The POSTGRE®5 User Manual

Version 1.0 (September 5, 1995)

Andrew Y1 and Jolly Chen
(with thePOSTGRESsroup)
Computer Science Div., Dept. of EECS
University of California at Berkeley

POSTGRESS is copyright © 1994-5 by the Regents of thevarsity of California. Permission to use, cgpmodify, and dis-
tribute this software and its documentation foy parpose, without fee, and without a written agreement is hereby granteilegro
that the abee @mpyright notice and this paragraph and the following paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO
ANY PARTY FOR DIRECT INDIRECT, SPECIAL, INCIDENTAL, OR CONSE-
QUENTIAL DAMAGES, INCLUDING LOST PRFITS, ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENATION, EVEN IF THE UNIVERSITY
OF CALIFORNIA HAS BEEN ALVISED OF THE POSSIBILITY OF SUCH BAM-
AGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALY DISCLAIMS ANY
WARRANTIES, INCLUDING, BJT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A RRTICULAR PUR-
POSE. THESOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS © PROVIDE
MAINTENANCE, SUPPOR, UPDATES, ENHANCEMENTS, OR MODIFICAIONS.

1. INTRODUCTION

This document is the user manual for F®STGRES5 database management system
developed at the Uniersity of California at Ber&ley. POSTGRES5 is based oROST-
GRES release 4.2. Th@OSTGRESproject, led by Professor Michael Stonelmalhas
been sponsored by the Defense Advanced Research Projecty figaRPA), the Army
Research Office (ARO), the National Science Foundation (NSF), and ESL, Inc.

1.1. Whatis POSTGRES?

Traditional relational database management systems (DBMSs) support a data model con-
sisting of a collection of named relations, containing attributes of a specific type.- In cur
rent commercial systems, possible types include floating point numbeggréteharac-

ter strings, mong and dates. It is commonly recognized that this model is inadequate for
future data processing applications.

The relational model successfully replaced previous models in part because of its “Spar
tan simplicity”. However, as mentioned, this simplicity often makes the implementation

of certain applications very difficult to implemeneOSTGRESoffers substantial addi-
tional power by incorporating the folleng four additional basic constructs in suchayw

that users can easily extend the system:

classes
inheritance

types
functions

In addition,POSTGRESsupports a powerful production rule system.

1.2. AShort History of the POSTGRESProject

Implementation of theeOSTGRESDBMS beagan in 1986. Theinitial concepts for the
system were presented in [STON86] and the definition of the initial data model appeared
in [ROWES87]. Thedesign of the rule system at that timasadescribed in [SIN87a].

The rationale and architecture of the storage manager were detailed in [STON87D].

POSTGREShas undergone geral major releases since themhe first “demavare” sys-

tem became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference.
We released ¥frsion 1, described in [STON90a], to svfexternal users in June 198
response to a critique of the first rule system [STON89], the rule sysasmedesigned
[STON90b] and Version 2 was released in June 1990 with theuie system.Version 3
appeared in 1991 and added support for multiple storage managers, aveihtoery
executor, and a rewritten rewrite rule systerfror the most part, releases since themeha
focused on portability and reliability.

POSTGREShas been used to implement matlifferent research and production applica-
tions. Theseénclude: a financial data analysis system, a jet engine performance monitor
ing package, an asteroid tracking database, a medical information databasegahd se
geographic information systemBOSTGREShas also been used as an educational tool at
several unwersities. Finally lllustra Information Technologies picked up the code and
commercialized it.

POSTGREShecame the primary data manager for the Sequoia 2000 scientific computing
project in late 1992Furthermore, the size of the external user community nearly doubled
during 1993. It became increasingly obvious that maintenance of the prototype code and
support was taking up lge¢ amounts of time that shouldvieabeen deoted to database
research. Iran efort to reduce this support burden, the project officially ended véth V

sion 4.2.

1.3. Whatis POSTGRE®5?

POSTGRESS is a dewative d the last official release (fOSTGRESversion 4.2). The

code is nav completely ANSI C and the code size has been trimmed by 25%. There are a
lot of internal changes that impm® performance and code maintainabilBOSTGRESS

runs about 30-50% faster on thas@dnsin Benchmark compared to v4.2. Apart from
bug fixes, these are the major enhancements:

» The query language POSTQUEL has been replaced with SQL (implemented in the
sener). We do rot support subqueries (which can be imitated with user defined SQL
functions) at the moment. Aggraes hae keen re-implemented. #\dso added sup-
port for GROUP BYThe libpq interface is still\ailable for C programs.

* In addition to the monitor program, we provide awgrogram (psql) which supports
GNU readline.

* We added a ne front-end librarylibpgtcl, that supports Tcl-based clien#s.sample
shell, pgtclsh, provides neTcl commands to interface tcl programs with B@ST-
GRES5 backend.

» The large object inteate has beerverhauled. V& kept Inversion large objects as the
only mechanism for storing lge objects. (This is not to be confused with theerin
sion file system which has been reveah)

» The instance-l rule system has been rewed. Rules are still\ailable as revrite
rules.

A short tutorial introducing gular SQL features as well as those of ours is digaib
with the source code.

* GNU male (instead of BSD mad is used for the build. AlIS®OSTGRES5 can be
compiled with an unpatched gcc (data alignment of doubles has been fixed).

1.4. AboutThis Release

POSTGRESS is aailable free of charge. This manual describession 1.0 ofPOST-
GRE®5. Theauthors hae compiled and teste@OSTGRES5 on the following plat-
forms:

architecture processor operating system
DECstation 3000 Alpha AXP OSF/1 2.1, 3.0,3.2
DECstation 5000 MIPS ULTRIX 4.4
Sun4 SRRC SunO$4.1.3, 4.1.3_U1,; Solaris 2)4
H-P 9000/700 and 800 PA-RISC HP-UX9.00, 9.01, 9.03
Intel X86 Linux 1.2.8, ELF

1.5. Qutline of This Manual

From nav on, We will use POSTGRES0 meanPOSTGRES5. Thefirst part of this man-

ual goes ver some basic system concepts and procedures for startifiDBEGREYS-

tem. We then turn to a tutorialv@rview of the POSTGRESdata model and SQL query
language, introducing avieof its advanced featuredNext, we explain theeOSTGRES
approach to extensibility and describevhasers canxdend POSTGREShy adding user
defined types, operators, aggges, and both query language and programming language
functions. Afteran extremely brief werview of the POSTGRESule system, the manual
concludes with a detailed appendix that discusses some of the vavedhand operat-

ing system-specific proceduresaived in extending the system.

We assume proficiencwith UNIX and C programming.

UNIX is a trademark of X/Open, Ltd. Sun4,/A8FC, SunOS and Solaris are trademarks of Sun Microsystems, Inc. DEC, DEC-
station, Alpha AXP and ULTRIX are trademarks of Digital Equipment C&®pA:RISC and HP-UX are trademarks of wiett-
Packard Co. OSF/1 is a trademark of the Open Software Foundation.

2. POSTGRESARCHITECTURE CONCEPTS

Before we continue, you should understand the bRSIBTGRESsystem architecture.
Understanding he the parts oPOSTGRESnNteract will male the next chapter somhat

‘ USER LIBPQ TCF port
APPLICATION @ *“ét’e’n;r{i POSTMASTER J

(a) frontend sends request to
postmaster via well-known
network socket

server host

initial
connection

POSTMASTER }

forks child
SERVER

‘ USER LIBPQ

APPLICATION

(b) postmaster creates backend server

‘ USER

APPLICATION LIBPQ —— @G-

SERVER

(c) frontend connected
to backend server

LIBPQ G-

USER
APPLICATION

(d) frontend connected
to multiple backend servers

SERVER2

Figure 1 How a @nnection is established.

clearer.

In database jgon, POSTGRESUses a simple “process-per-user” client/semodel. A
POSTGRESession consists of the following cooperalig)X processes (programs):

» A supervisory daemon process (fustmaster),
« the usess frontend application (e.g., tipsgl program), and
» the one or more backend database serverp@$tgres process itself).

A single postmaster manages a gen collection ofdatabase®n a single host. Such a
collection of databases is callediastallationor site Frontend applications that wish to
access a gen database within an installation nelalls to theLIBPQ library. The
library sends user requestgepthe network to th@ostmaster (Figure 1(a)), which in

turn starts a v backend serer process (Figure 1(b)) and connects the frontend process
to the nav server (Figure 1(c)).From that point on, the frontend process and thedratk
sener communicate without inteention by thepostmaster . Hence, thgpostmas-

ter is aways running, waiting for requests, whereas frontend and backend processes
come and go.The LIBPQ library allows a single frontend to makrultiple connections

to backend processeslowever, the frontend application is still a single-threaded pro-
cess. Multithreadettontend/backnd connections are not currently supportediBPQ.

One implication of this architecture is that ffestmaster and the backendwéys run

on the same machine (the databaseesgrwhile the frontend application may ruryan
where. Yu should kep this in mind, because the files that can be accessed on a client
machine may not be accessible (or may only be accessed using a different filename) on
the database server machine.

You should also beware that thepostmaster andpostgres seners run with the
userid of thePOSTGRES'superusel Note that theeOSTGRESsuperuser does not\e

to be a special user (e.g., a user named “postgres”). FurthermoR)INERESsUpe-

ruser should definitely not be thiNIX superuser‘root” In ary case, all files relating to
a database should belong to tR®STGRESuperuser.

3. GETTING STARTED WITH POSTGRES

This section discusseswdo gart POSTGRESand set up your own environment so that
you can use frontend applicationse \®sumePOSTGREShas already been successfully
installed. (Refer to the installation notes fomho installPOSTGRES

Some of the steps listed in this section will apply tcP@lBTGREQusers, and some will
apply primarily to the site database administraffinis site administator is the person
who installed the software, created the database directories and stapestthaster
process. Thigperson does not ki@ © be he UNIX superuser‘root; or the computer
system administrator.

In this section, items for end users are labelled “User” and items intended for the site
administrator are labelled “Admin.”

Throughout this manual, wrexamples that kgEn with the character% are commands
that should be typed at thuNIX shell prompt. Examples that begin with the character
“* " are commands in theOSTGRESjuery languageROSTGRESSQL.

3.1. Admin/User: Setting Up Your Environment

postgres

data bin lib include src doc
T \

fles base pg_log, psql postgres postmaster.... libpg.a libpg-fe.h ...

/ ’wj classes]
[.bki files] templatel mydb ..
g_class .. g_class ...

F rivate classes private classes]

DATA EXECUTABLE APPLICATION

PROGRAMS DEVELOPMENT

ENVIRONMENT

Figure 2 POSTGRESile layout.

Figure 2 shows hw the POSTGRESistribution is laid out when installed in the daft
way. For simplicity, we will assume thaPOSTGREShas been installed in the directory
/usr/local/postgres95 . Therefore, whenger you see the directory
/usr/local/postgres95 you should substitute the name of the directory where
POSTGRESs actually installed.

All POSTGRES commands are installed in the directory
lusr/local/postgres95/bin . Therefore, you should add this directory to your
shellcommand pathIf you use a variant of the Baxley C shell, such agsh ortcsh
you would add

% <t path = (/usr/local/postgres95/bin $path)

in the.login file in your home directorylf you use a variant of the Bourne shell, such
assh, ksh, or bash , then you would add

% RATH=/usr/local/postgres95/bin:$PATH
% eport PATH

to the.profile file in your home directory.

From nav on, we will assume that you ¥a alded theeOSTGRESiin directory to your
path. Inaddition, we will mak frequent reference to “setting a shell variable” or “setting
an environment ariable” throughout this document. If you did not fully understand the
last paragraph on modifying your search path, you should consulNikemanual pages
that describe your shell before going duarther.

3.2. Admin: Starting the Postmaster

It should be clear from the preceding discussion that nothing can happen to a database
unless theostmaster process is running. As the site administratioere are a num-

ber of things you should remember before startingptb&tmaster . These are dis-
cussed in the section of this manual titleddrhinistering POSTGRES Howevae, if
POSTGREShas been installed by folldng the installation instructions exactly as written,

the following simple command is all you should need to stapdsemaster

% mstmaster &

Thepostmaster occasionally prints out messages which are often helpful during trou-
bleshooting. Ifyou wish to viev debugging messages from the postmasteu can start
it with the -d option and redirect the output to the log file:
% pstmaster -d >& pm.log &
If you do not wish to see these messages, you can type

% mstmaster -S

and thepostmaster will be “S”ilent. Notice that there is no ampersand (“&”") at the
end of the last example.

3.3. Admin: Adding and Deleting Users

The createuser command enables specific users to acce®STGRES The
destroyuser command remes wsers and prents them from accessiRPOSTGRES
Note that these commands only affect users with respgeO8TGRES they have no
effect administration of users that the operating system manages.

3.4. User:Starting Applications

Assuming that your site administrator has properly starteddsgnaster process and
authorized you to use the database, you (as a user) miaytbatart up applicationsAs
previously mentioned, you should adasr/local/postgres95/bin to your shell

search path. In most cases, this is all you shoutd Bedo in erms of preparatioh.

If you get the following error message fronrP@STGREScommand (such assql or
createdb):

connectDB() failed: Is the postmaster running at 'localhost’ on port '4322'?

it is usually because (1) thmostmaster is not running, or (2) you are attempting to
connect to the wrong server host.

If you get the following error message:

FATAL 1:Feb 17 23:19:55:process userid (2360) !=
database owner (268)

it means that the site administrator startedpibmaster as the wrong usefTell him
to restart it as theOSTGRESuperuser.

3.5. User:Managing a Database

Now thatPOSTGRESs up and running we can create some databasepdoment with.
Here, we describe the basic commands for managing a database.

3.5.1. Ceating a Database

Let's say you want to create a database namgdb. You can do this with the folaing
command:

% aeatedb mydb
POSTGRESllows you to create gmumber of databases at aei dte and you automat-

ically become thedatabase administitor of the database you just createbatabase
names must v an dphabetic first character and are limited to 16 characters in length.

L If your site administrator has not set things up in the defaayt you may hae ssme more work to doFor example, if the
database server machine is a remote machine, you will need to B&H@SErvironment variable to the name of the database serv-
er machine. The environmeranablePGPORTay also hee © be ®t. Thebottom line is this: if you try to start an application pro-
gram and it complains that it cannot connect tophgtmaster , you should immediately consult your site administrator toemak
sure that your environment is properly set up.

3.5.2.

Not every user has authorization to become a database administtatBOSTGRES
refuses to create databases for you, then the site administrator needs to grant you permis-
sion to create databases. Consult your site administrator if this occurs.

Accessin@ Database
Once you hee @nstructed a database, you can access it by:

* running thePOSTGRESterminal monitor programs onitor or psqgl) which
allows you to interactiely enter edit, and @ecute SQL commands.

» writing a C program using theBPQ subroutine library This allows you to submit
SQL commands from C and get answers and status messages back to your program.
This interface is discussed further in section ?7?.

