ftp.nice.ch/pub/next/developer/languages/c/djgpp-NS.s.tar.gz#/djgpp/src/gas-2.3/gas/config/tc-i860.c

This is tc-i860.c in view mode; [Download] [Up]

/* tc-i860.c -- Assemble for the I860
   Copyright (C) 1989, 1992, 1993 Free Software Foundation, Inc.

   This file is part of GAS, the GNU Assembler.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to
   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include "as.h"

#include "opcode/i860.h"

void md_begin ();
void md_number_to_chars ();
void md_assemble ();
char *md_atof ();
void md_convert_frag ();
void md_create_short_jump ();
void md_create_long_jump ();
int md_estimate_size_before_relax ();
void md_number_to_imm ();
void md_number_to_disp ();
void md_number_to_field ();
void md_ri_to_chars ();
static void i860_ip ();
/* void emit_machine_reloc(); */

const int md_reloc_size = sizeof (struct relocation_info);

/* void (*md_emit_relocations)() = emit_machine_reloc; */

const relax_typeS md_relax_table[] =
{0};

/* handle of the OPCODE hash table */
static struct hash_control *op_hash = NULL;

static void s_dual (), s_enddual ();
static void s_atmp ();

const pseudo_typeS
  md_pseudo_table[] =
{
  {"dual", s_dual, 4},
  {"enddual", s_enddual, 4},
  {"atmp", s_atmp, 4},
  {NULL, 0, 0},
};

int md_short_jump_size = 4;
int md_long_jump_size = 4;

/* This array holds the chars that always start a comment.  If the
   pre-processor is disabled, these aren't very useful */
const char comment_chars[] = "!/";	/* JF removed '|' from comment_chars */

/* This array holds the chars that only start a comment at the beginning of
   a line.  If the line seems to have the form '# 123 filename'
   .line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
   first line of the input file.  This is because the compiler outputs
   #NO_APP at the beginning of its output. */
/* Also note that comments like this one will always work. */
const char line_comment_chars[] = "#/";

const char line_separator_chars[] = "";

/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";

/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or    0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";

/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
   changed in read.c .  Ideally it shouldn't have to know about it at all,
   but nothing is ideal around here.
   */
int size_reloc_info = sizeof (struct relocation_info);

static unsigned char octal[256];
#define isoctal(c)  octal[c]
static unsigned char toHex[256];

struct i860_it
  {
    char *error;
    unsigned long opcode;
    struct nlist *nlistp;
    expressionS exp;
    int pcrel;
    enum expand_type expand;
    enum highlow_type highlow;
    enum reloc_type reloc;
  } the_insn;

#if __STDC__ == 1

static void print_insn (struct i860_it *insn);
static int getExpression (char *str);

#else /* not __STDC__ */

static void print_insn ();
static int getExpression ();

#endif /* not __STDC__ */

static char *expr_end;
static char last_expand;	/* error if expansion after branch */

enum dual
{
  DUAL_OFF = 0, DUAL_ON, DUAL_DDOT, DUAL_ONDDOT,
};
static enum dual dual_mode = DUAL_OFF;	/* dual-instruction mode */

static void
s_dual ()			/* floating point instructions have dual set */
{
  dual_mode = DUAL_ON;
}

static void
s_enddual ()			/* floating point instructions have dual set */
{
  dual_mode = DUAL_OFF;
}

static int atmp = 31;		/* temporary register for pseudo's */

static void
s_atmp ()
{
  register int temp;
  if (strncmp (input_line_pointer, "sp", 2) == 0)
    {
      input_line_pointer += 2;
      atmp = 2;
    }
  else if (strncmp (input_line_pointer, "fp", 2) == 0)
    {
      input_line_pointer += 2;
      atmp = 3;
    }
  else if (strncmp (input_line_pointer, "r", 1) == 0)
    {
      input_line_pointer += 1;
      temp = get_absolute_expression ();
      if (temp >= 0 && temp <= 31)
	atmp = temp;
      else
	as_bad ("Unknown temporary pseudo register");
    }
  else
    {
      as_bad ("Unknown temporary pseudo register");
    }
  demand_empty_rest_of_line ();
}

