
The GNAT Project: A GNU-Ada9X Compiler

The GNAT team

�

gnat-report@cs.nyu.edu

Courant Institute of Mathematical Sciences

New York University

251 Mercer Street, New York, NY 10012

Cyrille Comar

comar@cs.nyu.edu

Sup'A�ero and

New York University

Computer Science Dept.

Franco Gasperoni

gasperon@inf.enst.fr

T�el�ecom Paris { ENST

D�epartement Informatique

Edmond Schonberg

schonber@cs.nyu.edu

New York University

Computer Science Dept.

Abstract

The GNAT project at New York University is building a high-quality Ada9X compiler, to

be distributed free and with sources, following the successful mechanisms established by

the Free Software Foundation for the GCC compiler. GNAT will allow students, academics,

and software professionals to experiment as early as possible with the new version of Ada.

GNAT will also help the spread of Ada to the software community at large.

�

Robert Dewar and Edmond Schonberg are the principal investigators on the project. The team is based

at New York University, and includes active participants from a number of other institutions (listed below):

Bernard Banner, Cyrille Comar, Sam Figueroa, Richard Kenner, Brett Porter, Gail Schenker (all at NYU),

Franco Gasperoni (Telecom Paris), Ted Giering (Florida State University), Paul Hil�nger (UC-Berkeley),

Yvon Kermarrec (Telecom Bretagne), Laurent Pautet (Telecom Paris) and Jean-Pierre Rosen (Adalog).

1

Contents

2

1 Introduction: Ada9X and the GNAT Project

The Ada community has proposed a number of explanations for the relative lack of success

of Ada vis-a-vis of C and more recently C++, in spite of the clear superiority of Ada as a

language for software engineering. At least one reason for the slow spread of Ada through

the software community has been the absence of a cheap (or even free) high-quality compiler

that can run on a variety of platforms and is usable both for training and serious software

construction. The issue of training is a particularly critical one: students (and universi-

ties) cannot a�ord expensive programming environments, and the choice of programming

languages for teaching is often ruled by cost considerations. The widespread use of C is in

part due to the ubiquitousness of UNIX. The recent successes of C++ are at least in part

attributable to the availability of Turbo-C++ on PC's, and of course G++ (the GCC C++

compiler) on UNIX platforms.

The imminent introduction of Ada9X presents us with a new opportunity. The lan-

guage [?] o�ers up-to-date tools for object-oriented programming, for information systems,

for distributed systems, for interfacing with other languages, for hierarchical system de-

composition, etc. If a free, high-quality compiler were to appear at the same time as the

standardization of the language is completed, it would assist considerably in spreading the

knowledge of the new language, and in encouraging comparisons with existing languages

(in which we can expect Ada9X to show its superiority).

The GNAT project aims to produce such a compiler. GNAT (an acronym for GNU NYU

Ada Translator), is a front-end and runtime system for Ada9X that uses the successful GCC

back-end as a retargettable code generator. GNAT is thus part of the GNU software, and

is distributed according to the guidelines of the Free Software Foundation. GNAT will be

a complete compiler, but will not be validaded by New York University. In fact, GNAT

will be available before validation procedures for Ada9X compilers are completed, because

timeliness is crucial to its mission. Preliminary versions of GNAT, albeit very incomplete,

are already being distributed, and are contributing to the di�usion of the language. The

availability of sources for the system is allowing language designers and implementors to

participate in the writing of GNAT itself. Compiler constructors are also bene�ting from

the existence of a reference implementation for new language constructs. We give below

information on how to obtain GNAT and how to participate in the community e�ort of

completing and improving it.

The next section describes the GCC compiler system. Next we summarize the structure of

GNAT. Following sections discuss some details of the front-end and code generator. We then

present what is probably the most innovative aspect of GNAT, namely the library mech-

anism. We then discuss the binder, and conclude with a status report on the completion

3

and performance of the system.

2 GCC: An Industrial-Strength Compiler

GCC is the compiler system of the GNU environment. GNU (a self-referential acronym

for \GNU is Not Unix") is a Unix-compatible operating system, being developed by the

Free Software Foundation, and distributed under the GNU Public License (GPL). GNU

software is always distributed with its sources, and the GPL enjoins anyone who modi�es

GNU software and then redistributes the modi�ed product to supply the sources for the

modi�cations as well. In this fashion, enhancements to the original software bene�t the

software community at large [?].