You might want to start upsql , to try out the &les in this manual. It can be acti-
vated for themydb database by typing the command:

% gl mydb
You will be greeted with the following message:
Welcome to the POSTGRES95 interactive sql monitor:
type \? for help on slash commands
type \q to quit
type \g or terminate with semicolon to execute query
You are currently connected to the database: mydb

mydb=>

This prompt indicates that the terminal monitor is listening to you and that you can type
SQL queries into a workspace maintained by the terminal monitor.

Thepsqgl program responds to escape codes that begin with the backslash cHatacter
For example, you can get help on the syntax afia®usPOSTGRESSQL commands by

typing:
mydb=> \h

Once you hee finished entering your queries into therkspace, you can pass the con-
tents of the workspace to tROSTGRESserver by typing:

mydb=>\g

This tells the server to process the qudfyou terminate your query with a semicolon,
the \g is not necessari?sgl will automatically process semicolon-terminated queries.

To read queries from a file, sayyFile, instead of entering them interaedy, type:
mydb=> \i fileName

To get out of psql and return taNIX, type

10

mydb=>\q

andpsql will quit and return you to your command shell. (For more escape codes, type
\h at themonitor prompt.)

White space (i.e., spaces, tabs and newlines) may be used freely in SQL dDenes.
ments are denoted by . Everything after the dashes up to the end of the line is ignored.

3.5.3. Destoying a Database

If you are the database administrator for the dataivgsiy, you can destrpit using the
following UNIX command:

% destroydb mydb

This action physically renves dl of the UNIX files associated with the database and can-
not be undone, so this should only be done with a great deal of forethought.

11

4. THE QUERY L ANGUAGE

The POSTGRESjuery language is a variant of SQL-3. It has ynattensions such as an
extensible type system, inheritance, functions and production rules. Those are features
carried oer from the originaPOSTGRESjuery language, POSTSEL. This section pro-

vides an werview of how to usePOSTGRESSQL to perform simple operations.

This manual is only intended tovegi you an idea of our fleor of SQL and is in no way a
complete tutorial on SQL. Numerous booksénbeen written on SQL. For instance, con-
sult [MELT93] or [DATE93]. You should also benvare that some features are not part of
the ANSI standard.

In the examples that foll, we assume that you ka aeated themydb database as
described in the previous subsection ancelgarted psql.

Examples in this manual can also be found in
/usr/local/postgres95/src/tutorial . Refer to the README file in that
directory for hev to use them.To dart the tutorial, do the following:

% cd /usr/local/postgres95/src/tutorial
% gl -s mydb
Welcome to the POSTGRES95 interactive sqgl monitor:

type \? for help on slash commands

type \q to quit

type \g or terminate with semicolon to execute query
You are currently connected to the database: jolly

mydb=>\i basics.sq|l

The\i command read in queries from the specified files.-§heption puts you in sin-
gle step mode which pauses before sending a query to the backend. Queries in this sec-
tion are in the fildasics.sql

4.1. Concepts

The fundamental notion IROSTGRESS that of aclass,which is a named collection of
objectinstances Each instance has the same collection of naatgibutes and each
attribute is of a specifitype Furthermore, each instance has a permaolejetct identi-
fier (OID) that is unique throughout the installatidBecause SQL syntax referstables,
we will use the termtable andclassinterchangeablyLikewise, arow is aninstanceand
columnsareattributes.

As previously discussed, classes are grouped into databases, and a collection of databases
managed by a singfgstmaster process constitutes an installation or site.

12

4.2. Creating a New Class

You can create a meclass by specifying the class name, along with all afteimames
and their types:

CREATE TABLE weather (

city varchar(80),

temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation

date date

);

Note that lkeywords are case-insensi@l ut identifiers are case-sengeti POSTGRES

SQL supports the usual SQL types int, float, real, smallint, char(N), varchar(N), date, and
time. Aswe will see laterPOSTGREScan be customized with an arbitrary number of
user-defined data types. Consequemylye names are noelavords.

So far, the POSTGRESreate command looks exactly likthe command used to create a
table in a traditional relational systerhlowever, we will presently see that classesvha
properties that are extensions of the relational model.

4.3. Populating a Class with Instances
Theinsert statement is used to populate a class with instances:

INSERT INTO weather
VALUES ('San Francisco’, 46, 50, 0.25, '11/27/1994")

You can also use theopy command to perform load @@ amounts of data from flat
(ASCII) files.

4.4. Queryinga Class

The weather class can be queried with normal relational selection and projection
gueries. ASQL selectstatement is used to do this. The statement is divided iatiget

list (the part that lists the attributes to be returned) amehdification(the part that speci-
fies aly restrictions). Br example, to retriee dl the rows ofweather , type:

SELECT * FROM WEATHER,;

and the output should be:

city temp_lo temp_hi prcp date

San Francisco 46 50 0.25 11-27-1994
San Francisco 43 57 0 11-29-1994
Hayward 37 54 11-29-1994

You may specify ap aribitrary expressions in the target list. For example, you can do:

13

* SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

Arbitrary Boolean operatorsdnd, or and not) are allowed in the qualification of @n
query For example,

SELECT *
FROM weather
WHERE city = 'San Francisco’
and prcp > 0.0;

city temp_lo temp_hi prcp date
San Francisco 46 50 0.25 11-27-1994

As a final note, you can specify that the results s&lactcan be returned in a sorted
order or with duplicate instances reved.

SELECT DISTINCT city
FROM weather
ORDER BY city;

4.5. Redirecting SELECT Queries
Any selectquery can be redirected to amnelass

SELECT * INTO temp from weather;

This creates an implicitreate command, creating a weclasstemp with the attrilute
names and types specified in thegéarlist of theSELECT INT O command. W can
then, of course, perform wroperations on the resulting class that we can perform on
other classes.

4.6. Dins Between Classes

Thus fr, our queries hee anly accessed one class at a ting@ueries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class
are being processed at the same tirAequery that accesses multiple instances of the
same or different classes at one time is callpiequery

As an example, say we wish to find all the records that are in the temperature range of
other records. In &fct, we need to compare themp_lo andtemp_hi attributes of

eachEMPinstance to théemp_lo andtemp_hi attributes of all otheEMPinstances.
We @an do this with the following query:

SELECT W1.city, Wil.temp_lo, Wl.temp_hi,
W2.city, W2.temp_lo, W2.temp_hi

2 This is only a conceptual modeThe actual join may be performed in a more efficient matethis is invisible to the user

14

FROM weather W1, weather W2
WHERE W1.temp_lo < W2.temp_lo
and W1l.temp_hi > W2.temp_hi;

city temp_lo temp_hi city temp_lo temp_hi
San Francisco 43 57 San Francisco 4b 50
San Francisco 37 54 San Francisco 4b 50

In this case, bothWlandW?2are surrogatesfor an instance of the claggeather , and
both range wer al instances of the clasgln the terminology of most database systems,
W1landW?2are known as “rangeaviables) A query can contain an arbitrary number of

class names and surrogates.

4.7. Updates

You can update existing instances using Wipeate command. Suppose you diseothe
temperature readings are alf bfy 2 degees as of N0 28, you may update the data as

follow:
* UPDATE weather
SET temp_hi =temp_hi-2, temp_lo=temp_lo-2
WHERE date >'11/28/1994;
4.8. Deletions

Deletions are performed using ttieletecommand:
* DELETE FROM weather WHERE city = 'Hayward’;

All weather recording belongs to Hayward is rexth
One should be wary of queries of the form

DELETE FROMclassname;

Without a qualification, thdeletecommand will simply delete all instances of theegi
class, leaving it emptyThe systenwill not request confirmation before doing this.

4.9. UsingAggregate Functions

Like most other query languagd)STGRESupports agggete functions. However, the
current implementation dFOSTGRESaggr@ae functions is very limited Specifically,
while there are agggetes to compute such functions as the count, sureage,

% The semantics of such a join are that the qualification is a txptession defined for the Cartesian product of the classes in-
dicated in the queryFor those instances in the Cartesian product for which the qualification iP@SeGRESomputes and returns
the values specified in the get list. POSTGRESSQL does not assign ymeaning to duplicate values in suckpeessions. This
means thaPOSTGRESsometimes recomputes the same target ligraktimes — this frequently happens when Boolegiressions
are connected with ar. To remove such duplicates, you must use g&ect distinctstatement.

15

maximum and minimumear a st of instances, aggyaes can only appear in thedat
list of a query and not in the qualificatiowkere clause) As an example,

SELECT max(temp_lo)
FROM weather;

Aggregaes may also e GROUP BY clauses:
SELECT city, max(temp_lo)

FROM weather
GROUP BY city;

16

5. ADVANCED POSTGRES SQL FEATURES

Having covered the basics of usir@OSTGRESSQL to access your data, we willndis-
cuss those features BOSTGRESthat distinguish it from corentional data managers.
These features include inheritance, timevdr@and non-atomic data values (array- and
set-valued attributes).

Examples in this section can also be founddwance.sql in the tutorial directory
(Refer to the introduction of the previous chapter fav bmuse it.)

5.1. Inheritance

Let's aeate tvo dasses. Theapitals class contains state capitals which are also
cities. Naturallythecapitals class shoulénherit from cities

CREATE TABLE cities (

name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
State char2
) | NHERITS (cities);

In this case, an instance adpitals inheritsall attributes fame, population , and
altitude) from its parentgities . The type of the attrilite name is text, a huilt-

in POSTGRESype for variable length ASCII strings. The type of the attelpopula-

tion is float4, a luilt-in POSTGREStype for double precision floating point num-
bres. Stateapitals hae an extra attribute,state , that shows their statdn POSTGRES

a dass can inherit from zero or more other cladsasg a query can reference either all
instances of a class or all instances of a class plus all of its descerd#mmsample, the
following query finds all the cities that are situated at an attitude of 500 'ft or higher:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

“41.e., the inheritance hierargis a drected acyclic graph.

17

name altitude
Las Vegas (2174
Mariposa 1953

On the other hand, to find the names of all cities, including state capitals, that are located
at an altitude eer 500 'ft, the query is:

SELECT c.name, c.altitude
FROM cities* c
WHERE c.altitude > 500;

which returns:

name altitude
Las Vegas |2174
Mariposa 1953
Madison 845

Here the* aftercities indicates that the query should be rwerccities and all
classes belw cities in the inheritance hierargh Mary of the commands that we V&
already discussed -select update and delete— support this* notation, as do others,
like alter command.

5.2. Time Travd

POSTGRESsupports the notion d@gfime travel This feature allows a user to run historical
queries. Br example, to find the current population of Mariposa oitg would query:

SELECT * FROM cities WHERE name = 'Mariposa’;

name population altitude
Mariposa 1320 1953

POSTGRESWiIll automatically find the version of Mariposarfecord valid at the current
time.

One can also ge a tmerange For example to see the past and present populations of
Mariposa, one would query:

SELECT name, population
FROM cities['epoch’, 'now’]
WHERE name = 'Mariposa’;

where “epoch” indicates the beginning of the system cldtlou have exeuted all of
the examples so fahen the abee query returns:

5 OnUNIX systems, this is aiys midnight, January 1, 1970 GMT.

18

name population
Mariposa 1200
Mariposa 1320

The default beginning of a time range is the earliest time representable by the system and
the default end is the current time; thus, thevabione range can be abbreviated as

"

5.3. Non-AtomicValues

One of the tenets of the relational model is that the at&#hof a relation aratomic
POSTGRESdoes not hee this restriction; attributes can themselves contain siibes
that can be accessed from the query langukgeexample, you can create attributes that
arearraysof base types.

5.3.1. Arrays

POSTGRESallows attributes of an instance to be defined as fixed-lengtrarmabie-
length multi-dimensional arrays. Arrays ofydsase type or user-defined type can be cre-
ated. D illustrate their use, we first create a class with arrays of base types.

* CREATE TABLE SAL_EMP (

name text,
pay_by quarter int4]],
schedule charl6[][]

);

The abee cuery will create a class nam&AL_EMPwith atext string fame), a one-
dimensional array ofnt4 (pay_by quarter), which represents the empte’s
salary by quarter and a two-dimensional arraghdrlé (schedule), which repre-
sents the empl@es weekly schedule.Now we do ®me INSERTSs; note that when
appending to an arraye enclose the values within braces and separate them by commas.
If you know C, this is not unlile the syntax for initializing structures.

INSERT INTO SAL_EMP
VALUES ('Bill’,
{10000, 10000, 10000, 10000},
{{"'meeting", "lunch"}, {}}";

INSERT INTO SAL_EMP
VALUES ('Carol’,
{20000, 25000, 25000, 25000},
{{"talk", "consult"}, {"meeting"}});

By default, POSTGRESuses the “one-based” numbering eartion for arrays — that is,
an array oh elements starts with array[1] and ends with amhy[

Now, we can run some queries @AL_EMP First, we sha how to access a single ele-
ment of an array at a timélhis query retriges the names of the employees whose pay
changed in the second quarter:

19

* SELECT name
FROM SAL_EMP
WHERE SAL_EMP.pay by quarter[1] <>
SAL_EMP.pay_ by quarter[2];

name
Carol

This query retriees the third quarter pay of all employees:

* SELECT SAL_EMP.pay_by quarter[3] FROM SAL_EMP;

pay_by quarter
10000
25000

We @an also access arbitrasiicesof an arrayor subarrays This query retriees the first
item on Bill's <hedule for the first tavdays of the week.

* SELECT SAL_EMP.schedule[1:2][1:1]
FROM SAL_EMP
WHERE SAL_EMP.name = 'Bill’;

schedule
{{"meeting"},{""}}

20

6. EXTENDING SQL: AN OVERVIEW

In the sections that fom we will discuss hav you can extend theOSTGRESSQL
guery language by adding:

 functions
* types

 operators
» aggregaes

6.1. How Extensibility Works

POSTGRESSs extensible because its operatioicasalog-driven If you are familiar with
standard relational systems, you Wrihat the store information about databases, tables,
columns, etc., in what are commonly knowrsgstem catalgs (Some systems call this

the data dictionary. The catalogs appear to the user as classes,aii ather, but the

DBMS stores its internal bookkeeping in the@ne ley dfference betweeROSTGRES

and standard relational systems is th@STGRESstores much more information in its
catalogs — not only information about tables and columns, but also information about its
types, functions, access methods, and so on. These classes can be modified by the user
and sincePOSTGREShases its internal operation on these classes, this mearOBiat
GREScan be extended by usey comparison, corentional database systems can only

be extended by changing hard-coded procedures within the DBMS or by loading modules
specially-written by the DBMS vendor.

POSTGRESIs also unlilke most other data managers in that the server can incorporate
userwritten code into itself throughdynamic loading That is, the user can specify an
object code file (e.g., a compiled file or shared library) that implements amigpe or
function andPOSTGRESwWiIll load it as required.Code written in SQL areven more
trivial to add to the server.

This ability to modify its operation “on the fly” makPOSTGRESuniquely suited for
rapid prototyping of ne applications and storage structures.