/* This function is called once, at assembler startup time.  It should
   set up all the tables, etc. that the MD part of the assembler will need.  */
void
md_begin ()
{
  register char *retval = NULL;
  int lose = 0;
  register unsigned int i = 0;

  op_hash = hash_new ();

  while (i < NUMOPCODES)
    {
      const char *name = i860_opcodes[i].name;
      retval = hash_insert (op_hash, name, &i860_opcodes[i]);
      if (retval != NULL)
	{
	  fprintf (stderr, "internal error: can't hash `%s': %s\n",
		   i860_opcodes[i].name, retval);
	  lose = 1;
	}
      do
	{
	  if (i860_opcodes[i].match & i860_opcodes[i].lose)
	    {
	      fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
		       i860_opcodes[i].name, i860_opcodes[i].args);
	      lose = 1;
	    }
	  ++i;
	}
      while (i < NUMOPCODES
	     && !strcmp (i860_opcodes[i].name, name));
    }

  if (lose)
    as_fatal ("Broken assembler.  No assembly attempted.");

  for (i = '0'; i < '8'; ++i)
    octal[i] = 1;
  for (i = '0'; i <= '9'; ++i)
    toHex[i] = i - '0';
  for (i = 'a'; i <= 'f'; ++i)
    toHex[i] = i + 10 - 'a';
  for (i = 'A'; i <= 'F'; ++i)
    toHex[i] = i + 10 - 'A';
}

void
md_assemble (str)
     char *str;
{
  char *toP;
  int rsd;
  int no_opcodes = 1;
  int i;
  struct i860_it pseudo[3];

  assert (str);
  i860_ip (str);

  /* check for expandable flag to produce pseudo-instructions */
  if (the_insn.expand != 0 && the_insn.highlow == NO_SPEC)
    {
      for (i = 0; i < 3; i++)
	pseudo[i] = the_insn;

      switch (the_insn.expand)
	{

	case E_DELAY:
	  no_opcodes = 1;
	  break;

	case E_MOV:
	  if (the_insn.exp.X_add_symbol == NULL &&
	      the_insn.exp.X_op_symbol == NULL &&
	      (the_insn.exp.X_add_number < (1 << 15) &&
	       the_insn.exp.X_add_number >= -(1 << 15)))
	    break;
	  /* or l%const,r0,ireg_dest */
	  pseudo[0].opcode = (the_insn.opcode & 0x001f0000) | 0xe4000000;
	  pseudo[0].highlow = PAIR;
	  /* orh h%const,ireg_dest,ireg_dest */
	  pseudo[1].opcode = (the_insn.opcode & 0x03ffffff) | 0xec000000 |
	    ((the_insn.opcode & 0x001f0000) << 5);
	  pseudo[1].highlow = HIGH;
	  no_opcodes = 2;
	  break;

	case E_ADDR:
	  if (the_insn.exp.X_add_symbol == NULL &&
	      the_insn.exp.X_op_symbol == NULL)
	    break;
	  /* orh ha%addr_expr,r0,r31 */
	  pseudo[0].opcode = 0xec000000 | (atmp << 16);
	  pseudo[0].highlow = HIGHADJ;
	  pseudo[0].reloc = LOW0;	/* must overwrite */
	  /* l%addr_expr(r31),ireg_dest */
	  pseudo[1].opcode = (the_insn.opcode & ~0x003e0000) | (atmp << 21);
	  pseudo[1].highlow = PAIR;
	  no_opcodes = 2;
	  break;

	case E_U32:		/* 2nd version emulates Intel as, not doc. */
	  if (the_insn.exp.X_add_symbol == NULL &&
	      the_insn.exp.X_op_symbol == NULL &&
	      (the_insn.exp.X_add_number < (1 << 16) &&
	       the_insn.exp.X_add_number >= 0))
	    break;
	  /* $(opcode)h h%const,ireg_src2,ireg_dest
			   pseudo[0].opcode = (the_insn.opcode & 0xf3ffffff) | 0x0c000000; */
	  /* $(opcode)h h%const,ireg_src2,r31 */
	  pseudo[0].opcode = (the_insn.opcode & 0xf3e0ffff) | 0x0c000000 |
	    (atmp << 16);
	  pseudo[0].highlow = HIGH;
	  /* $(opcode) l%const,ireg_dest,ireg_dest
			   pseudo[1].opcode = (the_insn.opcode & 0xf01f0000) | 0x04000000 |
			   ((the_insn.opcode & 0x001f0000) << 5); */
	  /* $(opcode) l%const,r31,ireg_dest */
	  pseudo[1].opcode = (the_insn.opcode & 0xf01f0000) | 0x04000000 |
	    (atmp << 21);
	  pseudo[1].highlow = PAIR;
	  no_opcodes = 2;
	  break;