GCC is today the centerpiece of the GNU software. GCC is a retargetable and re-

hostable compiler system, with multiple front-ends and a large number of hardware targets.

Originally designed as a compiler for C, it now includes front-ends for C++, Modula-3, For-

tran, Objective-C, and most recently Ada. Technically, the crucial asset of the GCC is its

mostly language-independent, target-independent code generator, which produces code of

excellent quality both for CISC machines such as the Intel and Motorola families, as well as

RISC machines such as the IBM RS/6000, the DEC Alpha, or the MIPS R4000. Remark-

ably, the machine dependences of the code generator represent less than 10% of the total

code. To add a new target to GCC, an algebraic description of each machine instruction

must be given using a register-transfer language. Most of the code generation and optimiza-

tion then uses the RTL, which GCC maps when needed into the target machine language.

The leverage of constructing a front-end for GCC is thus enormous: GNAT potentially has

over 30 targets, and runs already on more that half-a-dozen of them. An Ada9X cross-

compiler for a Motorola real-time controller chip was built in a few days using standard

GCC con�guration tools for cross-compilation. Furthermore, GCC produces high-quality

code, comparable to that of the best commercial compilers.

3 The Organization of GNAT

3.1 Introduction

The �rst decision to be made was the language in which GNAT should be written. GCC

is fully written in C, but for technical reasons as well as non-technical ones, it was incon-

ceivable to use anything but Ada for GNAT itself. We started using a relatively small

subset of Ada83, and in typical fashion extended the subset whenever new features became

implemented. Six months after the coding started in earnest, we were able to bootstrap

the compiler, and abandon the commercial compiler we had been using up to that point.

As Ada9X features are implemented, we are now able to write GNAT in Ada9X. In fact,

4

the de�nition of the language depends heavily on hierarchical libraries, and cannot be given

except in Ada9X, so that it is natural for the compiler and the environment to use child

units throughout.

Figure ?? shows the overall structure of the GNAT system. The front-end of the GNAT

-- -

�

�

.

.

.

.

.

.

.

.

--

.

.

.

.

.

.

.

J

J

J

J

J

J^

code

code

code

source.o

cutable

exe-

object

object

object

source1.o

sourcek.o

source.adb

Ada

source

binder

GNAT

linker

GNAT

compiler

GNAT

Runtime

tasking..

Figure 1: The structure of GNAT: compiler, binder, runtime.

compiler is thus written in Ada9X. The back-end of the compiler is the back-end of GCC

proper, extended to meet the needs of Ada semantics.

The front-end comprises four phases, which communicate by means of a rather compact

Abstract Syntax Tree (AST). The implementation details of the AST are hidden by several

procedural interfaces that provide access to syntactic and semantic attributes. The layering

of the system, and the various levels of abstraction, are the obvious bene�ts of writing in

Ada, in what one might call \proper" Ada style.

It is worth mentioning that strictly speaking GNAT does not use a symbol table. Rather,

all semantic information concerning program entities is stored in de�ning occurrences of

these entities directy in the AST. The GNAT structures are thus close in spirit to those of

DIANA [?], albeit more compact. It appears that the AST will be adequate to support an

ASIS interface [?].

5

The four phases of the compiler are sketched in �gure ??.

r

rr

r

r

r

rr

r

r

r

r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

-

-

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

- -

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

- -

? ??

r

6 6

C

procedure calls

GiGi

AdaAda

Syntax

Analysis

Semantic

Analysis

C

GCC

Ada

GCC Tree

fragments

decorated AST expanded

decorated AST

expander

back-end

Figure 2: Phases of the GNAT compiler.

Subsequent sections describe each of the phases in detail.

GNAT includes three other modules which are not involved in code generation but are an

integral part of any Ada compilation system.These are the runtime and tasking executive,

the library manager, and the binder.

3.2 Syntax Analysis

The parser is a hand-coded recursive descent parser. It includes a sophisticated error

recovery system, which among other things takes indentation into account when attempting

to correct scope errors. In our experience, the recovery is superior to that of other compilers,

and the parser is remarkably stable in the presence of badly mangled programs. All GNU

compilers heretofore had used LALR(1) parsers generated with Bison (The GNU equivalent

of YACC). The choice of a handwritten parser at this date may seem surprising, but is amply

justi�ed by the following:

Clarity. The parser follows carefully the grammar given in the Ada9X reference manual.