6.2. ThePOSTGRESType System
The POSTGRESype system can be broken down imesal ways.

Types are divided intbasetypes anccompositeypes. Basaypes are those, kkint4

that are implemented in a language such as'kiey generally correspond to what are
often known as “abstract data typeBOSTGRESan only operate on such types through
methods provided by the user and only understands thevibelod such types to the
extent that the user describes them. Composite types are created/exltieaaiser cre-
ates a classeMPis an example of a composite typROSTGRESstores these types in
only one way (within the file that stores all instances of the clasghé user can “look
inside” at the attribtes of these types from the query language and optimize their

21

retrieval by (for example) defining indices on the attributes.

POSTGRESbase types are further divided inbwilt-in types anduser-definedtypes.
Built-in types (like int4) are those that are compiled into the systedser-defined
types are those created by the user in the manner to be descrilved belo

6.3. Aboutthe POSTGRESSystem Catalogs

Having introduced the basic extensibility concepts, we cam tage a bok at hev the
catalogs are actually laid ou¥ou can skip this section for mg but some later sections
will be incomprehensible without the informatiorvei here, so mark this page for later
reference.

All system catalogs va rames that gin with pg_. The following classes contain
information that may be useful to the end ugg@ihere are manother system catalogs,

but there should rarely be a reason to query them directly.)

catalog name

description

pg_database
pg_class
pg_attribute
pg_index

pPg_proc
po_type
pg_operator

pg_aggregate

pPg_am

pPg_amop
Pg_amproc

pg_opclass

databases
classes

class attributes
secondary indices

procedures (both C and SQL)
types (both base and complex)
operators

aggr@aes and agggete functions

access methods

access method operators
access method support functiong
access method operator classes

The Reference Manual\gis a nore detailed explanation of these catalogs and their

attributes. Havever, Figure 3 shows the major entities and their relationships in the sys-

tem catalogs.(Attributes that do not refer to other entities are nowshonless thg are
part of a primary &y.)

This diagram is more or less incomprehensible until you actually start looking at the con-

tents of the catalogs and seenvtibiey relate to each othefor now, the main things to
take avay from this diagram are as follows:

(1) Inseveral of the sections that follg we will present various join queries on the
system catalogs that display information we need to extend the sylstaking
at this diagram should malsome of these join queries (which are often three- or

four-way joins) more understandable, because you will be able to see that the

attributes used in the queries form foreigyskin aher classes.

(2) Mary different features (classes, attribs, functions, types, access methods, etc.)
are tightly integrated in this schem& simple create command may modify
mary of these catalogs.

22

ON indrelid ON amopid ON
N fndkey[s] oN o: amopclaid
indproc ~ 4------ | pg_languag —-amopopr
. I - 1
o: indpred ! oid . amopselect
—indexrelid ! 0:N amopnpages
3 0:1
1 pg_type 1
od = F-==F------ | pg_opclass 1
—rtyprelid 01 1 1| Pg_proc 1 oid 1
typinput _— ”3”” oid
typoutput 74 | 1 proname 11
typreceive - +: i O:Wfprorettype
typsend oN oN E:g;e;rg;ypesis] il
pg_class 1 1 1 O:N
11 oid
relam oON oON amid ‘
pg_am 1] 1 pg_operator 1 amopclaid ON
1— oid oid 1 amprocnum
amgettuple oprname ! ON
aminsert oprleft !
amdelete oprright \‘
amgetattr oprresult |
KEY: ambeginscan oprcom 1~ 1:
amrescan oprnegate 1
amendscan oprlsortop -
ammarkpos oprrsortop 1o J_‘N
amrestrpos oprcode — 0:N
REFERS-TQ ambuild ON oprrest 1--- ,i
oprjoin 1----
INDEPENDENT
primary key
non-oid primary | _____ optional
key (if any) mandatory
non-key

O indicates these key values are alternate primary keys
(i.e., this class is generally identified by oid but may be
identified by the non-oid primary key in other contexts).

Figure 3 The majorPOSTGRESystem catalogs.

(3)

Types and procedur®are central to the schema. Nearlyerg catalog contains
some reference to instances in one or both of these cldsyesxample,POST-
GRESfrequently uses type signatures (e.g., of functions and operators) to identify

5 We wse the wordprocedureandfunctionmore or less interchangably.

23

unique instances of other catalogs.

(4) Thereare man attributes and relationships thateadovious meanings, but there
are maw (particularly those that ka o do with access methods) that do not.
The relationships betwegug_am, pg_amop, pg_amproc, pg_operator
andpg_opclass are particularly hard to understand and will be described in
depth (in the section on intading types and operators to indices) after we ha
discussed basic extensions.

24

/. EXTENDING SQL: FUNCTIONS

As it turns out, part of defining aweype is the definition of functions that describe its
behavior Consequentlywhile it is possible to define aweunction without defining a
new type, the reerse is not true.We terefore describe hoto add nev functions to
POSTGRESefore describing woto add nev types.

POSTGRESSQL provides tw types of functionsguery languge tnctions(functions
written in SQL andprogramming languge tinctions(functions written in a compiled
programming language such as C.) Either kind of function canadkse type, a com-
posite type or some combination as arguments (parameters). In addition, both kinds of
functions can return a base type or a composite titpeeasier to define SQL functions,

so we'll start with those.

Examples in this section can also be founfiics.sql andC-code/funcs.c

7.1. QueryLanguage (SQL) Functions

7.1.1. SQLFunctions on Base Types

The simplest possible SQL function has no arguments and simply returns a base type,
such asnt4

CREATE FUNCTION one() RETURNS int4
AS 'SELECT 1 as RESULT' LANGUAGE ’'sql’;

SELECT one() AS answer;

answer
1

Notice that we defined a target list for the function (with the neREB8SULT), but the tar
get list of the query that wioked the function @errode the functiors target list. Hence,
the result is labellednswer instead obne.

It's dmost as easy to define SQL functions thaetbkse types as guments. Inthe
example belw, notice hav we refer to the arguments within the functionfdsand$2.

CREATE FUNCTION add_em(int4, int4) RETURNS int4
AS 'SELECT $1 + $2;" LANGUAGE 'sql’;

25

SELECT add_em(1, 2) AS answer;

answer
3

7.1.2. SQLFunctions on Composite Types

When specifying functions with gmments of composite types (suchEddB, we must
not only specify which argument weant (as we did abe with $1 and$2) but also the
attributes of that gqument. Br example, ta& the functiondouble_salary that com-
putes what your salary would be if it were doubled.

CREATE FUNCTION double_salary(EMP) RETURNS int4
AS 'SELECT $1.salary * 2 AS salary;" LANGUAGE ’sql’;

SELECT name, double_salary(EMP) AS dream
FROM EMP
WHERE EMP.dept = 'toy’;

name | dream
Sam 2400

Notice the use of the synt®4.salary

Before launching into the subject of functions that return composite types, we must first
introduce thdunctionnotation for projecting attriltes. Thesimple way to explain this is

that we can usually use the notatittribute(class) and class.attribute
interchangably.

-- this is the same as:

-- SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
SELECT name(EMP) AS youngster

FROM EMP

WHERE age(EMP) < 30;

youngster
Sam

As we shall see, hower, this is not alvays the case.

This function notation is important when went to use a function that returns a single
instance. W do his by assembling the entire instance within the function, atériby
attribute. Thisis an example of a function that returns a sigPinstance:

26

CREATE FUNCTION new_emp() RETURNS EMP
AS 'SELECT V'None\:itext AS name,
1000 AS salary,
25 AS age,
\'none\’::charl6 AS dept;’
LANGUAGE ’'sql’;

In this case we k& gecified each of the attributes with a constant valukeaty compu-
tation or expression could V& bkeen substituted for these constants.

Defining a function lik this can be trick Some of the more importantweats are as fol-
lows:

» The target list order must lexactly the same as that in which the attributes appear in
the CREATE TABLE statement (or when yoxeute a* query).

* You must be careful to typecast thepeessions (using) very carefully or you will
see the following error:

WARN::function declared to return type EMP does not retrieve (EMP.*)

* When calling a function that returns an instance, we cannotveetine entire
instance. W must either project an attie out of the instance or pass the entire
instance into another function.

SELECT name(new_emp()) AS nobody;

nobody
None

» The reason wy) in general, we must use the function syntax for projecting ata#
of function return values is that the parser just daesmerstand the other (dot) syn-
tax for projection when combined with function calls.

SELECT new_emp().name AS nobody;
WARN:parser: syntax error at or near "."

Any collection of commands in the SQL query language can be packaged together and
defined as a function. The commands can include updatesir(sert, update and

deletd as well asselectqueries. Huwever, the final command must be selectthat
returns whateer is gecified as the functionigturntype

CREATE FUNCTION clean_EMP () RETURNS int4
AS 'DELETE FROM EMP WHERE EMP.salary <= 0;
SELECT 1 AS ignore_this’
LANGUAGE ’sql’;

SELECT clean_EMP();

27

7.2. Pogramming Language Functions

7.2.1. Pogramming Language Functions on Base Types

Internally, POSTGRESegads a base type as a “blob of membrihe user-defined func-
tions that you definever a type in turn define the way thaRDSTGREScan operate on it.
That is,POSTGRESwiIll only store and retriee the data from disk and use your user
defined functions to input, process, and output the data.

Base types can 1@ me of three internal formats:

 pass by value, fixed-length
* pass by reference, fixed-length
* pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in lengtlené your computer supports by-
vaue types of other sizesPOSTGRESIitself only passes integer types bglue. You
should be careful to define your types such that wikk be the same size (in bytes) on all
architectures. &r example, thdong type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, wheigts type is 4 bytes on mo&iNIX machines
(though not on most personal computer8)reasonable implementation of tig4

type onUNIX machines might be:

[* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of aize may be passed by-referenéar exam-
ple, here is a sample implementation of IESTGRESharl6 type:

[* 16-byte structure, passed by reference */
typedef struct {

char data[16];
} ¢ harle;

Only pointers to such types can be used when passing them in and RS TERES
functions.

Finally, dl variable-length types must also be passed by reference.aAdble-length
types must begin with a length field ofaetly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that length fldid.
length field is the total length of the structure (i.e., it includes the size of the length field
itself). We can define théext type as follows:

typedef struct {
int4 length;

28

char data[1];
1t oext

Obviously thedata field is not long enough to hold all possible strings -s-iitipossi-

ble to declare such a structure in C. When manipulating variable-length types, we must
be careful to allocate the correct amount of memory and initialize the length Fiald.
example, if we wanted to store 40 bytes iteat structure, we might use a code frag-
ment like this:

#include "postgres.h"
#include "utils/palloc.h”

char buffer[40]; /* our source data */

text *destination = (text *) palloc(VARHDRSZ + 40);
destination->length = VARHDRSZ + 40;
memmove(destination->data, buffer, 40);

Now that weve gpne wer al of the possible structures for base types, we caw shme
examples of real functions. Suppdsacs.c look like:

#include <string.h>
#include "postgres.h" /* for charl6, etc. */
#include "utils/palloc.h" /* for palloc */

int
add_one(int arg)
{
return(arg + 1);
}
charl6 *
concatl6(charl6 *argl, charl6 *arg2)
{
charl6 *new_c16 = (charl6 *) palloc(sizeof(charl6));
memset((void *) new_c16, 0, sizeof(charl16));
(void) strncpy(new_c16, argl, 16);
return (charl6 *)(strncat(new_c16, arg2, 16));
}
text *
copytext(text *t)

/*

29

* VARSIZE is the total size of the struct in bytes.
*
text *new_t = (text *) palloc(VARSIZE(t));

memset(new_t, 0, VARSIZE(t));

VARSIZE(new_t) = VARSIZE(Y);
/*
* V ARDATA is a pointer to the data region of the struct.
*/
memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(Y), [* source */
VARSIZE(t)-VARHDRSZ); I* how many bytes */

return(new _t);

}
On OSF/i1we would type:

CREATE FUNCTION add_one(int4) RETURNS int4
AS ’lust/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE 'c’;

CREATE FUNCTION concat16(charl6, charl6) RETURNS charl6
AS 'lust/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE 'c’;

CREATE FUNCTION copytext(text) RETURNS text
AS ’lust/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE 'c’;

On other systems, we mightysain make the filename end irsl (to indicate that i8 a
shared library).

7.2.2. Pogramming Language Functions on Composite Types

Composite types do not Ve a fked layout like C structures. Instancesf a composite
type may contain null fieldsln addition, composite types that are part of an inheritance
hierarcly may have dfferent fields than other members of the same inheritance higrarch
Therefore, POSTGRESprovides a procedural interface for accessing fields of composite
types from C.

As POSTGRESprocesses a set of instances, each instance will be passed into your func-
tion as an opaque structure of type TUPLE.

Suppose we want to write a function to answer the query
* SELECT name, c_overpaid(EMP, 1500) AS overpaid
FROM EMP
WHERE name ="Bill' or name = 'Sam’;

In the query abee, we an definec_overpaid as:

#include "postgres.h" /* for charl6, etc. */
#include "libpg-fe.h" /* for TUPLE */

30

7.2.3.

bool
c_overpaid(TUPLE t,/* the current instance of EMP */
int4 limit)
{
bool isnull = false;
int4 salary;

salary = (int4) GetAttributeByName(t, "salary", &isnull);

if (isnull)
return (false);
return(salary > limit);

}

GetAttributeByName is thePOSTGRESsystem function that returns attributes out of
the current instancdt has three arguments: the argument of type TUPLE passed into the
function, the name of the desired attitidy, and a return parameter that describes whether
the attribute is null.GetAttributeByName will align data properly so you can cast

its return value to the desired typEor example, if you hae an atribute name which is

of the typecharl16 , the GetAttributeByName call would look like:

char *str;

str = (char *) GetAttributeByName(t, "name”, &isnull)

The following query letPOSTGREKnow about thec_overpaid function:

* CREATE FUNCTION c_overpaid(EMP, int4) RETURNS bool
AS 'lust/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE 'c’;

While there are ways to constructnimstances or modify existing instances from within
a C function, these are far too comple discuss in this manual.

Caeats

We row turn to the more difficult task of writing programming language functides.
warned: this section of the manual will not neayou a programmerYou must hae a
good understanding of C (including the use of pointers anthdilec memory man-
ager) before trying to write C functions for use WADSTGRES

While it may be possible to load functions written in languages other than €$o
GRES this is often dificult (when it is possible at all) because other languages, such as
FORTRAN and Pascal often do not follothe same “calling corention” as C. That is,
other languages do not pass argument and redlues between functions in the same
way. For this reason, we will assume that your programming language functions are writ-
tenin C.

The basic rules for building C functions are as follows:

(1) Mostof the header (include) files fBROSTGRESshould already be installed in
/usr/local/postgres95/include (see Figure 2).You should alvays
include

31

(2)

(3)

(4)
(5)

-l/usr/local/postgres95/include

on yourcc command lines. Sometimes, you may find that you require header
files that are in the sezw source itself (i.e., you need a file we neglected to install
ininclude). Inthose cases you may need to add one or more of

-l/usr/local/postgres95/src/backend
-l/usr/local/postgres95/src/backend/include
-l/usr/local/postgres95/src/backend/port/<PORTNAME>
-l/usr/local/postgres95/src/backend/obj

(where<PORTNAMEI#s the name of the port, e.glpha or sparc).