	case E_AND:		/* 2nd version emulates Intel as, not doc. */
	  if (the_insn.exp.X_add_symbol == NULL &&
	      the_insn.exp.X_op_symbol == NULL &&
	      (the_insn.exp.X_add_number < (1 << 16) &&
	       the_insn.exp.X_add_number >= 0))
	    break;
	  /* andnot h%const,ireg_src2,ireg_dest
			   pseudo[0].opcode = (the_insn.opcode & 0x03ffffff) | 0xd4000000; */
	  /* andnot h%const,ireg_src2,r31 */
	  pseudo[0].opcode = (the_insn.opcode & 0x03e0ffff) | 0xd4000000 |
	    (atmp << 16);
	  pseudo[0].highlow = HIGH;
	  pseudo[0].exp.X_add_number = -1 - the_insn.exp.X_add_number;
	  /* andnot l%const,ireg_dest,ireg_dest
			   pseudo[1].opcode = (the_insn.opcode & 0x001f0000) | 0xd4000000 |
			   ((the_insn.opcode & 0x001f0000) << 5); */
	  /* andnot l%const,r31,ireg_dest */
	  pseudo[1].opcode = (the_insn.opcode & 0x001f0000) | 0xd4000000 |
	    (atmp << 21);
	  pseudo[1].highlow = PAIR;
	  pseudo[1].exp.X_add_number = -1 - the_insn.exp.X_add_number;
	  no_opcodes = 2;
	  break;

	case E_S32:
	  if (the_insn.exp.X_add_symbol == NULL &&
	      the_insn.exp.X_op_symbol == NULL &&
	      (the_insn.exp.X_add_number < (1 << 15) &&
	       the_insn.exp.X_add_number >= -(1 << 15)))
	    break;
	  /* orh h%const,r0,r31 */
	  pseudo[0].opcode = 0xec000000 | (atmp << 16);
	  pseudo[0].highlow = HIGH;
	  /* or l%const,r31,r31 */
	  pseudo[1].opcode = 0xe4000000 | (atmp << 21) | (atmp << 16);
	  pseudo[1].highlow = PAIR;
	  /* r31,ireg_src2,ireg_dest */
	  pseudo[2].opcode = (the_insn.opcode & ~0x0400ffff) | (atmp << 11);
	  pseudo[2].reloc = NO_RELOC;
	  no_opcodes = 3;
	  break;

	default:
	  as_fatal ("failed sanity check.");
	}

      the_insn = pseudo[0];
      /* check for expanded opcode after branch or in dual */
      if (no_opcodes > 1 && last_expand == 1)
	as_warn ("Expanded opcode after delayed branch: `%s'", str);
      if (no_opcodes > 1 && dual_mode != DUAL_OFF)
	as_warn ("Expanded opcode in dual mode: `%s'", str);
    }

  i = 0;
  do
    {				/* always produce at least one opcode */
      toP = frag_more (4);
      /* put out the opcode */
      md_number_to_chars (toP, the_insn.opcode, 4);

      /* check for expanded opcode after branch or in dual */
      last_expand = the_insn.pcrel;

      /* put out the symbol-dependent stuff */
      if (the_insn.reloc != NO_RELOC)
	{
	  fix_new (frag_now,	/* which frag */
		   (toP - frag_now->fr_literal),	/* where */
		   4,		/* size */
		   &the_insn.exp,
		   the_insn.pcrel,
	  /* merge bit fields into one argument */
	  (int) (((the_insn.highlow & 0x3) << 4) | (the_insn.reloc & 0xf)));
	}
      the_insn = pseudo[++i];
    }
  while (--no_opcodes > 0);

}

static void
i860_ip (str)
     char *str;
{
  char *s;
  const char *args;
  char c;
  unsigned long i;
  struct i860_opcode *insn;
  char *argsStart;
  unsigned long opcode;
  unsigned int mask;
  int match = 0;
  int comma = 0;


  for (s = str; islower (*s) || *s == '.' || *s == '3'; ++s)
    ;
  switch (*s)
    {

    case '\0':
      break;

    case ',':
      comma = 1;

      /*FALLTHROUGH*/

    case ' ':
      *s++ = '\0';
      break;

    default:
      as_bad ("Unknown opcode: `%s'", str);
      exit (1);
    }

  if (strncmp (str, "d.", 2) == 0)
    {				/* check for d. opcode prefix */
      if (dual_mode == DUAL_ON)
	dual_mode = DUAL_ONDDOT;
      else
	dual_mode = DUAL_DDOT;
      str += 2;
    }

  if ((insn = (struct i860_opcode *) hash_find (op_hash, str)) == NULL)
    {
      if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT)
	str -= 2;
      as_bad ("Unknown opcode: `%s'", str);
      return;
    }
  if (comma)
    {
      *--s = ',';
    }
  argsStart = s;
  for (;;)
    {
      opcode = insn->match;
      memset (&the_insn, '\0', sizeof (the_insn));
      the_insn.reloc = NO_RELOC;

