -- use "lda" */
      arg[0] = "lda";
      break;

    case O_constant:
      /* Try the following mappings:
       *	ldconst 0,<reg>  ->mov  0,<reg>
       * 	ldconst 31,<reg> ->mov  31,<reg>
       * 	ldconst 32,<reg> ->addo 1,31,<reg>
       * 	ldconst 62,<reg> ->addo 31,31,<reg>
       *	ldconst 64,<reg> ->shlo 8,3,<reg>
       * 	ldconst -1,<reg> ->subo 1,0,<reg>
       * 	ldconst -31,<reg>->subo 31,0,<reg>
       *
       * anthing else becomes:
       * 	lda xxx,<reg>
       */
      n = offs (e);
      if ((0 <= n) && (n <= 31))
	{
	  arg[0] = "mov";

	}
      else if ((-31 <= n) && (n <= -1))
	{
	  arg[0] = "subo";
	  arg[3] = arg[2];
	  sprintf (buf, "%d", -n);
	  arg[1] = buf;
	  arg[2] = "0";

	}
      else if ((32 <= n) && (n <= 62))
	{
	  arg[0] = "addo";
	  arg[3] = arg[2];
	  arg[1] = "31";
	  sprintf (buf, "%d", n - 31);
	  arg[2] = buf;

	}
      else if ((shift = shift_ok (n)) != 0)
	{
	  arg[0] = "shlo";
	  arg[3] = arg[2];
	  sprintf (buf, "%d", shift);
	  arg[1] = buf;
	  sprintf (buf2, "%d", n >> shift);
	  arg[2] = buf2;

	}
      else
	{
	  arg[0] = "lda";
	}
      break;

    case O_illegal:
      as_bad ("invalid constant");
      return -1;
      break;
    }
  return (arg[3] == 0) ? 2 : 3;
}

/*****************************************************************************
 * parse_memop:	parse a memory operand
 *
 *	This routine is based on the observation that the 4 mode bits of the
 *	MEMB format, taken individually, have fairly consistent meaning:
 *
 *		 M3 (bit 13): 1 if displacement is present (D_BIT)
 *		 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
 *		 M1 (bit 11): 1 if index is present (I_BIT)
 *		 M0 (bit 10): 1 if abase is present (A_BIT)
 *
 *	So we parse the memory operand and set bits in the mode as we find
 *	things.  Then at the end, if we go to MEMB format, we need only set
 *	the MEMB bit (M2) and our mode is built for us.
 *
 *	Unfortunately, I said "fairly consistent".  The exceptions:
 *
 *		 DBIA
 *		 0100	Would seem illegal, but means "abase-only".
 *
 *		 0101	Would seem to mean "abase-only" -- it means IP-relative.
 *			Must be converted to 0100.
 *
 *		 0110	Would seem to mean "index-only", but is reserved.
 *			We turn on the D bit and provide a 0 displacement.
 *
 *	The other thing to observe is that we parse from the right, peeling
 *	things * off as we go:  first any index spec, then any abase, then
 *	the displacement.
 *
 **************************************************************************** */
static
void
parse_memop (memP, argP, optype)
     memS *memP;		/* Where to put the results */
     char *argP;		/* Text of the operand to be parsed */
     int optype;		/* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
{
  char *indexP;			/* Pointer to index specification with "[]" removed */
  char *p;			/* Temp char pointer */
  char iprel_flag;		/* True if this is an IP-relative operand */
  int regnum;			/* Register number */
  int scale;			/* Scale factor: 1,2,4,8, or 16.  Later converted
			 *	to internal format (0,1,2,3,4 respectively).
			 */
  int mode;			/* MEMB mode bits */
  int *intP;			/* Pointer to register number */

  /* The following table contains the default scale factors for each
   * type of memory instruction.  It is accessed using (optype-MEM1)
   * as an index -- thus it assumes the 'optype' constants are assigned
   * consecutive values, in the order they appear in this table
   */
  static int def_scale[] =
  {
    1,				/* MEM1 */
    2,				/* MEM2 */
    4,				/* MEM4 */
    8,				/* MEM8 */
    -1,				/* MEM12 -- no valid default */
    16				/* MEM16 */
  };


  iprel_flag = mode = 0;

  /* Any index present? */
  indexP = get_ispec (argP);
  if (indexP)
    {
      p = strchr (indexP, '*');
      if (p == NULL)
	{
	  /* No explicit scale -- use default for this
			 *instruction type.
			 */
	  scale = def_scale[optype - MEM1];
	}
      else
	{
	  *p++ = '\0';		/* Eliminate '*' */