When allocating memory use the POSTGRESroutines palloc and pfree
instead of the corresponding C library routinesdloc andfree . The memory
allocated bypalloc will be freed automatically at the end of each transaction,
preventing memory leaks.

Always zero the bytes of your structures usimgmset or bzero . Seveal rou-

tines (such as the hash access method, hash join and the sort algorithm) compute

functions of the na bits contained in your structureEven if you initialize all
fields of your structure, there may beaal bytes of alignment padding (holes in
the structure) that may contain garbage values.

Mostof the internaPOSTGRERypes are declared jpostgres.h , so it's wsu-
ally a good idea to include that file as well.

Compilingand loading your object code so that it can be dynamically loaded into
POSTGRESalways requires special flag§ee Appendix A for a detailec@ana-
tion of haw to do it for your particular operating system.

32

8. EXTENDING SQL: TYPES

As previously mentioned, there areotkinds of types irPOSTGRESbasetypes (defined
in a programming language) andmpositdypes (instances).

Examples in this section up to int&ecfng indices can be found @aomplex.sql and
complex.c . Composite examples arefinncs.sql

8.1. UserDefined Types

8.1.1. FunctionsNeeded for a User-Defined Type

A userdefined type must abys have input andoutputfunctions. Theséunctions deter

mine hav the type appears in strings (for input by the user and output to the user) and
how the type is aganized in memory The input function takes a null-delimited character
string as its input and returns the internal (in memory) representation of theTiype.
output function ta&s the internal representation of the type and returns a null-delimited
character string.

Suppose we want to definecamplex type which represents complaumbers. Natu-
rally, we dhoose to represent a compla memory as the following C structure:

typedef struct Complex {
double X;
double Y;

} Complex;

and a string of the forrfx,y) as the external string representation.

These functions are usually not hard to write, especially the output funélmmever,
there are a number of points to remember.

(1) Whendefining your external (string) representation, remember that you must
eventually write a complete and robust parser for that representation as your input
function!

Complex *
complex_in(char *str)
{
double x, y;
Complex *result;

if (sscanf(str, " (%lIf , %If)", &x, &y) = 2) {

elog(WARN, "complex_in: error in parsing
return NULL,;

33

}

result = (Complex *)palloc(sizeof(Complex));
result->x = x;

result->y = y;

return (result);

}
The output function can simply be:

char *
complex_out(Complex *complex)

{

char *result;

if (complex == NULL)
return(NULL);

result = (char *) palloc(60);
sprintf(result, "(%g,%Q)", complex->x, complex->y);
return(result);

(2) You should try to makthe input and output functionsvierses of each othedf
you do not, you will hee ®vee problems when you need to dump your data into
a file and then read it back in (séyto someone elsetatabase on another com-
puter). Thisis a particularly common problem when floating-point numbers are
involved.

To define thecomplex type, we need to create theotwserdefined functiongom-
plex_in andcomplex_out before creating the type:

CREATE FUNCTION complex_in(opaque)
RETURNS complex
AS 'lust/local/postgres95/tutorial/obj/complex.so’
LANGUAGE 'c’;

CREATE FUNCTION complex_out(opaque)
RETURNS opaque
AS 'lust/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ’c;

CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out

As discussed earligPOSTGRESully supports arrays of base type&dditionally, POST-
GRESsupports arrays of user-defined types as well. When you define #QPEGRES
automatically preides support for arrays of that typ€or historical reasons, the array
type has the same name as the user-defined type with the underscore character

34

prepended.

Composite types do not needyaiunction defined on them, since the system already
understands what thdook like inside.

8.1.2. Lamge Objects

The types discussed to this point are all “small” objects — that ig,atkesmaller than

8KB' in size. If you require a lger type for something lika document retrieal system
or for storing bitmaps, you will need to use BE@STGRESarge mdjectinterface.

78 * 1024 == 8192 bytes. In fact, the type must be considerably smaller than 8192 bytes, sh@sTthRESuple and page
overhead must also fit into this 8KB limitation. The actual value that fits depends on the machine architecture.

35

9. EXTENDING SQL: OPERATORS

POSTGRESsupports left unaryight unary and binary operator@perators can bever-

loaded or re-used with different numbers and types gfuanents. Ifthere is an ambigu-

ous situation and the system cannot determine the correct operator to use, it will return an
error and you may la o typecast the left and/or right operands to help it understand
which operator you meant to use.

To aeate an operator for addingdwomplex numbers can be done as folle. Firstwe
need to create a function to add thevitgpes. Then, we can create the operator with the
function.

CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS '$PWD/obj/complex.so’
LANGUAGE 'c;

CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +

We've shavn how to create a binary operator here dreate unary operators, just omit
one ofleftarg (for left unary) orightarg (for right unary).

If we give the system enough type information, it can automatically figure out which
operators to use.

SELECT (a + b) AS ¢c FROM test_complex;

C
(5.2,6.05)
(133.42,144.95)

36

EXTENDING SQL: AGGREGATES

Aggragaes inPOSTGRESare expressed in terms sthte transition functionsThat is, an
aggregae can be defined in terms sthtethat is modified whener an instance is pro-
cessed. Somstate functions look at a particular value in the instance when computing
the nev state &funclin the create aggegate syntax) while others onlydep track of
their own internal statesfunc3.

If we define an agggete that uses onlgfuncl , we define an agggete that computes a
running function of the attribute values from each instance. “Sum” is an example of this
kind of aggrgate. “Sum”starts at zero andvadys adds the current instang®alue to its
running total. We will use theint4pl that is liilt into POSTGRESo0 perform this addi-

tion.

CREATE AGGREGATE complex_sum (
sfuncl = complex_add,
basetype = complex,
stypel = complex,
initcondl = '(0,0)’
)i

SELECT complex_sum(a) FROM test_complex;

complex_sum
(34,53.9)

If we define onlysfunc2 , we ae specifying an agggete that computes a running func-
tion that is independent of the attrtb values from each instance. “Count” is the most
common example of this kind of aggeee. “Count” starts at zero and adds one to its
running total for each instance, ignoring the instareleesr Herewe use the tilt-in
intdinc routine to do the work for usThis routine increments (adds one to) itguar
ment.

CREATE AGGREGATE my_count (sfunc2 = intdinc, -- add one
basetype = int4, stype2 = int4,
initcond2 ='0")

SELECT my_count(*) as emp_count from EMP;

37

emp_count
5

“Average” is an example of an aggge that requires both a function to compute the run-
ning sum and a function to compute the running colMiihen all of the instances V&
been processed, the final answer for the agtgeas the running sum divided by the run-
ning count. We wse theint4pl andintdinc routines we used before as well as the
POSTGRESnNteger division routineintddiv , to compute the dision of the sum by the
count.

CREATE AGGREGATE my_average (sfuncl = int4pl, -- sum
basetype = int4,
stypel = int4,
sfunc2 = intdinc, -- count
stype2 = int4,
finalfunc = int4div, -- division
initcondl ='0’,
initcond2 ='0")

SELECT my_average(salary) as emp_average FROM EMP;

emp_average
1640

38

11.

INTERFACING EXTENSIONS TO INDICES

The procedures described thus far let you definevatype, nev functions and ne oper-
ators. Havever, we cannot yet define a secondary iRdeuch as a B-tree, R-tree or hash
access method)er a new type or its operators.

Look back at Figure 3. The right half st®the catalogs that we must modify in order to
tell POSTGREShow to use a user-defined type and/or wdefined operators with an
index (i.e., pg_am, pg_amop, pg_amproc andpg_opclass). Unfortunately there

is no simple command to do thi§Ve will demonstrate he to modify these catalogs
through a running example: ameperator class for the B-tree access method that sorts
integers in ascending absolute value order.

The pg_am class contains one instance faery user-defined access methd8upport
for the heap access method is built iIPOSTGRES but every other access method is
described here. The schema is

amname name of the access method

amowner object id of the owneg’instance in pg_user

amkind not used at present, but set to '0’ as a place holder

amstrategies number of strategies for this access method (see below)

amsupport number of support routines for this access method (see bglow)

amgettuple procedure identifiers for interface routines to the access

aminsert method. IBr example,regproc ids for opening, closing,
and getting instances from the access method appear here.

The object ID of the instance pg_am is used as a foreigrel in lots of other classes.
You don’t need to add a meinstance to this class; all you're interested in is the object ID
of the access method instance you want to extend:

SELECT oid FROM pg_am WHERE amname = 'btree’

oid
403

The amstrategies attribute exists to standardize comparisons across data tipes.
example, B-trees impose a strict ordering @ysk lesser to greatefSince POSTGRES
allows the user to define operatoP)STGREScannot look at th@ame of an operator
(eg,> or <) and tell what kind of comparison it is. In fact, some access methods don’
impose awy ordering at all. For example, R-trees express a rectangle-containment

39

relationship, whereas a hashed data structure expresses only bitwise similarity based on
the value of a hash functio®OSTGRESeeds some consistent way of taking a qualifica-

tion in your querylooking at the operator and then deciding if a usableiaxists. This

implies thattOSTGRESeeds to knw, for example, that the= and> operators partition

a B-tree. POSTGRESuses strategies txgress these relationships between operators and
the way thg can be used to scan indices.

Defining a ner set of strategies is beyond the scope of this discussitrnwdésll explain
how B-tree strategies work because you'll need toktitat to add a v operator class.

In thepg_am class, theamstrategies attribute is the number of strategies defined for
this access methodzor B-trees, this number is 5. These strategies correspond to

less than 1
less than or equal P
equal 3
greater than or equal 4
greater than 5

The idea is that yoli'need to add procedures corresponding to the comparisons |abo
thepg_amop relation (see belw). Theaccess method code can use these gyramiem-

bers, rgadless of data type, to figure outvihto partition the B-tree, compute selegty,

and so on.Don’t worry about the details of adding procedures yet; just understand that
there must be a set of these proceduremfdr , int4 |, oid , and every other data type

on which a B-tree can operate.

Sometimes, strategies areafhough information for the system to figure outvhio use
an inde. Someaccess methods require other support routines in ordeotto. viFor
example, the B-tree access method must be able to comparkeyw and determine
whether one is greater than, equal to, or less than the @inatarly, the R-tree access
method must be able to compute intersections, unions, and sizes of rectdingiss.
operations do not correspond to user qualifications in SQL querigsarth@dministra-
tive moutines used by the access methods, internally.

In order to manage \dirse support routines consistently acrossPaAISTGRESaccess
methods,pg_am includes an attribute calleeimsupport . This attribute records the
number of support routines used by an access metfwd-trees, this number is one —
the routine to ta& two keys and returr-1, 0, or+1, depending on whether the firgykis

less than, equal to, or greater than the se€ond.

The amstrategies entry in pg_am is just thenumberof strategies defined for the
access method in question. The procedures for less than, less equal, and sd on don’
appear inpg_am. Smilarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest |ig)_opclass. This class exists only to associate a hame
with anoid . In pg_amop, every B-tree operator class has a set of procedures, one
through five, abee. Some existing opclasses aiat2 ops , int4 ops , and

8 Strictly speaking, this routine can return gaive rumber (< 0), 0, or a non-zero pogitirumber (> 0).

40

oid_ops . You need to add an instance with your opclass name X&nme, com-
plex_abs _ops)topg_opclass . Theoid of this instance is a foreigrek in other
classes.

INSERT INTO pg_opclass (opchame) VALUES (‘complex_abs_ops’);
SELECT oid, opchame

FROM pg_opclass
WHERE opcname = 'complex_abs_ops’;

oid opcname
17314 |int4_abs_ops

Note that theoid for yourpg_opclass instancewill be different! You should substi-
tute your value for 17314 wheuer it appears in this discussion.

So nav we havean access method and an operator clégs gill need a set of operators;
the procedure for defining operatorasadiscussed earlier in this manugbr the com-
plex_abs ops operator class on B-trees, the operators we require are:

absolute value less-than

absolute value less-than-or-equal
absolute value equal

absolute value greater-than-or-equal
absolute value greater-than

Suppose the code that implements the functions defined is stored in the file
lusr/local/postgres95/src/tutorial/complex.c

Pat of the code look lig this: (note that we will only slothe equality operator for the
rest of the gamples. The other four operators are very simiafer tocomplex.c or
complex.sgl for the details.)

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->Y)

bool

complex_abs_eq(Complex *a, Complex *b)

{
double amag = Mag(a), bmag = Mag(b);
return (amag==bmag);

}

There are a couple of important things that are happening.belo

First, note that operators for less-than, less-than-or-equal, equal, -tineater-equal,
and greatethan forint4 are being defined. All of these operators are already defined
forintd under the names, <=, =, >=, and>. The nev operators beha dfferently, of
course. lrorder to guarantee thaRDSTGRESUses these meoperators rather than the old

41

ones, thg need to be named differently from the old ones. This isyagint: you can
overload operators iflPOSTGRES but only if the operator ist'dready defined for the
argument types. That is, if you W< defined for int4 , int4), you cant define it
again. POSTGRESIoes not checkhis when you define your operateo be areful. 1o
avad this problem, odd names will be used for the operatibrgou get this wrong, the
access methods are likely to crash when you try to do scans.

The other important point is that all the operator functions réBaieanvalues. The
access methods rely on thacf. (Onthe other hand, the support function returns what-
eve the particular access method expects — in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when we discussed the
amsupport attribute of thgpg_am class. Vé will use this later onFor now, ignore it.

CREATE FUNCTION complex_abs_eq(complex, complex)
RETURNS bool
AS ’lustr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE 'c’;

Now define the operators that use them. As noted, the operator names must be unique
among all operators that ®bkwo int4 operands. lrorder to see if the operator names
listed belov are taken, we can do a query pg_operator

/*
* t his query uses the regular expression operator (7)
* to f ind three-character operator names that end in
* t he character &
*/

SELECT *

FROM pg_operator

WHERE oprname ~ "..&$"::text;

to see if your name is tak for the types you ant. Theimportant things here are the
procedure (which are the C functions definedvapand the restriction and join selecti
ity functions. You should just use the ones used kelenote that there are different such
functions for the less-than, equal, and gretitan casesThesemustbe supplied, or the
access method will crash when it tries to use the operdar should cop the names for
restrict andjoin , but use the procedure names you defined in the last step.

CREATE OPERATOR = (
leftarg = complex, rightarg = complex, procedure = complex_abs_eq,
restrict = eqgsel, join = egjoinsel

)

Notice that fie goerators corresponding to less, less equal, equal, graategreater
equal are defined.

We're just about finished. the last thing we need to do is to updapg tleenop relation.
To do this, we need the following attributes:

42

amopid

the oid of the pg_am instance
for B-tree (== 403, see abe)

D

—*

amopclaid the oid of the pg_opclass
instance for int4_abs_ops
== what&er you got instead of
17314, see ahe)

amopopr theoid s of the operators for th
opclass (which we’'ll get in jus
a mnute)

amopselect, cost functions.

amopnpages

The cost functions are used by the query optimizer to decide whether or not touese a gi
fortunately these already xést. The two functions we’ll use are
btreesel, which estimates the selectivity of the B-tree, &mcenpage, which
estimates the number of pages a search will touch in the tree.

