
The POSTGRES95 User Manual
Version 1.0 (September 5, 1995)

Andrew Yu and Jolly Chen
(with thePOSTGRESGroup)

Computer Science Div., Dept. of EECS
University of California at Berkeley

POSTGRES95 is copyright © 1994-5 by the Regents of the University of California. Permission to use, copy, modify, and dis-
tribute this software and its documentation for any purpose, without fee, and without a written agreement is hereby granted, provided
that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO
ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSE-
QUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THESOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

1

1. INTRODUCTION

This document is the user manual for thePOSTGRES95 database management system
developed at the University of California at Berkeley. POSTGRES95 is based onPOST-
GRES release 4.2. ThePOSTGRESproject, led by Professor Michael Stonebraker, has
been sponsored by the Defense Advanced Research Projects Agency (DARPA), the Army
Research Office (ARO), the National Science Foundation (NSF), and ESL, Inc.

1.1. What is POSTGRES?
Traditional relational database management systems (DBMSs) support a data model con-
sisting of a collection of named relations, containing attributes of a specific type. In cur-
rent commercial systems, possible types include floating point numbers, integers, charac-
ter strings, money, and dates. It is commonly recognized that this model is inadequate for
future data processing applications.

The relational model successfully replaced previous models in part because of its “Spar-
tan simplicity”. However, as mentioned, this simplicity often makes the implementation
of certain applications very difficult to implement.POSTGRESoffers substantial addi-
tional power by incorporating the following four additional basic constructs in such a way
that users can easily extend the system:

classes
inheritance
types
functions

In addition,POSTGRESsupports a powerful production rule system.

1.2. AShort History of the POSTGRESProject
Implementation of thePOSTGRESDBMS began in 1986. Theinitial concepts for the
system were presented in [STON86] and the definition of the initial data model appeared
in [ROWE87]. Thedesign of the rule system at that time was described in [STON87a].
The rationale and architecture of the storage manager were detailed in [STON87b].

POSTGREShas undergone several major releases since then.The first “demoware” sys-
tem became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference.
We released Version 1, described in [STON90a], to a few external users in June 1989.In
response to a critique of the first rule system [STON89], the rule system was redesigned
[STON90b] and Version 2 was released in June 1990 with the new rule system.Version 3
appeared in 1991 and added support for multiple storage managers, an improved query
executor, and a rewritten rewrite rule system.For the most part, releases since then have
focused on portability and reliability.

2

POSTGREShas been used to implement many different research and production applica-
tions. Theseinclude: a financial data analysis system, a jet engine performance monitor-
ing package, an asteroid tracking database, a medical information database, and several
geographic information systems.POSTGREShas also been used as an educational tool at
several universities. Finally, Illustra Information Technologies picked up the code and
commercialized it.

POSTGRESbecame the primary data manager for the Sequoia 2000 scientific computing
project in late 1992.Furthermore, the size of the external user community nearly doubled
during 1993. It became increasingly obvious that maintenance of the prototype code and
support was taking up large amounts of time that should have been devoted to database
research. Inan effort to reduce this support burden, the project officially ended with Ver-
sion 4.2.

1.3. What is POSTGRES95?
POSTGRES95 is a derivative of the last official release ofPOSTGRES(version 4.2). The
code is now completely ANSI C and the code size has been trimmed by 25%. There are a
lot of internal changes that improve performance and code maintainability. POSTGRES95
runs about 30-50% faster on the Wisconsin Benchmark compared to v4.2. Apart from
bug fixes, these are the major enhancements:

• The query language POSTQUEL has been replaced with SQL (implemented in the
server). We do not support subqueries (which can be imitated with user defined SQL
functions) at the moment. Aggregates have been re-implemented. We also added sup-
port for GROUP BY. The libpq interface is still available for C programs.

• In addition to the monitor program, we provide a new program (psql) which supports
GNU readline.

• We added a new front-end library, libpgtcl, that supports Tcl-based clients.A sample
shell, pgtclsh, provides new Tcl commands to interface tcl programs with thePOST-
GRES95 backend.

• The large object interface has been overhauled. We kept Inversion large objects as the
only mechanism for storing large objects. (This is not to be confused with the Inver-
sion file system which has been removed.)

• The instance-level rule system has been removed. Rules are still available as rewrite
rules.

• A short tutorial introducing regular SQL features as well as those of ours is distributed
with the source code.

• GNU make (instead of BSD make) is used for the build. Also,POSTGRES95 can be
compiled with an unpatched gcc (data alignment of doubles has been fixed).

1.4. AboutThis Release
POSTGRES95 is available free of charge. This manual describes version 1.0 ofPOST-
GRES95. Theauthors have compiled and testedPOSTGRES95 on the following plat-
forms:

3

architecture processor operating system

DECstation 3000 Alpha AXP OSF/1 2.1, 3.0, 3.2
DECstation 5000 MIPS ULTRIX 4.4
Sun4 SPARC SunOS4.1.3, 4.1.3_U1; Solaris 2.4
H-P 9000/700 and 800 PA-RISC HP-UX9.00, 9.01, 9.03
Intel X86 Linux 1.2.8, ELF

1.5. Outlineof This Manual
From now on, We will use POSTGRESto meanPOSTGRES95. Thefirst part of this man-
ual goes over some basic system concepts and procedures for starting thePOSTGRESsys-
tem. We then turn to a tutorial overview of the POSTGRESdata model and SQL query
language, introducing a few of its advanced features.Next, we explain thePOSTGRES
approach to extensibility and describe how users can extendPOSTGRESby adding user-
defined types, operators, aggregates, and both query language and programming language
functions. Afteran extremely brief overview of the POSTGRESrule system, the manual
concludes with a detailed appendix that discusses some of the more involved and operat-
ing system-specific procedures involved in extending the system.

We assume proficiency with UNIX and C programming.

UNIX is a trademark of X/Open, Ltd. Sun4, SPARC, SunOS and Solaris are trademarks of Sun Microsystems, Inc. DEC, DEC-
station, Alpha AXP and ULTRIX are trademarks of Digital Equipment Corp.PA-RISC and HP-UX are trademarks of Hewlett-
Packard Co. OSF/1 is a trademark of the Open Software Foundation.

4

2. POSTGRESARCHITECTURE CONCEPTS

Before we continue, you should understand the basicPOSTGRESsystem architecture.
Understanding how the parts ofPOSTGRESinteract will make the next chapter somewhat

POSTMASTERAPPLICATION
LIBPQ

USER

APPLICATION
LIBPQ

USER
POSTMASTER

SERVER

(a) frontend sends request to
postmaster via well-known
network socket

APPLICATION
LIBPQ

USER
POSTMASTER

APPLICATION
LIBPQ

USER

SERVER

POSTMASTER

(c) frontend connected
to backend server

SERVER1

server host

listening

TCP port

connection
initial

forks child

(b) postmaster creates backend server

queries/
data

listening

(d) frontend connected
to multiple backend servers

queries/
data

listening

SERVER2

Figure 1. How a connection is established.

5

clearer.

In database jargon, POSTGRESuses a simple “process-per-user” client/server model. A
POSTGRESsession consists of the following cooperatingUNIX processes (programs):

• A supervisory daemon process (thepostmaster),
• the user’s frontend application (e.g., thepsql program), and
• the one or more backend database servers (thepostgres process itself).

A single postmaster manages a given collection ofdatabaseson a single host. Such a
collection of databases is called aninstallationor site. Frontend applications that wish to
access a given database within an installation make calls to theLIBPQ library. The
library sends user requests over the network to thepostmaster (Figure 1(a)), which in
turn starts a new backend server process (Figure 1(b)) and connects the frontend process
to the new server (Figure 1(c)).From that point on, the frontend process and the backend
server communicate without intervention by thepostmaster . Hence, thepostmas-
ter is always running, waiting for requests, whereas frontend and backend processes
come and go.The LIBPQ library allows a single frontend to make multiple connections
to backend processes.However, the frontend application is still a single-threaded pro-
cess. Multithreadedfrontend/backend connections are not currently supported inLIBPQ.

One implication of this architecture is that thepostmaster and the backend always run
on the same machine (the database server), while the frontend application may run any-
where. You should keep this in mind, because the files that can be accessed on a client
machine may not be accessible (or may only be accessed using a different filename) on
the database server machine.

You should also be aware that thepostmaster andpostgres servers run with the
user-id of thePOSTGRES“superuser.” Note that thePOSTGRESsuperuser does not have
to be a special user (e.g., a user named “postgres”). Furthermore, thePOSTGRESsupe-
ruser should definitely not be theUNIX superuser, “root”! In any case, all files relating to
a database should belong to thisPOSTGRESsuperuser.

6

3. GETTING STARTED WITH POSTGRES

This section discusses how to start POSTGRESand set up your own environment so that
you can use frontend applications. We assumePOSTGREShas already been successfully
installed. (Refer to the installation notes for how to installPOSTGRES.)

Some of the steps listed in this section will apply to allPOSTGRESusers, and some will
apply primarily to the site database administrator. This site administrator is the person
who installed the software, created the database directories and started thepostmaster
process. Thisperson does not have to be the UNIX superuser, “root,” or the computer
system administrator.

In this section, items for end users are labelled “User” and items intended for the site
administrator are labelled “Admin.”

Throughout this manual, any examples that begin with the character ‘‘%’’ are commands
that should be typed at theUNIX shell prompt. Examples that begin with the character
‘‘ * ’’ are commands in thePOSTGRESquery language,POSTGRESSQL.

3.1. Admin/User:Setting Up Your Environment

pg_class

[shared classes]
pg_log

[private classes]
pg_class

files base

template1

data

[.bki files]

....

mydb

EXECUTABLE
PROGRAMS

[private classes]

libpq-fe.hlibpq.a

lib include src doc

postgres

DATA
DEVELOPMENT
APPLICATION

ENVIRONMENT

bin

 psql postgres postmaster....

Figure 2. POSTGRESfile layout.

7

Figure 2 shows how the POSTGRESdistribution is laid out when installed in the default
way. For simplicity, we will assume thatPOSTGREShas been installed in the directory
/usr/local/postgres95 . Therefore, wherever you see the directory
/usr/local/postgres95 you should substitute the name of the directory where
POSTGRESis actually installed.

All POSTGRES commands are installed in the directory
/usr/local/postgres95/bin . Therefore, you should add this directory to your
shellcommand path. If you use a variant of the Berkeley C shell, such ascsh or tcsh ,
you would add

% set path = (/usr/local/postgres95/bin $path)

in the.login file in your home directory. If you use a variant of the Bourne shell, such
assh , ksh , or bash , then you would add

% PATH=/usr/local/postgres95/bin:$PATH
% export PATH

to the.profile file in your home directory.

From now on, we will assume that you have added thePOSTGRESbin directory to your
path. Inaddition, we will make frequent reference to “setting a shell variable” or “setting
an environment variable” throughout this document. If you did not fully understand the
last paragraph on modifying your search path, you should consult theUNIX manual pages
that describe your shell before going any further.

3.2. Admin: Starting the Postmaster
It should be clear from the preceding discussion that nothing can happen to a database
unless thepostmaster process is running. As the site administrator, there are a num-
ber of things you should remember before starting thepostmaster . These are dis-
cussed in the section of this manual titled, “Administering POSTGRES.” Howev er, if
POSTGREShas been installed by following the installation instructions exactly as written,
the following simple command is all you should need to start thepostmaster :

% postmaster &

Thepostmaster occasionally prints out messages which are often helpful during trou-
bleshooting. Ifyou wish to view debugging messages from the postmaster, you can start
it with the -d option and redirect the output to the log file:

% postmaster -d >& pm.log &

If you do not wish to see these messages, you can type

% postmaster -S

and thepostmaster will be “S”ilent. Notice that there is no ampersand (“&”) at the
end of the last example.

8

3.3. Admin: Adding and Deleting Users
The createuser command enables specific users to accessPOSTGRES. The
destroyuser command removes users and prevents them from accessingPOSTGRES.
Note that these commands only affect users with respect toPOSTGRES; they hav e no
effect administration of users that the operating system manages.

3.4. User:Starting Applications
Assuming that your site administrator has properly started thepostmaster process and
authorized you to use the database, you (as a user) may begin to start up applications.As
previously mentioned, you should add/usr/local/postgres95/bin to your shell

search path. In most cases, this is all you should have to do in terms of preparation.1

If you get the following error message from aPOSTGREScommand (such aspsql or
createdb):

connectDB() failed: Is the postmaster running at ’localhost’ on port ’4322’?

it is usually because (1) thepostmaster is not running, or (2) you are attempting to
connect to the wrong server host.

If you get the following error message:

FATAL 1:Feb 17 23:19:55:process userid (2360) !=
database owner (268)

it means that the site administrator started thepostmaster as the wrong user. Tell him
to restart it as thePOSTGRESsuperuser.

3.5. User:Managing a Database
Now thatPOSTGRESis up and running we can create some databases to experiment with.
Here, we describe the basic commands for managing a database.

3.5.1. Creating a Database
Let’s say you want to create a database namedmydb. You can do this with the following
command:

% createdb mydb

POSTGRESallows you to create any number of databases at a given site and you automat-
ically become thedatabase administrator of the database you just created.Database
names must have an alphabetic first character and are limited to 16 characters in length.

1 If your site administrator has not set things up in the default way, you may have some more work to do.For example, if the
database server machine is a remote machine, you will need to set thePGHOSTenvironment variable to the name of the database serv-
er machine. The environment variablePGPORTmay also have to be set. Thebottom line is this: if you try to start an application pro-
gram and it complains that it cannot connect to thepostmaster , you should immediately consult your site administrator to make
sure that your environment is properly set up.

9

Not every user has authorization to become a database administrator. If POSTGRES
refuses to create databases for you, then the site administrator needs to grant you permis-
sion to create databases. Consult your site administrator if this occurs.

3.5.2. Accessinga Database
Once you have constructed a database, you can access it by:

• running thePOSTGRESterminal monitor programs (monitor or psql) which
allows you to interactively enter, edit, and execute SQL commands.

• writing a C program using theLIBPQ subroutine library. This allows you to submit
SQL commands from C and get answers and status messages back to your program.
This interface is discussed further in section ??.

You might want to start uppsql , to try out the examples in this manual. It can be acti-
vated for themydb database by typing the command:

% psql mydb

You will be greeted with the following message:

Welcome to the POSTGRES95 interactive sql monitor:

type \? for help on slash commands
type \q to quit
type \g or terminate with semicolon to execute query

You are currently connected to the database: mydb

mydb=>

This prompt indicates that the terminal monitor is listening to you and that you can type
SQL queries into a workspace maintained by the terminal monitor.