([?]). This has clear pedagogical advantages, but precludes the use of a table-driven

parser, given that the grammar as given is not LALR(k).

Error messages. The most important reason is the quality of the error reporting. Even

in case of serious structural errors, such as an interchange of \;" and \is" between

speci�cation and body of a subprogram, GNAT generates a precise and intelligible

message. Bottom-up parsers have serious di�culties with such errors.

Performance. Even though the overall performance of the system is bounded by the speed

of the code generator, it does not hurt that the parser of GNAT is faster than any

table-driven one.

6

3.3 Semantic Analysis and Expansion

These two interlinked phases have the following purpose:

Semantic analysis performs name and type resolution, decorates the AST with various

semantic attributes, and as by-product performs all static legality checks on the pro-

gram.

The expander modi�es the AST in order to simplify its translation into the GCC tree.

Most of the expander activity results in the construction of additional AST fragments.

Given that code generation requires that such fragments carry all semantic attributes,

every expansion activity must be followed by additional semantic processing on the

generated tree. This recursive structure is carried further: some prede�ned operations

such as exponentiation are de�ned by means of a generic procedure. The expansion

of the operation results in the generic instantiation (and corresponding analysis) of

this generic procedure.

There is a further unusual recursive aspect to the structure of GNAT. The program

library (described in greater detail below) does not hold any intermediate representation of

compiled units. As a result, package declarations are analyzed whenever they appear in a

context clause. Furthermore, if a generic unit, or an inlined unit G, is de�ned in a package

P, then the instantiation or inlining of G in the current compilation requires that the body

of P be analyzed as well. Thus the library manager, the parser, and the semantic analyzer

can be activated from within semantic analysis (note the backward arrows in �gure ??).

3.3.1 Type Resolution

Type and overload resolution is performed by means of the well-known two-pass algorithm.

During the �rst (bottom-up) pass, each node in a complete context is labelled with its type,

or if overloaded with the set of possible meanings of each overloaded reference. During the

second pass, the type imposed by the context is used to resolve ambiguities and chose a

unique meaning for each overloaded identi�er in the expression. When resolving a call to a

primitive operation of a tagged type, the second pass also determines the actual in the call

that is to serve as controlling argument of the dispatching call.

3.3.2 Expansion Activities

The modi�cations performed by the expander are tree transformations that must be ap-

plied to those Ada constructs that do not have a close equivalent in C, such as allocators,

aggregates, tagged types and dynamic dispatching, and all aspects of the tasking. The

7

expansion phase also simpli�es some aspects of semantic analysis which are awkward to

perform strictly in one pass, eg. the correct handling of the private part of a package

declaration. The most important expansions are the following;

1. Construction of initialization procedures for record and array types, and invocation

of these procedures for each object of such a type. This is also done for tasks and

protected objects.

2. Generic instantiation. Instantiation is always done in-line, so that declaration and

body of the instance are inserted into the AST at the point of instantiation.

3. All tasking operations are transformed into calls to subprograms in the run-time

system. The recursive mechanisms of GNAT are particularly useful here. For example,

consider operations on the attribute COUNT. The run-time holds the speci�cation of a

run-time function that examines the corresponding queue. Rather than including the

details of such a function in the compiler proper, the run-time package is analyzed by

the compiler as if it had appeared in the context clause of the current compilation. If

the function is subject to an INLINE pragma, the compiler can perform the inlining

as well, without forcing the compiler to have detailed information about the run-

time, and without a�ecting code quality. Such
exibility cannot be achieved with a

more conventional compiler organization. Because of the speed of the compiler, the

cost of this approach in terms of space and time is comparable or cheaper than the

conventional approach.

3.4 Gigi and Code Generation

The phase labeled Gigi (Gnat to Gnu) interfaces the front-end with the GCC code generator.

