
INTRODUCTION(POSTGRES) INTRODUCTION(POSTGRES)

SECTION 1 — INTRODUCTION

OVERVIEW

This document is the reference manual for thePOSTGRESdatabase management system under develop-
ment at the University of California at Berkeley. ThePOSTGRESproject, led by Professor Michael Stone-
braker, has been sponsored by the Defense Advanced Research Projects Agency (DARPA), the Army
Research Office (ARO), the National Science Foundation (NSF), andESL, Inc.

POSTGRESis distributed in source code format and is the property of the Regents of the University of Cal-
ifornia. However, the University will grant unlimited commercialization rights for any derived work on
the condition that it obtain an educational license to the derived work. For further information, consult the
Berkeley Campus Software Office, 295 Evans Hall, University of California, Berkeley, CA 94720. Note
that there is no organization who can help you with any bugs you may encounter or with any other prob-
lems. Inother words, this isunsupportedsoftware.

POSTGRESDISTRIBUTION

This reference describes Version 4.2 ofPOSTGRES. ThePOSTGRESsoftware is about 200,000 lines of C
code. Informationon obtaining the source code is available from:

Claire Mosher
Computer Science Division
521 Evans Hall
University of California
Berkeley, CA 94720
(510) 642-4662

Version 4.2 has been tuned modestly. Hence, on the Wisconsin benchmark, one should expect perfor-
mance about twice that of the public domain, University of California version ofINGRES, a relational pro-
totype from the late 1970s.

As distributed,POSTGRESruns on Digital Equipment Corporation computers based onMIPS R2000 and
R3000 processors (under Ultrix 4.2A and 4.3A), Digital Equipment Corporation computers based on
Alpha AXP (DECchip 21064) processors (under OSF/1 1.3 and 2.0), Sun Microsystems computers based
on SPARCprocessors (under SunOS 4.1.3 and Solaris 2.3), Hewlett-Packard Model 9000 Series 700 and
800 computers based on PA-RISC processors (under HP-UX 9.00, 9.01 and 9.03), and International Busi-
ness Machines RS/6000 computers based on POWER processors (under AIX 3.2.5).POSTGRESusers
have ported previous releases of the system to many other architectures and operating systems, including
NeXTSTEP ,IRIX 5.1, Intel System V Release 4, Linux, FreeBSD and NetBSD.

POSTGRESDOCUMENTATION

This reference manual describes the functionality of Version 4.2 and contains notations where appropriate
to indicate which features are not implemented in Version 4.2. Application developers should note that
this reference contains only the specification for the low-level call-oriented application program interface,
LIBPQ. A companion volume, thePOSTGRESUser Manual, contains tutorial examples of the ways in
which the system can be extended.

The remainder of this reference manual is structured as follows. In Section 2 (UNIX), we discuss the
POSTGREScapabilities that are available directly from the operating system.Section 3 (BUILT-INS)
describesPOSTGRESinternal data types, functions, and operators.Section 4 (COMMANDS) then
describesPOSTQUEL, the language by which a user interacts with aPOSTGRESdatabase. Then,Section 5
(LIBPQ) describes a library of low lev el routines through which a user can formulatePOSTQUELqueries

03/12/94 1

INTRODUCTION(POSTGRES) INTRODUCTION(POSTGRES)

from a C program and get appropriate return information back to his program.Next, Section 6 (FAST
PATH) continues with a description of a method by which applications may execute functions inPOST-

GRESwith very high performance.Section 7 (LARGE OBJECTS) describes the internalPOSTGRESinter-
face for accessing large objects. Section 8 (SYSTEM CATALOGS) gives a brief explanation of the tables
used internally byPOSTGRES. The reference concludes with Section 9 (FILES), a collection of file format
descriptions for files used byPOSTGRES.

ACKNOWLEDGEMENTS

POSTGREShas been constructed by a team of undergraduate, graduate, and staff programmers. Thecon-
tributors (in alphabetical order) consisted of: Jeff Anton, Paul Aoki, James Bell, Jennifer Caetta, Philip
Chang, Jolly Chen, Ron Choi, Matt Dillon, Zelaine Fong, Adam Glass, Jeffrey Goh, Steven Grady, Serge
Granik, Marti Hearst, Joey Hellerstein, Michael Hirohama, Chin-heng Hong, Wei Hong, Anant Jhingran,
Greg Kemnitz, Marcel Kornacker, Case Larsen, Boris Livshitz, Jeff Meredith, Ginger Ogle, Michael
Olson, Nels Olson, Lay-Peng Ong, Carol Paxson, Avi Pfeffer, Spyros Potamianos, Sunita Sarawagi, David
Muir Sharnoff, Mark Sullivan, Cimarron Taylor, Marc Teitelbaum, Yongdong Wang, Kristin Wright and
Andrew Yu. TheHP-UX port is courtesy of Richard Turnbull (University of Liverpool) and Sebastian Fer-
nandez (University of California at Berkeley). The initial AIX port was performed by Rafael Morales
Gamboa (ITESM Campus Morelos, Cuernavaca). CarlStaelin of H-P Laboratories and Steve Miley of
UCSB/CRSEO provided the computing resources that enabled us to integrate these ports into thePOST-

GRESdistribution.

Marc Teitelbaum served as chief programmer for Version 4.2 and was responsible for overall coordination
of the project.

This reference was collectively written by the above implementation team, assisted by Bob Devine, Jim
Frew, Chandra Ghosh, Claire Mosher and Michael Stonebraker.

LEGAL NOTICES

POSTGRESis copyright © 1989, 1994 by the Regents of the University of California. Permission to use,
copy, modify, and distribute this software and its documentation for educational, research, and non-profit
purposes and without fee is hereby granted, provided that the above copyright notice appear in all copies
and that both that copyright notice and this permission notice appear in supporting documentation, and that
the name of the University of California not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. Permission to incorporate this software into com-
mercial products can be obtained from the Campus Software Office, 295 Evans Hall, University of Califor-
nia, Berkeley, Ca., 94720. The University of California makes no representations about the suitability of
this software for any purpose. Itis provided “as is” without express or implied warranty.

UNIX is a trademark of X/Open, Ltd. Sun4, SPARC, SunOS and Solaris are trademarks of Sun Microsys-
tems, Inc. DEC, DECstation, Alpha AXP and ULTRIX are trademarks of Digital Equipment Corp.PA-
RISC and HP-UX are trademarks of Hewlett-Packard Co. RS/6000, POWER and AIX are trademarks of
International Business Machines Corp. OSF/1 is a trademark of the Open Systems Foundation.
NeXTSTEP is a trademark of NeXT Computer, Inc. MIPSand IRIX are trademarks of Silicon Graphics,
Inc.

03/12/94 2

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

SECTION 2 — UNIX COMMANDS (UNIX)

OVERVIEW

This section contains information on the interaction betweenPOSTGRESand the operating system. In par-
ticular, the pages of this section describe thePOSTGRESsupport programs that are executable asUNIX

commands.

TERMINOLOGY

In the following documentation, the termsitemay be interpreted as the host machine on whichPOSTGRES

is installed. However, since it is possible to install more than one set ofPOSTGRESdatabases on a single
host, this term more precisely denotes any particular set of installedPOSTGRESbinaries and databases.

The POSTGRESsuper-useris the user named “postgres” (usually) who owns thePOSTGRESbinaries and
database files. As the database super-user, all protection mechanisms may be bypassed and any data
accessed arbitrarily. In addition, thePOSTGRESsuper-user is allowed to execute some support programs
which are generally not available to all users.Note that thePOSTGRESsuper-user isnot the same as the
UNIX super-user,root, and should have a non-zero userid.

The database base administrator or DBA, is the person who is responsible for installingPOSTGRESto
enforce a security policy for a site. The DBA will add new users by the method described below, change
the status of user-defined functions fromuntrusted to trusted as explained indefine function(commands),
and maintain a set of template databases for use bycreatedb(unix).

Thepostmasteris the process that acts as a clearing-house for requests to thePOSTGRESsystem. Frontend
applications connect to thepostmaster, which keeps tracks of any system errors and communication
between the backend processes.The postmastercan take sev eral command-line arguments to tune its
behavior, but supplying arguments is necessary only if you intend to run multiple sites or a non-default site.
Seepostmaster(unix) for details.

The POSTGRESbackend (.../bin/postgres) may be executed directly from the user shell by thePOSTGRES

super-user (with the database name as an argument). However, doing this bypasses the shared buffer pool
and lock table associated with a postmaster/site, so this is not recommended in a multiuser site.

NOTATION

“.../” at the front of a file name is used to represent the path to thePOSTGRESsuper-user’s home directory.
Anything in brackets (“[” and “]”) is optional.Anything in braces (“{” and “}”) can be repeated 0 or more
times. Parentheses (“(” and “)”) are used to group boolean expressions. “|”is the boolean operatorOR .

USING POSTGRESFROM UNIX

All POSTGREScommands that are executed directly from aUNIX shell are found in the directory “.../bin”.
Including this directory in your search path will make executing the commands easier.

A collection of system catalogs exist at each site. These include a class (“pg_user”) that contains an
instance for each valid POSTGRESuser. The instance specifies a set ofPOSTGRESprivileges, such as the
ability to act asPOSTGRESsuper-user, the ability to create/destroy databases, and the ability to update the
system catalogs.A UNIX user cannot do anything withPOSTGRESuntil an appropriate instance is installed
in this class.Further information on the system catalogs is available by running queries on the appropriate
classes.

USER AUTHENTICATION

Authenticationis the process by which the backend server andpostmasterensure that the user requesting
access to data is in fact who he/she claims to be. All users who invoke POSTGRESare checked against the
contents of the “pg_user” class to ensure that they are authorized to do so.However, verification of the

03/12/94 3

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

user’s actual identity is performed in a variety of ways.

From the user shell

A backend server started from a user shell notes the user’s (real) user-id before performing asetuid(3) to
the user-id of user “postgres”.The real user-id is used as the basis for access control checks. No other
authentication is conducted.

From the network

If the POSTGRESsystem is built as distributed, access to the Internet TCP port of thepostmasterprocess is
completely unrestricted. That is, any user may connect to this port, spoof thepostmaster, pose as an autho-
rized user and issue any commands desired.However, since this port is configurable and not normally
advertised in any public files (e.g.,/etc/services), some administrators may be satisfied with security-by-
obscurity.

If greater security is desired,POSTGRESand its clients may be modified to use a network authentication
system. For example, thepostmaster, monitorandlibpq have already been configured to use either Version
4 or Version 5 of theKerberosauthentication system from the Massachusetts Institute of Technology. For
more information on usingKerberoswith POSTGRES, see the appendix below.

ACCESS CONTROL

POSTGRESprovides mechanisms to allow users to limit the access to their data that is provided to other
users.

Database superusers

Database super-users (i.e., users who have “pg_user.usesuper” set) silently bypass all of the access controls
described below with two exceptions: manual system catalog updates are not permitted if the user does not
have “pg_user.usecatupd” set, and destruction of system catalogs (or modification of their schemas) is never
allowed.

Access control lists

The use of access control lists to limit reading, writing and setting of rules on classes is covered inchange
acl(commands).

Class removal and schema modification

Commands that destroy or modify the structure of an existing class, such asaddattr, destroy, rename, and
remove index, only operate for the owner of the class. As mentioned above, these operations arenever per-
mitted on system catalogs.

FUNCTIONS AND RULES

Functions and rules allow users to insert code into the backend server that other users may execute without
knowing it. Hence, both mechanisms permit users totr ojan horseothers with relative impunity. The only
real protection is tight control over who can define functions (e.g., write to relations withPOSTQUELfields)
and rules. Audit trails and alerters on “pg_class”, “pg_user” and “pg_group” are also recommended.

Functions

Functions written in any language exceptPOSTQUELwith “pg_proc.proistrusted” set run inside the back-
end server process with the permissions of the user “postgres” (the backend server runs with its real and
effective user-id set to “postgres”). It is possible for users to change the server’s internal data structures
from inside of trusted functions. Hence, among many other things, such functions can circumvent any sys-
tem access controls. This is an inherent problem with trusted functions.

Non-POSTQUELfunctions that do not have “pg_proc.proistrusted” set run in a separateuntrusted-function
processspawned by the backend server. If correctly installed, this process runs with real and effective user-
id set to “nobody” (or some other user with strictly limited permissions). It should be noted, however, that

03/12/94 4

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

the primary purpose of untrusted functions is actually to simplify debugging of user-defined functions
(since buggy functions will only crash or corrupt the untrusted-function process instead of the server pro-
cess). Thecurrent RPC protocol only works in one direction, so any function that make function-manager
calls (e.g., access method calls) or performs other database file operations must be trusted.