	  /* Now indexP->a '\0'-terminated register name,
			 * and p->a scale factor.
			 */

	  if (!strcmp (p, "16"))
	    {
	      scale = 16;
	    }
	  else if (strchr ("1248", *p) && (p[1] == '\0'))
	    {
	      scale = *p - '0';
	    }
	  else
	    {
	      scale = -1;
	    }
	}

      regnum = get_regnum (indexP);	/* Get index reg. # */
      if (!IS_RG_REG (regnum))
	{
	  as_bad ("invalid index register");
	  return;
	}

      /* Convert scale to its binary encoding */
      switch (scale)
	{
	case 1:
	  scale = 0 << 7;
	  break;
	case 2:
	  scale = 1 << 7;
	  break;
	case 4:
	  scale = 2 << 7;
	  break;
	case 8:
	  scale = 3 << 7;
	  break;
	case 16:
	  scale = 4 << 7;
	  break;
	default:
	  as_bad ("invalid scale factor");
	  return;
	};

      memP->opcode |= scale | regnum;	/* Set index bits in opcode */
      mode |= I_BIT;		/* Found a valid index spec */
    }

  /* Any abase (Register Indirect) specification present? */
  if ((p = strrchr (argP, '(')) != NULL)
    {
      /* "(" is there -- does it start a legal abase spec?
		 * (If not it could be part of a displacement expression.)
		 */
      intP = (int *) hash_find (areg_hash, p);
      if (intP != NULL)
	{
	  /* Got an abase here */
	  regnum = *intP;
	  *p = '\0';		/* discard register spec */
	  if (regnum == IPREL)
	    {
	      /* We have to specialcase ip-rel mode */
	      iprel_flag = 1;
	    }
	  else
	    {
	      memP->opcode |= regnum << 14;
	      mode |= A_BIT;
	    }
	}
    }

  /* Any expression present? */
  memP->e = argP;
  if (*argP != '\0')
    {
      mode |= D_BIT;
    }

  /* Special-case ip-relative addressing */
  if (iprel_flag)
    {
      if (mode & I_BIT)
	{
	  syntax ();
	}
      else
	{
	  memP->opcode |= 5 << 10;	/* IP-relative mode */
	  memP->disp = 32;
	}
      return;
    }

  /* Handle all other modes */
  switch (mode)
    {
    case D_BIT | A_BIT:
      /* Go with MEMA instruction format for now (grow to MEMB later
		 *	if 12 bits is not enough for the displacement).
		 * MEMA format has a single mode bit: set it to indicate
		 *	that abase is present.
		 */
      memP->opcode |= MEMA_ABASE;
      memP->disp = 12;
      break;

    case D_BIT:
      /* Go with MEMA instruction format for now (grow to MEMB later
		 *	if 12 bits is not enough for the displacement).
		 */
      memP->disp = 12;
      break;

    case A_BIT:
      /* For some reason, the bit string for this mode is not
		 * consistent:  it should be 0 (exclusive of the MEMB bit),
		 * so we set it "by hand" here.
		 */
      memP->opcode |= MEMB_BIT;
      break;

    case A_BIT | I_BIT:
      /* set MEMB bit in mode, and OR in mode bits */
      memP->opcode |= mode | MEMB_BIT;
      break;

    case I_BIT:
      /* Treat missing displacement as displacement of 0 */
      mode |= D_BIT;
      /***********************
		 * Fall into next case *
		 ********************** */
    case D_BIT | A_BIT | I_BIT:
    case D_BIT | I_BIT:
      /* set MEMB bit in mode, and OR in mode bits */
      memP->opcode |= mode | MEMB_BIT;
      memP->disp = 32;
      break;

    default:
      syntax ();
      break;
    }
}

/*****************************************************************************
 * parse_po:	parse machine-dependent pseudo-op
 *
 *	This is a top-level routine for machine-dependent pseudo-ops.  It slurps
 *	up the rest of the input line, breaks out the individual arguments,
 *	and dispatches them to the correct handler.
 **************************************************************************** */
static
void
parse_po (po_num)
     int po_num;		/* Pseudo-op number:  currently S_LEAFPROC or S_SYSPROC */
{
  char *args[4];		/* Pointers operands, with no embedded whitespace.
			 *	arg[0] unused.
			 *	arg[1-3]->operands
			 */
  int n_ops;			/* Number of operands */
  char *p;			/* Pointer to beginning of unparsed argument string */
  char eol;			/* Character that indicated end of line */

  extern char is_end_of_line[];

  /* Advance input pointer to end of line. */
  p = input_line_pointer;
  while (!is_end_of_line[(unsigned char) *input_line_pointer])
    {
      input_line_pointer++;
    }
  eol = *input_line_pointer;	/* Save end-of-line char */
  *input_line_pointer = '\0';	/* Terminate argument list */

  /* Parse out operands */
  n_ops = get_args (p, args);
  if (n_ops == -1)
    {
      return;
    }