So we need theid s of the operators we just definewve'll ook up the names of all the
operators that takiwo int4 s, and pick ours out:

index in a san.

SELECT o.0id AS opoid, o.oprname

INTO TABLE complex_ops_tmp

FROM pg_operator o, pg_type t

WHERE o.oprleft = t.oid and o.oprright = t.oid
and t.typname = 'complex’;

which returns:

oid oprname
17321 |<

17322 |<=
17323 | =
17324 |>=
17325 |>

(Again, some of youoid numbers will almost certainly be thfent.) Theoperators we
are interested in are those withd s 17321 through 17325The values you get will
probably be different, and you should substitute them for ahees bele. We can look
at the operator names and pick out the ones we just added.

Now we're ready to updatpg_amop with our nav operator class. The most important

thing in this entire discussion is that the operators are ordered, from less equal through

greater equal, ipg_amop. We ad the instances we need:

INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy,

amopselect, amopnpages)

SELECT am.oid, opcl.oid, c.opoid, 3,
‘btreesel’::regproc, 'btreenpage’::regproc

43

FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree’ and opcname = 'complex_abs_ops’
and c.oprname ==,

Note the order: “less than” is 1, “less than or equal’ is 2, “equal” is 3, “greater than or
equal” is 4, and “greater than” is 5.

The last step (finally!) is ggstration of the “support routine” previously described in our
discussion ofpg_am. The oid of this support routine is stored in tipg_amproc
class, keyed by the access methoitl and the operator clasgd . First, we need to g
ister the function iIrPOSTGREYrecall that we put the C code that implements this rou-
tine in the bottom of the file in which we implemented the operator routines):

CREATE FUNCTION int4_abs_cmp(int4, int4)
RETURNS int4
AS ’'lust/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ’c’;

SELECT oid, proname FROM pg_proc WHERE prname = 'int4_abs_cmp’;

oid proname
17328 |int4_abs cmp

(Again, youroid number will probably be different and you should substitute éheev
you see for the value b&lg Recalling that the B-tree instans@id is 403 and that of
int4_abs ops is 17314, we can add themenstance as follows:

INSERT INTO pg_amproc (amid, amopclaid, amproc, amprocnum)

VALUES ('403':;0id, -- btree oid
'17314’:;0id, -- pg_opclass tuple
'17328'::0id, - new pg_proc oid
'1::int2);

44

12. LIBPQ

LIBPQ is the application programming interfaceROSTGRES LIBPQ is a set of library
routines which allows client programs to pass queries t@G®TGRESaclend serer
and to receaie the results of these queries.

This version of the documentation describes the C interface libfidmee short pro-
grams are included at the end of this section tevdmaw to write programs that use
LIBPQ.

There are seeral examples ofIBPQ applications in the following directories:

.Isrcltest/regress
.Isrcltest/examples
..Isrc/bin/psq|l

Frontend programs which us#BPQ must include the header fildpg-fe.h and
must link with thdibpq library.

12.1. Contmol and Initialization

The following environment variables can be used to set wuliefnvironment values to
avdd hard-coding database names into an application program:

* PGHOST sets the default server name.

* PGOPTIONS sets additional runtime options for tR@STGREDackend.

* PGPORT sets the default port for communicating with FE@STGRESackend.

* PGTTY sets the file or tty on which debugging messages from thebdaerver are
displayed.

+ PGDATABASE sets the defauROSTGRESIatabase name.

« PGREALM sets theKerberosrealm to use witlPOSTGRESIf it is different from the
local realm. If PGREALMSs set,POSTGRESapplications will attempt authentication
with servers for this realm and use separateetifikes to @oid conflicts with local
ticket files. This environment variable is only usedK#érberos authentication is
enabled.

12.2. Databasé€onnection Functions
The following routines deal with making a connection to a backend from a C program.
PQsetdb
Makes a n& connection to a backend.

PGconn *PQsetdb(char *pghost,
char *pgport,

45

char *pgoptions,
char *pgtty,
char *dbName);

If any argument is NULL, then the corresponding environment variable is ekdeck
If the environment variable is also not set, then hardwired defaults are used.

PQsetdbalways returns a valid PGconn pointeéfhe PQstatus(see below) com-
mand should be called to ensure that a connection was properly made before
gueries are sent via the connectiawBPQ programmers should be careful to main-
tain the PGconn abstraction. Use the accessor functions tieget at the contents

of PGconn. Avoid directly referencing the fields of the PGconn structure as the
are subject to change in the future.

PQdb returns the database name of the connection.
char *PQdb(PGconn *conn)

PQhostreturns the host name of the connection.
char *PQhost(PGconn *conn)

PQoptionsreturns the pgoptions used in the connection.
char *PQoptions(PGconn *conn)

PQport returns the pgport of the connection.
char *PQport(PGconn *conn)

PQtty returns the pgtty of the connection.
char *PQtty(PGconn *conn)

PQstatus Returns the status of the connection. The status can be CONNEC-
TION_OK or CONNECTION_BAD.

ConnStatusType *PQstatus(PGconn *conn)
PQerrorMessagereturns the error message associated with the connection

char *PQerrorMessage(PGconn* conn);

PQfinish

Close the connection to the backl. Alsofrees memory used by the PGconn struc-
ture. ThePGconn pointer should not be used after PQfinish has been called.

void PQfinish(PGconn *conn)

46

PQreset

Reset the communication port with the baa#f. Thisfunction will close the IPC
soclet connection to the bagkd and attempt to reestablish avrennection to the
same backend.

void PQreset(PGconn *conn)

PQtrace

Enables tracing of messages passed between the frontend and tedbatke
messages are echoed to the debug_port file stream.

void PQtrace(PGconn *conn,
FILE* debug_port);

PQuntrace
Disables tracing of messages passed between the frontend and the backend.

void PQuntrace(PGconn *conn);

12.3. QueryExecution Functions

PQexec

Submit a query tPOSTGRES Returns a PGresult pointer if the quergisasuccess-
ful or a NULL otherwise. If a NULL is returne®QerrorMessge can be used to
get more information about the error.

PGresult *PQexec(PGconn *conn,
char *query);

The PGresult structure encapsulates the query result returned by thendback
LIBPQ programmers should be careful to maintain the PGresult abstraction. Use the
accessor functions described belto retrieve the results of the queryAvoid
directly referencing the fields of the PGresult structure asatgesubject to change

in the future.

PQresultStatus

Returns the result status of the quelPQresultStatugan return one of the folle
ing values:

PGRES_EMPTY_QUERY,

PGRES_COMMAND_OK, /*the query was a command */
PGRES_TUPLES_OK, /* the query successfully returned tuples */
PGRES_COPY_OUT,

PGRES_COPY_IN,

PGRES_BAD_RESPONSE, /* an unexpected response was received */
PGRES_NONFATAL_ERROR,

PGRES_FATAL_ERROR

47

If the result status is PGRES_TUPLES_OK, then the following routines can be used
to retrieve the tuples returned by the query.

PQntuplesreturns the number of tuples (instances) in the query result.
int PQntuples(PGresult *res);

PQnfieldsreturns the number of fields (attributes) in the query result.
int PQnfields(PGresult *res);

PQfname returns the field (attribute) name associated with thendield index.
Field indices start at 0.

char *PQfname(PGresult *res,
int field_index);

PQfnumber returns the field (attriie) index associated with the gen field name.

int PQfnumber(PGresult *res,
char* field_name);

PQftype returns the field type associated with theegifield index. The intger
returned is an internal coding of the type. Field indices start at 0.

Oid PQftype(PGresult *res,
int field_num);

PQfsizereturns the size in bytes of the field associated with them gield index. If
the size returned is -1, the field is a variable length field. Field indices start at O.

int2 PQfsize(PGresult *res,
int field_index);

PQgetvaluereturns the field (attribute)alue. Fr most queries, thealue returned

by PQgetvalueis a null-terminated ASCII string representation of the atteib
vaue. If the query was a result of BINARY cursor then the value returned by
PQgetvalueis the binary representation of the type in the internal format of the
baclend serer. It is the programmes’ responsibility to cast and ceart the data to

the correct C type. The value returnedR®@getvaluegooints to storage that is part
of the PGresult structure. One must explicitly ytipe \alue into other storage if it

is to be used past the lifetime of the PGresult structure itself.

char* PQgetvalue(PGresult *res,
int tup_num,
int field_num);

PQgetlengthreturns the length of a field (attute) in bytes. If the field is struct

varlena the length returned here doest include the size field of the varlena, i.e.,
it is 4 bytes less.

48

int PQgetlength(PGresult *res,
int tup_num,
int field_num);

PQcmdStatus
Returns the command status associated with the last query command.

char *PQcmdStatus(PGresult *res);

PQoidStatus

Returns a string with the object id of the tuple inserted if the last query is an
INSERT command. Otherwiseeturns an empty string.

char* PQoidStatus(PGresult *res);

PQprintTuples

Prints out all the tuples and, optionalllge attrilute names to the specified output
stream. Therogramspsql andmonitor both usePQprintTupledor output.

void PQprintTuples(
PGresult* res,
FILE* fout, [* output stream */
int printAttName,/* print attribute names or not*/
int terseOutput, /* delimiter bars or not?*/
int width /* width of column, variable width if 0*/

);

PQclear

Frees the storage associated with the PGreEuntry query result should be prop-
erly freed when it is no longer useBailure to do this will result in memory leaks
in the frontend application.

void PQclear(PQresult *res);

12.4. FRast Path

POSTGRESrovides afast path interface to send function calls to the bac#. Thisis a
trapdoor into system internals and can be a potential security Malst users will not
need this feature.

PGresult* PQfn(PGconn* conn,
int fnid,
int *result_buf,
int *result_len,
int result_is_int,
PQArgBIlock *args,
int nargs);

49

Thefnid agument is the object identifier of the function to keceted. result_bufis the
buffer in which to load the returralue. Thecaller must hee dlocated sufficient space
to store the returnalue. Theresult length will be returned in the storage pointed to by
result_len. If the result is to be an integer value, thesult_is_intshould be set to 1; oth-
erwise it should be set to @rgsandnargsspecify the arguments to the function.

typedef struct {
int len;
int isint;
union {
int *ptr;
int integer;
}us
} P QArgBlock;

PQfn always returns a valid PGresult*. The resultStatus should be checked before the
result is used. The caller is responsible for freeing the PGresulP®ithearwhen it is
not longer needed.

12.5. Asynchonous Notification

POSTGRESsupports asynchronous notification via tH8 TENandNOTIFY commands.

A backend registers its interest in a particular relation with the LISTEN commailhd.
baclends listening on a particular relation will be notified asynchronously when a
NOTIFY of that relation name isxecuted by another baekd. Noadditional informa-

tion is passed from the notifier to the listen€hus, typically any actual data that needs

to be communicated is transferred through the relation.

LIBPQ applications are notified wheree a connected backend has reeei an a&yn-
chronous notification However, the communication from the backend to the frontend is
not asynchronous. Notification comes piggy-backed on other query results. Thus, an
application must submit queriesjea empty ones, in order to resei rotice of backnd
notification. Ineffect, theLIBPQ application must poll the baekd to see if there is @n
pending notification informationAfter the eecution of a querya frontend may call
PQNotifiesto see if ag notification data is\&ilable from the backend.

PQNotifies

returns the notification from a list of unhandled notifications from the epmalck
Returns NULL if there are no pending notifications from the eadk PQNotifies
behaes like the popping of a stackOnce a notification is returned froRQnoti-
fies,it is considered handled and will be rered from the list of notifications.

PGnotify* PQNotifies(PGconn *conn);

The second sample programves an eample of the use of asynchronous notification.
12.6. FunctionsAssociated with the COPY Command

The copycommand ilPOSTGREShas options to read from or write to the network con-
nection used byIBPQ. Therefore, functions are necessary to access thisorietwon-
nection directly so applications may ¢akill advantage of this capability.

50

PQgetline

Reads a newline-terminated line of characters (transmitted by thenohskrer)
into a huffer string of sizelength Like fgetg3), this routine copies up tengthl
characters intatring. It is like gets(3), hawvever, in that it cowverts the terminating
newline into a null character.

PQgetlinereturns EOF at EQ if the entire line has been read, and 1 if thie

is full but the terminating newline has not yet been read.

Notice that the application must check to see if @ hire consists of the single
character “.”, which indicates that the backend aeivas finished sending the
results of thecopycommand. Thereforef the application eer expects to recee
lines that are more thdengthl characters long, the application must be sure to
check the return value &fQgetlinevery carefully.

The code in
..Isrc/bin/psqgl/psql.c
contains routines that correctly handle theycamtocol.

int PQgetline(PGconn *conn,
char *string,
int length)

PQputline
Sends a null-terminatesiring to the backend server.

The application must explicitly send the single charactetd'indicate to the back-
end that it has finished sending its data.

void PQputline(PGconn *conn,
char *string);

PQendcopy

Syncs with the ba@nd. Thisfunction waits until the backend has finished the
copy. It should either be issued when the last string has been sent to tledack
using PQputlineor when the last string has been reegifrom the backend using
PGgetline It must be issued or the backend may get “out of sync” with the fron-
tend. Uponreturn from this function, the backend is ready to recdie net
query.

The return value is 0 on successful completion, nonzero otherwise.

int PQendcopy(PGconn *conn);
As an example:
PQexec(conn, "create table foo (a int4, b char16, d float8)");

PQexec(conn, "copy foo from stdin®);
PQputline(conn, "3<TAB>hello world<TAB>4.5\n");

51

PQputline(conn,"4<TAB>goodbye world<TAB>7.11\n");

PQputline(conn,”.\n");
PQendcopy(conn);

12.7. LIBPQ Tracing Functions
PQtrace
Enable tracing of the frontend/backend communication to a debugging file stream.

void PQtrace(PGconn *conn
FILE *debug_port)

PQuntrace
Disable tracing started lQtrace

void PQuntrace(PGconn *conn)

12.8. UserAuthentication Functions

If the user has generated the appropriate authentication credentials (e.g., ob&ining
berostickets), the frontend/baekd authentication process is handledPexeawithout
ary further interention. Thefollowing routines may be called lyBPQ programs to tai-
lor the behavior of the authentication process.

fe_getauthname

Returns a pointer to static space containing wieateame the user has authenti-
cated. Usef this routine in place of calls eteny3) or getpwuid3) by applica-

tions is highly recommended, as it is entirely possible that the authenticated user
name isnot the same as value of thkSERervironment variable or the usermntry

in /etc/passwd

char *fe_getauthname(char* errorMessage)

fe_setauthsvc

Specifies thatIBPQ should use authentication servicamerather than its com-
piled-in defult. Thisvalue is typically taken from a command-line switch.

void fe_setauthsvc(char *name,
char* errorMessage)

Any error messages from the authentication attempts are returned in the errorMes-
sage argument.