Since untrusted functions are a new feature in Version 4.2, thedefine function command still defaults to
making new functions trusted. This is a massive security hole that will be removed in a later release, once
the (mis)features and interface of untrusted functions have stabilized. (Anadditional access control will be
added for defining functions, analogous to the access control on defining rules.)

Like other functions that perform database file operations,POSTQUEL functions must run in the same
address space as the backend server. The “pg_proc.proistrusted” field has no effect forPOSTQUELfunc-
tions, which always run with the permissions of the user who invoked the backend server. (Otherwise,
users could circumvent access controls — the “nobody” user may well be allowed greater access to a par-
ticular object than a given user.)

Rules

Like POSTQUELfunctions, rules always run with the identity and permissions of the user who invoked the
backend server.

SEE ALSO

postmaster(unix), addattr(commands), append(commands), change acl(commands), copy(commands),
define rule(commands), delete(commands), destroy(commands), remove index(commands), remove
rule(commands), rename(commands), replace(commands), retrieve(commands), kerberos(1), kinit(1), ker-
beros(3)

CAVEATS

There are no plans to explicitly support encrypted data inside ofPOSTGRES(though there is nothing to pre-
vent users from encrypting data within user-defined functions).There are no plans to explicitly support
encrypted network connections, either, pending a total rewrite of the frontend/backend protocol.

User names, group names and associated system identifiers (e.g., the contents of “pg_user.usesysid”) are
assumed to be unique throughout a database. Unpredictable results may occur if they are not.

User system identifiers are currentlyUNIX user-ids.

APPENDIX: USING KERBEROS

Av ailability

TheKerberosauthentication system is not distributed withPOSTGRES, nor is it available from the Univer-
sity of California at Berkeley. Versions ofKerberosare typically available as optional software from oper-
ating system vendors. Inaddition, a source code distribution may be obtained through MIT Project Athena
by anonymous FTP from ATHENA-DIST.MIT.EDU (18.71.0.38).(You may wish to obtain the MIT ver-
sion even if your vendor provides a version, since some vendor ports have been deliberately crippled or ren-
dered non-interoperable with the MIT version.) Userslocated outside the United States of America and
Canada are warned that distribution of the actual encryption code inKerberosis restricted by U. S. govern-
ment export regulations.

Any additional inquiries should be directed to your vendor or MIT Project Athena (“info-
kerberos@ATHENA.MIT.EDU”). Note that FAQLs (Frequently-Asked Questions Lists) are periodically
posted to theKerberos mailing list, “kerberos@ATHENA.MIT.EDU” (send mail to “kerberos-
request@ATHENA.MIT.EDU” to subscribe), and USENET news group, “comp.protocols.kerberos”.

Installation

Installation ofKerberos itself is covered in detail in theKerberos Installation Notes. Make sure that the
server key file (thesrvtabor keytab) is somehow readable by user “postgres”.

03/12/94 5

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

POSTGRESand its clients can be compiled to use either Version 4 or Version 5 of the MITKerberosproto-
cols by setting theKRBVERSvariable in the file “.../src/Makefile.global” to the appropriate value. You can
also change the location wherePOSTGRESexpects to find the associated libraries, header files and its own
server key file.

After compilation is complete,POSTGRESmust be registered as aKerberos service. Seethe Kerberos
Operations Notesand related manual pages for more details on registering services.

Operation

After initial installation,POSTGRESshould operate in all ways as a normalKerberosservice. For details on
the use of authentication, see the manual pages forpostmaster(unix) andmonitor(unix).

In theKerberosVersion 5 hooks, the following assumptions are made about user and service naming: (1)
user principal names (anames) are assumed to contain the actualUNIX /POSTGRESuser name in the first
component; (2) thePOSTGRESservice is assumed to be have two components, the service name and a host-
name, canonicalized as in Version 4 (i.e., all domain suffixes removed).

user example: frew@S2K.ORG
user example: aoki/HOST=miyu.S2K.Berkeley.EDU@S2K.ORG
host example: postgres_dbms/ucbvax@S2K.ORG

Support for Version 4 will disappear sometime after the production release of Version 5 by MIT.

03/12/94 6

CREATEDB(UNIX) CREATEDB(UNIX)

NAME

createdb — create a database

SYNOPSIS

createdb[-a system] [-h host] [-p port] [dbname]

DESCRIPTION

Createdbcreates a new database. Theperson who executes this command becomes the database adminis-
trator, or DBA, for this database and is the only person, other than thePOSTGRESsuper-user, who can
destroy it.

Createdbis a shell script that invokes the POSTGRESmonitor. Hence, apostmasterprocess must be run-
ning on the database server host beforecreatedbis executed. Inaddition, thePGOPTIONandPGREALM

environment variables will be passed on tomonitorand processed as described inmonitor(unix).

The optional argumentdbnamespecifies the name of the database to be created.The name must be unique
among allPOSTGRESdatabases.Dbnamedefaults to the value of theUSERenvironment variable.

Createdbunderstands the following command-line options:

-a system
Specifies an authentication systemsystem(seeintroduction(unix)) to use in connecting to thepost-
masterprocess. Thedefault is site-specific.

-h host
Specifies the hostname of the machine on which thepostmasteris running. Defaults to the name of
the local host, or the value of thePGHOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which thepostmasteris listening for connections.Defaults to
4321, or the value of thePGPORTenvironment variable (if set).

EXAMPLES

c reate the demo database
createdb demo

c reate the demo database using the postmaster on host eden,
port 1234, using the Kerberos authentication system.
createdb -a kerberos -p 1234 -h eden demo

FILES

$PGDAT A/base/dbname
The location of the files corresponding to the databasedbname.

SEE ALSO

createdb(commands), destroydb(unix), initdb(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS

Error: Failed to connect to backend (host=xxx, port= xxx)
Createdbcould not attach to thepostmasterprocess on the specified host and port. If you see this
message, ensure that thepostmasteris running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

01/23/93 7

CREATEDB(UNIX) CREATEDB(UNIX)

user “username” is not in “pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything withPOSTGRESat all;
contact yourPOSTGRESsite administrator.

user “username” is not allowed to create/destroy databases
You do not have permission to create new databases; contact yourPOSTGRESsite administrator.

dbnamealready exists
The database already exists.

database creation failed ondbname
An internal error occurred inmonitoror the backend server. Ensure that yourPOSTGRESsite admin-
istrator has properly installedPOSTGRESand initialized the site withinitdb.

01/23/93 8

CREATEUSER(UNIX) CREATEUSER(UNIX)

NAME

createuser — create aPOSTGRESuser

SYNOPSIS

createuser[-a system] [-h host] [-p port] [username]

DESCRIPTION

Createusercreates a new POSTGRESuser. Only users with “usesuper” set in the “pg_user” class can create
newPOSTGRESusers. Asshipped, the user “postgres” can create users.

Createuseris a shell script that invokes monitor. Hence, apostmasterprocess must be running on the
database server host beforecreateuseris executed. Inaddition, thePGOPTIONandPGREALM environment
variables will be passed on tomonitorand processed as described inmonitor(unix).

The optional argumentusernamespecifies the name of thePOSTGRESuser to be created. (The invoker will
be prompted for a name if none is specified on the command line.)This name must be unique among all
POSTGRESusers.

Createuserunderstands the following command-line options:

-a system
Specifies an authentication systemsystem(seeintroduction(unix)) to use in connecting to thepost-
masterprocess. Thedefault is site-specific.

-h host
Specifies the hostname of the machine on which thepostmasteris running. Defaults to the name of
the local host, or the value of thePGHOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which thepostmasteris listening for connections.Defaults to
4321, or the value of thePGPORTenvironment variable (if set).

INTERACTIVE QUESTIONS

Once invoked with the above options,createuserwill ask a series of questions. The new users’s login name
(if not given on the command line) and user-id must be specified. (Note that thePOSTGRESuser-id must be
the same as the user’s UNIX user-id.) In addition, you must describe the security capabilities of the new
user. Specifically, you will be asked whether the new user should be able to act asPOSTGRESsuper-user,
create new databases and update the system catalogs manually.

SEE ALSO

destroyuser(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS

Error: Failed to connect to backend (host=xxx, port= xxx)
Createusercould not attach to thepostmasterprocess on the specified host and port. If you see this
message, ensure that thepostmasteris running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

user “username” is not in “pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything withPOSTGRESat all;
contact yourPOSTGRESsite administrator.

usernamecannot create users.
You do not have permission to create new users; contact yourPOSTGRESsite administrator.

user “username” a lready exists
The user to be added already has an entry in the “pg_user” class.

01/23/93 9

CREATEUSER(UNIX) CREATEUSER(UNIX)

database access failed
An internal error occurred inmonitoror the backend server. Ensure that yourPOSTGRESsite admin-
istrator has properly installedPOSTGRESand initialized the site withinitdb.

BUGS

POSTGRESuser-id’s and user names should not have anything to do with the constraints ofUNIX .

01/23/93 10

DESTROYDB(UNIX) DESTROYDB(UNIX)

NAME

destroydb — destroy an existing database

SYNOPSIS

destroydb [-a system] [-h host] [-p port] [dbname]

DESCRIPTION

Destroydbdestroys an existing database.To execute this command, the user must be the database adminis-
trator, or DBA, for this database.The program runs silently; no confirmation message will be displayed.
After the database is destroyed, aUNIX shell prompt will reappear.

Destroydbis a shell script that invokes monitor. Hence, apostmasterprocess must be running on the
database server host beforedestroydbis executed. Inaddition, thePGOPTIONandPGREALM environment
variables will be passed on tomonitorand processed as described inmonitor(unix).

The optional argumentdbnamespecifies the name of the database to be destroyed. All references to the
database are removed, including the directory containing this database and its associated files.Dbname
defaults to the value of theUSERenvironment variable.

Destroydbunderstands the following command-line options:

-a system
Specifies an authentication systemsystem(seeintroduction(unix)) to use in connecting to thepost-
masterprocess. Thedefault is site-specific.

-h host
Specifies the hostname of the machine on which thepostmasteris running. Defaults to the name of
the local host, or the value of thePGHOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which thepostmasteris listening for connections.Defaults to
4321, or the value of thePGPORTenvironment variable (if set).

EXAMPLES

destroy the demo database
destroydb demo

destroy the demo database using the postmaster on host eden,
port 1234, using the Kerberos authentication system.
destroydb -a kerberos -p 1234 -h eden demo

FILES

$PGDAT A/base/dbname
The location of the files corresponding to the databasedbname.

SEE ALSO

destroydb(commands), createdb(unix), initdb(unix), monitor(unix). postmaster(unix).

DIAGNOSTICS

Error: Failed to connect to backend (host=xxx, port= xxx)
Destroydbcould not attach to thepostmasterprocess on the specified host and port. If you see this
message, ensure that thepostmasteris running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

01/23/93 11

DESTROYDB(UNIX) DESTROYDB(UNIX)

user “username” is not in “pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything withPOSTGRESat all;
contact yourPOSTGRESsite administrator.

user “username” is not allowed to create/destroy databases
You do not have permission to destroy databases; contact yourPOSTGRESsite administrator.

database “dbname” does not exist
The database to be removed does not have an entry in the “pg_database” class.

database “dbname” is not owned by you
You are not DBA for the specified database.

database destroy failed ondbname
An internal error occurred inmonitor or the backend server. Contact yourPOSTGRESsite adminis-
trator to ensure that ensure that the files and database entries associated with the database are com-
pletely removed.

01/23/93 12

DESTROYUSER(UNIX) DESTROYUSER(UNIX)

NAME

destroyuser — destroy a POSTGRESuser and associated databases

SYNOPSIS

destroyuser[-a system] [-h host] [-p port] [username]

DESCRIPTION

Destroyuserdestroys an existing POSTGRESuser and the databases for which that user is database adminis-
trator. Only users with “usesuper” set in the “pg_user” class can destroy new POSTGRESusers. As
shipped, the user “postgres” can destroy users.

Destroyuseris a shell script that invokes monitor. Hence, apostmasterprocess must be running on the
database server host beforedestroyuseris executed. Inaddition, thePGOPTIONand PGREALM environ-
ment variables will be passed on tomonitorand processed as described inmonitor(unix).

The optional argumentusernamespecifies the name of thePOSTGRESuser to be destroyed. (Theinvoker
will be prompted for a name if none is specified on the command line.)