  /* Dispatch to correct handler */
  switch (po_num)
    {
    case S_SYSPROC:
      s_sysproc (n_ops, args);
      break;
    case S_LEAFPROC:
      s_leafproc (n_ops, args);
      break;
    default:
      BAD_CASE (po_num);
      break;
    }

  /* Restore eol, so line numbers get updated correctly.  Base assembler
	 * assumes we leave input pointer pointing at char following the eol.
	 */
  *input_line_pointer++ = eol;
}

/*****************************************************************************
 * parse_regop: parse a register operand.
 *
 *	In case of illegal operand, issue a message and return some valid
 *	information so instruction processing can continue.
 **************************************************************************** */
static
void
parse_regop (regopP, optext, opdesc)
     struct regop *regopP;	/* Where to put description of register operand */
     char *optext;		/* Text of operand */
     char opdesc;		/* Descriptor byte:  what's legal for this operand */
{
  int n;			/* Register number */
  expressionS e;		/* Parsed expression */

  /* See if operand is a register */
  n = get_regnum (optext);
  if (n >= 0)
    {
      if (IS_RG_REG (n))
	{
	  /* global or local register */
	  if (!REG_ALIGN (opdesc, n))
	    {
	      as_bad ("unaligned register");
	    }
	  regopP->n = n;
	  regopP->mode = 0;
	  regopP->special = 0;
	  return;
	}
      else if (IS_FP_REG (n) && FP_OK (opdesc))
	{
	  /* Floating point register, and it's allowed */
	  regopP->n = n - FP0;
	  regopP->mode = 1;
	  regopP->special = 0;
	  return;
	}
      else if (IS_SF_REG (n) && SFR_OK (opdesc))
	{
	  /* Special-function register, and it's allowed */
	  regopP->n = n - SF0;
	  regopP->mode = 0;
	  regopP->special = 1;
	  if (!targ_has_sfr (regopP->n))
	    {
	      as_bad ("no such sfr in this architecture");
	    }
	  return;
	}
    }
  else if (LIT_OK (opdesc))
    {
      /*
		 * How about a literal?
		 */
      regopP->mode = 1;
      regopP->special = 0;
      if (FP_OK (opdesc))
	{			/* floating point literal acceptable */
	  /* Skip over 0f, 0d, or 0e prefix */
	  if ((optext[0] == '0')
	      && (optext[1] >= 'd')
	      && (optext[1] <= 'f'))
	    {
	      optext += 2;
	    }

	  if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
	    {
	      regopP->n = 0x10;
	      return;
	    }
	  if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
	    {
	      regopP->n = 0x16;
	      return;
	    }

	}
      else
	{			/* fixed point literal acceptable */
	  parse_expr (optext, &e);
	  if (e.X_op != O_constant
	      || (offs (e) < 0) || (offs (e) > 31))
	    {
	      as_bad ("illegal literal");
	      offs (e) = 0;
	    }
	  regopP->n = offs (e);
	  return;
	}
    }

  /* Nothing worked */
  syntax ();
  regopP->mode = 0;		/* Register r0 is always a good one */
  regopP->n = 0;
  regopP->special = 0;
}				/* parse_regop() */

/*****************************************************************************
 * reg_fmt:	generate a REG-format instruction
 *
 **************************************************************************** */
static void
reg_fmt (args, oP)
     char *args[];		/* args[0]->opcode mnemonic, args[1-3]->operands */
     struct i960_opcode *oP;	/* Pointer to description of instruction */
{
  long instr;			/* Binary to be output */
  struct regop regop;		/* Description of register operand */
  int n_ops;			/* Number of operands */


  instr = oP->opcode;
  n_ops = oP->num_ops;

  if (n_ops >= 1)
    {
      parse_regop (&regop, args[1], oP->operand[0]);

      if ((n_ops == 1) && !(instr & M3))
	{
	  /* 1-operand instruction in which the dst field should
			 * be used (instead of src1).
			 */
	  regop.n <<= 19;
	  if (regop.special)
	    {
	      regop.mode = regop.special;
	    }
	  regop.mode <<= 13;
	  regop.special = 0;
	}
      else
	{
	  /* regop.n goes in bit 0, needs no shifting */
	  regop.mode <<= 11;
	  regop.special <<= 5;
	}
      instr |= regop.n | regop.mode | regop.special;
    }

  if (n_ops >= 2)
    {
      parse_regop (&regop, args[2], oP->operand[1]);

      if ((n_ops == 2) && !(instr & M3))
	{
	  /* 2-operand instruction in which the dst field should
			 * be used instead of src2).
			 */
	  regop.n <<= 19;
	  if (regop.special)
	    {
	      regop.mode = regop.special;
	    }
	  regop.mode <<= 13;
	  regop.special = 0;
	}
      else
	{
	  regop.n <<= 14;
	  regop.mode <<= 12;
	  regop.special <<= 6;
	}
      instr |= regop.n | regop.mode | regop.special;
    }
  if (n_ops == 3)
    {
      parse_regop (&regop, args[3], oP->operand[2]);
      if (regop.special)
	{
	  regop.mode = regop.special;
	}
      instr |= (regop.n <<= 19) | (regop.mode <<= 13);
    }
  emit (instr);
}