      /*
		 * Build the opcode, checking as we go to make
		 * sure that the operands match
		 */
      for (args = insn->args;; ++args)
	{
	  switch (*args)
	    {

	    case '\0':		/* end of args */
	      if (*s == '\0')
		{
		  match = 1;
		}
	      break;

	    case '+':
	    case '(':		/* these must match exactly */
	    case ')':
	    case ',':
	    case ' ':
	      if (*s++ == *args)
		continue;
	      break;

	    case '#':		/* must be at least one digit */
	      if (isdigit (*s++))
		{
		  while (isdigit (*s))
		    {
		      ++s;
		    }
		  continue;
		}
	      break;

	    case '1':		/* next operand must be a register */
	    case '2':
	    case 'd':
	      switch (*s)
		{

		case 'f':	/* frame pointer */
		  s++;
		  if (*s++ == 'p')
		    {
		      mask = 0x3;
		      break;
		    }
		  goto error;

		case 's':	/* stack pointer */
		  s++;
		  if (*s++ == 'p')
		    {
		      mask = 0x2;
		      break;
		    }
		  goto error;

		case 'r':	/* any register */
		  s++;
		  if (!isdigit (c = *s++))
		    {
		      goto error;
		    }
		  if (isdigit (*s))
		    {
		      if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
			{
			  goto error;
			}
		    }
		  else
		    {
		      c -= '0';
		    }
		  mask = c;
		  break;

		default:	/* not this opcode */
		  goto error;
		}
	      /*
				 * Got the register, now figure out where
				 * it goes in the opcode.
				 */
	      switch (*args)
		{

		case '1':
		  opcode |= mask << 11;
		  continue;

		case '2':
		  opcode |= mask << 21;
		  continue;

		case 'd':
		  opcode |= mask << 16;
		  continue;

		}
	      break;

	    case 'e':		/* next operand is a floating point register */
	    case 'f':
	    case 'g':
	      if (*s++ == 'f' && isdigit (*s))
		{
		  mask = *s++;
		  if (isdigit (*s))
		    {
		      mask = 10 * (mask - '0') + (*s++ - '0');
		      if (mask >= 32)
			{
			  break;
			}
		    }
		  else
		    {
		      mask -= '0';
		    }
		  switch (*args)
		    {

		    case 'e':
		      opcode |= mask << 11;
		      continue;

		    case 'f':
		      opcode |= mask << 21;
		      continue;

		    case 'g':
		      opcode |= mask << 16;
		      if (dual_mode != DUAL_OFF)
			opcode |= (1 << 9);	/* dual mode instruction */
		      if (dual_mode == DUAL_DDOT)
			dual_mode = DUAL_OFF;
		      if (dual_mode == DUAL_ONDDOT)
			dual_mode = DUAL_ON;
		      if ((opcode & (1 << 10)) && (mask == ((opcode >> 11) & 0x1f)))
			as_warn ("Fsr1 equals fdest with Pipelining");
		      continue;
		    }
		}
	      break;

	    case 'c':		/* next operand must be a control register */
	      if (strncmp (s, "fir", 3) == 0)
		{
		  opcode |= 0x0 << 21;
		  s += 3;
		  continue;
		}
	      if (strncmp (s, "psr", 3) == 0)
		{
		  opcode |= 0x1 << 21;
		  s += 3;
		  continue;
		}
	      if (strncmp (s, "dirbase", 7) == 0)
		{
		  opcode |= 0x2 << 21;
		  s += 7;
		  continue;
		}
	      if (strncmp (s, "db", 2) == 0)
		{
		  opcode |= 0x3 << 21;
		  s += 2;
		  continue;
		}
	      if (strncmp (s, "fsr", 3) == 0)
		{
		  opcode |= 0x4 << 21;
		  s += 3;
		  continue;
		}
	      if (strncmp (s, "epsr", 4) == 0)
		{
		  opcode |= 0x5 << 21;
		  s += 4;
		  continue;
		}
	      break;

	    case '5':		/* 5 bit immediate in src1 */
	      memset (&the_insn, '\0', sizeof (the_insn));
	      if (!getExpression (s))
		{
		  s = expr_end;
		  if (the_insn.exp.X_add_number & ~0x1f)
		    as_bad ("5-bit immediate too large");
		  opcode |= (the_insn.exp.X_add_number & 0x1f) << 11;
		  memset (&the_insn, '\0', sizeof (the_insn));
		  the_insn.reloc = NO_RELOC;
		  continue;
		}
	      break;

	    case 'l':		/* 26 bit immediate, relative branch */
	      the_insn.reloc = BRADDR;
	      the_insn.pcrel = 1;
	      goto immediate;

	    case 's':		/* 16 bit immediate, split relative branch */
	      /* upper 5 bits of offset in dest field */
	      the_insn.pcrel = 1;
	      the_insn.reloc = SPLIT0;
	      goto immediate;