Gigi traverses the decorated and expanded AST, in order to build the corresponding GCC

tree, which is then input to the code generator proper. More precisely, the activities of GCC

tree construction and code generation are interspersed, so that after each code generation

activity, the GCC tree fragment can be discarded. At no time is a full tree built (there is

no such notion in GCC). This is in line with the one-pass model of compilation used for C,

and is memory-e�cient.

In order to bridge the semantic gap between Ada and C, several code generation routines

in GCC have been extended, and others added, so that the burden of translation is also

assumed by Gigi and GCC whenever it would be awkward or ine�cient to perform the

expansion in the front-end. For example, there are code generation actions for exceptions,

for variant parts, and for access to unconstrained types. As a matter of GCC policy, the

code generator is extended only when the extension is likely to be of bene�t to more than

one language.

8

3.4.1 Discriminated Records and Dynamic Arrays

Discriminated records are implemented without hidden pointers: if the position of a record

component depends on a discriminant (for example if the size of a previous component

depends of a discriminant) then GCC generates inline code to compute the address of the

component, rather than storing o�sets in the object.

the implementation of objects whose size is dynamic makes use of so called fat pointers.

A fat pointer is a record with two components: a pointer to an object, and a pointer to a

descriptor that contains bounds information on the object. Most accesses to such an object

make use of the descriptor. GCC builds fat pointers when needed, for example when passing

a composite type in a call to a formal parameter that is an unconstrained type.

3.4.2 Exceptions

The exception mechanism is intended to be usable by all GCC languages that have excep-

tions: Ada, C++, and Modula-3. The mechanism should be su�ciently uniform to allow

multi-language programs to function in the presence of language-speci�c exceptions and

exception handlers: for example, an Ada exception may propagate from a C++ module to

an Ada handler. The mechanism should also be zero cost, that is to say, there should be

no run-time cost attached to the mere presence of a handler, only to the actual occurrence

of an exception.

The design of exception handling is closely related to the semantics of �nalization. Recall

that on exit from any construct that declares some entities, there may be cleanup actions

to perform: �nalization of controlled objects, reclamation of local heap-allocated objects,

etc. We implement this sequence of actions by means of a single chain that holds all local

objects that may require �nalization, and a single procedure that traverses this chain and

invokes the appropriate �nalization for each object therein. When an exception is raised,

the stack must be unwound, and the �nalization routines attached to each frame must be

invoked in turn. The exception manager must be able to locate the exception handler,

and then repeatedly unstack a frame and invoke its �nalization procedure. The exception

manager uses two tables for this purpose: an unwind table and a handler table.

Unwind Table. The linker builds a table of address ranges, each of which is either under

the control of a given exception handler, or has an attached �nalization procedure.

The table stores the addresses of each.

Handler table. This table holds the list of exceptions managed by a particular handler.

The method depends on being able to �nd, without additional structures, the subpro-

gram that contains the instruction that raised an exception. To insure that the processing

9

is language-independent, the cleanup procedure is parameterless, and only its address needs

to be retrievable.

Exception propagation proceeds as follows:

Locating the handler. During this phase the exception manager uses the PC of the

exception-raising instruction to locate the innermost active subprogram that has an

applicable handler. This traversal of the stack is done without unwinding actions, so

that the debugger can be invoked on the o�ending instruction in its proper context,

in case there is no applicable handler.

Cleanup. In the second phase, stack unwinding takes place, and the unwind table is used

to retrieve the cleanup procedures at each step, until the exception handler takes

control.

3.5 Object-Oriented Programming

One of the most eagerly awaited aspects of Ada9X is its support for object-oriented pro-

gramming. In this section we review brie
y the novel approach of Ada9X to this important

programming paradigm, and some GNAT implementation details. We examine in succession

the three critical notions: inheritance, polymorphism, and dynamic dispatching.

3.5.1 Inheritance

What other object-oriented languages call objects are de�ned in Ada9X by means of tagged

types. A tagged type is a record with a special component, called the tag, which governs

dispatching. Tagged types can be extended with additional components. The notion of

type extension, as well as the concept of inheritance of operations, are generalisations of the

Ada83 mechanism of type derivation. GNAT implements tagged types by following closely

the implementation of regular records. The expander transforms tagged types into records

according to the following schema:

type R1 (D1, D2 : Type_D) is tagged

record

C1, Cn : Type_C;

end record;

type R1 (D1, D2 : Type_D) is

record

_tag : Ada.Tags.Tag;

C1, Cn : Type_C;

end record;

Extensions are transformed as follows:

type R2 (D3, D4 : Type_D) is

new R1 (D3, X) with

record

E1, En : Type_E;

end record;

type R2 (D3, D4 : Type_D) is

record

_parent : R1 (D3, X);

E1, En : Type_E;

end record;

10

The components parent and tag use \ " as pre�x to avoid potential name con
icts

with user-de�ned components. After this transformation, any reference to an inherited

component is turned into a reference to the embedded parent.