/*****************************************************************************
 * relax_cobr:
 *	Replace cobr instruction in a code fragment with equivalent branch and
 *	compare instructions, so it can reach beyond a 13-bit displacement.
 *	Set up an address fix/relocation for the new branch instruction.
 *
 **************************************************************************** */

/* This "conditional jump" table maps cobr instructions into equivalent
 * compare and branch opcodes.
 */
static
struct
  {
    long compare;
    long branch;
  }

coj[] =
{				/* COBR OPCODE: */
  { CHKBIT, BNO },		/*	0x30 - bbc */
  { CMPO, BG },			/*	0x31 - cmpobg */
  { CMPO, BE },			/*	0x32 - cmpobe */
  { CMPO, BGE },		/*	0x33 - cmpobge */
  { CMPO, BL },			/*	0x34 - cmpobl */
  { CMPO, BNE },		/*	0x35 - cmpobne */
  { CMPO, BLE },		/*	0x36 - cmpoble */
  { CHKBIT, BO },		/*	0x37 - bbs */
  { CMPI, BNO },		/*	0x38 - cmpibno */
  { CMPI, BG },			/*	0x39 - cmpibg */
  { CMPI, BE },			/*	0x3a - cmpibe */
  { CMPI, BGE },		/*	0x3b - cmpibge */
  { CMPI, BL },			/*	0x3c - cmpibl */
  { CMPI, BNE },		/*	0x3d - cmpibne */
  { CMPI, BLE },		/*	0x3e - cmpible */
  { CMPI, BO },			/*	0x3f - cmpibo */
};

static
void
relax_cobr (fragP)
     register fragS *fragP;	/* fragP->fr_opcode is assumed to point to
				 * the cobr instruction, which comes at the
				 * end of the code fragment.
				 */
{
  int opcode, src1, src2, m1, s2;
  /* Bit fields from cobr instruction */
  long bp_bits;			/* Branch prediction bits from cobr instruction */
  long instr;			/* A single i960 instruction */
  char *iP;			/*->instruction to be replaced */
  fixS *fixP;			/* Relocation that can be done at assembly time */

  /* PICK UP & PARSE COBR INSTRUCTION */
  iP = fragP->fr_opcode;
  instr = md_chars_to_number (iP, 4);
  opcode = ((instr >> 24) & 0xff) - 0x30;	/* "-0x30" for table index */
  src1 = (instr >> 19) & 0x1f;
  m1 = (instr >> 13) & 1;
  s2 = instr & 1;
  src2 = (instr >> 14) & 0x1f;
  bp_bits = instr & BP_MASK;

  /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
  instr = coj[opcode].compare
    | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
  md_number_to_chars (iP, instr, 4);

  /* OUTPUT BRANCH INSTRUCTION */
  md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);

  /* SET UP ADDRESS FIXUP/RELOCATION */
  fixP = fix_new (fragP,
		  iP + 4 - fragP->fr_literal,
		  4,
		  fragP->fr_symbol,
		  fragP->fr_offset,
		  1,
		  NO_RELOC);

  fixP->fx_bit_fixP = (bit_fixS *) 24;	/* Store size of bit field */

  fragP->fr_fix += 4;
  frag_wane (fragP);
}


/*****************************************************************************
 * reloc_callj:	Relocate a 'callj' instruction
 *
 *	This is a "non-(GNU)-standard" machine-dependent hook.  The base
 *	assembler calls it when it decides it can relocate an address at
 *	assembly time instead of emitting a relocation directive.
 *
 *	Check to see if the relocation involves a 'callj' instruction to a:
 *	    sysproc:	Replace the default 'call' instruction with a 'calls'
 *	    leafproc:	Replace the default 'call' instruction with a 'bal'.
 *	    other proc:	Do nothing.
 *
 *	See b.out.h for details on the 'n_other' field in a symbol structure.
 *
 * IMPORTANT!:
 *	Assumes the caller has already figured out, in the case of a leafproc,
 *	to use the 'bal' entry point, and has substituted that symbol into the
 *	passed fixup structure.
 *
 **************************************************************************** */
void
reloc_callj (fixP)
     fixS *fixP;		/* Relocation that can be done at assembly time */
{
  char *where;			/*->the binary for the instruction being relocated */

  if (!fixP->fx_tcbit)
    {
      return;
    }				/* This wasn't a callj instruction in the first place */

  where = fixP->fx_frag->fr_literal + fixP->fx_where;

  if (TC_S_IS_SYSPROC (fixP->fx_addsy))
    {
      /* Symbol is a .sysproc: replace 'call' with 'calls'.
		 * System procedure number is (other-1).
		 */
      md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);