Thepsql program responds to escape codes that begin with the backslash character, “\”.
For example, you can get help on the syntax of variousPOSTGRESSQL commands by
typing:

mydb=> \h

Once you have finished entering your queries into the workspace, you can pass the con-
tents of the workspace to thePOSTGRESserver by typing:

mydb=> \g

This tells the server to process the query. If you terminate your query with a semicolon,
the \g is not necessary. Psql will automatically process semicolon-terminated queries.

To read queries from a file, saymyFile, instead of entering them interactively, type:

mydb=> \i fileName

To get out of psql and return toUNIX , type

10

mydb=> \q

andpsql will quit and return you to your command shell. (For more escape codes, type
\h at themonitor prompt.)

White space (i.e., spaces, tabs and newlines) may be used freely in SQL queries.Com-
ments are denoted by-- . Everything after the dashes up to the end of the line is ignored.

3.5.3. Destroying a Database
If you are the database administrator for the databasemydb, you can destroy it using the
following UNIX command:

% destroydb mydb

This action physically removes all of the UNIX files associated with the database and can-
not be undone, so this should only be done with a great deal of forethought.

11

4. THE QUERY L ANGUAGE

ThePOSTGRESquery language is a variant of SQL-3. It has many extensions such as an
extensible type system, inheritance, functions and production rules. Those are features
carried over from the originalPOSTGRESquery language, POSTQUEL. This section pro-
vides an overview of how to usePOSTGRESSQL to perform simple operations.

This manual is only intended to give you an idea of our flavor of SQL and is in no way a
complete tutorial on SQL. Numerous books have been written on SQL. For instance, con-
sult [MELT93] or [DATE93]. You should also be aware that some features are not part of
the ANSI standard.

In the examples that follow, we assume that you have created themydb database as
described in the previous subsection and have started psql.

Examples in this manual can also be found in
/usr/local/postgres95/src/tutorial . Refer to the README file in that
directory for how to use them.To start the tutorial, do the following:

% cd / usr/local/postgres95/src/tutorial
% psql -s mydb
Welcome to the POSTGRES95 interactive sql monitor:

type \? for help on slash commands
type \q to quit
type \g or terminate with semicolon to execute query

You are currently connected to the database: jolly

mydb=> \i basics.sql

The \i command read in queries from the specified files. The-s option puts you in sin-
gle step mode which pauses before sending a query to the backend. Queries in this sec-
tion are in the filebasics.sql .

4.1. Concepts
The fundamental notion inPOSTGRESis that of aclass,which is a named collection of
object instances. Each instance has the same collection of namedattributes, and each
attribute is of a specifictype. Furthermore, each instance has a permanentobject identi-
fier (OID) that is unique throughout the installation.Because SQL syntax refers totables,
we will use the termstableandclassinterchangeably. Likewise, arow is aninstanceand
columnsareattributes.

As previously discussed, classes are grouped into databases, and a collection of databases
managed by a singlepostmaster process constitutes an installation or site.

12

4.2. Creating a New Class
You can create a new class by specifying the class name, along with all attribute names
and their types:

CREATE TABLE weather (
city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date

);

Note that keywords are case-insensitive but identifiers are case-sensitive. POSTGRES
SQL supports the usual SQL types int, float, real, smallint, char(N), varchar(N), date, and
time. As we will see later, POSTGREScan be customized with an arbitrary number of
user-defined data types. Consequently, type names are not keywords.

So far, thePOSTGREScreatecommand looks exactly like the command used to create a
table in a traditional relational system.However, we will presently see that classes have
properties that are extensions of the relational model.

4.3. Populating a Class with Instances
The insert statement is used to populate a class with instances:

INSERT INTO weather
VALUES (’San Francisco’, 46, 50, 0.25, ’11/27/1994’)

You can also use thecopy command to perform load large amounts of data from flat
(ASCII) files.

4.4. Queryinga Class
The weather class can be queried with normal relational selection and projection
queries. ASQL selectstatement is used to do this. The statement is divided into atarget
list (the part that lists the attributes to be returned) and aqualification(the part that speci-
fies any restrictions). For example, to retrieve all the rows ofweather , type:

SELECT * FROM WEATHER;

and the output should be:

city temp_lo temp_hi prcp date

San Francisco 46 50 0.25 11-27-1994

San Francisco 43 57 0 11-29-1994

Hayward 37 54 11-29-1994

You may specify any aribitrary expressions in the target list. For example, you can do:

13

* S ELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

Arbitrary Boolean operators (and, or and not) are allowed in the qualification of any
query. For example,

SELECT *
FROM weather
WHERE city = ’San Francisco’

and prcp > 0.0;

city temp_lo temp_hi prcp date

San Francisco 46 50 0.25 11-27-1994

As a final note, you can specify that the results of aselectcan be returned in a sorted
order or with duplicate instances removed.

SELECT DISTINCT city
FROM weather
ORDER BY city;

4.5. Redirecting SELECT Queries
Any selectquery can be redirected to a new class

SELECT * INTO temp from weather;

This creates an implicitcreate command, creating a new classtemp with the attribute
names and types specified in the target list of theSELECT INT O command. We can
then, of course, perform any operations on the resulting class that we can perform on
other classes.

4.6. Joins Between Classes
Thus far, our queries have only accessed one class at a time.Queries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class
are being processed at the same time.A query that accesses multiple instances of the
same or different classes at one time is called ajoin query.

As an example, say we wish to find all the records that are in the temperature range of
other records. In effect, we need to compare thetemp_lo and temp_hi attributes of

eachEMPinstance to thetemp_lo andtemp_hi attributes of all otherEMPinstances.2

We can do this with the following query:

SELECT W1.city, W1.temp_lo, W1.temp_hi,
W2.city, W2.temp_lo, W2.temp_hi

2 This is only a conceptual model.The actual join may be performed in a more efficient manner, but this is invisible to the user.

14

FROM weather W1, weather W2
WHERE W1.temp_lo < W2.temp_lo

and W1.temp_hi > W2.temp_hi;

city temp_lo temp_hi city temp_lo temp_hi

San Francisco 43 57 San Francisco 46 50

San Francisco 37 54 San Francisco 46 50

In this case, bothW1andW2aresurrogatesfor an instance of the classweather , and
both range over all instances of the class.(In the terminology of most database systems,
W1andW2are known as “range variables.”) A query can contain an arbitrary number of

class names and surrogates.3

4.7. Updates
You can update existing instances using theupdate command. Suppose you discover the
temperature readings are all off by 2 degrees as of Nov 28, you may update the data as
follow:

* UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > ’11/28/1994;

4.8. Deletions
Deletions are performed using thedeletecommand:

* DELETE FROM weather WHERE city = ’Hayward’;

All weather recording belongs to Hayward is removed.

One should be wary of queries of the form

DELETE FROMclassname;

Without a qualification, thedeletecommand will simply delete all instances of the given
class, leaving it empty. The systemwill not request confirmation before doing this.

4.9. UsingAggregate Functions
Like most other query languages,POSTGRESsupports aggregate functions.However, the
current implementation ofPOSTGRESaggregate functions is very limited.Specifically,
while there are aggregates to compute such functions as the count, sum, average,

3 The semantics of such a join are that the qualification is a truth expression defined for the Cartesian product of the classes in-
dicated in the query. For those instances in the Cartesian product for which the qualification is true,POSTGREScomputes and returns
the values specified in the target list. POSTGRESSQL does not assign any meaning to duplicate values in such expressions. This
means thatPOSTGRESsometimes recomputes the same target list several times — this frequently happens when Boolean expressions
are connected with anor. To remove such duplicates, you must use theselect distinctstatement.

15

maximum and minimum over a set of instances, aggregates can only appear in the target
list of a query and not in the qualification (where clause) As an example,

SELECT max(temp_lo)
FROM weather;

Aggregates may also have GROUP BY clauses:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

16

5. ADVANCED POSTGRES SQL FEATURES

Having covered the basics of usingPOSTGRESSQL to access your data, we will now dis-
cuss those features ofPOSTGRESthat distinguish it from conventional data managers.
These features include inheritance, time travel and non-atomic data values (array- and
set-valued attributes).

Examples in this section can also be found inadvance.sql in the tutorial directory.
(Refer to the introduction of the previous chapter for how to use it.)

5.1. Inheritance
Let’s create two classes. Thecapitals class contains state capitals which are also
cities. Naturally, thecapitals class shouldinherit from cities .

CREATE TABLE cities (
name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char2

) I NHERITS (cities);

In this case, an instance ofcapitals inheritsall attributes (name, population , and
altitude) from its parent,cities . The type of the attributename is text, a built-
in POSTGREStype for variable length ASCII strings. The type of the attributepopula-
tion is float4, a built-in POSTGREStype for double precision floating point num-
bres. Statecapitals have an extra attribute,state , that shows their state.In POSTGRES,

a class can inherit from zero or more other classes,4 and a query can reference either all
instances of a class or all instances of a class plus all of its descendants.For example, the
following query finds all the cities that are situated at an attitude of 500 ’ft or higher:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

4 I.e., the inheritance hierarchy is a directed acyclic graph.

17

name altitude

Las Vegas 2174

Mariposa 1953

On the other hand, to find the names of all cities, including state capitals, that are located
at an altitude over 500 ’ft, the query is:

SELECT c.name, c.altitude
FROM cities* c
WHERE c.altitude > 500;

which returns:

name altitude

Las Vegas 2174

Mariposa 1953

Madison 845

Here the* after cities indicates that the query should be run over cities and all
classes below cities in the inheritance hierarchy. Many of the commands that we have
already discussed —select, update anddelete— support this* notation, as do others,
like alter command.

5.2. Time Travel
POSTGRESsupports the notion oftime travel. This feature allows a user to run historical
queries. For example, to find the current population of Mariposa city, one would query:

SELECT * FROM cities WHERE name = ’Mariposa’;

name population altitude

Mariposa 1320 1953

POSTGRESwill automatically find the version of Mariposa’s record valid at the current
time.

One can also give a time range. For example to see the past and present populations of
Mariposa, one would query:

SELECT name, population
FROM cities[’epoch’, ’now’]
WHERE name = ’Mariposa’;

where “epoch” indicates the beginning of the system clock.5 If you have executed all of
the examples so far, then the above query returns:

5 On UNIX systems, this is always midnight, January 1, 1970 GMT.

18

name population

Mariposa 1200

Mariposa 1320

The default beginning of a time range is the earliest time representable by the system and
the default end is the current time; thus, the above time range can be abbreviated as
‘‘ [,] .’’

5.3. Non-AtomicValues
One of the tenets of the relational model is that the attributes of a relation areatomic.
POSTGRESdoes not have this restriction; attributes can themselves contain sub-values
that can be accessed from the query language.For example, you can create attributes that
arearraysof base types.

5.3.1. Arrays
POSTGRESallows attributes of an instance to be defined as fixed-length or variable-
length multi-dimensional arrays. Arrays of any base type or user-defined type can be cre-
ated. To illustrate their use, we first create a class with arrays of base types.

* CREATE TABLE SAL_EMP (
name text,
pay_by_quarter int4[],
schedule char16[][]

);

The above query will create a class namedSAL_EMPwith a text string (name), a one-
dimensional array ofint4 (pay_by_quarter), which represents the employee’s
salary by quarter and a two-dimensional array ofchar16 (schedule), which repre-
sents the employee’s weekly schedule.Now we do some INSERTSs; note that when
appending to an array, we enclose the values within braces and separate them by commas.
If you know C, this is not unlike the syntax for initializing structures.

INSERT INTO SAL_EMP
VALUES (’Bill’,

’{10000, 10000, 10000, 10000}’,
’{{"meeting", "lunch"}, {}}’);

INSERT INTO SAL_EMP
VALUES (’Carol’,

’{20000, 25000, 25000, 25000}’,
’{{"talk", "consult"}, {"meeting"}}’);

By default, POSTGRESuses the “one-based” numbering convention for arrays — that is,
an array ofn elements starts with array[1] and ends with array[n].

Now, we can run some queries onSAL_EMP. First, we show how to access a single ele-
ment of an array at a time.This query retrieves the names of the employees whose pay
changed in the second quarter:

19

* S ELECT name
FROM SAL_EMP
WHERE SAL_EMP.pay_by_quarter[1] <>

SAL_EMP.pay_by_quarter[2];

name

Carol

This query retrieves the third quarter pay of all employees:

* S ELECT SAL_EMP.pay_by_quarter[3] FROM SAL_EMP;

pay_by_quarter

10000

25000

We can also access arbitraryslicesof an array, or subarrays. This query retrieves the first
item on Bill’s schedule for the first two days of the week.

* S ELECT SAL_EMP.schedule[1:2][1:1]
FROM SAL_EMP
WHERE SAL_EMP.name = ’Bill’;

schedule

{{"meeting"},{""}}

20

6. EXTENDING SQL: AN OVERVIEW

In the sections that follow, we will discuss how you can extend thePOSTGRESSQL
query language by adding:

• functions
• types
• operators
• aggregates

6.1. How Extensibility Works
POSTGRESis extensible because its operation iscatalog-driven. If you are familiar with
standard relational systems, you know that they store information about databases, tables,
columns, etc., in what are commonly known assystem catalogs. (Some systems call this
the data dictionary). Thecatalogs appear to the user as classes, like any other, but the
DBMS stores its internal bookkeeping in them.One key difference betweenPOSTGRES
and standard relational systems is thatPOSTGRESstores much more information in its
catalogs — not only information about tables and columns, but also information about its
types, functions, access methods, and so on. These classes can be modified by the user,
and sincePOSTGRESbases its internal operation on these classes, this means thatPOST-
GREScan be extended by users.By comparison, conventional database systems can only
be extended by changing hard-coded procedures within the DBMS or by loading modules
specially-written by the DBMS vendor.

POSTGRESis also unlike most other data managers in that the server can incorporate
user-written code into itself throughdynamic loading. That is, the user can specify an
object code file (e.g., a compiled.o file or shared library) that implements a new type or
function andPOSTGRESwill load it as required.Code written in SQL are even more
trivial to add to the server.

This ability to modify its operation “on the fly” makes POSTGRESuniquely suited for
rapid prototyping of new applications and storage structures.

6.2. ThePOSTGRESType System
ThePOSTGREStype system can be broken down in several ways.

Types are divided intobasetypes andcompositetypes. Basetypes are those, like int4 ,
that are implemented in a language such as C.They generally correspond to what are
often known as “abstract data types”;POSTGREScan only operate on such types through
methods provided by the user and only understands the behavior of such types to the
extent that the user describes them. Composite types are created whenever the user cre-
ates a class.EMPis an example of a composite type.POSTGRESstores these types in
only one way (within the file that stores all instances of the class) but the user can “look
inside” at the attributes of these types from the query language and optimize their

21

retrieval by (for example) defining indices on the attributes.