	    case 'S':		/* 16 bit immediate, split (st), aligned */
	      if (opcode & (1 << 28))
		if (opcode & 0x1)
		  the_insn.reloc = SPLIT2;
		else
		  the_insn.reloc = SPLIT1;
	      else
		the_insn.reloc = SPLIT0;
	      goto immediate;

	    case 'I':		/* 16 bit immediate, aligned */
	      if (opcode & (1 << 28))
		if (opcode & 0x1)
		  the_insn.reloc = LOW2;
		else
		  the_insn.reloc = LOW1;
	      else
		the_insn.reloc = LOW0;
	      goto immediate;

	    case 'i':		/* 16 bit immediate */
	      the_insn.reloc = LOW0;

	      /*FALLTHROUGH*/

	    immediate:
	      if (*s == ' ')
		s++;
	      if (strncmp (s, "ha%", 3) == 0)
		{
		  the_insn.highlow = HIGHADJ;
		  s += 3;
		}
	      else if (strncmp (s, "h%", 2) == 0)
		{
		  the_insn.highlow = HIGH;
		  s += 2;
		}
	      else if (strncmp (s, "l%", 2) == 0)
		{
		  the_insn.highlow = PAIR;
		  s += 2;
		}
	      the_insn.expand = insn->expand;

	      /* Note that if the getExpression() fails, we will still have
				   created U entries in the symbol table for the 'symbols'
				   in the input string.  Try not to create U symbols for
				   registers, etc. */

	      if (!getExpression (s))
		{
		  s = expr_end;
		  continue;
		}
	      break;

	    default:
	      as_fatal ("failed sanity check.");
	    }
	  break;
	}
    error:
      if (match == 0)
	{
	  /* Args don't match.  */
	  if (&insn[1] - i860_opcodes < NUMOPCODES
	      && !strcmp (insn->name, insn[1].name))
	    {
	      ++insn;
	      s = argsStart;
	      continue;
	    }
	  else
	    {
	      as_bad ("Illegal operands");
	      return;
	    }
	}
      break;
    }

  the_insn.opcode = opcode;
}

static int
getExpression (str)
     char *str;
{
  char *save_in;
  segT seg;

  save_in = input_line_pointer;
  input_line_pointer = str;
  seg = expression (&the_insn.exp);
  if (seg != absolute_section
      && seg != undefined_section
      && ! SEG_NORMAL (seg))
    {
      the_insn.error = "bad segment";
      expr_end = input_line_pointer;
      input_line_pointer = save_in;
      return 1;
    }
  expr_end = input_line_pointer;
  input_line_pointer = save_in;
  return 0;
}


/*
  This is identical to the md_atof in m68k.c.  I think this is right,
  but I'm not sure.

  Turn a string in input_line_pointer into a floating point constant of type
  type, and store the appropriate bytes in *litP.  The number of LITTLENUMS
  emitted is stored in *sizeP .  An error message is returned, or NULL on OK.
  */

/* Equal to MAX_PRECISION in atof-ieee.c */
#define MAX_LITTLENUMS 6

char *
md_atof (type, litP, sizeP)
     char type;
     char *litP;
     int *sizeP;
{
  int prec;
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  LITTLENUM_TYPE *wordP;
  char *t;
  char *atof_ieee ();

  switch (type)
    {

    case 'f':
    case 'F':
    case 's':
    case 'S':
      prec = 2;
      break;

    case 'd':
    case 'D':
    case 'r':
    case 'R':
      prec = 4;
      break;

    case 'x':
    case 'X':
      prec = 6;
      break;

    case 'p':
    case 'P':
      prec = 6;
      break;

    default:
      *sizeP = 0;
      return "Bad call to MD_ATOF()";
    }
  t = atof_ieee (input_line_pointer, type, words);
  if (t)
    input_line_pointer = t;
  *sizeP = prec * sizeof (LITTLENUM_TYPE);
  for (wordP = words; prec--;)
    {
      md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
      litP += sizeof (LITTLENUM_TYPE);
    }
  return 0;
}

/*
 * Write out big-endian.
 */
void
md_number_to_chars (buf, val, n)
     char *buf;
     valueT val;
     int n;
{
  number_to_chars_bigendian (buf, val, n);
}

void
md_number_to_imm (buf, val, n, fixP)
     char *buf;
     long val;
     int n;
     fixS *fixP;
{
  enum reloc_type reloc = fixP->fx_r_type & 0xf;
  enum highlow_type highlow = (fixP->fx_r_type >> 4) & 0x3;

  assert (buf);
  assert (n == 4);		/* always on i860 */

  switch (highlow)
    {

    case HIGHADJ:		/* adjusts the high-order 16-bits */
      if (val & (1 << 15))
	val += (1 << 16);