Destroyuserunderstands the following command-line options:

-a system
Specifies an authentication systemsystem(seeintroduction(unix)) to use in connecting to thepost-
masterprocess. Thedefault is site-specific.

-h host
Specifies the hostname of the machine on which thepostmasteris running. Defaults to the name of
the local host, or the value of thePGHOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which thepostmasteris listening for connections.Defaults to
4321, or the value of thePGPORTenvironment variable (if set).

INTERACTIVE QUESTIONS

Once invoked with the above options,destroyuserwill warn you about the databases that will be destroyed
in the process and permit you to abort the removal of the user if desired.

SEE ALSO

createuser(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS

Error: Failed to connect to backend (host=xxx, port= xxx)
Destroyusercould not attach to thepostmasterprocess on the specified host and port. If you see this
message, ensure that thepostmasteris running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

user “username” is not in “pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything withPOSTGRESat all;
contact yourPOSTGRESsite administrator.

usernamecannot delete users.
You do not have permission to delete users; contact yourPOSTGRESsite administrator.

user “username” d oes not exist
The user to be removed does not have an entry in the “pg_user” class.

database access failed

01/23/93 13

DESTROYUSER(UNIX) DESTROYUSER(UNIX)

destroydb ondbnamefailed - exiting

delete of userusernamewas UNSUCCESSFUL
An internal error occurred inmonitor or the backend server. Contact yourPOSTGRESsite adminis-
trator to ensure that the files and database entries associated with the user and his/her associated
databases are completely removed.

01/23/93 14

ICOPY(UNIX) ICOPY(UNIX)

NAME

icopy − copy files between Unix and Inversion file systems

SYNOPSIS

icopy direction−d dbname−ssmgr
[−R] [−a] [−h host] [−p portnum] [−v] srcfile destfile

DESCRIPTION

Icopy copies files between the Inversion file system and theUNIX file system. This program is alibpq
client program, and the Inversion file system is a transaction-protected file system used by the Sequoia 2000
research project at UC Berkeley. Inv ersion provides the same file system services provided by theUNIX

fast file system, but does not support an NFS interface at present.In order to make it easier to use Inver-
sion, a suite of utility programs, includingicopy, has been written to manage files.

The user specifies the host and port on whichPOSTGRESis running, and the database and storage manager
to use for file storage.The direction of the copy specifies whether files should be copied fromUNIX to
Inversion (in), or from Inversion toUNIX (out). Theuser also supplies two file names for the source and
destination of the copy.

ARGUMENTS

The first five arguments listed here are required.

direction The direction of the copy. If the direction isin, then the file is copied fromUNIX into Inver-
sion. If the direction isout, then the file is copied out of Inversion toUNIX . The direction
argument affects the interpretation of the source and destination file names, and may make
some other flags (such as−s) optional (see below). This argument must immediately follow
the program name.

−d dbname
The database to use for file storage. The user should have permission to create objects in
dbname. The database name must be supplied; there is no default.

−ssmgr Usesmgras thestorage managerfor the file. Storage managers inPOSTGRESmanage physi-
cal devices, so this flag gives the user a way of controlling the device on which his file should
be stored. If the direction of the copy is in, then the storage manager must be specified.If the
direction of the copy is out, then the storage manager flag is optional, and is ignored if it is
supplied.

The list of available storage managers may be obtained by typing

icopy

with no options; the resulting usage message includes a list of storage managers supported.

srcfile The file from which to copy. If direction is in, then this is the name of a file or directory on the
UNIX file system. If direction is out, then this is the name of a file or directory on the Inver-
sion file system.

If srcfile is a directory and the−R flag is supplied, then the tree rooted atsrcfile is copied. It is
an error to specify a directory to copy without supplying the−R flag.

destfile The file to which to copy. If direction is in, then this is the name of an Inversion file or direc-
tory. If direction is out, thendestfileis the name of aUNIX file or directory.

If destfilealready exists and is a directory, thensrcfilewill be created in the directorydestfile.

The following arguments are optional.

03/11/93 15

ICOPY(UNIX) ICOPY(UNIX)

−h host Specifiesthe hostname of the machine on which thepostmasteris running. Defaults to the
name of the local host, or the value of thePGHOSTenvironment variable (if set).

−p port Specifiesthe Internet TCP port on which thepostmasteris listening for connections.Defaults
to 4321, or the value of thePGPORTenvironment variable (if set).

−R Copy a directory tree recursively. Rather than copying a single file, the tree rooted atsrcfile is
copied to a tree rooted atdestfile.

−a Copy all files, including those beginning with a dot.This flag is useful only in conjunction
with −R. Normally, recursive copies of a directory tree will not copy files or directories whose
names begin with a dot.

−v Turn verbose mode on.Icopy will report its progress as it moves files to or from Inversion.

EXAMPLES

The command

icopy in −h myhost −p 4321 −d mydb −s d /vmunix /inv_vmunix

copies theUNIX file “/vmunix” to the Inversion file “/inv_vmunix”. The Inversion file is stored in the
database “mydb” by thePOSTGRESbackend running on machine “myhost” and listening on port number
4321.

The command

icopy out −h myhost −p 4321 −d mydb /inv_vmunix /vmunix.dup

copies it back out again, putting the copy in theUNIX file “/vmunix.dup”.

BUGS

The POSTGRESfile system code should support operations via NFS, so this program actually has no right
to exist.

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

03/11/93 16

INITDB(UNIX) INITDB(UNIX)

NAME

initdb — initalize the database templates and primary directories

SYNOPSIS

initdb [-v] [-d] [-n]

DESCRIPTION

Initdb sets up the initial template databases and is normally executed as part of the installation process.The
template database is created under the directory specified by the the environment variablePGDAT A , or to a
default specified at compile-time. The template database is thenvacuumed.

Initdb is a shell script that invokes the backend server directly. Hence, it must be executed by thePOST-

GRESsuper-user.

Initdb understands the following command-line options:

-v Produce verbose output, printing messages stating where the directories are being created, etc.

-d Print debugging output from the backend server. This option generates a tremendous amount of
information. Thisoption also turns off the final vacuuming step.

-n Run in “noclean” mode. By default, initdb cleans up (recursively unlinks) the data directory if any
error occurs, which also removes any core files left by the backend server. This option inhibits any
tidying-up.

FILES

$PGDAT A/base
The location of global (shared) classes.

$PGDAT A/base/template1
The location of the template database.

$PGDAT A/files/{global1,local1_template1}.bki
Command files used to generate the global and template databases, generated and installed by the
initial compilation process.

SEE ALSO

createdb(unix), vacuum(commands), bki(files), template(files).

02/14/94 17

IPCCLEAN(UNIX) IPCCLEAN(UNIX)

NAME

ipcclean — clean up shared memory and semaphores from aborted backends

SYNOPSIS

ipcclean

DESCRIPTION

Ipccleancleans up shared memory and semaphore space from aborted backends by deleting all instances
owned by user “postgres”. Only the DBA should execute this program as it can cause bizarre behavior (i.e.,
crashes) if run during multi-user execution. Thisprogram should be executed if messages such assemget:
No space left on deviceare encountered when starting up thepostmasteror the backend server.

BUGS

If this command is executed while apostmasteris running, the shared memory and semaphores allocated
by thepostmasterwill be deleted. This will result in a general failure of the backends servers started by
thatpostmaster.

This script is a hack, but in the many years since it was written, no one has come up with an equally effec-
tive and portable solution. Suggestions are welcome.

01/23/93 18

MONITOR(UNIX) MONITOR(UNIX)

NAME

monitor — run the interactive terminal monitor

SYNOPSIS

monitor [-N] [-Q] [-T] [-a system] [-c query] [-d path]
[-h hostname] [-p port] [-q] [-t tty_device] [dbname]

DESCRIPTION

The interactive terminal monitor is a simple frontend toPOSTGRES. It enables one to formulate, edit and
review queries before issuing them toPOSTGRES. If changes must be made, aUNIX editor may be called
to edit thequery buffer managed by the terminal monitor. The editor used is determined by the value of
theEDITORenvironment variable. IfEDITOR is not set, thenvi is used by default.

Monitor is a frontend application, like any other. Hence, apostmasterprocess must be running on the
database server host beforemonitor is executed. Inaddition, the correctpostmasterport number must be
specified as described below.

The optional argumentdbnamespecifies the name of the database to be accessed.This database must
already have been created usingcreatedb. Dbnamedefaults to the value of theUSERenvironment variable.

Monitor understands the following command-line options:

-N Specifies that query results will be dumped to the screen without any attempt at formatting.This is
useful in conjunction with the-c option in shell scripts.

-Q Produces extremely unverbose output.This is useful in conjunction with the-c option in shell
scripts.

-T Specifies that attribute names will not be printed. This is useful in conjunction with the-c option in
shell scripts.

-a system
Specifies an authentication systemsystem(seeintroduction(unix)) to use in connecting to thepost-
masterprocess. Thedefault is site-specific.

-c query
Specifies thatmonitor is to execute one query string,query, and then exit. This is useful for shell
scripts, typically in conjunction with the-N and -T options. Examplesof shell scripts in thePOST-

GRESdistribution usingmonitor -c include createdb, destroydb, createuser, destroyuser, and vac-
uum.

-d path
path specifies the path name of the file or tty to which frontend (i.e.,monitor) debugging messages
are to be written; the default is not to generate any debugging messages.

-h hostname
Specifies the hostname of the machine on which thepostmasteris running. Defaults to the name of
the local host, or the value of thePGHOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which thepostmasteris listening for connections.Defaults to
4321, or the value of thePGPORTenvironment variable (if set).

-q Specifies that the monitor should do its work quietly. By default, it prints welcome and exit mes-
sages and the queries it sends to the backend. Ifthis option is used, none of this happens.

-t tty_device
tty_devicespecifies the path name to the file or tty to which backend (i.e.,postgres) debugging mes-
sages are to be written; the default is/dev/null.

02/12/94 19

MONITOR(UNIX) MONITOR(UNIX)

You may set environment variables to avoid typing some of the above options. Seethe ENVIRONMENT

VARIABLES section below.

MESSAGES AND PROMPTS

The terminal monitor gives a variety of messages to keep the user informed of the status of the monitor and
the query buffer.

When the terminal monitor is executed, it displays the current date and time as well as a prompt.

The terminal monitor displays two kinds of messages:

go Thequery buffer is empty and the terminal monitor is ready for input.Anything typed will be
added to the buffer.

* This prompt is typed at the beginning of each line when the terminal monitor is waiting for input.

TERMINAL MONITOR COMMANDS

\e Enterthe editor to edit the query buffer.

\g Submitquery buffer toPOSTGRESfor execution.

\h Geton-line help.

\i filename
Include the filefilenameinto the query buffer.

\p Printthe current contents of the query buffer.

\q Exit from the terminal monitor.

\r Reset(clear) the query buffer.

\s Escapeto aUNIX subshell. To return to the terminal monitor, type “exit” at the shell prompt.

\t Print the current time.

\w filename
Store (write) the query buffer to an external filefilename.

\\ Producea single backslash at the current location in query buffer.

ENVIRONMENT VARIABLES

You may set any of the following environment variables to avoid specifying command-line options:
hostname: PGHOST
port: PGPORT
tty: PGTTY
options: PGOPTION
realm: PGREALM

If PGOPTIONis specified, then the options it contains are parsedbeforeany command-line options.

PGREALM only applies ifKerberosauthentication is in use. If this environment variable is set,POSTGRES

will attempt authentication with servers for this realm and use separate ticket files to avoid conflicts with
local ticket files. Seeintroduction(unix) for additional information onKerberos.

Seeintroduction(libpq) for additional details.

RETURN VALUE

When executed with the-c option,monitor returns 0 to the shell on successful query completion, 1 other-
wise.

02/12/94 20

MONITOR(UNIX) MONITOR(UNIX)

SEE ALSO

introduction(libpq), createdb(unix), createuser(unix), postgres(unix), postmaster(unix).

BUGS

Does not poll for asynchronous notification events generated bylisten(commands) andnotify(commands).

Escapes (backslash characters) cannot be commented out.

02/12/94 21

NEWBKI(UNIX) NEWBKI(UNIX)

NAME

newbki — change thePOSTGRESsuperuser in the database template files

SYNOPSIS

newbki username

DESCRIPTION

Newbkiis a script that changes theUNIX user name and user ID of thePOSTGRESsuperuser in the database
template files.