POSTGRESbase types are further divided intobuilt-in types anduser-definedtypes.
Built-in types (like int4) are those that are compiled into the system.User-defined
types are those created by the user in the manner to be described below.

6.3. About the POSTGRESSystem Catalogs
Having introduced the basic extensibility concepts, we can now take a look at how the
catalogs are actually laid out.You can skip this section for now, but some later sections
will be incomprehensible without the information given here, so mark this page for later
reference.

All system catalogs have names that begin with pg_ . The following classes contain
information that may be useful to the end user. (There are many other system catalogs,
but there should rarely be a reason to query them directly.)

catalog name description

pg_database databases
pg_class classes
pg_attribute class attributes
pg_index secondary indices

pg_proc procedures (both C and SQL)
pg_type types (both base and complex)
pg_operator operators
pg_aggregate aggregates and aggregate functions

pg_am access methods
pg_amop access method operators
pg_amproc access method support functions
pg_opclass access method operator classes

The Reference Manual gives a more detailed explanation of these catalogs and their
attributes. However, Figure 3 shows the major entities and their relationships in the sys-
tem catalogs.(Attributes that do not refer to other entities are not shown unless they are
part of a primary key.)

This diagram is more or less incomprehensible until you actually start looking at the con-
tents of the catalogs and see how they relate to each other. For now, the main things to
take away from this diagram are as follows:

(1) In several of the sections that follow, we will present various join queries on the
system catalogs that display information we need to extend the system.Looking
at this diagram should make some of these join queries (which are often three- or
four-way joins) more understandable, because you will be able to see that the
attributes used in the queries form foreign keys in other classes.

(2) Many different features (classes, attributes, functions, types, access methods, etc.)
are tightly integrated in this schema.A simple create command may modify
many of these catalogs.

22

[8]

[8]

REFERS-TO

non-key

1

0:N

identified by the non-oid primary key in other contexts).

1

13:N

10:N

1

0:N

1 1 1

0:N

0:N

1 1

0:N

1

0:N

0:N

1

0:N

1

0:N

1

0:N

10:1

optional

mandatory

0:1

0:N

0:N

1

1

0:N
0:N

1

1

1

0:N

0:N

0:N

0:N

1

1

0:N

KEY:

atttypid

typrelid

typinput

typoutput

typreceive

typsend

indexrelid

amopselect

amopnpages

prolang

amproc

oprcom

oprnegate

oprlsortop

oprrsortop

oprcode

oprrest

oprjoin

amgettuple

aminsert

amdelete

amgetattr

ambeginscan

amrescan

amendscan

ammarkpos

amrestrpos

ambuild

DEPENDENT

INDEPENDENT

pg_attribute

pg_class

pg_index

pg_type

pg_am

pg_proc

pg_language

pg_amop

pg_opclass

pg_amproc

pg_operator

attrelid

attnum

relam

oid

indrelid

indkey

indproc

indpred

oid

oid

oid

oid

amopid

amopclaid

amopopr

oid

amid

amopclaid

amprocnumoid

primary key

foreign key

non-oid primary

key (if any)

oprname

oprleft

oprright

oprresult

proname

prorettype

proargtypes

indicates these key values are alternate primary keys

(i.e., this class is generally identified by oid but may be

Figure 3. The majorPOSTGRESsystem catalogs.

(3) Types and procedures6 are central to the schema. Nearly every catalog contains
some reference to instances in one or both of these classes.For example,POST-
GRESfrequently uses type signatures (e.g., of functions and operators) to identify

6 We use the wordsprocedureandfunctionmore or less interchangably.

23

unique instances of other catalogs.

(4) Thereare many attributes and relationships that have obvious meanings, but there
are many (particularly those that have to do with access methods) that do not.
The relationships betweenpg_am, pg_amop, pg_amproc, pg_operator
and pg_opclass are particularly hard to understand and will be described in
depth (in the section on interfacing types and operators to indices) after we have
discussed basic extensions.

24

7. EXTENDING SQL: FUNCTIONS

As it turns out, part of defining a new type is the definition of functions that describe its
behavior. Consequently, while it is possible to define a new function without defining a
new type, the reverse is not true.We therefore describe how to add new functions to
POSTGRESbefore describing how to add new types.

POSTGRESSQL provides two types of functions:query language functions(functions
written in SQL andprogramming language functions(functions written in a compiled
programming language such as C.) Either kind of function can take a base type, a com-
posite type or some combination as arguments (parameters). In addition, both kinds of
functions can return a base type or a composite type.It’s easier to define SQL functions,
so we’ll start with those.

Examples in this section can also be found infuncs.sql andC-code/funcs.c .

7.1. QueryLanguage (SQL) Functions

7.1.1. SQLFunctions on Base Types
The simplest possible SQL function has no arguments and simply returns a base type,
such asint4 :

CREATE FUNCTION one() RETURNS int4
AS ’SELECT 1 as RESULT’ LANGUAGE ’sql’;

SELECT one() AS answer;

answer

1

Notice that we defined a target list for the function (with the nameRESULT), but the tar-
get list of the query that invoked the function overrode the function’s target list. Hence,
the result is labelledanswer instead ofone .

It’s almost as easy to define SQL functions that take base types as arguments. Inthe
example below, notice how we refer to the arguments within the function as$1 and$2 .

CREATE FUNCTION add_em(int4, int4) RETURNS int4
AS ’SELECT $1 + $2;’ LANGUAGE ’sql’;

25

SELECT add_em(1, 2) AS answer;

answer

3

7.1.2. SQLFunctions on Composite Types
When specifying functions with arguments of composite types (such asEMP), we must
not only specify which argument we want (as we did above with $1 and$2) but also the
attributes of that argument. For example, take the functiondouble_salary that com-
putes what your salary would be if it were doubled.

CREATE FUNCTION double_salary(EMP) RETURNS int4
AS ’SELECT $1.salary * 2 AS salary;’ LANGUAGE ’sql’;

SELECT name, double_salary(EMP) AS dream
FROM EMP
WHERE EMP.dept = ’toy’;

name dream

Sam 2400

Notice the use of the syntax$1.salary .

Before launching into the subject of functions that return composite types, we must first
introduce thefunctionnotation for projecting attributes. Thesimple way to explain this is
that we can usually use the notationattribute(class) andclass.attribute
interchangably.

--
-- this is the same as:
-- SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
--
SELECT name(EMP) AS youngster
FROM EMP
WHERE age(EMP) < 30;

youngster

Sam

As we shall see, however, this is not always the case.

This function notation is important when we want to use a function that returns a single
instance. We do this by assembling the entire instance within the function, attribute by
attribute. Thisis an example of a function that returns a singleEMPinstance:

26

CREATE FUNCTION new_emp() RETURNS EMP
AS ’SELECT \’None\’::text AS name,

1000 AS salary,
25 AS age,
\’none\’::char16 AS dept;’

LANGUAGE ’sql’;

In this case we have specified each of the attributes with a constant value, but any compu-
tation or expression could have been substituted for these constants.

Defining a function like this can be tricky. Some of the more important caveats are as fol-
lows:

• The target list order must beexactly the same as that in which the attributes appear in
theCREATE TABLE statement (or when you execute a.* query).

• You must be careful to typecast the expressions (using::) very carefully or you will
see the following error:

WARN::function declared to return type EMP does not retrieve (EMP.*)

• When calling a function that returns an instance, we cannot retrieve the entire
instance. We must either project an attribute out of the instance or pass the entire
instance into another function.

SELECT name(new_emp()) AS nobody;

nobody

None

• The reason why, in general, we must use the function syntax for projecting attributes
of function return values is that the parser just doesn’t understand the other (dot) syn-
tax for projection when combined with function calls.

SELECT new_emp().name AS nobody;
WARN:parser: syntax error at or near "."

Any collection of commands in the SQL query language can be packaged together and
defined as a function. The commands can include updates (i.e.,insert, update and
delete) as well as select queries. However, the final command must be aselect that
returns whatever is specified as the function’sreturntype .

CREATE FUNCTION clean_EMP () RETURNS int4
AS ’DELETE FROM EMP WHERE EMP.salary <= 0;

SELECT 1 AS ignore_this’
LANGUAGE ’sql’;

SELECT clean_EMP();

27

x

1

7.2. Programming Language Functions

7.2.1. Programming Language Functions on Base Types
Internally,POSTGRESregards a base type as a “blob of memory.” The user-defined func-
tions that you define over a type in turn define the way thatPOSTGREScan operate on it.
That is,POSTGRESwill only store and retrieve the data from disk and use your user-
defined functions to input, process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length
• pass by reference, fixed-length
• pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (even if your computer supports by-
value types of other sizes).POSTGRESitself only passes integer types by value. You
should be careful to define your types such that they will be the same size (in bytes) on all
architectures. For example, thelong type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereasint type is 4 bytes on mostUNIX machines
(though not on most personal computers).A reasonable implementation of theint4
type onUNIX machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of any size may be passed by-reference.For exam-
ple, here is a sample implementation of thePOSTGRESchar16 type:

/* 16-byte structure, passed by reference */
typedef struct {

char data[16];
} c har16;

Only pointers to such types can be used when passing them in and out ofPOSTGRES
functions.

Finally, all variable-length types must also be passed by reference. All variable-length
types must begin with a length field of exactly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that length field.The
length field is the total length of the structure (i.e., it includes the size of the length field
itself). We can define thetext type as follows:

typedef struct {
int4 length;

28

char data[1];
} t ext;

Obviously, thedata field is not long enough to hold all possible strings — it’s impossi-
ble to declare such a structure in C. When manipulating variable-length types, we must
be careful to allocate the correct amount of memory and initialize the length field.For
example, if we wanted to store 40 bytes in atext structure, we might use a code frag-
ment like this:

#include "postgres.h"
#include "utils/palloc.h"

...

char buffer[40]; /* our source data */

...

text *destination = (text *) palloc(VARHDRSZ + 40);
destination->length = VARHDRSZ + 40;
memmove(destination->data, buffer, 40);

...

Now that we’ve gone over all of the possible structures for base types, we can show some
examples of real functions. Supposefuncs.c look like:

#include <string.h>
#include "postgres.h" /* for char16, etc. */
#include "utils/palloc.h" /* for palloc */

int
add_one(int arg)
{

return(arg + 1);
}

char16 *
concat16(char16 *arg1, char16 *arg2)
{

char16 *new_c16 = (char16 *) palloc(sizeof(char16));

memset((void *) new_c16, 0, sizeof(char16));
(void) strncpy(new_c16, arg1, 16);
return (char16 *)(strncat(new_c16, arg2, 16));

}

text *
copytext(text *t)
{

/*

29

* V ARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t));

memset(new_t, 0, VARSIZE(t));

VARSIZE(new_t) = VARSIZE(t);
/*

* V ARDATA is a pointer to the data region of the struct.
*/

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */

return(new_t);
}

On OSF/1we would type:

CREATE FUNCTION add_one(int4) RETURNS int4
AS ’/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE ’c’;

CREATE FUNCTION concat16(char16, char16) RETURNS char16
AS ’/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE ’c’;

CREATE FUNCTION copytext(text) RETURNS text
AS ’/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE ’c’;

On other systems, we might have to make the filename end in.sl (to indicate that it’s a
shared library).

7.2.2. Programming Language Functions on Composite Types
Composite types do not have a fixed layout like C structures. Instancesof a composite
type may contain null fields.In addition, composite types that are part of an inheritance
hierarchy may have different fields than other members of the same inheritance hierarchy.
Therefore,POSTGRESprovides a procedural interface for accessing fields of composite
types from C.

As POSTGRESprocesses a set of instances, each instance will be passed into your func-
tion as an opaque structure of type TUPLE.

Suppose we want to write a function to answer the query

* S ELECT name, c_overpaid(EMP, 1500) AS overpaid
FROM EMP
WHERE name = ’Bill’ or name = ’Sam’;

In the query above, we can definec_overpaid as:

#include "postgres.h" /* for char16, etc. */
#include "libpq-fe.h" /* for TUPLE */

30

bool
c_overpaid(TUPLE t,/* the current instance of EMP */

int4 limit)
{

bool isnull = false;
int4 salary;

salary = (int4) GetAttributeByName(t, "salary", &isnull);

if (isnull)
return (false);

return(salary > limit);
}

GetAttributeByName is thePOSTGRESsystem function that returns attributes out of
the current instance.It has three arguments: the argument of type TUPLE passed into the
function, the name of the desired attribute, and a return parameter that describes whether
the attribute is null.GetAttributeByName will align data properly so you can cast
its return value to the desired type.For example, if you have an attributename which is
of the typechar16 , theGetAttributeByName call would look like:

char *str;
...
str = (char *) GetAttributeByName(t, "name", &isnull)

The following query letsPOSTGRESknow about thec_overpaid function:

* CREATE FUNCTION c_overpaid(EMP, int4) RETURNS bool
AS ’/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE ’c’;

While there are ways to construct new instances or modify existing instances from within
a C function, these are far too complex to discuss in this manual.

7.2.3. Caveats
We now turn to the more difficult task of writing programming language functions.Be
warned: this section of the manual will not make you a programmer. You must have a
good understanding of C (including the use of pointers and themalloc memory man-
ager) before trying to write C functions for use withPOSTGRES.

While it may be possible to load functions written in languages other than C intoPOST-
GRES, this is often difficult (when it is possible at all) because other languages, such as
FORTRAN and Pascal often do not follow the same “calling convention” as C. That is,
other languages do not pass argument and return values between functions in the same
way. For this reason, we will assume that your programming language functions are writ-
ten in C.

The basic rules for building C functions are as follows:

(1) Most of the header (include) files forPOSTGRESshould already be installed in
/usr/local/postgres95/include (see Figure 2).You should always
include

31

-I/usr/local/postgres95/include

on yourcc command lines. Sometimes, you may find that you require header
files that are in the server source itself (i.e., you need a file we neglected to install
in include). In those cases you may need to add one or more of

-I/usr/local/postgres95/src/backend
-I/usr/local/postgres95/src/backend/include
-I/usr/local/postgres95/src/backend/port/<PORTNAME>
-I/usr/local/postgres95/src/backend/obj

(where<PORTNAME>is the name of the port, e.g.,alpha or sparc).

(2) When allocating memory, use thePOSTGRESroutines palloc and pfree
instead of the corresponding C library routinesmalloc andfree . The memory
allocated bypalloc will be freed automatically at the end of each transaction,
preventing memory leaks.

(3) Always zero the bytes of your structures usingmemset or bzero . Sev eral rou-
tines (such as the hash access method, hash join and the sort algorithm) compute
functions of the raw bits contained in your structure.Even if you initialize all
fields of your structure, there may be several bytes of alignment padding (holes in
the structure) that may contain garbage values.