12.9. BJGS

The query bffer is 8192 bytes long, and queriegothat length will be silently trun-
cated.

52

12.10. Sampld’rograms

53

12.10.1. Samplérogram 1

/*
* t estlibpg.c
* T est the C version of LIBPQ, t he POSTGRESfrontend library.
*
*
*/

#include <stdio.h>
#include "libpg-fe.h"

void
exit_nicely(PGconn* conn)
{
PQfinish(conn);
exit(1);
}

main()
{
char *pghost, *pgport, *pgoptions, *pgtty;
char* dbName;
int nFields;
int i,j;

[FILE *debug; */

PGconn* conn;
PGresult* res;

[* begin, by setting the parameters for a backend connection
if the parameters are null, then the system will try to use
reasonable defaults by looking up environment variables
or, failing that, using hardwired constants */
pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend server */
pgtty = NULL; [* debugging tty for the backend server */
dbName = "templatel";

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

[* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr,"Connection to database '%s’ failed.0, dbName);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

}

/* debug = fopen("/tmp/trace.out”,"w"); */
/* PQtrace(conn, debug); */

54

[* start a transaction block */

res = PQexec(conn,"BEGIN");

if (PQresultStatus(res) = PGRES_COMMAND_OK) {
fprintf(stderr,"BEGIN command failed0);
PQclear(res);
exit_nicely(conn);

}

/* should PQclear PGresult whenever it is no longer needed to avoid

memory leaks */
PQclear(res);

[* fetch instances from the pg_database, the system catalog of databases*/
res = PQexec(conn,"DECLARE myportal CURSOR FOR select * from pg_database");
if (PQresultStatus(res) = PGRES_COMMAND_OK) {
fprintf(stderr,"DECLARE CURSOR command failed0);
PQclear(res);
exit_nicely(conn);
}

PQclear(res);

res = PQexec(conn,"FETCH ALL in myportal");

if (PQresultStatus(res) '= PGRES_TUPLES_OK) {
fprintf(stderr,"FETCH ALL command didn’t return tuples properly0);
PQclear(res);
exit_nicely(conn);

}

[* first, print out the attribute names */

nFields = PQnfields(res);

for (i=0; i < nFields; i++) {
printf("%-15s",PQfname(res,i));

}

printf("0);

[* next, print out the instances */
for (i=0; i < PQntuples(res); i++) {
for (j=0 7 J < n Fields; j++) {
printf("%-15s", PQgetvalue(res,i,j));

}
printf("0);
}

PQclear(res);

[* close the portal */

res = PQexec(conn, "CLOSE myportal);
PQclear(res);

/* end the transaction */

res = PQexec(conn, "END");
PQclear(res);

55

[* close the connection to the database and cleanup */
PQfinish(conn);

[* fclose(debug); */
}

56

12.10.2. Samplérogram 2

/*
* t estlibpg2.c
* T est of the asynchronous notification interface

*

populate a database with the following:
CREATE TABLE TBL1 (i int4);
CREATE TABLE TBL2 (i int4);
CREATE RULE r1 AS ON INSERT TO TBL1 DO [INSERT INTO TBL2 values (new.i); NOTIFY TBL2]

* T hen start up this program
* After the program has begun, do

INSERT INTO TBL1 values (10);

*/
#include <stdio.h>
#include "libpg-fe.h"

void exit_nicely(PGconn* conn)
{

PQfinish(conn);

exit(1);
}

main()
{
char *pghost, *pgport, *pgoptions, *pgtty;
char* dbName;
int nFields;
inti,j;

PGconn* conn;
PGresult* res;
PGnotify* notify;

[* begin, by setting the parameters for a backend connection
if the parameters are null, then the system will try to use
reasonable defaults by looking up environment variables
or, failing that, using hardwired constants */
pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend server */
pgtty = NULL; [* debugging tty for the backend server */
dbName = getenv("USER"); /* change this to the name of your test database*/

/* make a connection to the database */

57

/*

conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

[* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr,"Connection to database '%s’ failed.0, dobName);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

}

res = PQexec(conn, "LISTEN TBL2");

if (PQresultStatus(res) '= PGRES_COMMAND_OK) {
fprintf(stderr,"LISTEN command failedO);
PQclear(res);
exit_nicely(conn);

}

[* should PQclear PGresult whenever it is no longer needed to avoid

memory leaks */
PQclear(res);

while (1) {
[* async notification only come back as a result of a query*/
[* we can send empty queries */
res = PQexec(conn, " ");

printf("res->status = 980, pgresStatus[PQresultStatus(res)]); */
[* check for asynchronous returns */
notify = PQnotifies(conn);
if (notify) {
fprintf(stderr,
"ASYNC NOTIFY of '%s’ from backend pid '%d’ received0,
notify->relname, notify->be_pid);
free(notify);
break;
}
PQclear(res);
}

[* close the connection to the database and cleanup */
PQfinish(conn);

58

12.10.3. Samplé’rogram 3
/*
* t estlibpg3.c
* T est the C version of LIBPQ, t he POSTGRESfrontend library.
* t ests the binary cursor interface

populate a database by doing the following:
CREATE TABLE testl (i int4, d float4, p polygon);
INSERT INTO testl values (1, 3.567, (3.0, 4.0, 1.0, 2.0)::polygon);
INSERT INTO testl values (2, 89.05, (4.0, 3.0, 2.0, 1.0)::polygon);

the expected output is:

tupIe 0: got

i = (4 b ytes) 1,

d = (4 b ytes) 3.567000,

p = (4 b ytes) 2 points boundbox = (hi=3.000000/4.000000, lo = 1.000000,2.000000)
tuple 1: got

i = (4 b ytes) 2,

d = (4 b ytes) 89.050003,

p = (4 b ytes) 2 points boundbox = (hi=4.000000/3.000000, lo = 2.000000,1.000000)

*

*

#include <stdio.h>
#include "libpg-fe.h"
#include "utils/geo-decls.h" /* for the POLYGON type */

void exit_nicely(PGconn* conn)

PQfinish(conn);
exit(1);
}

main()
{
char *pghost, *pgport, *pgoptions, *pgtty;
char* dbName;
int nFields;
inti,j;
inti_fanum, d_fnum, p_fnum;

PGconn* conn;
PGresult* res;

[* begin, by setting the parameters for a backend connection
if the parameters are null, then the system will try to use

59

reasonable defaults by looking up environment variables
or, failing that, using hardwired constants */
pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend server */
pgtty = NULL; [* debugging tty for the backend server */

dbName = getenv("USER"); /* change this to the name of your test database*/

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

[* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr,"Connection to database '%s’ failed.0, dobName);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

}

[* start a transaction block */

res = PQexec(conn,"BEGIN");

if (PQresultStatus(res) '= PGRES_COMMAND_OK) {
fprintf(stderr,"BEGIN command failed0);
PQclear(res);
exit_nicely(conn);

}

/* should PQclear PGresult whenever it is no longer needed to avoid

memory leaks */
PQclear(res);

[* fetch instances from the pg_database, the system catalog of databases*/
res = PQexec(conn,"DECLARE mycursor BINARY CURSOR FOR select * from test1");
if (PQresultStatus(res) = PGRES_COMMAND_OK) {
fprintf(stderr,"DECLARE CURSOR command failed0);
PQclear(res);
exit_nicely(conn);
}
PQclear(res);

res = PQexec(conn,"FETCH ALL in mycursor");

if (PQresultStatus(res) '= PGRES_TUPLES_OK) {
fprintf(stderr,"FETCH ALL command didn’t return tuples properly0);
PQclear(res);
exit_nicely(conn);

}
i_fnum = PQfnumber(res,"i");
d_fnum = PQfnumber(res,"d");
p_fnum = PQfnumber(res,"p");
for (i=0;i<3;i++) {
printf("type[%d] = %d, size[%d] = %d0,

60

}

i, PQftype(res,i),
i, PQfsize(res,i));

for (i=0; i < PQntuples(res); i++) {

}

int *ival;

float *dval;

int plen;

POLYGON* pval,

/* we hard-wire this to the 3 fields we know about */
ival = (int*)PQgetvalue(res,i,i_fnum);

dval = (float*)PQgetvalue(res,i,d_fnum);

plen = PQgetlength(res,i,p_fnum);

[* plen doesn't include the length field so need to increment by VARHDSZ*/
pval = (POLYGON¥*) malloc(plen + VARHDRSZ);
pval->size = plen;
memmove((char*)&pval->npts, PQgetvalue(res,i,p_fnum), plen);
printf("tuple %d: gotO, i);
printf(" i = (%d bytes) %d,0,
PQgetlength(res,i,i_fnum), *ival);
printf(" d = (%d bytes) %f,0,
PQgetlength(res,i,d_fnum), *dval);
printf(" p = (%d bytes) %d points boundbox = (hi=%f/%f, lo = %f,%f)0,
PQgetlength(res,i,d_fnum),
pval->npts,
pval->boundbox.xh,
pval->boundbox.yh,
pval->boundbox.xl,
pval->boundbox.yl);

PQclear(res);

/* close the portal */
res = PQexec(conn, "CLOSE mycursor");
PQclear(res);

/* end the transaction */
res = PQexec(conn, "END");
PQclear(res);

[* close the connection to the database and cleanup */
PQfinish(conn);

61

13. LARGE OBJECTS

In POSTGRES data values are stored in tuples and individual tuples cannot span data
pages. Since the size of a data page is 8192 bytes, the upper limit on the size of a data
value is relatiely low. To support the storage of larger atomialves,POSTGRESpro-

vides a large object interxfe. Thisgnterface provides file-oriented access to user data that
has been declared to be a large type.

This section describes the implementation and the programmatic and query language
interfaces t"OSTGRESarge object data.

13.1. Historical Note

Originally, POSTGRE$4.2 supports three standard implementations gelabjects: as

files external tcPOSTGRES as UNIX files managed byOSTGRES and as data stored
within the POSTGRESdatabase. It causes considerable confusion among users. As a
result, we only support large objects as data stored withifP@®TGRESdatabase in
POSTGRESS5. Even though is is sker to access, it provides stricter data integrity and
time travel. For historical reasons, there called Inersion large objects. (&/will use
Inversion and large objects interchangeably to mean the same thing in this section.)

13.2. Inversion Large Objects

The Irversion large object implementation breaks large objects up into “chunks” and
stores the chunks in tuples in the databasd3-tree ind& guarantees fast searches for
the correct chunk number when doing random access reads and writes.

13.3. Large Object Interfaces

The facilities POSTGRErovides to access large objects, both in the &adlas part of
userdefined functions or the front end as part of an application usingntedace, are
described belw. (For users familiar withPOSTGRES4.2, POSTGRES5 has a ne set of
functions providing a more coherent interface. The iaterfis the same for dynamically-
loaded C functions as well as for .

The POSTGRESlarge object intedce is modeled after tHeNIX file system interce,
with analogues obper(2), read(2), write(2), IseeK?2), etc. User functions call these rou-
tines to retrige mly the data of interest from a ¢gr object. For example, if a lage
object type callednugshoexisted that stored photographs a€és, then a function called
beardcould be declared amugshotdata. Beardcould look at the lower third of a photo-
graph, and determine the color of the beard that appeared theng, ifrenentire lage
object value need not be buffered, vereexamined, by théeardfunction.

Large objects may be accessed from dynamically-loaded C functions or database client
programs that link thdibrary. POSTGRESprovides a set of routines that support open-
ing, reading, writing, closing, and seeking on large objects.

62

13.3.1. Ceating a Large Object
The routine

Oid lo_creat(PGconn *conn, int mode)

creates a ne lamge object. Thenodeis a bitmask describingweral different attributes of
the naev object. Thesymbolic constants listed here are defined in

lusr/local/postgres95/src/backend/libpg/libpg-fs.h

The access type (read, write, or both) is controlle@Ryng together the bits\vV_READ
andINV_WRITE. If the large object should be anotd — that is, if historical @rsions of

it should be meed periodically to a special arore relation — then théNV_ARCHIVE

bit should be set. Thewsorder sixteen bits ahaskare the storage manager number on
which the large object should residEor sites other than Beg{ey, these bits should
always be zero.

The commands belocreate an (Imersion) large object:

inv_oid = lo_creat(INV_READI|INV_WRITE|INV_ARCHIVE);

13.3.2. Importinga Large Object To import a UNIX file as a large object, call

Oid
lo_import(PGconn *conn, text *filename)

Thefilenameargument specifies the UNIX pathname of the file to be imported agea lar
object.

13.3.3. Exportinga Large Object To export a large object into UNIX file, call

int
lo_export(PGconn *conn, Oid lobjld, text *filename)

Thelobjld argument specifies the Oid of thedarobject to export and tHideenameargu-
ment specifies the UNIX pathname of the file.

13.3.4. Openingan Existing Large Object
To open an existing large object, call

int
lo_open(PGconn *conn, Oid lobjld, int mode, ...)

Thelobjld agument specifies the Oid of thedarobject to open. The mode bits control
whether the object is opened for readiNg_READ), writing or both.

A lamge object cannot be opened before it is createdopen returns a large object
descriptor for later use iro_read , lo_write , lo_Iseek , lo_tell , and
lo_close

63

13.3.5. Writing Data to a Large Object
The routine

int
lo_write(PGconn *conn, int fd, char *buf, int len)

writeslen bytes frombuf to large objecfd. Thefd agument must ha been returned by
a previouslo_open

The number of bytes actually written is returned. In themieof an errgrthe return alue
is negdive.
13.3.6. Seekingn a Large Object
To dhange the current read or write location on a large object, call
int
lo_Iseek(PGconn *conn, int fd, int offset, int whence)

This routine maes the current location pointer for the large object describefdl by the
nev location specified byoffset The valid values for .i whence ar®EEK _SET
SEEK CURWINASEEK_END.

13.3.7. Closinga Large Object Descriptor
A large object may be closed by calling

int
lo_close(PGconn *conn, int fd)

wherefd is a large object descriptor returned Ibyopen On success]o_closereturns
zero. Orerror, the return value is igetive.

13.4. Builtin registered functions

There are tw huilt-in registered functiondp_importandlo_exportwhich are cowenient
for use in SQL queries.

Here is an example of there use
CREATE TABLE image (
name text,

raster oid

);

INSERT INTO image (name, raster)
VALUES ('beautiful image’, lo_import('/etc/motd’));

SELECT lo_export(image.raster, "/tmp/motd") from image
WHERE name = 'beautiful image’;

64

13.5. Accessing.arge Objects from LIBPQ Below is a smple program which shs

how the large object interface inBPQ can be usedPats of the program are commented
out but are left in the source for the readers benefit. This program can be found in

.Isrcltest/examples

Frontend applications which use thegkrobject interface inhIBPQ should include the
header fildibpg/libpg-fs.h and link with thdibpq library.