      /*FALLTHROUGH*/

    case HIGH:			/* selects the high-order 16-bits */
      val >>= 16;
      break;

    case PAIR:			/* selects the low-order 16-bits */
      val = val & 0xffff;
      break;

    default:
      break;
    }

  switch (reloc)
    {

    case BRADDR:		/* br,call,bc,bc.t,bnc,bnc.t w/26-bit immediate */
      if (fixP->fx_pcrel != 1)
	as_bad ("26-bit branch w/o pc relative set: 0x%08x", val);
      val >>= 2;		/* align pcrel offset, see manual */

      if (val >= (1 << 25) || val < -(1 << 25))	/* check for overflow */
	as_bad ("26-bit branch offset overflow: 0x%08x", val);
      buf[0] = (buf[0] & 0xfc) | ((val >> 24) & 0x3);
      buf[1] = val >> 16;
      buf[2] = val >> 8;
      buf[3] = val;
      break;

    case SPLIT2:		/* 16 bit immediate, 4-byte aligned */
      if (val & 0x3)
	as_bad ("16-bit immediate 4-byte alignment error: 0x%08x", val);
      val &= ~0x3;		/* 4-byte align value */
      /*FALLTHROUGH*/
    case SPLIT1:		/* 16 bit immediate, 2-byte aligned */
      if (val & 0x1)
	as_bad ("16-bit immediate 2-byte alignment error: 0x%08x", val);
      val &= ~0x1;		/* 2-byte align value */
      /*FALLTHROUGH*/
    case SPLIT0:		/* st,bla,bte,btne w/16-bit immediate */
      if (fixP->fx_pcrel == 1)
	val >>= 2;		/* align pcrel offset, see manual */
      /* check for bounds */
      if (highlow != PAIR && (val >= (1 << 16) || val < -(1 << 15)))
	as_bad ("16-bit branch offset overflow: 0x%08x", val);
      buf[1] = (buf[1] & ~0x1f) | ((val >> 11) & 0x1f);
      buf[2] = (buf[2] & ~0x7) | ((val >> 8) & 0x7);
      buf[3] |= val;		/* perserve bottom opcode bits */
      break;

    case LOW4:			/* fld,pfld,pst,flush 16-byte aligned */
      if (val & 0xf)
	as_bad ("16-bit immediate 16-byte alignment error: 0x%08x", val);
      val &= ~0xf;		/* 16-byte align value */
      /*FALLTHROUGH*/
    case LOW3:			/* fld,pfld,pst,flush 8-byte aligned */
      if (val & 0x7)
	as_bad ("16-bit immediate 8-byte alignment error: 0x%08x", val);
      val &= ~0x7;		/* 8-byte align value */
      /*FALLTHROUGH*/
    case LOW2:			/* 16 bit immediate, 4-byte aligned */
      if (val & 0x3)
	as_bad ("16-bit immediate 4-byte alignment error: 0x%08x", val);
      val &= ~0x3;		/* 4-byte align value */
      /*FALLTHROUGH*/
    case LOW1:			/* 16 bit immediate, 2-byte aligned */
      if (val & 0x1)
	as_bad ("16-bit immediate 2-byte alignment error: 0x%08x", val);
      val &= ~0x1;		/* 2-byte align value */
      /*FALLTHROUGH*/
    case LOW0:			/* 16 bit immediate, byte aligned */
      /* check for bounds */
      if (highlow != PAIR && (val >= (1 << 16) || val < -(1 << 15)))
	as_bad ("16-bit immediate overflow: 0x%08x", val);
      buf[2] = val >> 8;
      buf[3] |= val;		/* perserve bottom opcode bits */
      break;

    case NO_RELOC:
    default:
      as_bad ("bad relocation type: 0x%02x", reloc);
      break;
    }
}

/* should never be called for i860 */
void
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
     char *ptr;
     addressT from_addr, to_addr;
     fragS *frag;
     symbolS *to_symbol;
{
  as_fatal ("i860_create_short_jmp\n");
}

/* should never be called for i860 */
void
md_number_to_disp (buf, val, n)
     char *buf;
     long val;
{
  as_fatal ("md_number_to_disp\n");
}

/* should never be called for i860 */
void
md_number_to_field (buf, val, fix)
     char *buf;
     long val;
     void *fix;
{
  as_fatal ("i860_number_to_field\n");
}