(4) Mostof the internalPOSTGREStypes are declared inpostgres.h , so it’s usu-
ally a good idea to include that file as well.

(5) Compilingand loading your object code so that it can be dynamically loaded into
POSTGRESalways requires special flags.See Appendix A for a detailed explana-
tion of how to do it for your particular operating system.

32

8. EXTENDING SQL: TYPES

As previously mentioned, there are two kinds of types inPOSTGRES: basetypes (defined
in a programming language) andcompositetypes (instances).

Examples in this section up to interfacing indices can be found incomplex.sql and
complex.c . Composite examples are infuncs.sql .

8.1. User-Defined Types

8.1.1. FunctionsNeeded for a User-Defined Type
A user-defined type must always have input andoutputfunctions. Thesefunctions deter-
mine how the type appears in strings (for input by the user and output to the user) and
how the type is organized in memory. The input function takes a null-delimited character
string as its input and returns the internal (in memory) representation of the type.The
output function takes the internal representation of the type and returns a null-delimited
character string.

Suppose we want to define acomplex type which represents complex numbers. Natu-
rally, we choose to represent a complex in memory as the following C structure:

typedef struct Complex {
double x;
double y;

} C omplex;

and a string of the form(x,y) as the external string representation.

These functions are usually not hard to write, especially the output function.However,
there are a number of points to remember.

(1) When defining your external (string) representation, remember that you must
ev entually write a complete and robust parser for that representation as your input
function!

Complex *
complex_in(char *str)
{

double x, y;
Complex *result;

if (sscanf(str, " (%lf , %lf)", &x, &y) != 2) {
elog(WARN, "complex_in: error in parsing
return NULL;

33

}
result = (Complex *)palloc(sizeof(Complex));
result->x = x;
result->y = y;
return (result);

}

The output function can simply be:

char *
complex_out(Complex *complex)
{

char *result;

if (complex == NULL)
return(NULL);

result = (char *) palloc(60);
sprintf(result, "(%g,%g)", complex->x, complex->y);
return(result);

}

(2) You should try to make the input and output functions inverses of each other. If
you do not, you will have sev ere problems when you need to dump your data into
a file and then read it back in (say, into someone else’s database on another com-
puter). Thisis a particularly common problem when floating-point numbers are
involved.

To define thecomplex type, we need to create the two user-defined functionscom-
plex_in andcomplex_out before creating the type:

CREATE FUNCTION complex_in(opaque)
RETURNS complex
AS ’/usr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ’c’;

CREATE FUNCTION complex_out(opaque)
RETURNS opaque
AS ’/usr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ’c’;

CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out

);

As discussed earlier, POSTGRESfully supports arrays of base types.Additionally, POST-
GRESsupports arrays of user-defined types as well. When you define a type,POSTGRES
automatically provides support for arrays of that type.For historical reasons, the array
type has the same name as the user-defined type with the underscore character_

34

prepended.

Composite types do not need any function defined on them, since the system already
understands what they look like inside.

8.1.2. Large Objects
The types discussed to this point are all “small” objects — that is, they are smaller than

8KB7 in size. If you require a larger type for something like a document retrieval system
or for storing bitmaps, you will need to use thePOSTGRESlarge object interface.

7 8 * 1024 == 8192 bytes. In fact, the type must be considerably smaller than 8192 bytes, since thePOSTGREStuple and page
overhead must also fit into this 8KB limitation. The actual value that fits depends on the machine architecture.

35

9. EXTENDING SQL: OPERATORS

POSTGRESsupports left unary, right unary and binary operators.Operators can beover-
loaded, or re-used with different numbers and types of arguments. Ifthere is an ambigu-
ous situation and the system cannot determine the correct operator to use, it will return an
error and you may have to typecast the left and/or right operands to help it understand
which operator you meant to use.

To create an operator for adding two complex numbers can be done as follows. Firstwe
need to create a function to add the new types. Then, we can create the operator with the
function.

CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS ’$PWD/obj/complex.so’
LANGUAGE ’c’;

CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +

);

We’v e shown how to create a binary operator here. To create unary operators, just omit
one ofleftarg (for left unary) orrightarg (for right unary).

If we give the system enough type information, it can automatically figure out which
operators to use.

SELECT (a + b) AS c FROM test_complex;

c

(5.2,6.05)

(133.42,144.95)

36

10. EXTENDING SQL: AGGREGATES

Aggregates inPOSTGRESare expressed in terms ofstate transition functions. That is, an
aggregate can be defined in terms ofstatethat is modified whenever an instance is pro-
cessed. Somestate functions look at a particular value in the instance when computing
the new state (sfunc1in the create aggregatesyntax) while others only keep track of
their own internal state (sfunc2).

If we define an aggregate that uses onlysfunc1 , we define an aggregate that computes a
running function of the attribute values from each instance. “Sum” is an example of this
kind of aggregate. “Sum”starts at zero and always adds the current instance’s value to its
running total.We will use theint4pl that is built into POSTGRESto perform this addi-
tion.

CREATE AGGREGATE complex_sum (
sfunc1 = complex_add,
basetype = complex,
stype1 = complex,
initcond1 = ’(0,0)’

);

SELECT complex_sum(a) FROM test_complex;

complex_sum

(34,53.9)

If we define onlysfunc2 , we are specifying an aggregate that computes a running func-
tion that is independent of the attribute values from each instance. “Count” is the most
common example of this kind of aggregate. “Count” starts at zero and adds one to its
running total for each instance, ignoring the instance value. Here,we use the built-in
int4inc routine to do the work for us.This routine increments (adds one to) its argu-
ment.

CREATE AGGREGATE my_count (sfunc2 = int4inc, -- add one
basetype = int4, stype2 = int4,
initcond2 = ’0’)

SELECT my_count(*) as emp_count from EMP;

37

emp_count

5

“A verage” is an example of an aggregate that requires both a function to compute the run-
ning sum and a function to compute the running count.When all of the instances have
been processed, the final answer for the aggregate is the running sum divided by the run-
ning count. We use theint4pl and int4inc routines we used before as well as the
POSTGRESinteger division routine,int4div , to compute the division of the sum by the
count.

CREATE AGGREGATE my_average (sfunc1 = int4pl, -- sum
basetype = int4,
stype1 = int4,
sfunc2 = int4inc, -- count
stype2 = int4,
finalfunc = int4div, -- division
initcond1 = ’0’,
initcond2 = ’0’)

SELECT my_average(salary) as emp_average FROM EMP;

emp_average

1640

38

11. INTERFACING EXTENSIONS TO INDICES

The procedures described thus far let you define a new type, new functions and new oper-
ators. However, we cannot yet define a secondary index (such as a B-tree, R-tree or hash
access method) over a new type or its operators.

Look back at Figure 3. The right half shows the catalogs that we must modify in order to
tell POSTGREShow to use a user-defined type and/or user-defined operators with an
index (i.e., pg_am, pg_amop, pg_amproc andpg_opclass). Unfortunately, there
is no simple command to do this.We will demonstrate how to modify these catalogs
through a running example: a new operator class for the B-tree access method that sorts
integers in ascending absolute value order.

The pg_am class contains one instance for every user-defined access method.Support
for the heap access method is built intoPOSTGRES, but every other access method is
described here. The schema is

amname name of the access method
amowner object id of the owner’s instance in pg_user
amkind not used at present, but set to ’o’ as a place holder
amstrategies number of strategies for this access method (see below)
amsupport number of support routines for this access method (see below)
amgettuple
aminsert
...

procedure identifiers for interface routines to the access
method. For example, regproc ids for opening, closing,
and getting instances from the access method appear here.

The object ID of the instance inpg_am is used as a foreign key in lots of other classes.
You don’t need to add a new instance to this class; all you’re interested in is the object ID
of the access method instance you want to extend:

SELECT oid FROM pg_am WHERE amname = ’btree’

oid

403

The amstrategies attribute exists to standardize comparisons across data types.For
example, B-trees impose a strict ordering on keys, lesser to greater. Since POSTGRES
allows the user to define operators,POSTGREScannot look at thename of an operator
(eg, > or <) and tell what kind of comparison it is. In fact, some access methods don’t
impose any ordering at all. For example, R-trees express a rectangle-containment

39

relationship, whereas a hashed data structure expresses only bitwise similarity based on
the value of a hash function.POSTGRESneeds some consistent way of taking a qualifica-
tion in your query, looking at the operator and then deciding if a usable index exists. This
implies thatPOSTGRESneeds to know, for example, that the<= and> operators partition
a B-tree. POSTGRESuses strategies to express these relationships between operators and
the way they can be used to scan indices.

Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain
how B-tree strategies work because you’ll need to know that to add a new operator class.
In thepg_am class, theamstrategies attribute is the number of strategies defined for
this access method.For B-trees, this number is 5. These strategies correspond to

less than 1
less than or equal 2
equal 3
greater than or equal 4
greater than 5

The idea is that you’ll need to add procedures corresponding to the comparisons above to
thepg_amop relation (see below). Theaccess method code can use these strategy num-
bers, regardless of data type, to figure out how to partition the B-tree, compute selectivity,
and so on.Don’t worry about the details of adding procedures yet; just understand that
there must be a set of these procedures forint2 , int4 , oid , and every other data type
on which a B-tree can operate.

Sometimes, strategies aren’t enough information for the system to figure out how to use
an index. Someaccess methods require other support routines in order to work. For
example, the B-tree access method must be able to compare two keys and determine
whether one is greater than, equal to, or less than the other. Similarly, the R-tree access
method must be able to compute intersections, unions, and sizes of rectangles.These
operations do not correspond to user qualifications in SQL queries; they are administra-
tive routines used by the access methods, internally.

In order to manage diverse support routines consistently across allPOSTGRESaccess
methods,pg_am includes an attribute calledamsupport . This attribute records the
number of support routines used by an access method.For B-trees, this number is one —
the routine to take two keys and return−1, 0, or+1, depending on whether the first key is

less than, equal to, or greater than the second.8

The amstrategies entry in pg_am is just thenumberof strategies defined for the
access method in question. The procedures for less than, less equal, and so on don’t
appear inpg_am. Similarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest ispg_opclass. This class exists only to associate a name
with an oid . In pg_amop, every B-tree operator class has a set of procedures, one
through five, above. Some existing opclasses areint2_ops , int4_ops , and

8 Strictly speaking, this routine can return a negative number (< 0), 0, or a non-zero positive number (> 0).

40

oid_ops . You need to add an instance with your opclass name (for example,com-
plex_abs_ops) to pg_opclass . The oid of this instance is a foreign key in other
classes.

INSERT INTO pg_opclass (opcname) VALUES (’complex_abs_ops’);

SELECT oid, opcname
FROM pg_opclass
WHERE opcname = ’complex_abs_ops’;

oid opcname

17314 int4_abs_ops

Note that theoid for yourpg_opclass instancewill be differ ent! You should substi-
tute your value for 17314 wherever it appears in this discussion.

So now we hav ean access method and an operator class.We still need a set of operators;
the procedure for defining operators was discussed earlier in this manual.For the com-
plex_abs_ops operator class on B-trees, the operators we require are:

absolute value less-than
absolute value less-than-or-equal
absolute value equal
absolute value greater-than-or-equal
absolute value greater-than

Suppose the code that implements the functions defined is stored in the file

/usr/local/postgres95/src/tutorial/complex.c

Part of the code look like this: (note that we will only show the equality operator for the
rest of the examples. The other four operators are very similar. Refer tocomplex.c or
complex.sql for the details.)

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

bool
complex_abs_eq(Complex *a, Complex *b)
{

double amag = Mag(a), bmag = Mag(b);
return (amag==bmag);

}

There are a couple of important things that are happening below.

First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal,
and greater-than for int4 are being defined. All of these operators are already defined
for int4 under the names<, <=, =, >=, and >. The new operators behave differently, of
course. Inorder to guarantee thatPOSTGRESuses these new operators rather than the old

41

ones, they need to be named differently from the old ones. This is a key point: you can
overload operators inPOSTGRES, but only if the operator isn’t already defined for the
argument types. That is, if you have < defined for (int4 , int4), you can’t define it
again. POSTGRESdoes not checkthis when you define your operator, so be careful. To
avoid this problem, odd names will be used for the operators.If you get this wrong, the
access methods are likely to crash when you try to do scans.

The other important point is that all the operator functions returnBooleanvalues. The
access methods rely on this fact. (Onthe other hand, the support function returns what-
ev er the particular access method expects — in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when we discussed the
amsupport attribute of thepg_am class. We will use this later on.For now, ignore it.

CREATE FUNCTION complex_abs_eq(complex, complex)
RETURNS bool
AS ’/usr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ’c’;

Now define the operators that use them. As noted, the operator names must be unique
among all operators that take two int4 operands. Inorder to see if the operator names
listed below are taken, we can do a query onpg_operator :

/*
* t his query uses the regular expression operator (˜)
* to f ind three-character operator names that end in
* t he character &
*/

SELECT *
FROM pg_operator
WHERE oprname ˜ ’ˆ..&$’::text;

to see if your name is taken for the types you want. Theimportant things here are the
procedure (which are the C functions defined above) and the restriction and join selectiv-
ity functions. You should just use the ones used below—note that there are different such
functions for the less-than, equal, and greater-than cases.Thesemustbe supplied, or the
access method will crash when it tries to use the operator. You should copy the names for
restrict andjoin , but use the procedure names you defined in the last step.

CREATE OPERATOR = (
leftarg = complex, rightarg = complex, procedure = complex_abs_eq,
restrict = eqsel, join = eqjoinsel

)

Notice that five operators corresponding to less, less equal, equal, greater, and greater
equal are defined.

We’re just about finished. the last thing we need to do is to update thepg_amop relation.
To do this, we need the following attributes:

42

amopid the oid of the pg_am instance
for B-tree (== 403, see above)

amopclaid the oid of the pg_opclass
instance for int4_abs_ops
(== whatever you got instead of
17314, see above)

amopopr theoid s of the operators for the
opclass (which we’ll get in just
a minute)
cost functions.amopselect,

amopnpages

The cost functions are used by the query optimizer to decide whether or not to use a given
index in a scan. Fortunately, these already exist. The two functions we’ll use are
btreesel, which estimates the selectivity of the B-tree, andbtreenpage, which
estimates the number of pages a search will touch in the tree.

So we need theoid s of the operators we just defined.We’l l look up the names of all the
operators that take two int4 s, and pick ours out:

SELECT o.oid AS opoid, o.oprname
INTO TABLE complex_ops_tmp
FROM pg_operator o, pg_type t
WHERE o.oprleft = t.oid and o.oprright = t.oid

and t.typname = ’complex’;

which returns:

oid oprname

17321 <

17322 <=

17323 =

17324 >=

17325 >

(Again, some of youroid numbers will almost certainly be different.) Theoperators we
are interested in are those withoid s 17321 through 17325.The values you get will
probably be different, and you should substitute them for the values below. We can look
at the operator names and pick out the ones we just added.