3.5.2 Polymorphism

Polymorphism denotes the capability of treating in similar fashion objects that belong to a

class of types. Classwide types serve to denote objects that can belong dynamically to any

derivation class.

R1'Class is a type that is implicitly de�ned when R1 is de�ned, and which covers R1

and all its extensions. All operations on R1 can be applied to a value of type R1'Class.

The implementation of classwide types is delicate, because a value of such a type has

an inde�nite subtype, that is to say an unknown number of discriminants and unknown

components beyond those inherited from R1. We have found it convenient to de�ne a

classwide type as an extension with unknown typeless storage. For instance, when the

expression new R1'Class (V) is encountered, GNAT will the foloowing type

type R1__Class_Subtype is record

_parent : R1 (V.D1, V.D2);

_extension : Array_Of_Bits (1 .. V'Size -

R1'Size);

end record;

There is another delicate point concerning the implementation of classwide types. All

members of the class must have a compatible layout, so that o�sets of corresponding compo-

nents must be identical. This con
icts with the need to place discriminants at �xed o�sets,

usually at the beginning of the record, so as to be able to calculate the placement of com-

ponents that depend on those discriminants. If any descendant can add new discriminants

to a tagged type, it is not possible to make discriminants contiguous. Figure ?? shows the

layout for the types of the previous example: we are forced to place D3 and D4 between

parent and the components E1, En.

3.5.3 Dynamic Dispatching

Primitive operations that are inherited by a type extension can be rede�ned, in which

case the new de�nition overrides the old one. When a primitive operation of the root

type is applied to a classwide argument, the tag of the argument determines the imple-

mentation of the operation which is to be executed, i.e. the original operation or one

of its overridings. The tag is implemented as a pointer to a dispatch table. The table

contains pointers to the primitive operations of the type. There is one table for each

tagged type, and the layout of all types in a derivation class is compatible, in the sense

that di�erent overridings of the same operation appear in the same table position. Note

11

tag

D1

D2

C1

Cn

tag

D1

D2

C1

Cn

p

a

r

e

n

t

tag

D1

D2

C1

Cn

p

a

r

e

n

t

....

.

.

.

.

.

.

.

.

.

.

R1 R2 R1'Class

D3

D4

E1

En

extension

Figure 3: Storage for classwide types

that in Ada terms this table is not an array, because each component is an access to a

subprogram with a di�erent pro�le. A call to a primitive operation is dispatching if the

speci�c type of its tagged arguments cannot be determined statically. In such a case,

the tag of one of the actuals is chosen to determine which subprogram to call. Sim-

plifying somewhat,if we consider type R1 introduced in section ?? and we encounter

Primit n (Param: R1'Class)

then dispatching amounts to replacing:

Primit n (X) with X. tag.all.Access Primit n.all (X)

The layout of the dispatch table is shown in Figure ??. The �rst two components of the

table simplify the implementation of the membership operation for tagged types.

3.6 The Runtime: GNARL

The most important activities of the run-time have to do with task management: creation,

activation, rendez-vous, termination. The runtime maintains the data structures needed

to manage, schedule, and synchronize tasking activities. In order to make GNAT easily

portable, the runtime is written in Ada (with some very small assembly glue) and two

procedural interfaces, GNARLI and GNULLI, are used to isolate the compiler from the

runtime, and the runtime from the underlying operating system.