/* the bit-field entries in the relocation_info struct plays hell
   with the byte-order problems of cross-assembly.  So as a hack,
   I added this mach. dependent ri twiddler.  Ugly, but it gets
   you there. -KWK */
/* on i860: first 4 bytes are normal unsigned long address, next three
   bytes are index, most sig. byte first.  Byte 7 is broken up with
   bit 7 as pcrel, bit 6 as extern, and the lower six bits as
   relocation type (highlow 5-4).  Next 4 bytes are long addend. */
/* Thanx and a tip of the hat to Michael Bloom, mb@ttidca.tti.com */
void
md_ri_to_chars (ri_p, ri)
     struct relocation_info *ri_p, ri;
{
#if 0
  unsigned char the_bytes[sizeof (*ri_p)];

  /* this is easy */
  md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
  /* now the fun stuff */
  the_bytes[4] = (ri.r_index >> 16) & 0x0ff;
  the_bytes[5] = (ri.r_index >> 8) & 0x0ff;
  the_bytes[6] = ri.r_index & 0x0ff;
  the_bytes[7] = ((ri.r_extern << 7) & 0x80) | (0 & 0x60) | (ri.r_type & 0x1F);
  /* Also easy */
  md_number_to_chars (&the_bytes[8], ri.r_addend, sizeof (ri.r_addend));
  /* now put it back where you found it, Junior... */
  memcpy ((char *) ri_p, the_bytes, sizeof (*ri_p));
#endif
}

/* should never be called for i860 */
void
md_convert_frag (headers, fragP)
     object_headers *headers;
     register fragS *fragP;
{
  as_fatal ("i860_convert_frag\n");
}

/* should never be called for i860 */
void
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
     char *ptr;
     addressT from_addr, to_addr;
     fragS *frag;
     symbolS *to_symbol;
{
  as_fatal ("i860_create_long_jump\n");
}

/* should never be called for i860 */
int
md_estimate_size_before_relax (fragP, segtype)
     register fragS *fragP;
     segT segtype;
{
  as_fatal ("i860_estimate_size_before_relax\n");
}

/* for debugging only, must match enum reloc_type */
static char *Reloc[] =
{
  "NO_RELOC",
  "BRADDR",
  "LOW0",
  "LOW1",
  "LOW2",
  "LOW3",
  "LOW4",
  "SPLIT0",
  "SPLIT1",
  "SPLIT2",
  "RELOC_32",
};
static char *Highlow[] =
{
  "NO_SPEC",
  "PAIR",
  "HIGH",
  "HIGHADJ",
};
static void
print_insn (insn)
     struct i860_it *insn;
{
  if (insn->error)
    {
      fprintf (stderr, "ERROR: %s\n");
    }
  fprintf (stderr, "opcode=0x%08x\t", insn->opcode);
  fprintf (stderr, "expand=0x%08x\t", insn->expand);
  fprintf (stderr, "reloc = %s\t", Reloc[insn->reloc]);
  fprintf (stderr, "highlow = %s\n", Highlow[insn->highlow]);
  fprintf (stderr, "exp =  {\n");
  fprintf (stderr, "\t\tX_add_symbol = %s\n",
	   insn->exp.X_add_symbol ?
	   (S_GET_NAME (insn->exp.X_add_symbol) ?
	    S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0");
  fprintf (stderr, "\t\tX_op_symbol = %s\n",
	   insn->exp.X_op_symbol ?
	   (S_GET_NAME (insn->exp.X_op_symbol) ?
	    S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0");
  fprintf (stderr, "\t\tX_add_number = %d\n",
	   insn->exp.X_add_number);
  fprintf (stderr, "}\n");
}

int
md_parse_option (argP, cntP, vecP)
     char **argP;
     int *cntP;
     char ***vecP;
{
  return 1;
}

#ifdef comment
/*
 * I860 relocations are completely different, so it needs
 * this machine dependent routine to emit them.
 */
void
emit_machine_reloc (fixP, segment_address_in_file)
     register fixS *fixP;
     relax_addressT segment_address_in_file;
{
  struct reloc_info_i860 ri;
  register symbolS *symbolP;
  extern char *next_object_file_charP;
  long add_number;

  memset ((char *) &ri, '\0', sizeof (ri));
  for (; fixP; fixP = fixP->fx_next)
    {

      if (fixP->fx_r_type & ~0x3f)
	{
	  as_fatal ("fixP->fx_r_type = %d\n", fixP->fx_r_type);
	}
      ri.r_pcrel = fixP->fx_pcrel;
      ri.r_type = fixP->fx_r_type;