Now we’re ready to updatepg_amop with our new operator class. The most important
thing in this entire discussion is that the operators are ordered, from less equal through
greater equal, inpg_amop. We add the instances we need:

INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy,
amopselect, amopnpages)

SELECT am.oid, opcl.oid, c.opoid, 3,
’btreesel’::regproc, ’btreenpage’::regproc

43

FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = ’btree’ and opcname = ’complex_abs_ops’

and c.oprname = ’=’;

Note the order: “less than” is 1, “less than or equal” is 2, “equal” is 3, “greater than or
equal” is 4, and “greater than” is 5.

The last step (finally!) is registration of the “support routine” previously described in our
discussion ofpg_am. The oid of this support routine is stored in thepg_amproc
class, keyed by the access methodoid and the operator classoid . First, we need to reg-
ister the function inPOSTGRES(recall that we put the C code that implements this rou-
tine in the bottom of the file in which we implemented the operator routines):

CREATE FUNCTION int4_abs_cmp(int4, int4)
RETURNS int4
AS ’/usr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ’c’;

SELECT oid, proname FROM pg_proc WHERE prname = ’int4_abs_cmp’;

oid proname

17328 int4_abs_cmp

(Again, youroid number will probably be different and you should substitute the value
you see for the value below.) Recalling that the B-tree instance’s oid is 403 and that of
int4_abs_ops is 17314, we can add the new instance as follows:

INSERT INTO pg_amproc (amid, amopclaid, amproc, amprocnum)
VALUES (’403’::oid, -- btree oid

’17314’::oid, -- pg_opclass tuple
’17328’::oid, -- new pg_proc oid
’1’::int2);

44

12. LIBPQ

LIBPQ is the application programming interface toPOSTGRES. LIBPQ is a set of library
routines which allows client programs to pass queries to thePOSTGRESbackend server
and to receive the results of these queries.

This version of the documentation describes the C interface library. Three short pro-
grams are included at the end of this section to show how to write programs that use
LIBPQ.

There are several examples ofLIBPQ applications in the following directories:

../src/test/regress

../src/test/examples

../src/bin/psql

Frontend programs which useLIBPQ must include the header filelibpq-fe.h and
must link with thelibpq library.

12.1. Control and Initialization
The following environment variables can be used to set up default environment values to
avoid hard-coding database names into an application program:

• PGHOST sets the default server name.
• PGOPTIONS sets additional runtime options for thePOSTGRESbackend.
• PGPORT sets the default port for communicating with thePOSTGRESbackend.
• PGTTY sets the file or tty on which debugging messages from the backend server are

displayed.
• PGDAT ABASE sets the defaultPOSTGRESdatabase name.
• PGREALM sets theKerberosrealm to use withPOSTGRES, if it is different from the

local realm. If PGREALMis set,POSTGRESapplications will attempt authentication
with servers for this realm and use separate ticket files to avoid conflicts with local
ticket files. This environment variable is only used ifKerberos authentication is
enabled.

12.2. DatabaseConnection Functions
The following routines deal with making a connection to a backend from a C program.

PQsetdb

Makes a new connection to a backend.

PGconn *PQsetdb(char *pghost,
char *pgport,

45

char *pgoptions,
char *pgtty,
char *dbName);

If any argument is NULL, then the corresponding environment variable is checked.
If the environment variable is also not set, then hardwired defaults are used.

PQsetdbalways returns a valid PGconn pointer. The PQstatus(see below) com-
mand should be called to ensure that a connection was properly made before
queries are sent via the connection.LIBPQ programmers should be careful to main-
tain the PGconn abstraction. Use the accessor functions below to get at the contents
of PGconn. Av oid directly referencing the fields of the PGconn structure as they
are subject to change in the future.

PQdb returns the database name of the connection.

char *PQdb(PGconn *conn)

PQhostreturns the host name of the connection.

char *PQhost(PGconn *conn)

PQoptionsreturns the pgoptions used in the connection.

char *PQoptions(PGconn *conn)

PQport returns the pgport of the connection.

char *PQport(PGconn *conn)

PQtty returns the pgtty of the connection.

char *PQtty(PGconn *conn)

PQstatus Returns the status of the connection. The status can be CONNEC-
TION_OK or CONNECTION_BAD.

ConnStatusType *PQstatus(PGconn *conn)

PQerrorMessagereturns the error message associated with the connection

char *PQerrorMessage(PGconn* conn);

PQfinish

Close the connection to the backend. Alsofrees memory used by the PGconn struc-
ture. ThePGconn pointer should not be used after PQfinish has been called.

void PQfinish(PGconn *conn)

46

PQreset

Reset the communication port with the backend. Thisfunction will close the IPC
socket connection to the backend and attempt to reestablish a new connection to the
same backend.

void PQreset(PGconn *conn)

PQtrace

Enables tracing of messages passed between the frontend and the backend. The
messages are echoed to the debug_port file stream.

void PQtrace(PGconn *conn,
FILE* debug_port);

PQuntrace

Disables tracing of messages passed between the frontend and the backend.

void PQuntrace(PGconn *conn);

12.3. QueryExecution Functions
PQexec

Submit a query toPOSTGRES. Returns a PGresult pointer if the query was success-
ful or a NULL otherwise. If a NULL is returned,PQerrorMessage can be used to
get more information about the error.

PGresult *PQexec(PGconn *conn,
char *query);

The PGresult structure encapsulates the query result returned by the backend.
LIBPQ programmers should be careful to maintain the PGresult abstraction. Use the
accessor functions described below to retrieve the results of the query. Avoid
directly referencing the fields of the PGresult structure as they are subject to change
in the future.

PQresultStatus

Returns the result status of the query. PQresultStatuscan return one of the follow-
ing values:

PGRES_EMPTY_QUERY,
PGRES_COMMAND_OK, /*the query was a command */
PGRES_TUPLES_OK, /* the query successfully returned tuples */
PGRES_COPY_OUT,
PGRES_COPY_IN,
PGRES_BAD_RESPONSE, /* an unexpected response was received */
PGRES_NONFATAL_ERROR,
PGRES_FATAL_ERROR

47

If the result status is PGRES_TUPLES_OK, then the following routines can be used
to retrieve the tuples returned by the query.

PQntuplesreturns the number of tuples (instances) in the query result.

int PQntuples(PGresult *res);

PQnfieldsreturns the number of fields (attributes) in the query result.

int PQnfields(PGresult *res);

PQfname returns the field (attribute) name associated with the given field index.
Field indices start at 0.

char *PQfname(PGresult *res,
int field_index);

PQfnumber returns the field (attribute) index associated with the given field name.

int PQfnumber(PGresult *res,
char* field_name);

PQftype returns the field type associated with the given field index. The integer
returned is an internal coding of the type. Field indices start at 0.

Oid PQftype(PGresult *res,
int field_num);

PQfsizereturns the size in bytes of the field associated with the given field index. If
the size returned is -1, the field is a variable length field. Field indices start at 0.

int2 PQfsize(PGresult *res,
int field_index);

PQgetvaluereturns the field (attribute) value. For most queries, the value returned
by PQgetvalueis a null-terminated ASCII string representation of the attribute
value. If the query was a result of aBINARY cursor, then the value returned by
PQgetvalueis the binary representation of the type in the internal format of the
backend server. It is the programmer’s responsibility to cast and convert the data to
the correct C type. The value returned byPQgetvaluepoints to storage that is part
of the PGresult structure. One must explicitly copy the value into other storage if it
is to be used past the lifetime of the PGresult structure itself.

char* PQgetvalue(PGresult *res,
int tup_num,
int field_num);

PQgetlengthreturns the length of a field (attribute) in bytes. If the field is astruct
varlena, the length returned here doesnot include the size field of the varlena, i.e.,
it is 4 bytes less.

48

int PQgetlength(PGresult *res,
int tup_num,
int field_num);

PQcmdStatus

Returns the command status associated with the last query command.

char *PQcmdStatus(PGresult *res);

PQoidStatus

Returns a string with the object id of the tuple inserted if the last query is an
INSERT command. Otherwise,returns an empty string.

char* PQoidStatus(PGresult *res);

PQprintTuples

Prints out all the tuples and, optionally, the attribute names to the specified output
stream. Theprogramspsql andmonitor both usePQprintTuplesfor output.

void PQprintTuples(
PGresult* res,
FILE* fout, /* output stream */
int printAttName,/* print attribute names or not*/
int terseOutput, /* delimiter bars or not?*/
int width /* width of column, variable width if 0*/
);

PQclear

Frees the storage associated with the PGresult.Every query result should be prop-
erly freed when it is no longer used.Failure to do this will result in memory leaks
in the frontend application.

void PQclear(PQresult *res);

12.4. Fast Path
POSTGRESprovides afast path interface to send function calls to the backend. Thisis a
trapdoor into system internals and can be a potential security hole.Most users will not
need this feature.

PGresult* PQfn(PGconn* conn,
int fnid,
int *result_buf,
int *result_len,
int result_is_int,
PQArgBlock *args,
int nargs);

49

The fnid argument is the object identifier of the function to be executed. result_bufis the
buffer in which to load the return value. Thecaller must have allocated sufficient space
to store the return value. Theresult length will be returned in the storage pointed to by
result_len. If the result is to be an integer value, thanresult_is_intshould be set to 1; oth-
erwise it should be set to 0.argsandnargsspecify the arguments to the function.

typedef struct {
int len;
int isint;
union {

int *ptr;
int integer;

} u ;
} P QArgBlock;

PQfn always returns a valid PGresult*. The resultStatus should be checked before the
result is used. The caller is responsible for freeing the PGresult withPQclearwhen it is
not longer needed.

12.5. Asynchronous Notification
POSTGRESsupports asynchronous notification via theLISTENandNOTIFYcommands.
A backend registers its interest in a particular relation with the LISTEN command.All
backends listening on a particular relation will be notified asynchronously when a
NOTIFY of that relation name is executed by another backend. Noadditional informa-
tion is passed from the notifier to the listener. Thus, typically, any actual data that needs
to be communicated is transferred through the relation.

LIBPQ applications are notified whenever a connected backend has received an asyn-
chronous notification.However, the communication from the backend to the frontend is
not asynchronous. Notification comes piggy-backed on other query results. Thus, an
application must submit queries, even empty ones, in order to receive notice of backend
notification. Ineffect, theLIBPQ application must poll the backend to see if there is any
pending notification information.After the execution of a query, a frontend may call
PQNotifiesto see if any notification data is available from the backend.

PQNotifies

returns the notification from a list of unhandled notifications from the backend.
Returns NULL if there are no pending notifications from the backend. PQNotifies
behaves like the popping of a stack.Once a notification is returned fromPQnoti-
fies,it is considered handled and will be removed from the list of notifications.

PGnotify* PQNotifies(PGconn *conn);

The second sample program gives an example of the use of asynchronous notification.

12.6. FunctionsAssociated with the COPY Command
The copycommand inPOSTGREShas options to read from or write to the network con-
nection used byLIBPQ. Therefore, functions are necessary to access this network con-
nection directly so applications may take full advantage of this capability.

50

PQgetline

Reads a newline-terminated line of characters (transmitted by the backend server)
into a buffer string of size length. Like fgets(3), this routine copies up tolength-1
characters intostring. It is like gets(3), however, in that it converts the terminating
newline into a null character.

PQgetlinereturns EOF at EOF, 0 if the entire line has been read, and 1 if the buffer
is full but the terminating newline has not yet been read.

Notice that the application must check to see if a new line consists of the single
character “.”, which indicates that the backend server has finished sending the
results of thecopycommand. Therefore,if the application ever expects to receive
lines that are more thanlength-1 characters long, the application must be sure to
check the return value ofPQgetlinevery carefully.

The code in

../src/bin/psql/psql.c

contains routines that correctly handle the copy protocol.

int PQgetline(PGconn *conn,
char *string,
int length)

PQputline

Sends a null-terminatedstring to the backend server.

The application must explicitly send the single character “.” to indicate to the back-
end that it has finished sending its data.

void PQputline(PGconn *conn,
char *string);

PQendcopy

Syncs with the backend. Thisfunction waits until the backend has finished the
copy. It should either be issued when the last string has been sent to the backend
usingPQputlineor when the last string has been received from the backend using
PGgetline. It must be issued or the backend may get “out of sync” with the fron-
tend. Uponreturn from this function, the backend is ready to receive the next
query.

The return value is 0 on successful completion, nonzero otherwise.

int PQendcopy(PGconn *conn);

As an example:

PQexec(conn, "create table foo (a int4, b char16, d float8)");
PQexec(conn, "copy foo from stdin");
PQputline(conn, "3<TAB>hello world<TAB>4.5\n");

51

PQputline(conn,"4<TAB>goodbye world<TAB>7.11\n");
...
PQputline(conn,".\n");
PQendcopy(conn);

12.7. LIBPQ Tr acing Functions
PQtrace

Enable tracing of the frontend/backend communication to a debugging file stream.

void PQtrace(PGconn *conn
FILE *debug_port)

PQuntrace

Disable tracing started byPQtrace

void PQuntrace(PGconn *conn)

12.8. UserAuthentication Functions
If the user has generated the appropriate authentication credentials (e.g., obtainingKer-
berostickets), the frontend/backend authentication process is handled byPQexecwithout
any further intervention. Thefollowing routines may be called byLIBPQ programs to tai-
lor the behavior of the authentication process.

fe_getauthname

Returns a pointer to static space containing whatever name the user has authenti-
cated. Useof this routine in place of calls togetenv(3) or getpwuid(3) by applica-
tions is highly recommended, as it is entirely possible that the authenticated user
name isnot the same as value of theUSERenvironment variable or the user’s entry
in /etc/passwd.

char *fe_getauthname(char* errorMessage)

fe_setauthsvc

Specifies thatLIBPQ should use authentication servicenamerather than its com-
piled-in default. Thisvalue is typically taken from a command-line switch.

void fe_setauthsvc(char *name,
char* errorMessage)

Any error messages from the authentication attempts are returned in the errorMes-
sage argument.