As packaged,POSTGRESassumes that there exists a user named “postgres” on your system with the same
user ID as on our systems.This will not (in general) be the case. Before trying to create any databases,
you should runnewbkito update the template files.

Note that this only updates the files from which the template database will be built if you run the
initdb(unix) command. This in turn implies that you will have to run cleardbdir(unix) to destroy the exist-
ing template database and any existing user databases —initdb will not run unless this has been done.

FILES

$PGDAT A/base
The location of global (shared) classes.

$PGDAT A/base/template1
The location of the template database.

$PGDAT A/files/{global1,local1_template1}.bki
Command files used to generate the global and template databases, generated and installed by the
initial compilation process. These are the only files modified bynewbki.

SEE ALSO

initdb(cleardbdir), createdb(unix), initdb(unix), bki(files), template(files).

CAVEATS

There is no good way to change thePOSTGRESuser ID after you have started creating new databases.new-
bki is definitely not the recommended way to try to do this.You might think that you can save your
databases in flat files usingcopy(commands) and then restore them afterinitdb has been executed. How-
ev er, there is the additional problem that thePOSTGRESuser ID is embedded in the system catalog data
itself.

02/14/94 22

PA GEDOC(UNIX) PAGEDOC(UNIX)

NAME

pagedoc —POSTGRESdata page editor

SYNOPSIS

pagedoc[-h|b|r] [-d level] [-s start] [-n count] filename

DESCRIPTION

The pagedoc program understands the layout of data onPOSTGRESdata pages and can be used to view
contents of a relationfilenameif it becomes corrupted. Contents are printed to standard output, and proba-
ble errors are flagged with four asterisks (“****”) and a description of the problem.

Several levels of detail are available. Level zero prints only a single summary line per data page in the rela-
tion. Thesummary line includes the number of items on the page, some allocation information, and what-
ev er additional detail is appropriate for the relation type being examined. Level one also prints a single
summary line for each tuple that appears on each page.The tuple summary includes the tuple’s position on
the page, its length, and some allocation information.Level two (or higher) prints all of the information
printed by level one, and prints tuple headers for every tuple on the page. The header information displayed
depends on the type of relation being viewed; either HeapTuple or IndexTuple structure entries are possible.

If the relation’s contents are badly damaged, then only level zero is likely to work. Finerlevels of detail
assume that more page structure is correct, and so are more sensitive to corruption.

Pa g edocunderstands the following command-line options:

-h|b|r The type of the relation.Typeh is heap,b is btree, andr is rtree. The default ish.

-d level The detail level to use in displaying pages.

-s start Startat page numberstart (zero-based) rather than on page zero.

-n count
Display data forcountpages rather than all of them.

EXAMPLES

Print page and line pointer summaries and tuple headers for a btree index “pg_typeidind”:

pagedoc −b −d2 pg_typeidind

Show the default (level zero) summary of a heap relation “pg_user”:

pagedoc pg_user

SEE ALSO

page(files).

BUGS

Finer levels of detail produce a lot of output.

There’s no way to skip forward to a page that shows some corruption.

You can only examine contents, you can’t actually fix them.

01/23/93 23

PCAT(UNIX) PCAT(UNIX)

NAME

pcat − cat an Inversion file to stdout

SYNOPSIS

pcat [-D database] [-H host] [-P port] filename{ , filename ...}

DESCRIPTION

Pcatcatenates files from the Inversion file system to standard output.

ARGUMENTS

filename The name of the Inversion file to copy to standard output.If filenameis “−” (a single dash),
then standard input is copied.

-D database
Specifies the database to use.Defaults to the value of the environment variableDATABASE

(see below).

-H host Specifiesthe hostname of the machine on which thepostmasteris running. Defaults to the
name of the local host, or the value of thePGHOSTenvironment variable (if set).

-P port Specifiesthe Internet TCP port on which thepostmasteris listening for connections.Defaults
to 4321, or the value of thePGPORTenvironment variable (if set).

EXAMPLES

The command

pcat /myfile1 - /myfile2

copies the contents of Inversion file “/myfile1”, standard input, and the contents of Inversion file “/myfile2”
to standard output.

ENVIRONMENT

If no database is given on the command line, the environment variableDATABASE is checked. If no envi-
ronment variableDATABASE is present, the command exits with an error status.

BUGS

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 24

PCD(UNIX) PCD(UNIX)

NAME

pcd − change directories in an Inversion file system

SYNOPSIS

pcd [-D database] [-H host] [-P port] [pathname]

DESCRIPTION

Pcdupdates the current working directory environment variable.

ARGUMENTS

pathname The name of the directory to change to. If no pathname is given, the path is assumed to be "/".

-D database
Specifies the database to use.Defaults to the value of the environment variableDATABASE

(see below).

-H host Specifiesthe hostname of the machine on which thepostmasteris running. Defaults to the
name of the local host, or the value of thePGHOSTenvironment variable (if set).

-P port Specifiesthe Internet TCP port on which thepostmasteris listening for connections.Defaults
to 4321, or the value of thePGPORTenvironment variable (if set).

ENVIRONMENT

The environment variablePFCWDis checked and updated.

If no database is given on the command line, the environment variableDATABASE is checked. If no envi-
ronment variableDATABASE is present, the command exits with an error status.

BUGS

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 25

PLS(UNIX) PLS(UNIX)

NAME

pls − list contents of the Inversion file system

SYNOPSIS

pls < ls flags>

DESCRIPTION

Pls prints directory listings of the Inversion file system. It takes the same arguments as theUNIX ls com-
mand.

EXAMPLES

The command

pls −lsga /

prints a long-format listing of all the files in the root directory of Inversion, including size and ownership
information.

ENVIRONMENT

The environment variableDATABASE is checked to determine the name of the database to use to find Inver-
sion files. PGHOSTandPGPORTmust be used to specify the hostname of the machine on which thepost-
masteris running (defaults to the name of the local host) and the Internet TCP port on which thepostmaster
is listening for connections (defaults to 4321), respectively.

BUGS

The database name, port number, and host name to use for database accesses should be passed on the com-
mand line. Unfortunately, almost all the available option letters are already used byls.

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 26

PMKDIR(UNIX) PMKDIR(UNIX)

NAME

pmkdir − create a new Inv ersion file system directory

SYNOPSIS

pmkdir [-D database] [-H host] [-P port] path{ path ... }

DESCRIPTION

Pmkdir creates new directories on the Inversion file system. The Inversion file system has a hierarchical
namespace with the same rules as that of the Unix filesystem: components in a pathname are separated by
slashes, and an initial slash refers to the root directory of the file system.

ARGUMENTS

pathname The name of the directory to create.

-D database
Specifies the database to use.Defaults to the value of the environment variableDATABASE

(see below).

-H host Specifiesthe hostname of the machine on which thepostmasteris running. Defaults to the
name of the local host, or the value of thePGHOSTenvironment variable (if set).

-P port Specifiesthe Internet TCP port on which thepostmasteris listening for connections.Defaults
to 4321, or the value of thePGPORTenvironment variable (if set).

EXAMPLES

The command

pmkdir /a/b/c/d

creates a new directory “d” as a child of “/a/b/c”. “/a/b/c” must already exist.

ENVIRONMENT

If no database is given on the command line, the environment variableDATABASE is checked. If no envi-
ronment variableDATABASE is present, the command exits with an error status.

The environment variablePFCWDis used for the current directory if the pathname specified is relative.

BUGS

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 27

PMV(UNIX) PMV(UNIX)

NAME

pmv − rename an Inversion file or directory

SYNOPSIS

pmv [-D database] [-H host] [-P port] oldpath newpath

DESCRIPTION

Pmv changes the name of an existing file or directory on the Inversion file system. In the case that a direc-
tory is moved, the children of the original directory remain children of the directory under its new name.

ARGUMENTS

oldpath The path name of the file or directory to rename. This must be a fully-qualified path rooted at
“/”, and the named file or directory must exist.

newpath The new pathname for the file or directory. Again, this must be fully qualified, and intermedi-
ate components must exist − that is, you cannot move a file to a directory which does not yet
exist.

-D database
Specifies the database to use.Defaults to the value of the environment variableDATABASE

(see below).

-H host Specifiesthe hostname of the machine on which thepostmasteris running. Defaults to the
name of the local host, or the value of thePGHOSTenvironment variable (if set).

-P port Specifiesthe Internet TCP port on which thepostmasteris listening for connections.Defaults
to 4321, or the value of thePGPORTenvironment variable (if set).

EXAMPLES

The command

pmv c/d b/c/longname

renames the Inversion file “d” in directory “c” to “b/c/longname”.

ENVIRONMENT

If no database is given on the command line, the environment variableDATABASE is checked. If no envi-
ronment variableDATABASE is present, the command exits with an error status.

The environment variablePFCWDis used for the current directory if the pathname specified is relative.

BUGS

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 28

POSTGRES(UNIX) POSTGRES(UNIX)

NAME

postgres — thePOSTGRESbackend server

SYNOPSIS

postgres[-B n_buffers] [-E] [-P filedes] [-Q]
[-d debug_level] [-o output_file] [-s] [dbname]

DESCRIPTION

The POSTGRESbackend server can be executed directly from the user shell.This should be done only
while debugging by the DBA, and should not be done while otherPOSTGRESbackends are being managed
by apostmasteron this set of databases.

The optional argumentdbnamespecifies the name of the database to be accessed.Dbnamedefaults to the
value of theUSERenvironment variable.

Thepostgresserver understands the following command-line options:

-B n_buffers
If the backend is running under thepostmaster, n_buffersis the number of shared-memory buffers
that thepostmasterhas allocated for the backend server processes that it starts. If the backend is run-
ning standalone, this specifies the number of buffers to allocate. This value defaults to 64.

-E Echo all queries.

-P filedes
filedesspecifies the file descriptor that corresponds to the socket (port) on which to communicate to
the frontend process. This option isnot useful for interactive use.

-Q Specifies “quiet” mode.

-d debug_level
Turns on debugging at the numeric level debug_level. Turning on debugging will cause query parse
trees and query plans to be displayed.

-o output_file
Sends all debugging and error output tooutput_file. If the backend is running under thepostmaster,
error messages are still sent to the frontend process as well as tooutput_file, but debugging output is
sent to the controlling tty of thepostmaster(since only one file descriptor can be sent to an actual
file).

-s Print time information and other statistics at the end of each query. This is useful for benchmarking
or for use in tuning the number of buffers.

DEPRECATED COMMAND OPTIONS

There are several other options that may be specified, used mainly for debugging purposes. These are listed
here only for the use ofPOSTGRESsystem developers. Use of any of these options is highly discouraged.
Furthermore, any of these options may disappear or change at any time.

-An|r|b|Qn|Xn
Turns on memory manager tracing;An prints allocations/deallocation events when they occur,Ar
enables silent record-collection,Ab enables both record-collection and event-printing,AQn prints
recorded events eachn tuples processed, andAX n prints recorded events eachn transactions pro-
cessed.

This option generates a tremendous amount of output.

-C Don’t check whether database metadescriptions (i.e.,PG_VERSIONfiles) are consistent.

-L Turns off the locking system.

03/12/94 29

POSTGRES(UNIX) POSTGRES(UNIX)

-N Disables use of newline as a query delimiter.

-S Indicates that the transaction system can run with the assumption of stable main memory, thereby
avoiding the necessary flushing of data and log pages to disk at the end of each transaction system.
This is only used for performance comparisons for stable vs. non-stable storage. Do not use this in
other cases, as recovery after a system crash may be impossible when this option is specified in the
absence of stable main memory.

-b Enables generation of bushy query plan trees (as opposed to left-deep query plans trees).These
query plans are not intended for actual execution; in addition, this flag often causesPOSTGRESto
run out of memory.

-f Forbids the use of particular scan and join methods:s and i disable sequential and index scans
respectively, while n, m and h disable nested-loop, merge and hash joins respectively. This is
another feature that may not necessarily produce executable plans.

-p Indicates to the backend server that it has been started by apostmasterand make different assump-
tions about buffer pool management, file descriptors, etc.

-tpa[rser]|pl[anner]|e[xecutor]
Print timing statistics for each query relating to each of the major system modules.This option
cannot be used with-s.

SEE ALSO

ipcclean(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS

Of the nigh-infinite number of error messages you may see when you execute the backend server directly,
the most common will probably be:

semget: No space left on device
If you see this message, you should run theipccleancommand. Afterdoing this, try startingpost-
gresagain. If this still doesn’t work, you probably need to configure your kernel for shared mem-
ory and semaphores as described in the installation notes.