      if ((symbolP = fixP->fx_addsy) != NULL)
	{
	  ri.r_address = fixP->fx_frag->fr_address +
	    fixP->fx_where - segment_address_in_file;
	  if (!S_IS_DEFINED (symbolP))
	    {
	      ri.r_extern = 1;
	      ri.r_symbolnum = symbolP->sy_number;
	    }
	  else
	    {
	      ri.r_extern = 0;
	      ri.r_symbolnum = S_GET_TYPE (symbolP);
	    }
	  if (symbolP && symbolP->sy_frag)
	    {
	      ri.r_addend = symbolP->sy_frag->fr_address;
	    }
	  ri.r_type = fixP->fx_r_type;
	  if (fixP->fx_pcrel)
	    {
	      /* preserve actual offset vs. pc + 4 */
	      ri.r_addend -= (ri.r_address + 4);
	    }
	  else
	    {
	      ri.r_addend = fixP->fx_addnumber;
	    }

	  md_ri_to_chars ((char *) &ri, ri);
	  append (&next_object_file_charP, (char *) &ri, sizeof (ri));
	}
    }
}

#endif /* comment */

#ifdef OBJ_AOUT

/* on i860: first 4 bytes are normal unsigned long address, next three
   bytes are index, most sig. byte first.  Byte 7 is broken up with
   bit 7 as pcrel, bit 6 as extern, and the lower six bits as
   relocation type (highlow 5-4).  Next 4 bytes are long addend. */

void
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
     char *where;
     fixS *fixP;
     relax_addressT segment_address_in_file;
{
  long r_index;
  long r_extern;
  long r_addend = 0;
  long r_address;

  know (fixP->fx_addsy);
  know (!(fixP->fx_r_type & ~0x3f));

  if (!S_IS_DEFINED (fixP->fx_addsy))
    {
      r_extern = 1;
      r_index = fixP->fx_addsy->sy_number;
    }
  else
    {
      r_extern = 0;
      r_index = S_GET_TYPE (fixP->fx_addsy);
    }

  md_number_to_chars (where,
		      r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
		      4);

  where[4] = (r_index >> 16) & 0x0ff;
  where[5] = (r_index >> 8) & 0x0ff;
  where[6] = r_index & 0x0ff;
  where[7] = (((fixP->fx_pcrel << 7) & 0x80)
	      | ((r_extern << 6) & 0x40)
	      | (fixP->fx_r_type & 0x3F));

  if (fixP->fx_addsy->sy_frag)
    {
      r_addend = fixP->fx_addsy->sy_frag->fr_address;
    }

  if (fixP->fx_pcrel)
    {
      /* preserve actual offset vs. pc + 4 */
      r_addend -= (r_address + 4);
    }
  else
    {
      r_addend = fixP->fx_addnumber;
    }

  md_number_to_chars (&where[8], r_addend, 4);
}

#endif /* OBJ_AOUT */

/* Parse an operand that is machine-specific.
   We just return without modifying the expression if we have nothing
   to do.  */

/* ARGSUSED */
void
md_operand (expressionP)
     expressionS *expressionP;
{
}

/* We have no need to default values of symbols.  */

/* ARGSUSED */
symbolS *
md_undefined_symbol (name)
     char *name;
{
  return 0;
}

/* Round up a section size to the appropriate boundary.  */
valueT
md_section_align (segment, size)
     segT segment;
     valueT size;
{
  return size;			/* Byte alignment is fine */
}

/* Exactly what point is a PC-relative offset relative TO?
   On the i860, they're relative to the address of the offset, plus
   its size. (??? Is this right?  FIXME-SOON!) */
long
md_pcrel_from (fixP)
     fixS *fixP;
{
  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}

void
md_apply_fix (fixP, val)
     fixS *fixP;
     long val;
{
  char *place = fixP->fx_where + fixP->fx_frag->fr_literal;

  /* looks to me like i860 never has bit fixes. Let's see. xoxorich. */
  know (fixP->fx_bit_fixP == NULL);
  if (!fixP->fx_bit_fixP)
    {

      /* also looks like fx_im_disp is always 0.  Let's see.  xoxorich. */
      know (fixP->fx_im_disp == 0);
      switch (fixP->fx_im_disp)
	{
	case 0:
	  fixP->fx_addnumber = val;
	  md_number_to_imm (place, val, fixP->fx_size, fixP);
	  break;
	case 1:
	  md_number_to_disp (place,
			 fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
			     fixP->fx_size);
	  break;
	case 2:		/* fix requested for .long .word etc */
	  md_number_to_chars (place, val, fixP->fx_size);
	  break;
	default:
	  as_fatal ("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
	}			/* OVE: maybe one ought to put _imm _disp _chars in one md-func */
    }
  else
    {
      md_number_to_field (place, val, fixP->fx_bit_fixP);
    }
}

/*
 * Local Variables:
 * fill-column: 131
 * comment-column: 0
 * End:
 */

/* end of tc-i860.c */

These are the contents of the former NiCE NeXT User Group NeXTSTEP/OpenStep software archive, currently hosted by Netfuture.ch.