      /* Nothing else needs to be done for this instruction.
		 * Make sure 'md_number_to_field()' will perform a no-op.
		 */
      fixP->fx_bit_fixP = (bit_fixS *) 1;

    }
  else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
    {
      /* Should not happen: see block comment above */
      as_fatal ("Trying to 'bal' to %s", S_GET_NAME (fixP->fx_addsy));

    }
  else if (TC_S_IS_BALNAME (fixP->fx_addsy))
    {
      /* Replace 'call' with 'bal';  both instructions have
		 * the same format, so calling code should complete
		 * relocation as if nothing happened here.
		 */
      md_number_to_chars (where, BAL, 4);
    }
  else if (TC_S_IS_BADPROC (fixP->fx_addsy))
    {
      as_bad ("Looks like a proc, but can't tell what kind.\n");
    }				/* switch on proc type */

  /* else Symbol is neither a sysproc nor a leafproc */
}


/*****************************************************************************
 * s_leafproc:	process .leafproc pseudo-op
 *
 *	.leafproc takes two arguments, the second one is optional:
 *		arg[1]: name of 'call' entry point to leaf procedure
 *		arg[2]: name of 'bal' entry point to leaf procedure
 *
 *	If the two arguments are identical, or if the second one is missing,
 *	the first argument is taken to be the 'bal' entry point.
 *
 *	If there are 2 distinct arguments, we must make sure that the 'bal'
 *	entry point immediately follows the 'call' entry point in the linked
 *	list of symbols.
 *
 **************************************************************************** */
static void
s_leafproc (n_ops, args)
     int n_ops;			/* Number of operands */
     char *args[];		/* args[1]->1st operand, args[2]->2nd operand */
{
  symbolS *callP;		/* Pointer to leafproc 'call' entry point symbol */
  symbolS *balP;		/* Pointer to leafproc 'bal' entry point symbol */

  if ((n_ops != 1) && (n_ops != 2))
    {
      as_bad ("should have 1 or 2 operands");
      return;
    }				/* Check number of arguments */

  /* Find or create symbol for 'call' entry point. */
  callP = symbol_find_or_make (args[1]);

  if (TC_S_IS_CALLNAME (callP))
    {
      as_warn ("Redefining leafproc %s", S_GET_NAME (callP));
    }				/* is leafproc */

  /* If that was the only argument, use it as the 'bal' entry point.
	 * Otherwise, mark it as the 'call' entry point and find or create
	 * another symbol for the 'bal' entry point.
	 */
  if ((n_ops == 1) || !strcmp (args[1], args[2]))
    {
      TC_S_FORCE_TO_BALNAME (callP);

    }
  else
    {
      TC_S_FORCE_TO_CALLNAME (callP);

      balP = symbol_find_or_make (args[2]);
      if (TC_S_IS_CALLNAME (balP))
	{
	  as_warn ("Redefining leafproc %s", S_GET_NAME (balP));
	}
      TC_S_FORCE_TO_BALNAME (balP);

      tc_set_bal_of_call (callP, balP);
    }				/* if only one arg, or the args are the same */
}


/*
 * s_sysproc:	process .sysproc pseudo-op
 *
 *	.sysproc takes two arguments:
 *		arg[1]: name of entry point to system procedure
 *		arg[2]: 'entry_num' (index) of system procedure in the range
 *			[0,31] inclusive.
 *
 *	For [ab].out, we store the 'entrynum' in the 'n_other' field of
 *	the symbol.  Since that entry is normally 0, we bias 'entrynum'
 *	by adding 1 to it.  It must be unbiased before it is used.
 */
static void
s_sysproc (n_ops, args)
     int n_ops;			/* Number of operands */
     char *args[];		/* args[1]->1st operand, args[2]->2nd operand */
{
  expressionS exp;
  symbolS *symP;

  if (n_ops != 2)
    {
      as_bad ("should have two operands");
      return;
    }				/* bad arg count */

  /* Parse "entry_num" argument and check it for validity. */
  parse_expr (args[2], &exp);
  if (exp.X_op != O_constant
      || (offs (exp) < 0)
      || (offs (exp) > 31))
    {
      as_bad ("'entry_num' must be absolute number in [0,31]");
      return;
    }

  /* Find/make symbol and stick entry number (biased by +1) into it */
  symP = symbol_find_or_make (args[1]);

  if (TC_S_IS_SYSPROC (symP))
    {
      as_warn ("Redefining entrynum for sysproc %s", S_GET_NAME (symP));
    }				/* redefining */