03/12/94 30

POSTMASTER(UNIX) POSTMASTER(UNIX)

NAME

postmaster — run thePOSTGRESpostmaster

SYNOPSIS

postmaster[-B n_buffers] [-D data_dir] [-S] [-a system]
[-b backend_pathname] [-d [debug_level]] [-n]
[-o backend_options] [-p port] [-s]

DESCRIPTION

Thepostmastermanages the communication between frontend and backend processes, as well as allocating
the shared buffer pool and semaphores (on machines without a test-and-set instruction).The postmaster
does not itself interact with the user and should be started as a background process.Only one postmaster
should be run on a machine.

Thepostmasterunderstands the following command-line options:

-B n_buffers
n_buffersis the number of shared-memory buffers for thepostmasterto allocate and manage for the
backend server processes that it starts. This value defaults to 64.

-D data_dir
Specifies the directory to use as the root of the tree of database directories. This directory uses the
value of the environment variablePGDAT A. If PGDAT A is not set, then the directory used is$POST-

GRESHOME/data. Ifneither environment variable is set and this command-line option is not speci-
fied, the default directory that was set at compile-time is used.

-S Specifies that thepostmasterprocess should start up in silent mode.That is, it will disassociate from
the user’s (controlling) tty and start its own process group.This should not be used in combination
with debugging options because any messages printed to standard output and standard error are dis-
carded.

-a system
Specifies whether or not to use the authentication systemsystem(seeintroduction(unix)) for frontend
applications to use in connecting to thepostmasterprocess. Specifysystemto enable a system, or
nosystemto disable a system.For example, to permit users to useKerberosauthentication, use-a
kerberos; to deny any unauthenticated connections, use-a nounauth . The default is site-specific.

-b backend_pathname
backend_pathnameis the full pathname of thePOSTGRESbackend server executable file that the
postmasterwill invoke when it receives a connection from a frontend application. If this option is
not used, then thepostmastertries to find this executable file in the directory in which its own
executable is located (this is done by looking at the pathname under which thepostmasterwas
invoked. If no pathname was specified, then thePATH environment variable is searched for an
executable named “postgres”).

-d [debug_level]
The optional argumentdebug_leveldetermines the amount of debugging output the backend servers
will produce. If debug_levelis one, the postmaster will trace all connection traffic, and nothing else.
For lev els two and higher, debugging is turned on in the backend process and the postmaster displays
more information, including the backend environment and process traffic. Notethat if no file is spec-
ified for backend servers to send their debugging output (e.g., using the-t option ofmonitoror the-o
option ofpostgres) then this output will appear on the controlling tty of their parentpostmaster.

-n, -s
The -s and-n options control the behavior of thepostmasterwhen a backend dies abnormally. Nei-
ther option is intended for use in ordinary operation.

02/12/94 31

POSTMASTER(UNIX) POSTMASTER(UNIX)

The ordinary strategy for this situation is to notify all other backends that they must terminate and
then reinitialize the shared memory and semaphores. This is because an errant backend could have
corrupted some shared state before terminating.

If the -s option is supplied, then thepostmasterwill stop all other backend processes by sending the
signalSIGSTOP ,but will not cause them to terminate.This permits system programmers to collect
core dumps from all backend processes by hand.

If the -n option is supplied, then thepostmasterdoes not reinitialize shared data structures.A knowl-
edgable system programmer can then use theshmemdocprogram to examine shared memory and
semaphore state.

-o backend_options
The postgres(unix) options specified inbackend_optionsare passed to all backend server processes
started by thispostmaster. If the option string contains any spaces, the entire string must be quoted.

-p port
Specifies the Internet TCP port on which thepostmasteris to listen for connections from frontend
applications. Defaults to 4321, or the value of thePGPORTenvironment variable (if set).If you
specify a port other than the default port then all frontend application users must specify the same
port (using command-line options orPGPORT) when starting any libpq application, including the ter-
minal monitor.

WARNINGS

If at all possible,do not useSIGKILL when killing thepostmaster. SIGHUP, SIGINT, or SIGTERM (the
default signal forkill (1)) should be used instead. Hence, avoid

kill -KILL

or its alternative form

kill -9

as this will prevent thepostmasterfrom freeing the system resources (e.g., shared memory and semaphores)
that it holds before dying. This prevents you from having to deal with the problem withshmat(2) described
below.

EXAMPLES

s tart postmaster using default values
postmaster &

This command will start uppostmasteron the default port (4321) and will search$PATH to find an
executable file called “postgresq. This is the simplest and most common way to start thepostmaster.

s tart with specific port and executable name
postmaster -p 1234 -b /usr/postgres/bin/postgres &

This command will start up apostmastercommunicating through the port 1234, and will attempt to use the
backend located at “/usr/postgres/bin/postgres”. In order to connect to thispostmasterusing the terminal
monitor, you would need to either specify-p 1234on themonitor command-line or set the environment
variablePGPORTto 1234.

SEE ALSO

ipcs(1), ipcrm(1), ipcclean(unix), monitor(unix), postgres(unix), shmemdoc(unix).

02/12/94 32

POSTMASTER(UNIX) POSTMASTER(UNIX)

DIAGNOSTICS

semget: No space left on device
If you see this message, you should run theipccleancommand. Afterdoing this, try starting the
postmasteragain. If this still doesn’t work, you probably need to configure your kernel for shared
memory and semaphores as described in the installation notes.If you run multiplepostmasters on
a single host, or have reduced the shared memory and semaphore parameters from the defaults in
the generic kernel, you may have to go back and increase the shared memory and semaphores con-
figured into your kernel.

StreamServerPort: cannot bind to port
If you see this message, you should be certain that there is no otherpostmasterprocess already
running. Theeasiest way to determine this is by using the command

ps -ax | grep postmaster

on BSD-based systems (the equivalent syntax is

ps -e | grep postmast

on System V-like or POSIX-compliant systems such as HP-UX). If you are sure that no other
postmasterprocesses are running and you still get this error, try specifying a different port using
the -p option. You may also get this error if you terminate thepostmasterand immediately restart
it using the same port; in this case, you must simply wait a few seconds until the operating system
closes the port before trying again. Finally, you may get this error if you specify a port number
that your operating system considers to be reserved. For example, many versions ofUNIX con-
sider port numbers under 1024 to be “trusted” and only permit theUNIX superuser to access them.

IpcMemoryAttach: shmat() failed: Permission denied
A l ikely explanation is that another user attempted to start apostmasterprocess on the same port
which acquired shared resources and then died.SincePOSTGRESshared memory keys are based
on the port number assigned to thepostmaster, such conflicts are likely if there is more than one
installation on a single host.If there are no otherpostmasterprocesses currently running (see
above), run ipccleanand try again. If other postmasters are running, you will have to find the
owners of those processes to coordinate the assignment of port numbers and/or removal of unused
shared memory segments.

02/12/94 33

PPWD(UNIX) PPWD(UNIX)

NAME

ppwd − return Inversion file system working directory name

SYNOPSIS

ppwd

DESCRIPTION

Ppwd writes the absolute pathname of the current working directory to the standard output.

Ppwd exits with status 0 on success, and >0 if an error occurs.

ENVIRONMENT

The environment variablePFCWDstores the current Inversion working directory.

SEE ALSO

pcd(unix), p_getwd(large_objects).

01/23/93 34

PRM(UNIX) PRM(UNIX)

NAME

prm − remove an Inv ersion file

SYNOPSIS

prm [-D database] [-H host] [-P port] pathname

DESCRIPTION

Prm removes a file stored by the Inversion file system. Directories must be removed using theprmdir
command.

ARGUMENTS

pathname The fully-qualified pathname of the file to remove, rooted at “/”.

-D database
Specifies the database to use.Defaults to the value of the environment variableDATABASE

(see below).

-H host Specifiesthe hostname of the machine on which thepostmasteris running. Defaults to the
name of the local host, or the value of thePGHOSTenvironment variable (if set).

-P port Specifiesthe Internet TCP port on which thepostmasteris listening for connections.Defaults
to 4321, or the value of thePGPORTenvironment variable (if set).

EXAMPLES

The command

prm b/c/d

removes file “d” from directory “b/c”.

ENVIRONMENT

If no database is given on the command line, the environment variableDATABASE is checked. If no envi-
ronment variableDATABASE is present, the command exits with an error status.

The environment variablePFCWDis used for the current directory if the pathname specified is relative.

BUGS

It is not possible to remove files stored on write-once storage managers (e.g., the Sony optical disk jukebox
at Berkeley).

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 35

PRMDIR(UNIX) PRMDIR(UNIX)

NAME

prmdir − remove an Inv ersion directory

SYNOPSIS

prmdir [-D database] [-H host] [-P port] pathname

DESCRIPTION

Prmdir removes a directory from the Inversion file system.The directory must be empty. Files in directo-
ries may be removed by using theprm command.

ARGUMENTS

pathname The fully-qualified pathname of the directory to remove, rooted at “/”.

-D database
Specifies the database to use.Defaults to the value of the environment variableDATABASE

(see below).

-H host Specifiesthe hostname of the machine on which thepostmasteris running. Defaults to the
name of the local host, or the value of thePGHOSTenvironment variable (if set).

-P port Specifiesthe Internet TCP port on which thepostmasteris listening for connections.Defaults
to 4321, or the value of thePGPORTenvironment variable (if set).

EXAMPLES

The command

prmdir b/c

removes directory “b/c” from the Inversion file system.

ENVIRONMENT

If no database is given on the command line, the environment variableDATABASE is checked. If no envi-
ronment variableDATABASE is present, the command exits with an error status.

The environment variablePFCWDis used for the current directory if the pathname specified is relative.

BUGS

It is not possible to remove files stored on write-once storage managers (e.g., the Sony optical disk jukebox
at Berkeley).

Seeintroduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 36

REINDEXDB(UNIX) REINDEXDB(UNIX)

NAME

reindexdb − reconstruct damaged system catalog indices

SYNOPSIS

reindexdb dbname

DESCRIPTION

In normal processing mode,POSTGRESrequires secondary indices on certain system catalog classes.It is
possible that these indices can be damaged during updates, e.g., if the backend server is killed during a
query that creates a new class. Oncethe indices are damaged, it becomes impossible to access the
database.Reindexdbremoves the old indices and attempts to reconstruct them from the base class data.

Before runningreindexdb, make sure that thepostmasterprocess is not running on the database server host.

Reindexdbis a shell script that invokes the backend server directly. Hence, it must be executed by the
POSTGRESsuper-user.

SEE ALSO

initdb(unix), postmaster(unix).

CAVEATS

Should only be used as a last resort.Many problems are better solved by simply shutting down thepost-
masterprocess and restarting it.

If the base system catalog classes are damaged,reindexdbwill generally print a cryptic message and fail.
In this case, there is very little recourse but to reload the data.

02/14/94 37

S2KINIT(UNIX) S2KINIT(UNIX)

NAME

s2kutils — scripts to allow operation with a different Kerberos realm

SYNOPSIS

s2kinit
s2klist
s2kdestroy

DESCRIPTION

s2kinit, s2klistands2kdestroyare wrappers around theKerberosprogramskinit(1), klist(1) andkdestroy(1)
that cause them to operate in the realm indicated by the environment variablePGREALM. This includes the
use of ticket files distinct from those obtained for use in the local realm.

The PGREALM environment variable is also understood by the authentication code invoked by LIBPQ

applications. Hence,if PGREALM is set, tickets obtained usings2kinit are used bymonitor and the Inver-
sion file system utilities. IfPGREALM is not set, then the programs display the usualKerberosbehavior.

SEE ALSO

monitor(UNIX), kerberos(1), kinit(1), klist(1), kdestroy(1)

BUGS

These have almost nothing to do withPOSTGRES. They are here as a convenience to Sequoia 2000
researchers who do not work in the Sequoia 2000 realm except to usePOSTGRES.

You still have to insert the correct realm-server mapping into/etc/krb.conf .

01/23/93 38

SHMEMDOC(UNIX) SHMEMDOC(UNIX)

NAME

shmemdoc —POSTGRESshared memory editor

SYNOPSIS

shmemdoc[-p port] [-B nbuffers]

DESCRIPTION

The shmemdocprogram understands the layout ofPOSTGRESdata in shared memory and can be used to
examine these shared structures. This program is intended only for debuggingPOSTGRES, and should not
be used in normal operation.