GNARLI (GNAT run-time library interface) is the interface between the compiler and

the run-time. Each Ada construct that applies to tasks or protected objects is implemented

by one or more subprograms in the run-time. The expander transforms each occurrence

12

tag

D1

D2

C1

Cn

-

�

�

�

��

objet of type R1 dispatch table for R1

distance from

root

tags of ancestors

-

-

-

-

Access Primit 1

Access Primit n

� � � � � � � � � � � �

Access Primit 2

table for

ancestor

tags

Figure 4:

of such constructs into the corresponding series of calls. The packages that constitute the

run-time are treated as any other unit of the context of the compilation, and analyzed when

needed. This obviates the need to place run-time information in the compiler itself, and

allows a knowledgeable user to modify the run-time if he/she so chooses. The design of

GNARL is based on the CARTS (Common Ada Run-Time System) speci�cation [?].

GNULLI (GNAT low-level library interface) provides the interface between the run-time

and the underlying operating system. The design of GNULLI makes use of a few POSIX

threads primitives, and assumes the existence of such primitives in the host OS. A threads

package that emulates those primitives is supplied for systems that do not have them, e.g.

conventional Unix systems. Otherwise the implementation of GNULLI is straightforward

on modern operating systems such as Solaris, Mach and OS/2.

The design and implementation of GNARL have been carried out at Florida State University

by the group directed by Ted Baker and Ted Giering, and follows their design of previous

protable Ada runtimes, notably CARTS and MRTSI.

3.7 Library Management

The notion of program library is seen justi�ably as one of the fundamental contributions of

Ada to software engineering. The library guarantees that type safety is maintained across

compilations, and prevents the construction of inconsistent systems by excluding obsolete

units. In all Ada compilers to date, the library is a complex structure that holds intermediate

representations of compiled units, information about dependences between compiled units,

symbol tables, etc. The ARM strongly suggests that such a structure is mandatory, but in

fact a monolithic library is not required to implement rigorously the semantics of separate

compilation. Furthermore, the monolithic library approach is ill-adapted to multi-language

systems, and has been responsible for some of the awkwardess of interfacing Ada to other

13

languages.

We have chosen a completely di�erent approach in GNAT. The library itself is implicit,

and object �les depend only on the sources used to compile them, and not on other objects.

There are no intermediate representations of compiled units, so that the declarations of

the units appearing in the context clause of a given compilation are always analyzed anew.

Dependency information is kept directly in the object �les, and amounts to a few hundred

bytes per unit. The binder can be used to verify the consistency of a system before linking,

and is also used to determine the order of elaboration. Given the speed of the front-end,

our approach is no less e�cient than the conventional library mechanism, and has three

important advantages over it:

1. Compilation of an Ada unit is identical to compilation of a module or �le in another

language: the result of the compilation of one source is one object �le, period.

2. Given that object �les only depend on sources, not on other objects, there is no longer

a required order of compilation. All the components of a system can be compiled in

any order. Only the modi�cation of a source program may obsolete a compiled unit.

A well-known dreaded phenomenon of previous Ada systems, namely the accidental

recompilation of one unit that obsoletes a slew of other units in the library, even when

the source is unchanged, is thus avoided completely.

3. Inlining works in a much more
exible way than in normal compilers. Given that

compiling, and thus inlining, is always done from the source, there is no requirement

that the entities to be inlined should be compiled �rst. It is even possible for two

bodies to inline functions de�ned in each other, without fear of circularities.

It is gratifying that this
exible model is fully conformant with the prescribed semantics

given in the ARM, and at the same time confortable for programmers used to the behavior

of make and similar tools. The GNAT model simpli�es the construction of multi-language

programs and makes Ada look more familiar to programmers in other languages.

3.8 The Binder

The role of the binder is twofold:

� It veri�es the consistency of the objects that are to be assembled into an executable.

� It determines a valid order of elaboration for the units in the program, and packages

the calls to the corresponding elaboration procedures into a single subprogram, to be

invoked before the main program.

14

The binder makes use of the information created when each unit is compiled. This

information includes the semantic dependencies of each unit, the date of latest modi�cation

of their sources, the presence of various elaboration pragmas, and whether a given unit may

be a main program.

The binder has been designed with
exibility in mind. In one mode, it can verify that all

objects depend on a consistent set of sources. Given that time stamps of the sources used for

a compilation are kept in the object �les, this check does not require that sources themselves

be present, which is an advantage in commercial settings for software distribution.