  TC_S_SET_SYSPROC (symP, offs (exp));	/* encode entry number */
  TC_S_FORCE_TO_SYSPROC (symP);
}


/*****************************************************************************
 * shift_ok:
 *	Determine if a "shlo" instruction can be used to implement a "ldconst".
 *	This means that some number X < 32 can be shifted left to produce the
 *	constant of interest.
 *
 *	Return the shift count, or 0 if we can't do it.
 *	Caller calculates X by shifting original constant right 'shift' places.
 *
 **************************************************************************** */
static
int
shift_ok (n)
     int n;			/* The constant of interest */
{
  int shift;			/* The shift count */

  if (n <= 0)
    {
      /* Can't do it for negative numbers */
      return 0;
    }

  /* Shift 'n' right until a 1 is about to be lost */
  for (shift = 0; (n & 1) == 0; shift++)
    {
      n >>= 1;
    }

  if (n >= 32)
    {
      return 0;
    }
  return shift;
}


/*****************************************************************************
 * syntax:	issue syntax error
 *
 **************************************************************************** */
static void
syntax ()
{
  as_bad ("syntax error");
}				/* syntax() */


/*****************************************************************************
 * targ_has_sfr:
 *	Return TRUE iff the target architecture supports the specified
 *	special-function register (sfr).
 *
 *****************************************************************************/
static
int
targ_has_sfr (n)
     int n;			/* Number (0-31) of sfr */
{
  switch (architecture)
    {
    case ARCH_KA:
    case ARCH_KB:
    case ARCH_MC:
      return 0;
    case ARCH_CA:
    default:
      return ((0 <= n) && (n <= 2));
    }
}


/*****************************************************************************
 * targ_has_iclass:
 *	Return TRUE iff the target architecture supports the indicated
 *	class of instructions.
 *
 *****************************************************************************/
static
int
targ_has_iclass (ic)
     int ic;			/* Instruction class;  one of:
	 *	I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
	 */
{
  iclasses_seen |= ic;
  switch (architecture)
    {
    case ARCH_KA:
      return ic & (I_BASE | I_KX);
    case ARCH_KB:
      return ic & (I_BASE | I_KX | I_FP | I_DEC);
    case ARCH_MC:
      return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
    case ARCH_CA:
      return ic & (I_BASE | I_CX | I_CASIM);
    default:
      if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
	  && (iclasses_seen & I_CX))
	{
	  as_warn ("architecture of opcode conflicts with that of earlier instruction(s)");
	  iclasses_seen &= ~ic;
	}
      return 1;
    }
}


/* Parse an operand that is machine-specific.
   We just return without modifying the expression if we have nothing
   to do. */

/* ARGSUSED */
void
md_operand (expressionP)
     expressionS *expressionP;
{
}

/* We have no need to default values of symbols. */

/* ARGSUSED */
symbolS *
md_undefined_symbol (name)
     char *name;
{
  return 0;
}

/* Exactly what point is a PC-relative offset relative TO?
   On the i960, they're relative to the address of the instruction,
   which we have set up as the address of the fixup too. */
long
md_pcrel_from (fixP)
     fixS *fixP;
{
  return fixP->fx_where + fixP->fx_frag->fr_address;
}

void
md_apply_fix (fixP, val)
     fixS *fixP;
     long val;
{
  char *place = fixP->fx_where + fixP->fx_frag->fr_literal;

  if (!fixP->fx_bit_fixP)
    switch (fixP->fx_im_disp)
      {
      case 0:
	/* For callx, we always want to write out zero, and emit a
	   symbolic relocation.  */
	if (fixP->fx_bsr)
	  val = 0;

	fixP->fx_addnumber = val;
	md_number_to_imm (place, val, fixP->fx_size, fixP);
	break;
      case 1:
	md_number_to_disp (place,
			   (fixP->fx_pcrel
			    ? val + fixP->fx_pcrel_adjust
			    : val),
			   fixP->fx_size);
	break;
      case 2:		/* fix requested for .long .word etc */
	md_number_to_chars (place, val, fixP->fx_size);
	break;
      default:
	as_fatal ("Internal error in md_apply_fix() in file \"%s\"",
		  __FILE__);
      }
  else
    md_number_to_field (place, val, fixP->fx_bit_fixP);
}