When some backend server dies abnormally, the postmaster normally reinitializes shared memory and
semaphores and forces all peers of the dead process to exit. If postmasteris started with the-n flag, then
shared memory will not be reinitialized andshmemdoccan be used to examine shared state after the crash.

Shmemdocunderstands the following command-line options:

-B nbuffers
The number of buffers used by the backend. Thisvalue is ignored in the present implementation of
shmemdoc, but is important if you choose to change the number allocated byPOSTGRES. In that
case, you’re out of luck for now.

-p port
The port on which the postmaster was listening. This value is used to compute the shared memory
key used by the postmaster when shared memory was initialized.

A simple command interpreter reads user commands from standard input and prints results on standard out-
put. Theavailable commands are:

semstat
Show the status of system semaphores.Status includes semaphore names and values, the process id
of the last process to change each semaphore, and a count of processes sleeping on each semaphore.

semsetn val
Set the value of semaphore numbern (with zero being the first semaphore named bysemstat) to val.
This is really only useful for resetting system state manually after a crash, which is something you
don’t really want to do.

bufdescs
Print the contents of the shared buffer descriptor table.

bufdescn
Print the shared buffer descriptor table entry for buffern.

buffer n type level
Print the contents of buffer numbern in the shared buffer table. The buffer is interpreted as a page
from a type relation, wheretype may beheap, btree, or rtree. The level argument controls the
amount of detail presented.Level zero prints only page headers, level one prints page headers and
line pointer tables, and level two (or higher) prints headers, line pointer tables, and tuples.

linp n which
Print line pointer table entrywhichof buffern.

tuple n type which
Print tuplewhichof buffer n. The buffer is interpreted as a page from atyperelation, wheretypemay
beheap, btree, or rtree.

02/12/94 39

SHMEMDOC(UNIX) SHMEMDOC(UNIX)

setbaseptr
Set the logical base address of shared memory forshmemdocto ptr. Normally, shmemdocuses the
address of each structure in its own address space when interpreting commands and printing results.
If setbaseis used, then on input and output, addresses are translated so that the shared memory seg-
ment appears to start at addressptr. This is useful when a debugger is examining a core file pro-
duced byPOSTGRESand you want to use the shared memory addresses that appear in the core file.
The base of shared memory inPOSTGRESis stored in the variableShmemBase, which may be exam-
ined by a debugger. Ptr may be expressed in octal (leading zero), decimal, or hexadecimal (leading
0x).

shmemstat
Print shared memory layout and allocation statistics.

whatis ptr
Identify the shared memory structure pointed at byptr.

help Print a brief command summary.

quit Exit shmemdoc.

SEE ALSO

ipcclean(unix).

BUGS

All of the sizes, offsets, and values for shared data are hardwired into this program; it shares no code with
the ordinaryPOSTGRESsystem, so changes to shared memory layout will require changes to this program,
as well. This hasn’t been done recently, so as of Version 4.2 this program doesn’t work correctly for many
structures (most notably the shared memory buffer pool). Use of this command is highly discouraged.

02/12/94 40

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

SECTION 3 — WHAT COMES WITH POSTGRES(BUILT-INS)

DESCRIPTION

This section describes the data types, functions and operators available to users inPOSTGRESas it is dis-
tributed.

BUILT-IN AND SYSTEM TYPES

This section describes bothbuilt-in andsystemdata types. Built-in types are required forPOSTGRESto
run. Systemtypes are installed in every database, but are not strictly required. Built-in types are marked
with asterisks in the table below.

Users may add new types toPOSTGRESusing thedefine typecommand described in this manual.User-
defined types are not described in this section.

POSTGRES Type Meaning Required
abstime absolutedate and time *
aclitem accesscontrol list item *
bool boolean *
box 2-dimensionalrectangle
bytea variable length array of bytes *
char character *
char2 arrayof 2 characters *
char4 arrayof 4 characters *
char8 arrayof 8 characters *
char16 arrayof 16 characters *
cid commandidentifier type *
filename large object filename *
int2 two-byte signed integer *
int28 arrayof 8 int2 *
int4 four-byte signed integer *
float4 single-precisionfloating-point number *
float8 double-precisionfloating-point number *
lseg 2-dimensional line segment
oid objectidentifier type *
oid8 arrayof 8 oid *
oidchar16 oidand char16 composed *
oidint2 oidand int2 composed *
oidint4 oidand int4 composed *
path variable-length array of lseg
point 2-dimensionalgeometric point
polygon 2-dimensionalpolygon
regproc registered procedure *
reltime relative date and time *
smgr storagemanager *
text variable length array of characters *
tid tupleidentifier type *
tinterval timeinterval *
xid transactionidentifier type *

As a rule, the built-in types are all either (1) internal types, in which case the user should not worry about

02/18/94 41

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

their external format, or (2) have obvious formats. The exceptions to this rule are the three time types.

ABSOLUTE TIME

Absolute time is specified using the following syntax:

Month Day [H our : Minute : Second] Year [Timezone]

where Monthis Jan, Feb, ..., Dec
Day is 1, 2, ..., 31
Hour is 01, 02, ..., 24
Minute is 00, 01, ..., 59
Second is 00, 01, ..., 59
Year is 1901, 1902, ..., 2038

Valid dates are from Dec 13 20:45:53 1901 GMT to Jan 19 03:14:04 2038 GMT. As of Version 3.0, times
are no longer read and written using Greenwich Mean Time; the input and output routines default to the
local time zone.

The special absolute time values “current”, “infinity” and “-infinity” are also provided. “infinity” specifies
a time later than any valid time, and “-infinity” specifies a time earlier than any valid time. “current” indi-
cates that the current time should be substituted whenever this value appears in a computation.

The strings “now” and “epoch” can be used to specify time values. “now” means the current time, and dif-
fers from “current” in that the current time is immediately substituted for it.“epoch” means Jan 1 00:00:00
1970 GMT.

RELATIVE TIME

Relative time is specified with the following syntax:

@ Quantity Unit [Direction]

where Quantityis ‘1’, ‘2’, ...
Unit is ‘‘second’’, ‘‘minute’’, ‘‘hour’’, ‘‘day’’, ‘‘week’’,
‘‘ month’’ (30-days), or ‘‘year’’ (365-days),
or PLURAL of these units.
Direction is ‘‘ago’’

(Note: Valid relative times are less than or equal to 68 years.) In addition, the special relative time “Unde-
fined RelTime” is provided.

TIME RANGES

Time ranges are specified as:

[’ abstime’ ’abstime’]

whereabstimeis a time in the absolute time format.Special abstime values such as “current”, “infinity”
and “-infinity” can be used.

OPERATORS

POSTGRESprovides a large number of built-in operators on system types. These operators are declared in
the system catalog “pg_operator”.Every entry in “pg_operator” includes the object ID of the procedure
that implements the operator.

Users may invoke operators using the operator name, as in

retrieve (emp.all) where emp.salary < 40000

02/18/94 42

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

Alternatively, users may call the functions that implement the operators directly. In this case, the query
above would be expressed as

retrieve (emp.all) where int4lt(emp.salary, 40000)

The rest of this section provides a list of the built-in operators and the functions that implement them.
Binary operators are listed first, followed by unary operators.

BINARY OPERATORS

This list was generated from thePOSTGRESsystem catalogs with the query

retrieve (argtype = t1.typname, o.oprname,
t0.typname, p.proname,
ltype=t1.typname, rtype=t2.typname)

from p in pg_proc, t0 in pg_type, t1 in pg_type,
t2 in pg_type, o in pg_operator

where p.prorettype = t0.oid
and RegprocToOid(o.oprcode) = p.oid
and p.pronargs = 2
and o.oprleft = t1.oid
and o.oprright = t2.oid

The list is sorted by the built-in type name of the first operand.The function prototypecolumn gives the
return type, function name, and argument types for the procedure that implements the operator. Note that
these function prototypes are cast in terms ofPOSTQUELtypes and so arenot directly usable as C function
prototypes.

Type Operator POSTGRES Function Prototype Operation

abstime != bool abstimene(abstime, abstime) inequality
+ abstime timepl(abstime, reltime) addition
− abstime timemi(abstime, reltime) subtraction
<= bool abstimele(abstime, abstime) less or equal
<?> boolininterval(abstime, tinterval) abstimein tinterval?
< bool abstimelt(abstime, abstime) less than
= bool abstimeeq(abstime, abstime) equality
>= bool abstimege(abstime, abstime) greater or equal
> bool abstimegt(abstime, abstime) greater than

bool = bool booleq(bool, bool) equality
!= bool boolne(bool, bool) inequality

box && bool box_overlap(box, box) boxes overlap
&< bool box_overleft(box, box) box A overlaps box B, but does not

extend to right of box B
&> bool box_overright(box, box) box A overlaps box B, but does not

extend to left of box B
<< boolbox_left(box, box) A is left of B
<= bool box_le(box, box) area less or equal
< bool box_lt(box, box) area less than
= bool box_eq(box, box) area equal
>= bool box_ge(box, box) area greater or equal

02/18/94 43

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

>> boolbox_right(box, box) A is right of B
> bool box_gt(box, box) area greater than
@ bool box_contained(box, box) A is contained in B
˜= bool box_same(box, box) box equality
˜ bool box_contain(box, box) A contains B

char != bool charne(char, char) inequality
* bool charmul(char, char) multiplication
+ bool charpl(char, char) addition
− bool charmi(char, char) subtraction
/ bool chardiv(char, char) division
<= bool charle(char, char) lessor equal
< bool charlt(char, char) lessthan
= bool chareq(char, char) equality
>= bool charge(char, char) greateror equal
> bool chargt(char, char) greaterthan

char2 != bool char2ne(char2, char2) inequality
!˜ bool char2regexne(char2, text) A does not match regular expres-

sion B (POSTGRESuses the libc
regexp calls for this operation)

<= bool char2le(char2, char2) less or equal
< bool char2lt(char2, char2) less than
= bool char2eq(char2, char2) equality
>= bool char2ge(char2, char2) greater or equal
> bool char2gt(char2, char2) greater than
˜ bool char2regexeq(char2, text) A matches regular expression B

(POSTGRESuses the libc regexp
calls for this operation)

char4 != bool char4ne(char4, char4) inequality
!˜ bool char4regexne(char4, text) A does not match regular expres-

sion B (POSTGRESuses the libc
regexp calls for this operation)

<= bool char4le(char4, char4) less or equal
< bool char4lt(char4, char4) less than
= bool char4eq(char4, char4) equality
>= bool char4ge(char4, char4) greater or equal
> bool char4gt(char4, char4) greater than
˜ bool char4regexeq(char4, text) A matches regular expression B

(POSTGRESuses the libc regexp
calls for this operation)

char8 != bool char8ne(char8, char8) inequality
!˜ bool char8regexne(char8, text) A does not match regular expres-

sion B (POSTGRESuses the libc
regexp calls for this operation)

<= bool char8le(char8, char8) less or equal
< bool char8lt(char8, char8) less than
= bool char8eq(char8, char8) equality
>= bool char8ge(char8, char8) greater or equal
> bool char8gt(char8, char8) greater than

02/18/94 44

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

˜ bool char8regexeq(char8, text) A matches regular expression B
(POSTGRESuses the libc regexp
calls for this operation)

char16 != bool char16ne(char16, char16) inequality
!˜ bool char16regexne(char16, text) A does not match regular expres-

sion B (POSTGRESuses the libc
regexp calls for this operation)

<= bool char16le(char16, char16) less or equal
< bool char16lt(char16, char16) less than
= bool char16eq(char16, char16) equality
>= bool char16ge(char16, char16) greater or equal
> bool char16gt(char16, char16) greater than
˜ bool char16regexeq(char16, text) A matches regular expression B

(POSTGRESuses the libc regexp
calls for this operation)

float4 != bool float4ne(float4, float4) inequality
* fl oat4 float4mul(float4, float4) multiplication
+ float4 float4pl(float4, float4) addition
− float4 float4mi(float4, float4) subtraction
/ float4 float4div(float4, float4) division
<= bool float4le(float4, float4) less or equal
< bool float4lt(float4, float4) less than
= bool float4eq(float4, float4) equality
>= bool float4ge(float4, float4) greater or equal
> bool float4gt(float4, float4) greater than

float8 != bool float8ne(float8, float8) inequality
* fl oat8 float8mul(float8, float8) multiplication
+ float8 float8pl(float8, float8) addition
− float8 float8mi(float8, float8) subtraction
/ float8 float8div(float8, float8) division
<= bool float8le(float8, float8) less or equal
< bool float8lt(float8, float8) less than1
= bool float8eq(float8, float8) equality
>= bool float8ge(float8, float8) greater or equal
> bool float8gt(float8, float8) greater than
ˆ float8 dpow(float8, float8) exponentiation

int2 != bool int2ne(int2, int2) inequality
!= int4 int24ne(int2, int4) inequality
% int2 int2mod(int2, int2) modulus
% int4 int24mod(int2, int4) modulus
* i nt2 int2mul(int2, int2) multiplication
* i nt4 int24mul(int2, int4) multiplication
+ int2 int2pl(int2, int2) addition
+ int4 int24pl(int2, int4) addition
− int2 int2mi(int2, int2) subtraction
− int4 int24mi(int2, int4) subtraction
/ int2 int2div(int2, int2) division
/ int4 int24div(int2, int4) division
<= bool int2le(int2, int2) less or equal

02/18/94 45

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

<= int4 int24le(int2, int4) less or equal
< bool int2lt(int2, int2) less than
< int4 int24lt(int2, int4) less than
= bool int2eq(int2, int2) equality
= int4 int24eq(int2, int4) equality
>= bool int2ge(int2, int2) greater or equal
>= int4 int24ge(int2, int4) greater or equal
> bool int2gt(int2, int2) greater than
> int4 int24gt(int2, int4) greater than

int2 int2inc(int2) increment

int4 !!= bool int4notin(int4, char16) This is the relational ‘‘not in’’ oper-
ator, and is not intended for public
use.