12.9. BUGS
The query buffer is 8192 bytes long, and queries over that length will be silently trun-
cated.

52

12.10. SamplePrograms

53

12.10.1. SampleProgram 1
/*

* t estlibpq.c
* T est the C version of LIBPQ, t he POSTGRESfrontend library.
*
*
*/

#include <stdio.h>
#include "libpq-fe.h"

void
exit_nicely(PGconn* conn)
{

PQfinish(conn);
exit(1);

}

main()
{

char *pghost, *pgport, *pgoptions, *pgtty;
char* dbName;
int nFields;
int i,j;

/* FILE *debug; */

PGconn* conn;
PGresult* res;

/* begin, by setting the parameters for a backend connection
if the parameters are null, then the system will try to use
reasonable defaults by looking up environment variables
or, failing that, using hardwired constants */

pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend server */
pgtty = NULL; /* debugging tty for the backend server */
dbName = "template1";

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {

fprintf(stderr,"Connection to database ’%s’ failed.0, dbName);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

}

/* debug = f open("/tmp/trace.out","w"); */
/* PQtrace(conn, debug); */

54

/* start a transaction block */
res = PQexec(conn,"BEGIN");
if (PQresultStatus(res) != PGRES_COMMAND_OK) {

fprintf(stderr,"BEGIN command failed0);
PQclear(res);
exit_nicely(conn);

}
/* should PQclear PGresult whenever it is no longer needed to avoid

memory leaks */
PQclear(res);

/* fetch instances from the pg_database, the system catalog of databases*/
res = PQexec(conn,"DECLARE myportal CURSOR FOR select * from pg_database");
if (PQresultStatus(res) != PGRES_COMMAND_OK) {

fprintf(stderr,"DECLARE CURSOR command failed0);
PQclear(res);
exit_nicely(conn);

}
PQclear(res);

res = PQexec(conn,"FETCH ALL in myportal");
if (PQresultStatus(res) != PGRES_TUPLES_OK) {

fprintf(stderr,"FETCH ALL command didn’t return tuples properly0);
PQclear(res);
exit_nicely(conn);

}

/* first, print out the attribute names */
nFields = PQnfields(res);
for (i=0; i < nFields; i++) {

printf("%-15s",PQfname(res,i));
}
printf("0);

/* next, print out the instances */
for (i=0; i < PQntuples(res); i++) {

for (j=0 ; j < n Fields; j++) {
printf("%-15s", PQgetvalue(res,i,j));

}
printf("0);

}

PQclear(res);

/* close the portal */
res = PQexec(conn, "CLOSE myportal");
PQclear(res);

/* end the transaction */
res = PQexec(conn, "END");
PQclear(res);

55

/* close the connection to the database and cleanup */
PQfinish(conn);

/* fclose(debug); */
}

56

12.10.2. SampleProgram 2
/*

* t estlibpq2.c
* T est of the asynchronous notification interface
*

populate a database with the following:

CREATE TABLE TBL1 (i int4);

CREATE TABLE TBL2 (i int4);

CREATE RULE r1 AS ON INSERT TO TBL1 DO [INSERT INTO TBL2 values (new.i); NOTIFY TBL2];

* T hen start up this program
* A fter the program has begun, do

INSERT INTO TBL1 values (10);

*
*
*/

#include <stdio.h>
#include "libpq-fe.h"

void exit_nicely(PGconn* conn)
{

PQfinish(conn);
exit(1);

}

main()
{

char *pghost, *pgport, *pgoptions, *pgtty;
char* dbName;
int nFields;
int i,j;

PGconn* conn;
PGresult* res;
PGnotify* notify;

/* begin, by setting the parameters for a backend connection
if the parameters are null, then the system will try to use
reasonable defaults by looking up environment variables
or, failing that, using hardwired constants */

pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend server */
pgtty = NULL; /* debugging tty for the backend server */
dbName = getenv("USER"); /* change this to the name of your test database*/

/* make a connection to the database */

57

conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {

fprintf(stderr,"Connection to database ’%s’ failed.0, dbName);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

}

res = PQexec(conn, "LISTEN TBL2");
if (PQresultStatus(res) != PGRES_COMMAND_OK) {

fprintf(stderr,"LISTEN command failed0);
PQclear(res);
exit_nicely(conn);

}
/* should PQclear PGresult whenever it is no longer needed to avoid

memory leaks */
PQclear(res);

while (1) {
/* async notification only come back as a result of a query*/
/* we can send empty queries */
res = PQexec(conn, " ");

/* printf("res->status = %s0, pgresStatus[PQresultStatus(res)]); */
/* check for asynchronous returns */
notify = PQnotifies(conn);
if (notify) {

fprintf(stderr,
"ASYNC NOTIFY of ’%s’ from backend pid ’%d’ received0,
notify->relname, notify->be_pid);

free(notify);
break;

}
PQclear(res);

}

/* close the connection to the database and cleanup */
PQfinish(conn);

}

58

12.10.3. SampleProgram 3
/*

* t estlibpq3.c
* T est the C version of LIBPQ, t he POSTGRESfrontend library.
* t ests the binary cursor interface
*
*
*
populate a database by doing the following:

CREATE TABLE test1 (i int4, d float4, p polygon);

INSERT INTO test1 values (1, 3.567, ’(3.0, 4.0, 1.0, 2.0)’::polygon);

INSERT INTO test1 values (2, 89.05, ’(4.0, 3.0, 2.0, 1.0)’::polygon);

the expected output is:

tuple 0: got
i = (4 b ytes) 1,
d = (4 b ytes) 3.567000,
p = (4 b ytes) 2 points boundbox = (hi=3.000000/4.000000, lo = 1.000000,2.000000)

tuple 1: got
i = (4 b ytes) 2,
d = (4 b ytes) 89.050003,
p = (4 b ytes) 2 points boundbox = (hi=4.000000/3.000000, lo = 2.000000,1.000000)

*
*/

#include <stdio.h>
#include "libpq-fe.h"
#include "utils/geo-decls.h" /* for the POLYGON type */

void exit_nicely(PGconn* conn)
{

PQfinish(conn);
exit(1);

}

main()
{

char *pghost, *pgport, *pgoptions, *pgtty;
char* dbName;
int nFields;
int i,j;
int i_fnum, d_fnum, p_fnum;

PGconn* conn;
PGresult* res;

/* begin, by setting the parameters for a backend connection
if the parameters are null, then the system will try to use

59

reasonable defaults by looking up environment variables
or, failing that, using hardwired constants */

pghost = NULL; /* host name of the backend server */
pgport = NULL; /* port of the backend server */
pgoptions = NULL; /* special options to start up the backend server */
pgtty = NULL; /* debugging tty for the backend server */

dbName = getenv("USER"); /* change this to the name of your test database*/

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {

fprintf(stderr,"Connection to database ’%s’ failed.0, dbName);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

}

/* start a transaction block */
res = PQexec(conn,"BEGIN");
if (PQresultStatus(res) != PGRES_COMMAND_OK) {

fprintf(stderr,"BEGIN command failed0);
PQclear(res);
exit_nicely(conn);

}
/* should PQclear PGresult whenever it is no longer needed to avoid

memory leaks */
PQclear(res);

/* fetch instances from the pg_database, the system catalog of databases*/
res = PQexec(conn,"DECLARE mycursor BINARY CURSOR FOR select * from test1");
if (PQresultStatus(res) != PGRES_COMMAND_OK) {

fprintf(stderr,"DECLARE CURSOR command failed0);
PQclear(res);
exit_nicely(conn);

}
PQclear(res);

res = PQexec(conn,"FETCH ALL in mycursor");
if (PQresultStatus(res) != PGRES_TUPLES_OK) {

fprintf(stderr,"FETCH ALL command didn’t return tuples properly0);
PQclear(res);
exit_nicely(conn);

}

i_fnum = PQfnumber(res,"i");
d_fnum = PQfnumber(res,"d");
p_fnum = PQfnumber(res,"p");

for (i=0;i<3;i++) {
printf("type[%d] = %d, size[%d] = %d0,

60

i, PQftype(res,i),
i, PQfsize(res,i));

}
for (i=0; i < PQntuples(res); i++) {

int *ival;
float *dval;
int plen;
POLYGON* pval;
/* we hard-wire this to the 3 fields we know about */
ival = (int*)PQgetvalue(res,i,i_fnum);
dval = (float*)PQgetvalue(res,i,d_fnum);
plen = PQgetlength(res,i,p_fnum);

/* plen doesn’t include the length field so need to increment by VARHDSZ*/
pval = (POLYGON*) malloc(plen + VARHDRSZ);
pval->size = plen;
memmove((char*)&pval->npts, PQgetvalue(res,i,p_fnum), plen);
printf("tuple %d: got0, i);
printf(" i = (%d bytes) %d,0,

PQgetlength(res,i,i_fnum), *ival);
printf(" d = (%d bytes) %f,0,

PQgetlength(res,i,d_fnum), *dval);
printf(" p = (%d bytes) %d points boundbox = (hi=%f/%f, lo = %f,%f)0,

PQgetlength(res,i,d_fnum),
pval->npts,
pval->boundbox.xh,
pval->boundbox.yh,
pval->boundbox.xl,
pval->boundbox.yl);

}

PQclear(res);

/* close the portal */
res = PQexec(conn, "CLOSE mycursor");
PQclear(res);

/* end the transaction */
res = PQexec(conn, "END");
PQclear(res);

/* close the connection to the database and cleanup */
PQfinish(conn);

}

61

13. LARGE OBJECTS

In POSTGRES, data values are stored in tuples and individual tuples cannot span data
pages. Since the size of a data page is 8192 bytes, the upper limit on the size of a data
value is relatively low. To support the storage of larger atomic values,POSTGRESpro-
vides a large object interface. Thisinterface provides file-oriented access to user data that
has been declared to be a large type.

This section describes the implementation and the programmatic and query language
interfaces toPOSTGRESlarge object data.

13.1. HistoricalNote
Originally, POSTGRES4.2 supports three standard implementations of large objects: as
files external toPOSTGRES, as UNIX files managed byPOSTGRES, and as data stored
within the POSTGRESdatabase. It causes considerable confusion among users. As a
result, we only support large objects as data stored within thePOSTGRESdatabase in
POSTGRES95. Even though is is slower to access, it provides stricter data integrity and
time travel. For historical reasons, they are called Inversion large objects. (We will use
Inversion and large objects interchangeably to mean the same thing in this section.)

13.2. Inversion Large Objects
The Inversion large object implementation breaks large objects up into “chunks” and
stores the chunks in tuples in the database.A B-tree index guarantees fast searches for
the correct chunk number when doing random access reads and writes.

13.3. Large Object Interfaces
The facilities POSTGRESprovides to access large objects, both in the backend as part of
user-defined functions or the front end as part of an application using theinterface, are
described below. (For users familiar withPOSTGRES4.2, POSTGRES95 has a new set of
functions providing a more coherent interface. The interface is the same for dynamically-
loaded C functions as well as for .

The POSTGRESlarge object interface is modeled after theUNIX file system interface,
with analogues ofopen(2), read(2), write(2), lseek(2), etc. User functions call these rou-
tines to retrieve only the data of interest from a large object. For example, if a large
object type calledmugshotexisted that stored photographs of faces, then a function called
beardcould be declared onmugshotdata. Beardcould look at the lower third of a photo-
graph, and determine the color of the beard that appeared there, if any. The entire large
object value need not be buffered, or even examined, by thebeardfunction.

Large objects may be accessed from dynamically-loaded C functions or database client
programs that link thelibrary. POSTGRESprovides a set of routines that support open-
ing, reading, writing, closing, and seeking on large objects.

62

13.3.1. Creating a Large Object
The routine

Oid lo_creat(PGconn *conn, int mode)

creates a new large object. Themodeis a bitmask describing several different attributes of
the new object. Thesymbolic constants listed here are defined in

/usr/local/postgres95/src/backend/libpq/libpq-fs.h

The access type (read, write, or both) is controlled byOR ing together the bitsINV_READ
andINV_WRITE. If the large object should be archived — that is, if historical versions of
it should be moved periodically to a special archive relation — then theINV_ARCHIVE
bit should be set. The low-order sixteen bits ofmaskare the storage manager number on
which the large object should reside.For sites other than Berkeley, these bits should
always be zero.

The commands below create an (Inversion) large object:

inv_oid = lo_creat(INV_READ|INV_WRITE|INV_ARCHIVE);

13.3.2. Importinga Large Object To import a UNIX file as a large object, call

Oid
lo_import(PGconn *conn, text *filename)

Thefilenameargument specifies the UNIX pathname of the file to be imported as a large
object.

13.3.3. Exportinga Large Object To export a large object into UNIX file, call

int
lo_export(PGconn *conn, Oid lobjId, text *filename)

The lobjId argument specifies the Oid of the large object to export and thefilenameargu-
ment specifies the UNIX pathname of the file.

13.3.4. Openingan Existing Large Object
To open an existing large object, call

int
lo_open(PGconn *conn, Oid lobjId, int mode, ...)

The lobjId argument specifies the Oid of the large object to open. The mode bits control
whether the object is opened for readingINV_READ), writing or both.

A large object cannot be opened before it is created.lo_open returns a large object
descriptor for later use inlo_read , lo_write , lo_lseek , lo_tell , and
lo_close .

63

13.3.5. Writing Data to a Large Object
The routine

int
lo_write(PGconn *conn, int fd, char *buf, int len)

writes len bytes frombuf to large objectfd. The fd argument must have been returned by
a previouslo_open.

The number of bytes actually written is returned. In the event of an error, the return value
is negative.

13.3.6. Seekingon a Large Object
To change the current read or write location on a large object, call

int
lo_lseek(PGconn *conn, int fd, int offset, int whence)

This routine moves the current location pointer for the large object described byfd to the
new location specified byoffset. The valid values for .i whence areSEEK_SET
SEEK_CURandSEEK_END.

13.3.7. Closinga Large Object Descriptor
A large object may be closed by calling

int
lo_close(PGconn *conn, int fd)

wherefd is a large object descriptor returned bylo_open. On success,lo_closereturns
zero. Onerror, the return value is negative.

13.4. Built in registered functions
There are two built-in registered functions,lo_importandlo_exportwhich are convenient
for use in SQL queries.

Here is an example of there use

CREATE TABLE image (
name text,
raster oid

);

INSERT INTO image (name, raster)
VALUES (’beautiful image’, lo_import(’/etc/motd’));

SELECT lo_export(image.raster, "/tmp/motd") from image
WHERE name = ’beautiful image’;

64

13.5. AccessingLar ge Objects from LIBPQ Below is a sample program which shows
how the large object interface inLIBPQ can be used.Parts of the program are commented
out but are left in the source for the readers benefit. This program can be found in

../src/test/examples

Frontend applications which use the large object interface inLIBPQ should include the
header filelibpq/libpq-fs.h and link with thelibpq library.