65

13.6. SampleProgram

~
*

t estlo.c--
t est using large objects with libpg

Copyright (c) 1994, Regents of the University of California

| DENTIFICATION
/ usr/local/devel/pglite/cvs/src/doc/manual.me,v 1.16 1995/09/01 23:55:00 jolly Exp

L T T R R R

*/
#include <stdio.h>
#include "libpg-fe.h"
#include "libpg/libpg-fs.h"

#define BUFSIZE 1024
/*
* | mportFile -
* i mport file "in_filename" into database as large object "lobjOid"
*/
Oid importFile(PGconn *conn, char *filename)
{
Oid lobjld;
int lobj_fd;

char buf[BUFSIZE];
int nbytes, tmp;
int fd;

/*
* 0 pen the file to be read in
*/
fd = open(filename, O_RDONLY, 0666);
if (fd < 0) { [/ *error*
fprintf(stderr, "can’t open unix file

}

/*
* ¢ reate the large object
*/
lobjld = lo_creat(conn, INV_READ|INV_WRITE);
if (lobjld == 0) {
fprintf(stderr, "can’t create large object”);

}

lobj_fd = lo_open(conn, lobjld, INV_WRITE);
/*

66

* r ead in from the Unix file and write to the inversion file
*
while ((nbytes = read(fd, buf, BUFSIZE)) > 0) {
tmp = lo_write(conn, lobj_fd, buf, nbytes);
if (tmp < nbytes) {
fprintf(stderr, "error while reading
}
}

(void) close(fd);
(void) lo_close(conn, lobj_fd);

return lobjld;

}

void pickout(PGconn *conn, Oid lobjld, int start, int len)
{

int lobj_fd;

char* buf;

int nbytes;

int nread;

lobj_fd =lo_open(conn, lobjld, INV_READ);
if (lobj_fd < 0) {
fprintf(stderr,"can’t open large object %d",
lobjld);
}

lo_Iseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len+1);

nread = 0;
while (len - nread > 0) {
nbytes = lo_read(conn, lobj_fd, buf, len - nread);
buf[nbytes] =" ;
fprintf(stderr,">>> %s", buf);
nread += nbytes;
}
fprintf(stderr,"0);
lo_close(conn, lobj_fd);

}

void overwrite(PGconn *conn, Oid lobjld, int start, int len)
{

int lobj_fd;

char* buf;

int nbytes;

int nwritten;

inti;

lobj_fd = lo_open(conn, lobjld, INV_READ);
if (lobj_fd < 0) {

67

fprintf(stderr,"can’t open large object %d",
lobjld);
}

lo_Iseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len+1);

for (i=0;i<len;i++)

buffi] ="X’;
buffi] =" 7;
nwritten = 0;

while (len - nwritten > 0) {
nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
nwritten += nbytes;

}

fprintf(stderr,"0);

lo_close(conn, lobj_fd);

}
/*
* e xportFile -
* e xport large object "lobjOid" to file "out_filename"
*
*

void exportFile(PGconn *conn, Oid lobjld, char *filename)
{

int lobj_fd;

char buf[BUFSIZE];

int nbytes, tmp;

int fd;

/*

* c reate an inversion "object"

*/
lobj_fd = lo_open(conn, lobjld, INV_READ);
if (lobj_fd < 0) {

fprintf(stderr,"can’t open large object %d",
lobjld);

}

/*
* 0 pen the file to be written to
*/
fd = open(filename, O_CREAT|O_WRONLY, 0666);
if (fd < 0) { | * error*
fprintf(stderr, "can’t open unix file
filename);

/*

68

}

void

* r ead in from the Unix file and write to the inversion file
*
while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0) {
tmp = write(fd, buf, nbytes);
if (tmp < nbytes) {
fprintf(stderr,"error while writing
filename);
}
}

(void) lo_close(conn, lobj_fd);
(void) close(fd);

return;

exit_nicely(PGconn* conn)

{

PQfinish(conn);
exit(1);

}

int

main(int argc, char **argv)

{

char *in_filename, *out_filename;
char *database;

Oid lobjOid;

PGconn *conn;

PGresult *res;

if (argc 1=4) {
fprintf(stderr, "Usage: %s database_name in_filename out_filenameO,
argv[0]);
exit(1);
}

database = argv[1];
in_filename = argv[2];
out_filename = argv[3];

/*
* s et up the connection
*/
conn = PQsetdb(NULL, NULL, NULL, NULL, database);

[* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr,"Connection to database '%s’ failed.0, database);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

69

/*

*/

/*

}

res = PQexec(conn, "begin");
PQclear(res);
printf("importing file

lobjOid = i mportFile(conn, in_filename); */

lobjOid = lo_import(conn, in_filename);
printf(“as large object %d.0, lobjOid);

printf("picking out bytes 1000-2000 of the large object0);
pickout(conn, lobjOid, 1000, 1000);

printf("overwriting bytes 1000-2000 of the large object with X's0);
overwrite(conn, lobjOid, 1000, 1000);

printf("exporting large object to file
exportFile(conn, lobjOid, out_filename); */
lo_export(conn, lobjOid,out_filename);

res = PQexec(conn, "end");
PQclear(res);
PQfinish(conn);

exit(0);

70

14.

THE POSTGRES RULE SYSTEM

Production rule systems are conceptually simple, but there arg snltle points
involved in actually using themConsequentlywe will not attempt to explain the actual
syntax and operation of theOSTGRESrule system here. Instead, you should read
[STON9Ob] to understand some of these points and the theoretical foundations of the
POSTGRESrule system before trying to use rulesShe discussion in this section is
intended to provide arverview of the POSTGRESule system and point the user at help-
ful references and examples.

The “query revrite” rule system modifies queries to éakiles into consideration, and
then passes the modified query to the query optimizexémugon. Itis very paverful,
and can be used for mathings such as query language procedures, views,&BbNS.
The power of this rule system is discussed in [ONG90] as well as [STON90b].

71

15. ADMINISTERING POSTGRES

In this section, we will discuss aspectsRIISTGRESthat are of interest to those who
make extensive ulse ofPOSTGRESOr who are the site administrator for a groupPafST-
GRESusers.

15.1. Frequent Tasks

Here we will briefly discuss some procedures that you should be familiar with in manag-
ing anyPOSTGRESnstallation.

15.1.1. Startingthe Postmaster

If you did not installPOSTGRES=xactly as described in the installation instructions, you
may hae o perform some additional steps before startingotb&tmaster process.

Even if you were not the person who instalRPdSTGRESYou should understand the
installation instructions. The installation instructions explain some important issues
with respect to whereOSTGRESplaces some important files, proper settings for-en
ronment variables, etc. that may vary from one versic#®OSTGRES0 another.

You muststart thepostmaster process with the user-id that owns the installed
database files. In most cases, if yoweh#llowed the installation instructions, this
will be the user “postgres’lf you do not start theostmaster with the right user

id, the backend servers that are started bytstmaster will not be able to read
the data.

Make aure that/usr/local/postgres95/bin is in your shell command path,
because thpostmaster will use yourPATHto locatePOSTGRESommands.
Remember to set the environmeatriablePGDATAO the directory where theOST-
GRESdatabases are installed. (This variable is more fully explained iPQBEGRES
installation instructions.)

If you do start th@ostmaster using non-standard options, such as a different TCP
port numberremember to tell all users so thatytlwan set theiPGPORENvironment
variable correctly.

15.1.2. ShuttingDown the Postmaster

If you need to halt thpostmaster process, you can use toaliX kill (1) command.
Some people habitually use tie or -KILL option; this should nex be recessary and
we do not recommend that you do this, aspgbstmaster will be unable to free its
various shared resources, its child processes will be unable to exit graatdully

72

15.1.3. Addingand Removing Users

Thecreateuser anddestroyuser commands enable and disable accesa(8T-
GRESby specific users on the host system.

15.1.4. Rriodic Upkeep

Thevacuum command should be run on each database periodiddiig command pro-

cesses deleted instantesd, more importantjyupdates the systestatisticsconcerning

the size of each class. If these statistics are permitted to become out-of-date and inaccu-
rate, thePOSTGRESjuery optimizer may makextremely poor decisions with respect to
guery @aluation stratgies. Thereforewe recommend runningacuum evey night or

so (perhaps in a script that eeeuted by theJNIX cron (1) orat (1) commands).

Do frequent backups That is, you should either back up your database directories using
the POSTGREScopy command and/or theINIX dump(l) ortar (1) commands.You

may think, “Wty am | backing up my database? What about crashveeg®” Oneside

effect of thePOSTGRES'no overwrite” storage manager is that it is also a “no log”-stor
age managerThat is, the database log stores only abort/commit data, and this is not
enough information to rewger the database if the storage medium (disk) or the database
files are corrupted!in other words, if a disk block goes bad RDSTGREShappens to
corrupt a database filgou cannot recover that file. This can be disastrous if the file is
one of the shared catalogs, suclpgsdatabase

15.1.5. Tning

Once your users start to load a significant amount of data, you will typically run into per
formance problemsPOSTGRESS not the &stest DBMS in the world, but maiof the
worst problems encountered by users are due to their lack of experienceyilBldS.
Some general tips include:

(1) Defineindices wer attributes that are commonly used for qualificatiohsor
example, if you oftenxecute queries of the form

SELECT * from EMP where salary < 5000

then a B-tree indeon the salary attribute will probably be useful. If scans
involving equality are more common, as in

SELECT * from EMP where salary = 5000

then you should consider defining a hash xnde salary . You can define
both, though it will use more disk space and maw slown updates a bitScans
using indices arenuch faster than sequential scans of the entire class.

(2) Runthevacuum command a lot. This command updates the statistics that the
guery optimizer uses to malintelligent decisions; if the statistics are inaccurate,
the system will ma& inordinately stupid decisions with respect to the way it joins

® This may mean different things depending onateive modewith which each class has been creatddwever, the current
implementation of the#eacuum command doesot perform ay compaction or clustering of data herefore, theuNIX files which
store eaclPOSTGRES|ass neer shrink and the space “reclaimed” gcuum is never actually reused.

73

and scans classes.

(3) Whenspecifying query qualfications (i.e., théhere part of the query), try to
ensure that a clausevolving a constant can be turned into one of the form
range_variable operator constardg.,

EMP.salary = 5000

The POSTGRESjuery optimizer will only use an ingavith a constant qualifica-
tion of this form. It doesm’hurt to write the clause as

5000 = EMP.salary

if the operator (in this case) has acommutatoroperator defined so theOST-
GREScan rewrite the query into the desired forrlowever, if such an operator
does not exisPOSTGRESwill never consider the use of an index.

(4) Whenjoining several classes together in one query to write the join clauses in
a “chained” form, e.g.,

where A a=B.band B.b=C.cand ...

Notice that relatiely few clauses refer to aggn dass and attribute; the clauses
form a linear sequence connecting the attributes, liikks in a chain. This is
preferable to a query written in a “star” form, such as

where A.a=B.band A.a=C.cand ...

Here, mag clauses refer to the same class and attribute (in this fasg,
When presented with a query of this form, BH@STGRESquery optimizer will
tend to consider far more choices than it should and may run out of memory.

(5) If you are really desperate to see what query plans loek yiu can run the
postmaster with the-d option and then rumonitor with the-t option.
The format in which query plans will be printed is hard to read but you should be
able to tell whether grindex scans are being performed.

15.2. Infrequent Tasks

At some time or anothgevery POSTGRESsite administrator has to perform all of the fol-
lowing actions.

15.2.1. CleaningJp After Crashes

Thepostgres sener and thegpostmaster run as tw different processesThey may
crash separately or togethefhe housekeeping procedures required to fix one kind of
crash are different from those required to fix the other.

The message you will usually see when the backend server crashes is:

FATAL: no response from backend: detected in ...

74

This generally means one ofavthings: there is a bug in tH®OSTGRESservey or there

is a bug in some user code that has been dynamically loadetO8WGRES You should
be able to restart your application and resume processitghdre are some considera-
tions:

(1) POSTGRESusually dumps a core file (a shapshot of process memory used for
debugging) in the database directory

lusr/local/postgres95/data/base/<database>/core

on the sergr machine. If you dohwant to try to debug the problem or produce
a dack trace to report theug to someone else, you can delete this file (which is
probably around 10MB).

(2) Whenone backend crashes in an uncontrolley \i.e., without calling its ult-
in cleanup routines), theostmaster will detect this situation, kill all running
seners and reinitialize the state shared among all backends (e.g., the shared
buffer pool and locks). If your sesv crashed, you will get the “no response”
message shown ab® If your server was killed because someone ®lsster
crashed, you will see the following message:

| h ave been signalled by the postmaster.

Some backend process has died unexpectedly and possibly
corrupted shared memory. The current transaction was
aborted, and | am going to exit. Please resend the

last query. -- The postgres backend

(3) Sometimeshared state is not completely cleaned kEpntend applications may
see errors of the form:

WARN: cannot write block 34 of myclass [mydb] blind

In this case, you should kill thmostmaster and restart it.

(4) Whenthe system crashes while updating the system catalogs (e.g., when you are
creating a class, defining an index, retinig into a class, etc.) the B-tree indices
defined on the catalogs are sometimes corrupidé@ general (and non-unique)
symptom is thaall queries stop wrking. If you have tried all of the abee deps
and nothing else seems to work, try usingriedexdb command. Ifrein-
dexdb succeeds but things still denvork, you hae another problem; if itdils,
the system catalogs themselves were almost certainly corrupted and yowsvill ha
to go back to your backups.

The postmaster does not usually crash (it doesdb very much except start seng)
but it does happen on occasion. In addition, there aravacéses where it encounters
problems during the reinitialization of shared resour&ecifically there are race con-
ditions where the operating system letsbetmaster free shared resourceatlthen
will not permit it to reallocate the same amount of shared resounsasvigen there is
no contention).

You will typically have © run theipcclean command if system errors cause the
postmaster to crash. If this happens, you may find (using tleNIX ipcs (1)

75

command) that the “postgres” user has shared memory and/or semaphores aNenated e
though nopostmaster process is running. In this case, you shouldipgolean as

the “postgres” user in order to deallocate these resoufeswarned thatll such
resourceswned by the “postgres” user will be deallocated. If yovehawltiple post-

master processes running on the same machine, you should kill all of them before run-
ningipcclean (otherwise, the will crash on their wn when their shared resources are
suddenly deallocated).

15.2.2. Mwing Database Directories
By default, all POSTGRES databases are stored in separate subdirectories under

/usr/local/postgres95/data/base 10 At some point, you may find that you
wish to mwe e or more databases to another location (e.g., to a filesystem with more
free space).

If you wish to mee all of your databases to thewéocation, you can simply:

* Kill the postmaster
» Copy the entiredata directory to the n& location (making sure that thewnéles are
owned by user “postgres”).

% cp -rp /usr/local/postgres95/data /new/place/data

» Reset youPGDATAervironment variable (as described earlier in this manual and in
the installation instructions).

using csh or tcsh...
% setenv PGDATA /new/place/data

using sh, ksh or bash...
% FGDATA=/new/place/data; export PGDATA

* Restart thgpostmaster
% pstmaster &

» After you run some queries and are sure that thdyrmoved database works, you
can remwge the olddata directory.