!= bool int4ne(int4, int4) inequality
!= int4 int42ne(int4, int2) inequality
% int4 int42mod(int4, int2) modulus
% int4 int4mod(int4, int4) modulus
* i nt4 int42mul(int4, int2) multiplication
* i nt4 int4mul(int4, int4) multiplication
+ int4 int42pl(int4, int2) addition
+ int4 int4pl(int4, int4) addition
− int4 int42mi(int4, int2) subtraction
− int4 int4mi(int4, int4) subtraction
/ int4 int42div(int4, int2) division
/ int4 int4div(int4, int4) division
<= bool int4le(int4, int4) less or equal
<= int4 int42le(int4, int2) less or equal
< bool int4lt(int4, int4) less than
< int4 int42lt(int4, int2) less than
= bool int4eq(int4, int4) equality
= int4 int42eq(int4, int2) equality
>= bool int4ge(int4, int4) greater or equal
>= int4 int42ge(int4, int2) greater or equal
> bool int4gt(int4, int4) greater than
> int4 int42lt(int4, int2) less than

int4 int4inc(int4) increment

oid !!= bool oidnotin(oid, char16) This is the relational ‘‘not in’’ oper-
ator, and is not intended for public
use.

!= bool oidne(oid, oid) inequality
!= bool oidne(oid, regproc) inequality
<= bool oidle(oid, oid) less or equal
< bool oidlt(oid, oid) less than
= bool oideq(oid, oid) equality
= bool oideq(oid, regproc) equality
>= bool oidge(oid, oid) greater or equal
> bool oidgt(oid, oid) greater than

oidchar16 != bool oidchar16ne(oidchar16, oidchar16) inequality
< bool oidchar16lt(oidchar16, oidchar16) less than

02/18/94 46

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

<= bool oidchar16le(oidchar16, oidchar16) less or equal
= bool oidchar16eq(oidchar16, oidchar16) equality
> bool oidchar16gt(oidchar16, oidchar16) greater than
>= bool oidchar16ge(oidchar16, oidchar16) greater or equal

oidint2 != bool oidint2ne(oidint2, oidint2) inequality
< bool oidint2lt(oidint2, oidint2) less than
<= bool oidint2le(oidint2, oidint2) less or equal
= bool oidint2eq(oidint2, oidint2) equality
> bool oidint2gt(oidint2, oidint2) greater than
>= bool oidint2ge(oidint2, oidint2) greater or equal

oidint4 != bool oidint4ne(oidint4, oidint4) inequality
< bool oidint4lt(oidint4, oidint4) less than
<= bool oidint4le(oidint4, oidint4) less or equal
= bool oidint4eq(oidint4, oidint4) equality
> bool oidint4gt(oidint4, oidint4) greater than
>= bool oidint4ge(oidint4, oidint4) greater or equal

point !< bool point_left(point, point) A is left of B
!> bool point_right(point, point) A is right of B
!ˆ bool point_above(point, point) A is above B
!| boolpoint_below(point, point) A is below B
=|= bool point_eq(point, point) equality
---> boolon_pb(point, box) point inside box
---‘ bool on_ppath(point, path) point on path
<---> int4pointdist(point, point) distance between points

polygon && bool poly_overlap(polygon, polygon) polygons overlap
&< bool poly_overleft(polygon, polygon) A overlaps B but does not extend to

right of B
&> bool poly_overright(polygon, polygon) A overlaps B but does not extend to

left of B
<< boolpoly_left(polygon, polygon) A is left of B
>> boolpoly_right(polygon, polygon) A is right of B
@ bool poly_contained(polygon, polygon) A is contained by B
˜= bool poly_same(polygon, polygon) equality
˜ bool poly_contain(polygon, polygon) A contains B

reltime != bool reltimene(reltime, reltime) inequality
<= bool reltimele(reltime, reltime) less or equal
< bool reltimelt(reltime, reltime) less than
= bool reltimeeq(reltime, reltime) equality
>= bool reltimege(reltime, reltime) greater or equal
> bool reltimegt(reltime, reltime) greater than

text != bool textne(text, text) inequality
!˜ bool textregexne(text, text) A does not contain the regular

expression B.POSTGRESuses the
libc regexp interface for this opera-
tor.

<= bool text_le(text, text) lessor equal
< bool text_lt(text, text) lessthan
= bool texteq(text, text) equality

02/18/94 47

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

>= bool text_ge(text, text) greateror equal
> bool text_gt(text, text) greaterthan
˜ bool textregexeq(text, text) A contains the regular expression

B. POSTGRESuses the libc regexp
interface for this operator.

tinterval #!= bool intervallenne(tinterval, reltime) interval length not equal to reltime.
#<= bool intervallenle(tinterval, reltime) interval length less or equal reltime
#< boolintervallenlt(tinterval, reltime) interval length less than reltime
#= bool intervalleneq(tinterval, reltime) interval length equal to reltime
#>= bool intervallenge(tinterval, reltime) interval length greater or equal rel-

time
#> boolintervallengt(tinterval, reltime) interval length greater than reltime
&& bool intervalov(tinterval, tinterval) intervals overlap
<< boolintervalct(tinterval, tinterval) A contains B
= bool intervaleq(tinterval, tinterval) equality
<> tinterval mktinterval(abstime, abstime) interval bounded by two abstimes

UNARY OPERATORS

The tables below giv e right and left unary operators. Left unary operators have the operator precede the
operand; right unary operators have the operator follow the operand.

Right Unary Operators

Type Operator POSTGRES Function Prototype Operation

float8 % float8 dround(float8) round to nearest integer

Left Unary Operators

Type Operator POSTGRES Function Prototype Operation

box @@ point box_center(box) center of box

float4 @ float4 float4abs(float4) absolute value

float8 @ float8 float8abs(float8) absolute value
% float8 dtrunc(float8) truncate to integer
|/ float8dsqrt(float8) squareroot
||/ float8dcbrt(float8) cuberoot
: float8 dexp(float8) exponential function
; float8 dlog1(float8) natural logarithm

tinterval | abstime intervalstart(tinterval) startof interval

AGGREGATE FUNCTIONS

The table below giv es the aggregate functions that are normally registered in the system catalogs.None of
them are required forPOSTGRESto operate.

Name Operation
int2ave int2 average
int4ave int4 average
float4ave float4 average
float8ave float8 average

02/18/94 48

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

int2sum int2sum (total)
int4sum int4sum (total)
float4sum float4sum (total)
float8sum float8sum (total)
int2max int2maximum (high value)
int4max int4maximum (high value)
float4max float4maximum (high value)
float8max float8maximum (high value)
int2min int2minimum (low value)
int4min int4minimum (low value)
float4min float4minimum (low value)
float8min float8minimum (low value)
count any count

SEE ALSO

For examples on specifying literals of built-in types, seepostquel(commands).

BUGS

The lists of types, functions, and operators are accurate only for Version 4.2.The lists will be incomplete
and contain extraneous entries in future versions ofPOSTGRES.

Although most of the input and output functions correponding to the base types (e.g., integers and floating
point numbers) do some error-checking, none of them are particularly rigorous about it.More importantly,
almost none of the operators and functions (e.g., addition and multiplication) perform any error-checking at
all. Consequently, many of the numeric operations will (for example) silently underflow or overflow.

Some of the input and output functions are not invertible. Thatis, the result of an output function may lose
precision when compared to the original input.

02/18/94 49

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

SECTION 4 — POSTQUEL COMMANDS (COMMANDS)

DESCRIPTION

The following is a description of the general syntax ofPOSTQUEL. Individual POSTQUELstatements and
commands are treated separately in the document; this section describes the syntactic classes from which
the constituent parts ofPOSTQUELstatements are drawn.

Comments

A commentis an arbitrary sequence of characters bounded on the left by “/*” and on the right by “*/”, e.g:

/* This is a comment */

Names

Namesin POSTQUELare sequences of not more than 16 alphanumeric characters, starting with an alpha-
betic character. Underscore (“_”) is considered an alphabetic character.

Keywords

The following identifiers are reserved for use askeywordsand may not be used otherwise:

abort define is quel
acl delete ISNULL r elation
addattr demand key remove
after descending leftouter rename
aggregate destroy light replace
all destroydb listen retrieve
always do load returns
and empty merge rewrite
append end move rightouter
archive execute never r ule
arch_store extend new setof
arg fetch none sort
as forward nonulls stdin
ascending from not stdout
attachas function notify store
backward group NOTNULL to
before heavy NULL transaction
begin in on type
binary index once union
by indexable operator unique
cfunction inherits or user
change input_proc output_proc using
close instance parallel vacuum
cluster instead pfunction version
copy intersect portal view
create into postquel where
createdb intotemp priority with
curr ent iportal purge

In addition, allPOSTGRESclasses have sev eral predefined attributes used by the system.For a list of these,
see the sectionFields, below.

03/12/94 50

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Constants

There are six types ofconstantsfor use inPOSTQUEL. They are described below.

Character Constants

Singlecharacter constantsmay be used inPOSTQUELby surrounding them by single quotes, e.g., ‘n’.

String Constants

Stringsin POSTQUELare arbitrary sequences of ASCII characters bounded by double quotes (" "). Upper
case alphabetics within strings are accepted literally. Non-printing characters may be embedded within
strings by prepending them with a backslash, e.g., ‘\n’. Also, in order to embed quotes within strings, it is
necessary to prefix them with ‘\’ .The same convention applies to ‘\’ itself. Because of the limitations on
instance sizes, string constants are currently limited to a length of a little less than 8192 bytes.Larger
objects may be created using thePOSTGRESLarge Object interface.

Integer Constants

Integer constantsin POSTQUELare collection of ASCII digits with no decimal point.Legal values range
from −2147483647 to +2147483647. This will vary depending on the operating system and host machine.

Floating Point Constants

Floating point constantsconsist of an integer part, a decimal point, and a fraction part or scientific notation
of the following format:

{<dig>} .{<dig>} [e [+-] {<dig>}]

Where <dig> is a digit.You must include at least one <dig> after the period and after the [+-] if you use
those options. An exponent with a missing mantissa has a mantissa of 1 inserted. There may be no extra
characters embedded in the string. Floating constants are taken to be double-precision quantities with a

range of approximately−1038 to 1038 and a precision of 17 decimal digits. This will vary depending on the
operating system and host machine.

Constants ofPOSTGRESUser-Defined Types

A constant of anarbitrary type can be entered using the notation:

"string"::type-name

In this case the value inside the string is passed to the input conversion routine for the type called type-
name. The result is a constant of the indicated type. The explicit typecast may be omitted if there is no
ambiguity as to the type the constant must be, in which case it is automatically coerced.

Array constants

Array constantsare arrays of any POSTGREStype, including other arrays, string constants, etc. The general
format of an array constant is the following:

"{<val1><delim><val2><delim>}"

Where<delim> is the delimiter for the type stored in the “pg_type” class.(For built-in types, this is the
comma character, “,”.) An example of an array constant is

"{{1,2,3},{4,5,6},{7,8,9}}"

This constant is a two-dimensional, 3 by 3 array consisting of three sub-arrays of integers.