#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
void
tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
     char *where;
     fixS *fixP;
     relax_addressT segment_address_in_file;
{
  static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
  struct relocation_info ri;
  symbolS *symbolP;

  memset ((char *) &ri, '\0', sizeof (ri));
  symbolP = fixP->fx_addsy;
  know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
  ri.r_bsr = fixP->fx_bsr;	/*SAC LD RELAX HACK */
  /* These two 'cuz of NS32K */
  ri.r_callj = fixP->fx_tcbit;
  if (fixP->fx_bit_fixP)
    ri.r_length = 2;
  else
    ri.r_length = nbytes_r_length[fixP->fx_size];
  ri.r_pcrel = fixP->fx_pcrel;
  ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;

  if (fixP->fx_r_type != NO_RELOC)
    {
      switch (fixP->fx_r_type)
	{
	case rs_align:
	  ri.r_index = -2;
	  ri.r_pcrel = 1;
	  ri.r_length = fixP->fx_size - 1;
	  break;
	case rs_org:
	  ri.r_index = -2;
	  ri.r_pcrel = 0;
	  break;
	case rs_fill:
	  ri.r_index = -1;
	  break;
	default:
	  abort ();
	}
      ri.r_extern = 0;
    }
  else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
    {
      ri.r_extern = 1;
      ri.r_index = symbolP->sy_number;
    }
  else
    {
      ri.r_extern = 0;
      ri.r_index = S_GET_TYPE (symbolP);
    }

  /* Output the relocation information in machine-dependent form. */
  md_ri_to_chars (where, &ri);
}

#endif /* OBJ_AOUT or OBJ_BOUT */

#if defined (OBJ_COFF) && defined (BFD)
short
tc_coff_fix2rtype (fixP)
     fixS *fixP;
{
  if (fixP->fx_bsr)
    abort ();

  if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
    return R_RELLONG;

  if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
    return R_IPRMED;

  abort ();
}

int
tc_coff_sizemachdep (frag)
     fragS *frag;
{
  if (frag->fr_next)
    return frag->fr_next->fr_address - frag->fr_address;
  else
    return 0;
}
#endif

/* Align an address by rounding it up to the specified boundary.  */
valueT
md_section_align (seg, addr)
     segT seg;
     valueT addr;		/* Address to be rounded up */
{
  return ((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
}				/* md_section_align() */

#ifdef OBJ_COFF
void
tc_headers_hook (headers)
     object_headers *headers;
{
  if (iclasses_seen == I_BASE)
    {
      headers->filehdr.f_flags |= F_I960CORE;
    }
  else if (iclasses_seen & I_CX)
    {
      headers->filehdr.f_flags |= F_I960CA;
    }
  else if (iclasses_seen & I_MIL)
    {
      headers->filehdr.f_flags |= F_I960MC;
    }
  else if (iclasses_seen & (I_DEC | I_FP))
    {
      headers->filehdr.f_flags |= F_I960KB;
    }
  else
    {
      headers->filehdr.f_flags |= F_I960KA;
    }				/* set arch flag */

  if (flagseen['R'])
    {
      headers->filehdr.f_magic = I960RWMAGIC;
      headers->aouthdr.magic = OMAGIC;
    }
  else
    {
      headers->filehdr.f_magic = I960ROMAGIC;
      headers->aouthdr.magic = NMAGIC;
    }				/* set magic numbers */
}

#endif /* OBJ_COFF */

/*
 * Things going on here:
 *
 * For bout, We need to assure a couple of simplifying
 * assumptions about leafprocs for the linker: the leafproc
 * entry symbols will be defined in the same assembly in
 * which they're declared with the '.leafproc' directive;
 * and if a leafproc has both 'call' and 'bal' entry points
 * they are both global or both local.
 *
 * For coff, the call symbol has a second aux entry that
 * contains the bal entry point.  The bal symbol becomes a
 * label.
 *
 * For coff representation, the call symbol has a second aux entry that
 * contains the bal entry point.  The bal symbol becomes a label.
 *
 */

void
tc_crawl_symbol_chain (headers)
     object_headers *headers;
{
  symbolS *symbolP;

  for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
    {
#ifdef OBJ_COFF
      if (TC_S_IS_SYSPROC (symbolP))
	{
	  /* second aux entry already contains the sysproc number */
	  S_SET_NUMBER_AUXILIARY (symbolP, 2);
	  S_SET_STORAGE_CLASS (symbolP, C_SCALL);
	  S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
	  continue;
	}			/* rewrite sysproc */
#endif /* OBJ_COFF */

      if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
	{
	  continue;
	}			/* Not a leafproc symbol */

      if (!S_IS_DEFINED (symbolP))
	{
	  as_bad ("leafproc symbol '%s' undefined", S_GET_NAME (symbolP));
	}			/* undefined leaf */

      if (TC_S_IS_CALLNAME (symbolP))
	{
	  symbolS *balP = tc_get_bal_of_call (symbolP);
	  if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
	    {
	      S_SET_EXTERNAL (symbolP);
	      S_SET_EXTERNAL (balP);
	      as_warn ("Warning: making leafproc entries %s and %s both global\n",
		       S_GET_NAME (symbolP), S_GET_NAME (balP));
	    }			/* externality mismatch */
	}			/* if callname */
    }				/* walk the symbol chain */
}