% rm -rf /Jusr/local/postgres95/data

To install asingledatabase in an alternate directory while leaving all other databases in
place, do the following:

» Create the database (if it doesdready exist) using thereatedb command. Irthe
following steps we will assume the database is ndo®d

10 Data for certain classes may stored elsewhere if a non-standard storage manager was specifidwerercteated Use
of non-standard storage managers is an experimental feature that is not supported outside pf Berkele

76

Kill the postmaster
Copy the directory/ustr/local/postgres95/data/base/foo and its con-
tents to its ultimate destination. It should still be owned by the “postgres” user.

% cp -rp /usr/local/postgres95/data/base/foo /new/place/foo
* Remove te directoryfusr/local/postgres95/data/base/foo

% rm -rf /usr/local/postgres95/data/base/foo

Make a ymbolic link from/usr/local/postgres95/data/base to the nev
directory:

% In -s / new/place/foo /usr/local/postgres95/data/base/foo

Restart thgpostmaster

15.2.3. UpdatingDatabases

POSTGRESSs a research system. In geneRDSTGRESMay not retain the same binary
format for the storage of databases from release to release. Therefore, when you update
your POSTGRESoftware, you will probably hae o modify your databases as wellhis

is a common occurrence with commercial database systems as well; unforfunéitedy
commercial system®0OSTGRESIoes not come with uséniendly utilities to malk your

life easier when these updates occur.

In general, you must do the folling to update your databases to wseftware release:

» Extensiongsuch as user-defined types, functions, agpies, etc.) must be reloaded
by re-eecuting the SQLCREATE commands. Se@ppendix A for more details.

» Data must be dumped from the old classes into ASCII files (usingCc®eY com-
mand), the n& classes created in thewelatabase (using theREATE TABLE com-
mand), and the data reloaded from the ASCII files.

» Rulesandviewsmust also be reloaded by meeeuting the arious CREATE com-
mands.

You should gve any mrw release a “trial period”; in particulado rot delete the old
database until you are satisfied that there are no compatibility problems withwthe ne
software. Fr example, you do not want to disepthat a bug in a typs™input” (con-
version from ASCII) and “output” (corersion to ASCII) routines prents you from
reloading your data after youvedestrgyed your old databases! (This should be stan-
dard procedure when updatingyasoftware package, but some people try to economize
on disk space without applying enough foresight.)

15.3. Databaséecurity

Most sites that useOSTGRESare educational or research institutions and do not pay
much attention to security in thehOSTGRESInstallations. Ifdesired, one can install
POSTGRESwith additional security featuredNaturally, such features come with addi-
tional administratie ovehead that must be dealt with.

77

15.3.1. Kerberos

POSTGREScan be configured to use the MITeleros network authentication system.
This prevents outside users from connecting to your databassrstee netvork without
the correct authentication information.

15.4. Queryingthe System Catalogs

As an administrator (or sometimes as a plain user), yai @ find out whatxensions

have been added to agn database. Thqueries listed belw are “canned” queries that
you can run on gndatabase to get simple answers. Befometing aly of the queries

below, be aure to eecute thePOSTGRES7acuum command. (Thegueries will run much

more quickly that way Also, note that these queries are also listed in

lusr/local/postgres95/tutorial/syscat.sql

S0 use cut-and-paste (or ihe command) instead of doing a lot of typing.

This query prints the names of all database adminstrators and the name of their
database(s).

SELECT usename, datname
FROM pg_user, pg_database
WHERE usesysid = int2in(int4out(datdba))
ORDER BY usename, datname;

This query lists all user-defined classes in the database.

SELECT relname
FROM pg_class
WHERE relkind ='r’ -- not indices
and relname !I" "pg_’ -- not catalogs
and relname !I" "Inv’ -- not large objects

ORDER BY relname;

This query lists all simple indices (i.e., those that are not defiverdadunction of se-
eral attributes).

SELECT bc.relname AS class_name,
ic.relname AS index_name,

a.attname

FROM pg_class bc, -- base class
pg_class ic, -- index class
pg_index i,
pg_attribute a -- att in base

WHERE i.indrelid = bc.oid
and i.indexrelid = ic.oid
and i.indkey[0] = a.atthum
and a.attrelid = bc.oid
and i.indproc ='0"::0id -- no functional indices

78

ORDER BY class_name, index_name, attname;

This query prints a report of the user-defined attributes and their types for alkefised
classes in the database.

SELECT c.relname, a.atthame, t.typname
FROM pg_class c, pg_attribute a, pg_type t
WHERE c.relkind ='r’ -- no indices
and c.relname !" "pg_’ -- no catalogs
and c.relname !I" "Inv’ -- no large objects
and a.atthum >0 -- no system att’s
and a.attrelid = c.oid
and a.atttypid = t.oid
ORDER BY relname, attname;

This query lists all user-defined base types (not including array types).

SELECT u.usename, t.typname
FROM pg_type t, pg_user u
WHERE u.usesysid = int2in(int4out(t.typowner))
and t.typrelid = '0"::0id -- no complex types
and t.typelem ='0"::0id -- No arrays
and u.usename <> 'postgres’
ORDER BY usename, typname;

This query lists all left-unary (post-fix) operators.

SELECT o.oprname AS left_unary,
right.typname AS operand,
result.typname AS return_type
FROM pg_operator o, pg_type right, pg_type result
WHERE o.oprkind =T’ -- left unary
and o.oprright = right.oid
and o.oprresult = result.oid
ORDER BY operand;

This query lists all right-unary (pre-fix) operators.

SELECT o.oprname AS right_unary,
left.typname AS operand,
result.typname AS return_type
FROM pg_operator o, pg_type left, pg_type result
WHERE o.oprkind ='r’ -- right unary
and o.oprleft = left.oid
and o.oprresult = result.oid
ORDER BY operand;

This query lists all binary operators.

SELECT o.oprname AS binary_op,
left.typname AS left_opr,

79

right.typname AS right_opr,
result.typname AS return_type
FROM pg_operator o, pg_type left, pg_type right, pg_type result
WHERE o.oprkind ='b’ -- binary
and o.oprleft = left.oid
and o.oprright = right.oid
and o.oprresult = result.oid
ORDER BY left_opr, right_opr;

This query returns the name, number ajuanents (parameters) and return type of all
userdefined C functions. The same query can be used to findiliroC functions if
you change the “C” to “internal”, or all SQL functions if you change the “C” to
“postquel”.

SELECT p.proname, p.pronargs, t.typname
FROM pg_proc p, pg_language |, pg_type t
WHERE p.prolang = |.oid

and p.prorettype = t.oid
and l.lanname ='¢’
ORDER BY proname;

This query lists all of the aggyae functions that hee been installed and the types to
which theg can be applied.count is not included because it can ¢any type as its
argument.

SELECT a.aggname, t.typname
FROM pg_aggregate a, pg_type t
WHERE a.aggbasetype = t.oid
ORDER BY aggname, typname,

This query lists all of the operator classes that can be used with each access method as
well as the operators that can be used with the regpaptrator classes.

SELECT am.amname, opc.opchame, opr.oprname
FROM pg_am am, pg_amop amop, pg_opclass opc, pg_operator opr
WHERE amop.amopid = am.oid
and amop.amopclaid = opc.oid
and amop.amopopr = opr.oid
ORDER BY amname, opchame, oprname;

80

16. REFERENCES

[DATE93]

[MELT93]
[ONG90]

[ROWES7]

[STONS6]

[STONS7a]

[STONS7D]
[STONS9]

[STON90a]

[STON9OD]

DateC. J. and Darwen, Hugh, A Guide to The SQL Standard, 3rd Edition,
Reading, MA, June 1993.

Melton,J. Understandinthe Nev SQL, 1994.

Ong,L. and Goh, J.,’A Unified Framevork for Version Modeling Using
Production Rules in a Database System," Electronics Research Lahoratory
University of California, ERL €chnical Memorandum M90/33, Beilky,

CA, April 1990.

Rave, L. and Stonebrak M., “The POSTGRES Data Mod&lProc.
1987 VLDB Conference, Brighton, England, Sept. 1987.

Stonebrafr, M. and Rowe, L., “The Design of POSTGRE® roc. 1986
ACM-SIGMOD Conference on Management of Dataasiiington, DC,
May 1986.

Stonebrad, M., Hanson, E. and Hong, C.-H., “The Design of the POST
GRES Rules SystefmPProc. 1987 IEEE Conference on Data Engineering,
Los Angeles, CA, Feld987.

Stonebrad, M., “The POSTGRES Storage SystérRroc. 1987 VLDB
Conference, Brighton, England, Sept. 1987.

Stonebradr, M., Hearst, M., and Potamianos, 3, Commentary on the
POSTGRES Rules SystengIGMOD Recordl18(3), Sept. 1989.

Stonebral, M., Rave, L. A., and Hirohama, M., “The Implementation of
POSTGRES, | EEE Transactions on Knowledge and Data Engineering
2(1), March 1990.

Stonebradr, M. et d., “On Rules, Procedures, Caching aniews in
Database Systemis?roc. 1990 ALM-SIGMOD Conference on Manage-
ment of Data, Atlantic CityN.J., June 1990.

81

Appendix A: Linking Dynamically-Loaded Functions

After you hae aeated and registered a user-defined function, your work is essentially

done. POSTGREShoweve, must load theobject codde.g., ao file, or a shared library)
that implements your functionAs previously mentioned?OSTGREdoads your code at
run-time, as requiredin order to allev your code to be dynamically loaded, you may
have b compile and link-edit it in a specialay. This section briefly describeswdo
perform the compilation and link-editing required before you can load youwdafired
functions into a runnin@OSTGRESserver Note thatthis process hashanged as of ¥r-

sion 4.2 You should expect to read (and reread, and re-reread) the manual pages for the

C compiler,cc (1), and the link editotd (1), if you hae ecific questions. In addition,
the regression test suites in the directory
/usr/local/postgres95/src/regress contain seeral working examples of
this process. If you cgpwhat these tests do, you should notehany poblems.

The following terminology will be used below:

Dynamic loading
is whatPOSTGRESJoes to an object file. The object file is copied into the running
POSTGRESsener and the functions an@nables within the file are madeadable
to the functions within theeOSTGRESprocess. POSTGRESdoes this using the
dynamic loading mechanism provided by the operating system.

Loading and link editing

is what you do to an object file in order to produce another kind of object file (e.g.,

an «ecutable program or a shared libraryou perform this using the link editing
program/|d (1).

The following general restrictions and notes also apply to the discussion belo

» Paths gven to the create functioncommand must be absolute paths (i.e., start with
“/") that refer to directories visible on the machine on whichRDSTGRESsener is
running!?

» The POSTGRESuser must be able to #ase the path gen to the create function
command and be able to read the object file. This is becausf®O8BGRESserver
runs as thePOSTGRESuser not as the user who starts up the frontend process.

" The oldPOSTGRESdynamic loading mechanism required in-depth knowledge in termeecfitable format, placement and
alignment of gecutable instructions within memarstc. on the part of the person writing the dynamic loa&ech loaders tended to
be slav and tuggy As of Version 4.2, theeOSTGRESdynamic loading mechanism has beenriten to use the dynamic loading
mechanism provided by the operating systérhis approach is generallpdter more reliable and more portable than ourvres
dynamic loading mechanisnThe reason for this is that nearly all modern versiong\oX use a dynamic loading mechanism to im-

plement shared libraries and must therefore provide a fast and reliable mechanism. On the other hand, the object file must be post-

processed a bit before it can be loaded ROSTGRES We hope that the lagre increase in speed and reliability will reakp r the
slight decrease in coenience.

12 Relative paths do in fact work, but are relatito the directory where the database resides (which is genenaliibla to the
frontend application) Obviously it makes no sense to makhe path relatie o the directory in which the user started the frontend ap-
plication, since the server could be running on a completely different machine!

82

(Making the file or a highdevel directory unreadable and/or weeutable by the
“postgres” user is aatremelycommon mistake.)

» Symbol names defined within object files must not conflict with each other or with
symbols defined iPFOSTGRES

» The GNU C compiler usually does not provide the special options that are required to
use the operating systesntynamic loader intedce. Insuch cases, the C compiler
that comes with the operating system must be used.

ULTRIX

It is very easy to tild dynamically-loaded object files under TRIX. ULTRIX does not
have any kared-library mechanism and hence does not plagerestrictions on the
dynamic loader intedfce. Orthe other hand, we had to (re)write a non-portable dynamic
loader ourselves and could not use true shared libraries.

Under ULTRIX, the only restriction is that you must produce each object file with the
option-G 0 . (Notice that thas the numeral 0” and not the letter O’). For example,

simple ULTRIX example
% cc -G 0 -c f oo.c

produces an object file callddo.o that can then be dynamically loaded iMOST-
GRES No additional loading or link-editing must be performed.

DEC OSF/1

Under DEC OSF/1, you can &leny dmple object file and produce a shared object file
by running thdd command wer it with the correct options. The commands to do this
look like:

simple DEC OSF/1 example
% cc -c f oo.c
% Id - shared -expect_unresolved *' -o f00.s0 f00.0

The resulting shared object file can then be loadedP@®TGRES When specifying the
object file name to thereate functioncommand, one must\g it the name of the shared
object file (ending inso) rather than the simple object fffglf the file you specify is
not a shared object, the backend will hang!

SunOS 4.x, Solaris 2.x and HP-UX

Under both SunOS 4.x, Solaris 2.x and HP-UX, the simple object file must be created by
compiling the source file with special compiler flagsl a shared library must be pro-
duced.

13 Actually, POSTGRESdoes not care what you name the file as long as it is a shared objetftyide. prefer to name your
shared object files with thetension.o , this is fine withPOSTGRESs0 long as you makaure that the correct file name iv@i to the
create functioncommand. lrother words, you must simply be consisteidbwever, from a pragmatic point of we we dscourage
this practice because you will undoubtedly confuse yourself wiflrde to which files hae been made into shared object files and
which hare mot. For example, its very hard to writeMakefile s to do he link-editing automatically if both the object file and the
shared object file end io !

83

The necessary steps with HP-UX are as wadlo The+z flag to the HP-UX C compiler
produces so-called “Position Independent Code” (PIC) and-th#ag remaes osme
alignment restrictions that the PA-RISC architecture normally enfortls. object file
must be turned into a shared library using the HP-UX link editor withktheption.
This sounds complicated but is actualgry simple, since the commands to do it are just:

simple HP-UX example
% cc +z +u ¢ f oo.c
% Id -b -0 f o00.slfoo.0

As with the.so files mentioned in the last subsection, tneate function command
must be told which file is the correct file to load (i.e., you mus tjithe location of the
shared libraryor .sl file).

Under SunOS 4.x, the commands look like:

simple SunOS 4.x example
% cc -PIC -c foo.c
% Id - dc -dp -Bdynamic -o foo.so foo.0

and the eqwelent lines under Solaris 2.x are:

simple Solaris 2.x example
% cc -K PIC -cfoo.c
or
% gc -fPIC -c foo.c
% Id -G - Bdynamic -o foo.so foo.o

When linking shared libraries, you mayhao specify some additional shared libraries
(typically system libraries, such as the C and math libraries) onggoaommand line.

84