65

13.6. SampleProgram

/*---
*
* t estlo.c--
* t est using large objects with libpq
*
* Copyright (c) 1994, Regents of the University of California
*
*
* I DENTIFICATION
* / usr/local/devel/pglite/cvs/src/doc/manual.me,v 1.16 1995/09/01 23:55:00 jolly Exp
*
*---
*/

#include <stdio.h>
#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
* i mportFile -
* i mport file "in_filename" into database as large object "lobjOid"
*
*/

Oid importFile(PGconn *conn, char *filename)
{

Oid lobjId;
int lobj_fd;
char buf[BUFSIZE];
int nbytes, tmp;
int fd;

/*
* o pen the file to be read in
*/

fd = open(filename, O_RDONLY, 0666);
if (fd < 0) { / * e rror */

fprintf(stderr, "can’t open unix file
}

/*
* c reate the large object
*/

lobjId = lo_creat(conn, INV_READ|INV_WRITE);
if (lobjId == 0) {

fprintf(stderr, "can’t create large object");
}

lobj_fd = lo_open(conn, lobjId, INV_WRITE);
/*

66

* r ead in from the Unix file and write to the inversion file
*/

while ((nbytes = read(fd, buf, BUFSIZE)) > 0) {
tmp = lo_write(conn, lobj_fd, buf, nbytes);
if (tmp < nbytes) {

fprintf(stderr, "error while reading
}

}

(void) close(fd);
(void) lo_close(conn, lobj_fd);

return lobjId;
}

void pickout(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char* buf;
int nbytes;
int nread;

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0) {

fprintf(stderr,"can’t open large object %d",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len+1);

nread = 0;
while (len - nread > 0) {

nbytes = lo_read(conn, lobj_fd, buf, len - nread);
buf[nbytes] = ’ ’;
fprintf(stderr,">>> %s", buf);
nread += nbytes;

}
fprintf(stderr,"0);
lo_close(conn, lobj_fd);

}

void overwrite(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char* buf;
int nbytes;
int nwritten;
int i;

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0) {

67

fprintf(stderr,"can’t open large object %d",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len+1);

for (i=0;i<len;i++)
buf[i] = ’X’;

buf[i] = ’ ’;

nwritten = 0;
while (len - nwritten > 0) {

nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
nwritten += nbytes;

}
fprintf(stderr,"0);
lo_close(conn, lobj_fd);

}

/*
* e xportFile -
* e xport large object "lobjOid" to file "out_filename"
*
*/

void exportFile(PGconn *conn, Oid lobjId, char *filename)
{

int lobj_fd;
char buf[BUFSIZE];
int nbytes, tmp;
int fd;

/*
* c reate an inversion "object"
*/

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0) {

fprintf(stderr,"can’t open large object %d",
lobjId);

}

/*
* o pen the file to be written to
*/

fd = open(filename, O_CREAT|O_WRONLY, 0666);
if (fd < 0) { / * e rror */

fprintf(stderr, "can’t open unix file
filename);

}

/*

68

* r ead in from the Unix file and write to the inversion file
*/

while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0) {
tmp = write(fd, buf, nbytes);

if (tmp < nbytes) {
fprintf(stderr,"error while writing

filename);
}

}

(void) lo_close(conn, lobj_fd);
(void) close(fd);

return;
}

void
exit_nicely(PGconn* conn)
{

PQfinish(conn);
exit(1);

}

int
main(int argc, char **argv)
{

char *in_filename, *out_filename;
char *database;
Oid lobjOid;
PGconn *conn;
PGresult *res;

if (argc != 4) {
fprintf(stderr, "Usage: %s database_name in_filename out_filename0,

argv[0]);
exit(1);

}

database = argv[1];
in_filename = argv[2];
out_filename = argv[3];

/*
* s et up the connection
*/

conn = PQsetdb(NULL, NULL, NULL, NULL, database);

/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD) {

fprintf(stderr,"Connection to database ’%s’ failed.0, database);
fprintf(stderr,"%s",PQerrorMessage(conn));
exit_nicely(conn);

69

}

res = PQexec(conn, "begin");
PQclear(res);
printf("importing file

/* lobjOid = i mportFile(conn, in_filename); */
lobjOid = lo_import(conn, in_filename);

/*
printf("as large object %d.0, lobjOid);

printf("picking out bytes 1000-2000 of the large object0);
pickout(conn, lobjOid, 1000, 1000);

printf("overwriting bytes 1000-2000 of the large object with X’s0);
overwrite(conn, lobjOid, 1000, 1000);

*/

printf("exporting large object to file
/* exportFile(conn, lobjOid, out_filename); */

lo_export(conn, lobjOid,out_filename);

res = PQexec(conn, "end");
PQclear(res);
PQfinish(conn);
exit(0);

}

70

14. THE POSTGRES RULE SYSTEM

Production rule systems are conceptually simple, but there are many subtle points
involved in actually using them.Consequently, we will not attempt to explain the actual
syntax and operation of thePOSTGRESrule system here. Instead, you should read
[STON90b] to understand some of these points and the theoretical foundations of the
POSTGRESrule system before trying to use rules.The discussion in this section is
intended to provide an overview of thePOSTGRESrule system and point the user at help-
ful references and examples.

The “query rewrite” rule system modifies queries to take rules into consideration, and
then passes the modified query to the query optimizer for execution. It is very powerful,
and can be used for many things such as query language procedures, views, and versions.
The power of this rule system is discussed in [ONG90] as well as [STON90b].

71

15. ADMINISTERING POSTGRES

In this section, we will discuss aspects ofPOSTGRESthat are of interest to those who
make extensive use ofPOSTGRES, or who are the site administrator for a group ofPOST-
GRESusers.

15.1. Frequent Tasks

Here we will briefly discuss some procedures that you should be familiar with in manag-
ing anyPOSTGRESinstallation.

15.1.1. Startingthe Postmaster
If you did not installPOSTGRESexactly as described in the installation instructions, you
may have to perform some additional steps before starting thepostmaster process.

• Even if you were not the person who installedPOSTGRES, you should understand the
installation instructions. The installation instructions explain some important issues
with respect to wherePOSTGRESplaces some important files, proper settings for envi-
ronment variables, etc. that may vary from one version ofPOSTGRESto another.

• You must start thepostmaster process with the user-id that owns the installed
database files. In most cases, if you have followed the installation instructions, this
will be the user “postgres”.If you do not start thepostmaster with the right user-
id, the backend servers that are started by thepostmaster will not be able to read
the data.

• Make sure that/usr/local/postgres95/bin is in your shell command path,
because thepostmaster will use yourPATHto locatePOSTGREScommands.

• Remember to set the environment variablePGDATAto the directory where thePOST-
GRESdatabases are installed. (This variable is more fully explained in thePOSTGRES
installation instructions.)

• If you do start thepostmaster using non-standard options, such as a different TCP
port number, remember to tell all users so that they can set theirPGPORTenvironment
variable correctly.

15.1.2. ShuttingDown the Postmaster
If you need to halt thepostmaster process, you can use theUNIX kill (1) command.
Some people habitually use the-9 or -KILL option; this should never be necessary and
we do not recommend that you do this, as thepostmaster will be unable to free its
various shared resources, its child processes will be unable to exit gracefully, etc.

72

15.1.3. Addingand Removing Users
The createuser anddestroyuser commands enable and disable access toPOST-
GRESby specific users on the host system.

15.1.4. Periodic Upkeep
Thevacuum command should be run on each database periodically. This command pro-

cesses deleted instances9 and, more importantly, updates the systemstatisticsconcerning
the size of each class. If these statistics are permitted to become out-of-date and inaccu-
rate, thePOSTGRESquery optimizer may make extremely poor decisions with respect to
query evaluation strategies. Therefore,we recommend runningvacuum ev ery night or
so (perhaps in a script that is executed by theUNIX cron (1) orat (1) commands).

Do frequent backups. That is, you should either back up your database directories using
the POSTGREScopy command and/or theUNIX dump(1) or tar (1) commands.You
may think, “Why am I backing up my database? What about crash recovery?” Oneside
effect of thePOSTGRES“no overwrite” storage manager is that it is also a “no log” stor-
age manager. That is, the database log stores only abort/commit data, and this is not
enough information to recover the database if the storage medium (disk) or the database
files are corrupted!In other words, if a disk block goes bad orPOSTGREShappens to
corrupt a database file,you cannot recover t hat file. This can be disastrous if the file is
one of the shared catalogs, such aspg_database .

15.1.5. Tuning
Once your users start to load a significant amount of data, you will typically run into per-
formance problems.POSTGRESis not the fastest DBMS in the world, but many of the
worst problems encountered by users are due to their lack of experience with any DBMS.
Some general tips include:

(1) Define indices over attributes that are commonly used for qualifications.For
example, if you often execute queries of the form

SELECT * from EMP where salary < 5000

then a B-tree index on the salary attribute will probably be useful. If scans
involving equality are more common, as in

SELECT * from EMP where salary = 5000

then you should consider defining a hash index on salary . You can define
both, though it will use more disk space and may slow down updates a bit.Scans
using indices aremuch faster than sequential scans of the entire class.

(2) Runthe vacuum command a lot. This command updates the statistics that the
query optimizer uses to make intelligent decisions; if the statistics are inaccurate,
the system will make inordinately stupid decisions with respect to the way it joins

9 This may mean different things depending on thearchive modewith which each class has been created.However, the current
implementation of thevacuum command doesnot perform any compaction or clustering of data.Therefore, theUNIX files which
store eachPOSTGRESclass never shrink and the space “reclaimed” byvacuum is never actually reused.

73

and scans classes.

(3) Whenspecifying query qualfications (i.e., thewhere part of the query), try to
ensure that a clause involving a constant can be turned into one of the form
range_variable operator constant, e.g.,

EMP.salary = 5000

ThePOSTGRESquery optimizer will only use an index with a constant qualifica-
tion of this form. It doesn’t hurt to write the clause as

5000 = EMP.salary

if the operator (in this case,=) has acommutatoroperator defined so thatPOST-
GREScan rewrite the query into the desired form.However, if such an operator
does not exist,POSTGRESwill never consider the use of an index.

(4) Whenjoining several classes together in one query, try to write the join clauses in
a “chained” form, e.g.,

where A.a = B.b and B.b = C.c and ...

Notice that relatively few clauses refer to a given class and attribute; the clauses
form a linear sequence connecting the attributes, like links in a chain. This is
preferable to a query written in a “star” form, such as

where A.a = B.b and A.a = C.c and ...

Here, many clauses refer to the same class and attribute (in this case,A.a).
When presented with a query of this form, thePOSTGRESquery optimizer will
tend to consider far more choices than it should and may run out of memory.

(5) If you are really desperate to see what query plans look like, you can run the
postmaster with the -d option and then runmonitor with the -t option.
The format in which query plans will be printed is hard to read but you should be
able to tell whether any index scans are being performed.

15.2. Infrequent Tasks

At some time or another, every POSTGRESsite administrator has to perform all of the fol-
lowing actions.

15.2.1. CleaningUp After Crashes
Thepostgres server and thepostmaster run as two different processes.They may
crash separately or together. The housekeeping procedures required to fix one kind of
crash are different from those required to fix the other.

The message you will usually see when the backend server crashes is:

FATAL: no response from backend: detected in ...

74

This generally means one of two things: there is a bug in thePOSTGRESserver, or there
is a bug in some user code that has been dynamically loaded intoPOSTGRES. You should
be able to restart your application and resume processing, but there are some considera-
tions:

(1) POSTGRESusually dumps a core file (a snapshot of process memory used for
debugging) in the database directory

/usr/local/postgres95/data/base/<database>/core

on the server machine. If you don’t want to try to debug the problem or produce
a stack trace to report the bug to someone else, you can delete this file (which is
probably around 10MB).

(2) Whenone backend crashes in an uncontrolled way (i.e., without calling its built-
in cleanup routines), thepostmaster will detect this situation, kill all running
servers and reinitialize the state shared among all backends (e.g., the shared
buffer pool and locks). If your server crashed, you will get the “no response”
message shown above. If your server was killed because someone else’s server
crashed, you will see the following message:

I h ave been signalled by the postmaster.
Some backend process has died unexpectedly and possibly
corrupted shared memory. The current transaction was
aborted, and I am going to exit. Please resend the
last query. -- The postgres backend

(3) Sometimesshared state is not completely cleaned up.Frontend applications may
see errors of the form:

WARN: cannot write block 34 of myclass [mydb] blind

In this case, you should kill thepostmaster and restart it.

(4) Whenthe system crashes while updating the system catalogs (e.g., when you are
creating a class, defining an index, retrieving into a class, etc.) the B-tree indices
defined on the catalogs are sometimes corrupted.The general (and non-unique)
symptom is thatall queries stop working. If you have tried all of the above steps
and nothing else seems to work, try using thereindexdb command. Ifrein-
dexdb succeeds but things still don’t work, you have another problem; if it fails,
the system catalogs themselves were almost certainly corrupted and you will have
to go back to your backups.

The postmaster does not usually crash (it doesn’t do very much except start servers)
but it does happen on occasion. In addition, there are a few cases where it encounters
problems during the reinitialization of shared resources.Specifically, there are race con-
ditions where the operating system lets thepostmaster free shared resources but then
will not permit it to reallocate the same amount of shared resources (even when there is
no contention).

You will typically have to run the ipcclean command if system errors cause the
postmaster to crash. If this happens, you may find (using theUNIX ipcs (1)

75

command) that the “postgres” user has shared memory and/or semaphores allocated even
though nopostmaster process is running. In this case, you should runipcclean as
the “postgres” user in order to deallocate these resources.Be warned thatall such
resources owned by the “postgres” user will be deallocated. If you have multiple post-
master processes running on the same machine, you should kill all of them before run-
ning ipcclean (otherwise, they will crash on their own when their shared resources are
suddenly deallocated).

15.2.2. Moving Database Directories
By default, all POSTGRES databases are stored in separate subdirectories under

/usr/local/postgres95/data/base .10 At some point, you may find that you
wish to move one or more databases to another location (e.g., to a filesystem with more
free space).

If you wish to moveall of your databases to the new location, you can simply:

• Kill the postmaster .
• Copy the entiredata directory to the new location (making sure that the new files are

owned by user “postgres”).

% cp -rp /usr/local/postgres95/data /new/place/data

• Reset yourPGDATAenvironment variable (as described earlier in this manual and in
the installation instructions).

using csh or tcsh...
% setenv PGDATA /new/place/data

using sh, ksh or bash...
% PGDATA=/new/place/data; export PGDATA

• Restart thepostmaster .

% postmaster &

• After you run some queries and are sure that the newly-moved database works, you
can remove the olddata directory.

% rm -rf /usr/local/postgres95/data

To install asingledatabase in an alternate directory while leaving all other databases in
place, do the following:

• Create the database (if it doesn’t already exist) using thecreatedb command. Inthe
following steps we will assume the database is namedfoo .

10 Data for certain classes may stored elsewhere if a non-standard storage manager was specified when they were created.Use
of non-standard storage managers is an experimental feature that is not supported outside of Berkeley.