/*
 * For aout or bout, the bal immediately follows the call.
 *
 * For coff, we cheat and store a pointer to the bal symbol
 * in the second aux entry of the call.
 */

#undef OBJ_ABOUT
#ifdef OBJ_AOUT
#define OBJ_ABOUT
#endif
#ifdef OBJ_BOUT
#define OBJ_ABOUT
#endif

void
tc_set_bal_of_call (callP, balP)
     symbolS *callP;
     symbolS *balP;
{
  know (TC_S_IS_CALLNAME (callP));
  know (TC_S_IS_BALNAME (balP));

#ifdef OBJ_COFF

  callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
  S_SET_NUMBER_AUXILIARY (callP, 2);

#else /* ! OBJ_COFF */
#ifdef OBJ_ABOUT

  /* If the 'bal' entry doesn't immediately follow the 'call'
	 * symbol, unlink it from the symbol list and re-insert it.
	 */
  if (symbol_next (callP) != balP)
    {
      symbol_remove (balP, &symbol_rootP, &symbol_lastP);
      symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
    }				/* if not in order */

#else /* ! OBJ_ABOUT */
  (as yet unwritten.);
#endif /* ! OBJ_ABOUT */
#endif /* ! OBJ_COFF */
}

char *
_tc_get_bal_of_call (callP)
     symbolS *callP;
{
  symbolS *retval;

  know (TC_S_IS_CALLNAME (callP));

#ifdef OBJ_COFF
  retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
#else
#ifdef OBJ_ABOUT
  retval = symbol_next (callP);
#else
  (as yet unwritten.);
#endif /* ! OBJ_ABOUT */
#endif /* ! OBJ_COFF */

  know (TC_S_IS_BALNAME (retval));
  return ((char *) retval);
}				/* _tc_get_bal_of_call() */

void
tc_coff_symbol_emit_hook (symbolP)
     symbolS *symbolP;
{
  if (TC_S_IS_CALLNAME (symbolP))
    {
#ifdef OBJ_COFF
      symbolS *balP = tc_get_bal_of_call (symbolP);

      /* second aux entry contains the bal entry point */
      /*		S_SET_NUMBER_AUXILIARY(symbolP, 2); */
      symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
      S_SET_STORAGE_CLASS (symbolP, (!SF_GET_LOCAL (symbolP) ? C_LEAFEXT : C_LEAFSTAT));
      S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
      /* fix up the bal symbol */
      S_SET_STORAGE_CLASS (balP, C_LABEL);
#endif /* OBJ_COFF */
    }				/* only on calls */
}

void
i960_handle_align (fragp)
     fragS *fragp;
{
  fixS *fixp;

  if (!linkrelax)
    return;

#ifndef OBJ_BOUT

  as_bad ("option --link-relax is only supported in b.out format");
  linkrelax = 0;
  return;

#else

  /* The text section "ends" with another alignment reloc, to which we
     aren't adding padding.  */
  if (fragp->fr_next == text_last_frag
      || fragp->fr_next == data_last_frag)
    return;

  /* alignment directive */
  fixp = fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
		  (int) fragp->fr_type);
#endif /* OBJ_BOUT */
}

int
i960_validate_fix (fixP, this_segment_type, add_symbolPP)
     fixS *fixP;
     segT this_segment_type;
     symbolS **add_symbolPP;
{
#define add_symbolP (*add_symbolPP)
  if (fixP->fx_tcbit && TC_S_IS_CALLNAME (add_symbolP))
    {
      /* Relocation should be done via the associated 'bal'
	 entry point symbol. */

      if (!TC_S_IS_BALNAME (tc_get_bal_of_call (add_symbolP)))
	{
	  as_bad ("No 'bal' entry point for leafproc %s",
		  S_GET_NAME (add_symbolP));
	  return 1;
	}
      fixP->fx_addsy = add_symbolP = tc_get_bal_of_call (add_symbolP);
    }
#if 0
    /* Still have to work out other conditions for these tests.  */
    {
      if (fixP->fx_tcbit)
	{
	  as_bad ("callj to difference of two symbols");
	  return 1;
	}
      reloc_callj (fixP);
      if ((int) fixP->fx_bit_fixP == 13)
	{
	  /* This is a COBR instruction.  They have only a 13-bit
	     displacement and are only to be used for local branches:
	     flag as error, don't generate relocation.  */
	  as_bad ("can't use COBR format with external label");
	  fixP->fx_addsy = NULL;	/* No relocations please. */
	  return 1;
	}
    }
#endif
#undef add_symbolP
  return 0;
}

/* end of tc-i960.c */

These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.