Another mode of operation is to verify that the system is up-to-date, that is to say that

no source was modi�ed after compilation. In all cases, possible inconsistencies are diagnosed

and treated as fatal errors. There are however cases in which this is undesirable. For

example, it is irritating to be forced to recompile a large system only because comments were

added to a low-level package on which many units depend. An additional option instructs

the binder to ignore time stamps and create an elaboration procedure unconditionally. Such

an option requires precise understanding on the part of the user, and is certainly not safe,

but it may be indispensable in certain circumstances, and will be welcome by experienced

programmers.

Finally, the binder is intended to work with other GCC languages, and can produce

di�erent output programs. By default, the object �le given as input is taken to be the main

program. In this case, the binder builds a C �le containing the function main, which is the

mandatory main program for a C compilation. This function consists of a series of calls to

elaboration procedures, followed by a call to the main Ada program. The intended main

program may not even be in Ada, in which case the binder output consists solely of the

elaboration calls.

4 Conclusion

Compiler quality means di�erent things to di�erent users. For students and beginners,

GNAT intends to be user-friendly, provide lucid error messages, and fast turn-around for

small programs. For a software engineer, code quality is paramount, and GNAT can rely

on the proven performance of the GCC back-end. For the embedded-systems developer, the

existence of cross-compilation tools is critical, and here as well GCC provides the necessary

functionality. For the language researcher and the compiler writer, the existence of sources

of a full compiler is invaluable.

GNAT has no size limitation, beyond that imposed by the full memory of the host

machine. The speed of the system is substantial: on a 66-Mhz i486 machine, the front-end

runs at 40,000 lines/min., and the full compiler at 8,000 lines/min. Such a performance is

comparable to that of the best commercial compilers, and is likely to improve by a factor

15

of two when various tracing options are removed and full inlining is supported.

To date (Dec. 1993) GNAT is su�ciently complete and robust to compile itself (around

110,000 lines of Ada), compile GNARL, and pass hundreds of ACVC tests. Nevertheless,

given the size and complexity of Ada9X, we know that a few person/years are still required

to complete the task. In spite of its incompleteness, the GNAT system already has a

small but dedicated set of users. The cooperative spirit fostered by the activities of the

Free Software Foundation is striking: days after the �rst release of GNAT, several ports

to unexpected machines were reported, and o�ers were made to the project of important

software components: bindings to Mach, to X-windows, implementation of the information

systems annex, etc. This synergy within the Ada community is a rewarding byproduct of

the GNAT project.

5 Appendix: How to Obtain GNAT

GNAT is available by anonymous ftp from cs.nyu.edu, directory pub/gnat. This directory

contains a README �le, sources �les, and binaries for OS/2 and for Sparc/SunOS. Instal-

lation on other targets currently requires that GCC already be installed.

A mailing list is maintained at New York University to notify users of new version releases.

Send mail to gnat-reque@cs.nyu.edu to be included in this list.

Users are invited to submit bug reports to gnat-report@cs.nyu.edu. Information on new

ports, on enhancements to the compiler, as well as other software contributions, are wel-

comed at the same electronic address.

16

Acknowledgements. The work we have described is the result of the collective e�orts

of the GNAT team, and we thank all of them for the pleasure of working together. We

thank Richard Stallman, not only for the GCC system, but for his seminal insight that

the Ada library model could be source-based. We also want to thank Ted Baker (Florida

State University), Bruno Leclerc (T�el�ecom Bretagne), and Tucker Taft (Intermetrics) for

innumerable advice and discussions.

References

[1] J.B.Bladen et al., Ada Semantic Interface Speci�cation (ASIS), Conference Pro-

ceedings, TriAda'91, San Jose,California, October 1991.

[2] Ada9X Mapping/Revision Team, Programming Language Ada{Language and Stan-

dard Libraries, Draft, Version 4.0, Intermetrics, September 1993.

[3] T.P.Baker, and E.W.Giering, III, Implementing Ada9X features using POSIX

threads: design issues, Conference Proceedings, TriAda'93, Seattle, Washington,

September 1993.

[4] G.Goos, W.A.Wulf, A.Evans, Jr., and K.J.Butler, DIANA - An Intermediate

Language for Ada, Lecture Notes in Computer Science, number 161, Springer-Verlag,

1983.

[5] R.M.Stallman, Using and Porting GNU CC, Free Software Foundation, December

1992.

17