76

• Kill the postmaster .
• Copy the directory/usr/local/postgres95/data/base/foo and its con-

tents to its ultimate destination. It should still be owned by the “postgres” user.

% cp -rp /usr/local/postgres95/data/base/foo /new/place/foo

• Remove the directory/usr/local/postgres95/data/base/foo :

% rm -rf /usr/local/postgres95/data/base/foo

• Make a symbolic link from /usr/local/postgres95/data/base to the new
directory:

% ln -s / new/place/foo /usr/local/postgres95/data/base/foo

• Restart thepostmaster .

15.2.3. UpdatingDatabases
POSTGRESis a research system. In general,POSTGRESmay not retain the same binary
format for the storage of databases from release to release. Therefore, when you update
your POSTGRESsoftware, you will probably have to modify your databases as well.This
is a common occurrence with commercial database systems as well; unfortunately, unlike
commercial systems,POSTGRESdoes not come with user-friendly utilities to make your
life easier when these updates occur.

In general, you must do the following to update your databases to a new software release:

• Extensions(such as user-defined types, functions, aggregates, etc.) must be reloaded
by re-executing the SQLCREATE commands. SeeAppendix A for more details.

• Data must be dumped from the old classes into ASCII files (using theCOPY com-
mand), the new classes created in the new database (using theCREATETABLE com-
mand), and the data reloaded from the ASCII files.

• Rulesand viewsmust also be reloaded by re-executing the variousCREATE com-
mands.

You should give any new release a “trial period”; in particular, do not delete the old
database until you are satisfied that there are no compatibility problems with the new
software. For example, you do not want to discover that a bug in a type’s “input” (con-
version from ASCII) and “output” (conversion to ASCII) routines prevents you from
reloading your data after you have destroyed your old databases! (This should be stan-
dard procedure when updating any software package, but some people try to economize
on disk space without applying enough foresight.)

15.3. DatabaseSecurity

Most sites that usePOSTGRESare educational or research institutions and do not pay
much attention to security in theirPOSTGRESinstallations. Ifdesired, one can install
POSTGRESwith additional security features.Naturally, such features come with addi-
tional administrative overhead that must be dealt with.

77

15.3.1. Kerberos
POSTGREScan be configured to use the MIT Kerberos network authentication system.
This prevents outside users from connecting to your databases over the network without
the correct authentication information.

15.4. Queryingthe System Catalogs

As an administrator (or sometimes as a plain user), you want to find out what extensions
have been added to a given database. Thequeries listed below are “canned” queries that
you can run on any database to get simple answers. Before executing any of the queries
below, be sure to execute thePOSTGRESvacuum command. (Thequeries will run much
more quickly that way.) Also,note that these queries are also listed in

/usr/local/postgres95/tutorial/syscat.sql

so use cut-and-paste (or the\i command) instead of doing a lot of typing.

This query prints the names of all database adminstrators and the name of their
database(s).

SELECT usename, datname
FROM pg_user, pg_database
WHERE usesysid = int2in(int4out(datdba))
ORDER BY usename, datname;

This query lists all user-defined classes in the database.

SELECT relname
FROM pg_class
WHERE relkind = ’r’ -- not indices

and relname !˜ ’ˆpg_’ -- not catalogs
and relname !˜ ’ˆInv’ -- not large objects

ORDER BY relname;

This query lists all simple indices (i.e., those that are not defined over a function of sev-
eral attributes).

SELECT bc.relname AS class_name,
ic.relname AS index_name,
a.attname

FROM pg_class bc, -- base class
pg_class ic, -- index class
pg_index i,
pg_attribute a -- att in base

WHERE i.indrelid = bc.oid
and i.indexrelid = ic.oid
and i.indkey[0] = a.attnum
and a.attrelid = bc.oid
and i.indproc = ’0’::oid -- no functional indices

78

ORDER BY class_name, index_name, attname;

This query prints a report of the user-defined attributes and their types for all user-defined
classes in the database.

SELECT c.relname, a.attname, t.typname
FROM pg_class c, pg_attribute a, pg_type t
WHERE c.relkind = ’r’ -- no indices

and c.relname !˜ ’ˆpg_’ -- no catalogs
and c.relname !˜ ’ˆInv’ -- no large objects
and a.attnum > 0 -- no system att’s
and a.attrelid = c.oid
and a.atttypid = t.oid

ORDER BY relname, attname;

This query lists all user-defined base types (not including array types).

SELECT u.usename, t.typname
FROM pg_type t, pg_user u
WHERE u.usesysid = int2in(int4out(t.typowner))

and t.typrelid = ’0’::oid -- no complex types
and t.typelem = ’0’::oid -- no arrays
and u.usename <> ’postgres’

ORDER BY usename, typname;

This query lists all left-unary (post-fix) operators.

SELECT o.oprname AS left_unary,
right.typname AS operand,
result.typname AS return_type

FROM pg_operator o, pg_type right, pg_type result
WHERE o.oprkind = ’l’ -- left unary

and o.oprright = right.oid
and o.oprresult = result.oid

ORDER BY operand;

This query lists all right-unary (pre-fix) operators.

SELECT o.oprname AS right_unary,
left.typname AS operand,
result.typname AS return_type

FROM pg_operator o, pg_type left, pg_type result
WHERE o.oprkind = ’r’ -- right unary

and o.oprleft = left.oid
and o.oprresult = result.oid

ORDER BY operand;

This query lists all binary operators.

SELECT o.oprname AS binary_op,
left.typname AS left_opr,

79

right.typname AS right_opr,
result.typname AS return_type

FROM pg_operator o, pg_type left, pg_type right, pg_type result
WHERE o.oprkind = ’b’ -- binary

and o.oprleft = left.oid
and o.oprright = right.oid
and o.oprresult = result.oid

ORDER BY left_opr, right_opr;

This query returns the name, number of arguments (parameters) and return type of all
user-defined C functions. The same query can be used to find all built-in C functions if
you change the “C” to “internal”, or all SQL functions if you change the “C” to
“postquel”.

SELECT p.proname, p.pronargs, t.typname
FROM pg_proc p, pg_language l, pg_type t
WHERE p.prolang = l.oid

and p.prorettype = t.oid
and l.lanname = ’c’

ORDER BY proname;

This query lists all of the aggregate functions that have been installed and the types to
which they can be applied.count is not included because it can take any type as its
argument.

SELECT a.aggname, t.typname
FROM pg_aggregate a, pg_type t
WHERE a.aggbasetype = t.oid
ORDER BY aggname, typname;

This query lists all of the operator classes that can be used with each access method as
well as the operators that can be used with the respective operator classes.

SELECT am.amname, opc.opcname, opr.oprname
FROM pg_am am, pg_amop amop, pg_opclass opc, pg_operator opr
WHERE amop.amopid = am.oid

and amop.amopclaid = opc.oid
and amop.amopopr = opr.oid

ORDER BY amname, opcname, oprname;

80

16. REFERENCES

[DATE93] Date,C. J. and Darwen, Hugh, A Guide to The SQL Standard, 3rd Edition,
Reading, MA, June 1993.

[MELT93] Melton,J. Understandingthe New SQL, 1994.

[ONG90] Ong,L. and Goh, J., ‘‘A Unified Framework for Version Modeling Using
Production Rules in a Database System," Electronics Research Laboratory,
University of California, ERL Technical Memorandum M90/33, Berkeley,
CA, April 1990.

[ROWE87] Rowe, L. and Stonebraker, M., ‘‘The POSTGRES Data Model,’’ Proc.
1987 VLDB Conference, Brighton, England, Sept. 1987.

[STON86] Stonebraker, M. and Rowe, L., ‘‘The Design of POSTGRES,’’ Proc. 1986
ACM-SIGMOD Conference on Management of Data, Washington, DC,
May 1986.

[STON87a] Stonebraker, M., Hanson, E. and Hong, C.-H., ‘‘The Design of the POST-
GRES Rules System,’’ Proc. 1987 IEEE Conference on Data Engineering,
Los Angeles, CA, Feb. 1987.

[STON87b] Stonebraker, M., ‘‘The POSTGRES Storage System,’’ Proc. 1987 VLDB
Conference, Brighton, England, Sept. 1987.

[STON89] Stonebraker, M., Hearst, M., and Potamianos, S., ‘‘A Commentary on the
POSTGRES Rules System,’’ SIGMOD Record18(3), Sept. 1989.

[STON90a] Stonebraker, M., Rowe, L. A., and Hirohama, M., ‘‘The Implementation of
POSTGRES,’’ I EEE Transactions on Knowledge and Data Engineering
2(1), March 1990.

[STON90b] Stonebraker, M. et al., ‘‘On Rules, Procedures, Caching and Views in
Database Systems,’’ Proc. 1990 ACM-SIGMOD Conference on Manage-
ment of Data, Atlantic City, N.J., June 1990.

81

Appendix A: Linking Dynamically-Loaded Functions

After you have created and registered a user-defined function, your work is essentially
done. POSTGRES, howev er, must load theobject code(e.g., a.o file, or a shared library)
that implements your function.As previously mentioned,POSTGRESloads your code at
run-time, as required.In order to allow your code to be dynamically loaded, you may
have to compile and link-edit it in a special way. This section briefly describes how to
perform the compilation and link-editing required before you can load your user-defined
functions into a runningPOSTGRESserver. Note thatthis process has changed as of Ver-

sion 4.2.11 You should expect to read (and reread, and re-reread) the manual pages for the
C compiler,cc (1), and the link editor, ld (1), if you have specific questions. In addition,
the regression test suites in the directory
/usr/local/postgres95/src/regress contain several working examples of
this process. If you copy what these tests do, you should not have any problems.

The following terminology will be used below:

Dynamic loading
is whatPOSTGRESdoes to an object file. The object file is copied into the running
POSTGRESserver and the functions and variables within the file are made available
to the functions within thePOSTGRESprocess. POSTGRESdoes this using the
dynamic loading mechanism provided by the operating system.

Loading and link editing
is what you do to an object file in order to produce another kind of object file (e.g.,
an executable program or a shared library).You perform this using the link editing
program,ld (1).

The following general restrictions and notes also apply to the discussion below.

• Paths given to the create function command must be absolute paths (i.e., start with
“/”) that refer to directories visible on the machine on which thePOSTGRESserver is

running.12

• The POSTGRESuser must be able to traverse the path given to the create function
command and be able to read the object file. This is because thePOSTGRESserver
runs as thePOSTGRESuser, not as the user who starts up the frontend process.

11 The oldPOSTGRESdynamic loading mechanism required in-depth knowledge in terms of executable format, placement and
alignment of executable instructions within memory, etc. on the part of the person writing the dynamic loader. Such loaders tended to
be slow and buggy. As of Version 4.2, thePOSTGRESdynamic loading mechanism has been rewritten to use the dynamic loading
mechanism provided by the operating system.This approach is generally faster, more reliable and more portable than our previous
dynamic loading mechanism.The reason for this is that nearly all modern versions ofUNIX use a dynamic loading mechanism to im-
plement shared libraries and must therefore provide a fast and reliable mechanism. On the other hand, the object file must be post-
processed a bit before it can be loaded intoPOSTGRES. We hope that the large increase in speed and reliability will make up for the
slight decrease in convenience.

12 Relative paths do in fact work, but are relative to the directory where the database resides (which is generally invisible to the
frontend application).Obviously, it makes no sense to make the path relative to the directory in which the user started the frontend ap-
plication, since the server could be running on a completely different machine!

82

(Making the file or a higher-level directory unreadable and/or unexecutable by the
“postgres” user is anextremelycommon mistake.)

• Symbol names defined within object files must not conflict with each other or with
symbols defined inPOSTGRES.

• The GNU C compiler usually does not provide the special options that are required to
use the operating system’s dynamic loader interface. Insuch cases, the C compiler
that comes with the operating system must be used.

ULTRIX
It is very easy to build dynamically-loaded object files under ULTRIX. ULTRIX does not
have any shared-library mechanism and hence does not place any restrictions on the
dynamic loader interface. Onthe other hand, we had to (re)write a non-portable dynamic
loader ourselves and could not use true shared libraries.

Under ULTRIX, the only restriction is that you must produce each object file with the
option-G 0 . (Notice that that’s the numeral ‘‘0’’ and not the letter ‘‘O’’). For example,

s imple ULTRIX example
% cc -G 0 -c f oo.c

produces an object file calledfoo.o that can then be dynamically loaded intoPOST-
GRES. No additional loading or link-editing must be performed.

DEC OSF/1
Under DEC OSF/1, you can take any simple object file and produce a shared object file
by running theld command over it with the correct options. The commands to do this
look like:

s imple DEC OSF/1 example
% cc -c f oo.c
% ld - shared -expect_unresolved ’*’ -o foo.so foo.o

The resulting shared object file can then be loaded intoPOSTGRES. When specifying the
object file name to thecreate functioncommand, one must give it the name of the shared

object file (ending in.so) rather than the simple object file.13 If the file you specify is
not a shared object, the backend will hang!

SunOS 4.x, Solaris 2.x and HP-UX
Under both SunOS 4.x, Solaris 2.x and HP-UX, the simple object file must be created by
compiling the source file with special compiler flagsand a shared library must be pro-
duced.

13 Actually, POSTGRESdoes not care what you name the file as long as it is a shared object file.If you prefer to name your
shared object files with the extension.o , this is fine withPOSTGRESso long as you make sure that the correct file name is given to the
create functioncommand. Inother words, you must simply be consistent.However, from a pragmatic point of view, we discourage
this practice because you will undoubtedly confuse yourself with regards to which files have been made into shared object files and
which have not. For example, it’s very hard to writeMakefile s to do the link-editing automatically if both the object file and the
shared object file end in.o !

83

The necessary steps with HP-UX are as follows. The+z flag to the HP-UX C compiler
produces so-called “Position Independent Code” (PIC) and the+u flag removes some
alignment restrictions that the PA-RISC architecture normally enforces.The object file
must be turned into a shared library using the HP-UX link editor with the-b option.
This sounds complicated but is actually very simple, since the commands to do it are just:

s imple HP-UX example
% cc +z +u -c f oo.c
% ld -b -o f oo.sl foo.o

As with the .so files mentioned in the last subsection, thecreate function command
must be told which file is the correct file to load (i.e., you must give it the location of the
shared library, or .sl file).

Under SunOS 4.x, the commands look like:

s imple SunOS 4.x example
% cc - PIC -c foo.c
% ld - dc -dp -Bdynamic -o foo.so foo.o

and the equivalent lines under Solaris 2.x are:

s imple Solaris 2.x example
% cc -K PIC -c foo.c

or
% gcc -fPIC -c foo.c
% ld -G - Bdynamic -o foo.so foo.o

When linking shared libraries, you may have to specify some additional shared libraries
(typically system libraries, such as the C and math libraries) on yourld command line.

84