Individual array elements can and should be placed between quotation marks whenever possible to avoid
ambiguity problems with respect to leading white space.

03/12/94 51

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Arrays of fixed-length types may also be stored asPOSTGRESlarge objects (seeintroduction(large
objects)). Thesyntax for an array constant of this form is

"large_object [-unix | -invert] [-chunk (DEFAULT | acc_pat_file)]"

That is, any array constant that does not begin and end in curly braces is assumed to be an Inversion file
system filename that contains the appropriate array data.The Inversion file will be created if it does not
already exist. The flag "unix" or "invert" is used to indiacte the type of the large object. The default type is
"unix". An array stored in large object can be chunked to optimize retrievals by using the "-chunk" flag.
The array can be chunked using a default chunk size (by using the keyword DEFAULT) or by using an
access pattern stored in a native file "acc_patt_file". The access pattern is expected to be in the following
format.

<n> <A_11 A_12 .. A_1d P_1> ... <A_n1 A_n2 .. A_nd P_n>

where n is the number of tuples in the access pattern and d is the number of dimensions of the array. For
each i, <A_i1 A_i2 .. A_id> is the dimension of an access request on the array and P_i is the relative fre-
quency of the access.

Fields

A field is either an attribute of a given class or one of the following:

all
oid
tmin
tmax
xmin
xmax
cmin
cmax
vtype

As in INGRES, all is a shorthand for all normal attributes in a class, and may be used profitably in the target
list of a retrieve statement.

Oid stands for the unique identifier of an instance which is added byPOSTGRESto all instances automati-
cally. Oids are not reused and are 32 bit quantities.

Tmin, tmax, xmin, cmin, xmaxandcmaxstand respectively for the time that the instance was inserted, the
time the instance was deleted, the identity of the inserting transaction, the command identifier within the
transaction, the identity of the deleting transaction and its associated deleting command.For further infor-
mation on these fields consult [STON87]. Times are represented internally as instances of the “abstime”
data type. Transaction identifiers are 32 bit quantities which are assigned sequentially starting at 512.
Command identifiers are 16 bit objects; hence, it is an error to have more than 65535POSTQUELcom-
mands within one transaction.

Attributes

An attribute is a construct of the form:

Instance-variable{.composite_field}.field ‘[’number‘]’

Instance-variableidentifies a particular class and can be thought of as standing for the instances of that

03/12/94 52

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

class. Aninstance variable is either a class name, a surrogate for a class defined by means of afrom clause,
or the keyword new or current. New and current can only appear in the action portion of a rule, while
other instance variables can be used in any POSTQUELcommand.Composite_fieldis a field of of one of
thePOSTGREScomposite types indicated in theinformation(commands) section, while successive compos-
ite fields address attributes in the class(s) to which the composite field evaluates. Lastly, field is a normal
(base type) field in the class(s) last addressed.If field is of type array, then the optionalnumberdesignator
indicates a specific element in the array. If no number is indicated, then all array elements are returned.

Operators

Any built-in system, or user-defined operator may be used inPOSTQUEL. For the list of built-in and system
operators consultintroduction (built-ins). For a list of user-defined operators consult your system adminis-
trator or run a query on the pg_operator class.Parentheses may be used for arbitrary grouping of operators.

Expressions (a_expr)

An expressionis one of the following:

(a _expr)
constant
attribute
a_expr binary_operator a_expr
a_expr right_unary_operator
left_unary_operator a_expr
parameter
functional expressions
aggregate expressions
set expressions (no general implementation in Version 4.2)
class expression (no general implementation in Version 4.2)

We hav ealready discussed constants and attributes. Thetwo kinds of operator expressions indicate respec-
tively binary and left_unary expressions. Thefollowing sections discuss the remaining options.

Parameters

A parameteris used to indicate a parameter in aPOSTQUELfunction. Typically this is used inPOSTQUEL

function definition statement. The form of a parameter is:

´$’ number

For example, consider the definition of a function, DEPT, as

define function DEPT
(language="postquel", returntype = dept)

arg is (char16) as
retrieve (dept.all) where dept.name = $1

Functional Expressions

A functional expressionis the name of a legal POSTQUELfunction, followed by its argument list enclosed
in parentheses, e.g.:

fn-name (a_expr{ , a_expr})

For example, the following computes the square root of an employee salary.

03/12/94 53

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

sqrt(emp.salary)

Aggregate Expression

An aggregate expressionrepresents a simple aggregate (i.e., one that computes a single value) or an aggre-
gate function (i.e., one that computes a set of values). Thesyntax is the following:

aggregate_name ‘{’ [unique [using] opr] a_expr
[from from_list]
[where qualification]‘}’

Here, aggregate_namemust be a previously defined aggregate. The from_list indicates the class to be
aggregated over while qualificationgives restrictions which must be satisfied by the instances to be aggre-
gated. Next, thea_exprgives the expression to be aggregated, while theuniquetag indicates whether all
values should be aggregated or just the unique values ofa_expr. Two expressions,a_expr1anda_expr2
are the same ifa_expr1 opr a_expr2evaluates to true.

In the case that all instance variables used in the aggregate expression are defined in thefrom list, a simple
aggregate has been defined.For example, to sum employee salaries whose age is greater than 30, one
would write:

retrieve (total = sum {e.salary from e in emp
where e.age > 30})

or

retrieve (total = sum {emp.salary where emp.age > 30})

In either case,POSTGRESis instructed to find the instances in thefrom_list which satisfy the qualification
and then compute the aggregate of thea_exprindicated.

On the other hand, if there are variables used in the aggregate expression that are not defined in thefrom
list, e.g:

avg {emp.salary where emp.age = e.age}

then this aggregate function has a value for each possible value taken on by “e.age”.For example, the fol-
lowing complete query finds the average salary of each possible employee age over 18:

retrieve (e.age, eavg = avg {emp.salary where emp.age = e.age})
from e in emp
where e.age > 18

Aggregate functions are not supported in Version 4.2.

In general, the following aggregates (i.e., the expression within the braces) will not work:

Aggregate functions of any kind.

Aggregates containing more than one range variable.

Aggregates that refer to range variables that use class inheritance (e.g., “e from emp*”).

Aggregates containing clauses other thana_exprandwhere-qualification clauses. (In other words,
from clauses within aggregates are not supported.)

03/12/94 54

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

In addition, aggregate expressions may only appear within the target list of a query — that is, no aggregate
expression may appear in a query qualification (orwhereclause).

Therefore, of the three example queries given, only the second is actually supported.

Set Expressions

Generalized set expressions are not supported in Version 4.2. For information on sets as attributes, see
the manual pages for thecreate(commands),append(commands) andretrieve(commands) commands.

A set expressiondefines a collection of instances from some class and uses the following syntax:

{target_list from from_list where qualification}

For example, the set of all employee names over 40 is:

{emp.name where emp.age > 40}

In addition, it is legal to construct set expressions which have an instance variable which is defined outside
the scope of the expression. For example, the following expression is the set of employees in each depart-
ment:

{emp.name where emp.dept = dept.dname}

Set expressions can be used in class expressions which are defined below.

Class Expression

Generalized class expressions are not supported in Version 4.2.For information on classes as attributes,
see the manual pages for thecreate(commands),append(commands) andretrieve(commands) commands.

A class expressionis an expression of the form:

class_constructor binary_class_operator class_constructor
unary_class_operator class_constructor

where binary_class_operator is one of the following:

union unionof two classes
intersect intersectionof two classes
− difference of two classes
>> left class contains right class
<< rightclass contains left class
== rightclass equals left class

and unary_class_operator can be:

empty rightclass is empty

A class_constructoris either an instance variable, a class name, the value of a composite field or a set
expression.

An example of a query with a class expression is one to find all the departments with no employees:

retrieve (dept.dname)
where empty {emp.name where emp.dept = dept.dname}

03/12/94 55

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Target_list

A target list is a parenthesized, comma-separated list of one or more elements, each of which must be of the
form:

[result_attname =] a_expr

Here, result_attname is the name of the attribute to be created (or an already existing attribute name in the
case of update statements.)If result_attnameis not present, thena_exprmust contain only one attribute
name which is assumed to be the name of the result field. In Version 4.2 default naming is only used if
a_expris an attribute.

Qualification

A qualificationconsists of any number of clauses connected by the logical operators:

not
and
or

A clause is ana_exprthat evaluates to a Boolean over a set of instances.

From List

Thefrom list is a comma-separated list offrom expressions.

Eachfrom expressionis of the form:

instance_variable-1 {, instance_variable-2}
in class_reference

whereclass_referenceis of the form

class_name [time_expression] [*]

The from expression defines one or more instance variables to range over the class indicated in
class_reference. Adding a time_expressionwill indicate that a historical class is desired. One can also
request the instance variable to range over all classes that are beneath the indicated class in the inheritance
hierarchy by postpending the designator “*”.

Time Expressions

A time expressionis in one of two forms:

["date"]
["date-1", "date-2"]

The first case requires instances that are valid at the indicated time. The second case requires instances that
are valid at some time within the date range specified. If no time expression is indicated, the default is
“now”.

In each case, the date is a character string of the form

[MON-FRI] "MMM DD [HH:MM:SS] YYYY" [Timezone]

where MMM is the month (Jan − Dec), DD is a legal day number in the specified month, HH:MM:SS is an
optional time in that day (24-hour clock), and YYYY is the year. If the time of day HH:MM:SS is not

03/12/94 56

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

specified, it defaults to midnight at the start of the specified day. As of Version 3.0, times are no longer
read and written using Greenwich Mean Time; the input and output routines default to the local time zone.

For example,

["Jan 1 1990"]
["Mar 3 00:00:00 1980", "Mar 3 23:59:59 1981"]

are valid time specifications.

Note that this syntax is slightly different than that used by the time-range type.

SEE ALSO

append(commands), delete(commands), execute(commands), replace(commands), retrieve(commands),
monitor(unix).

BUGS

The following constructs are not available in Version 4.2:
class expressions
set expressions

03/12/94 57

ABORT(COMMANDS) ABORT(COMMANDS)

NAME

abort — abort the current transaction

SYNOPSIS

abort

DESCRIPTION

This command aborts the current transaction and causes all the updates made by the transaction to be dis-
carded.

SEE ALSO

begin(commands), end(commands).

01/23/93 58

ADDATTR(COMMANDS) ADDATTR(COMMANDS)

NAME

addattr — add attributes to a class

SYNOPSIS

addattr (attname1= type1 {, attname-i= type-i})
to classname [*]

DESCRIPTION

The addattr command causes new attributes to be added to an existing class,classname. The new
attributes and their types are specified in the same style and with the the same restrictions as incre-
ate(commands).

In order to add an attribute to each class in an entire inheritance hierarchy, use theclassnameof the super-
class and append a “*”. (By default, the attribute will not be added to any of the subclasses.) This should
always be done when adding an attribute to a superclass.If it is not, queries on the inheritance hierarchy
such as

retrieve (s.all) from s in super*

will not work because the subclasses will be missing an attribute found in the superclass.

For efficiency reasons, default values for added attributes are not placed in existing instances of a class.
That is, existing instances will have NULL values in the new attributes. Ifnon-NULL values are desired, a
subsequentreplace(commands) query should be run.

You must own the class in order to change its schema.

EXAMPLE

/*
* a dd the date of hire to the emp class
*/

addattr (hiredate = abstime) to emp

/*
* a dd a health-care number to all persons
* (including employees, students, ...)
*/

addattr (health_care_id = int4) to person*

SEE ALSO

create(commands), rename(commands), replace(commands).

02/08/94 59

APPEND(COMMANDS) APPEND(COMMANDS)

NAME

append — append tuples to a relation

SYNOPSIS

appendclassname
(att_expr-1= expression1 {, att_expr-i= expression-i})

[from from_list] [wherequal]

DESCRIPTION

Append adds instances that satisfy the qualification,qual, to classname. Classnamemust be the name of
an existing class. The target list specifies the values of the fields to be appended toclassname. That is,
eachatt_exprspecifies a field (either an attribute name or an attribute name plus an array specification) to
which the correspondingexpressionshould be assigned. The fields in the target list may be listed in any
order. Fields of the result class which do not appear in the target list default to NULL. If the expression for
each field is not of the correct data type, automatic type coercion will be attempted.

An array initialization may take exactly one of the following forms:

/*
* S pecify a lower and upper index for each dimension
*/

att_name[lIndex-1:uIndex-1]..[lIndex-i:uIndex-i] = array_str

/*
* S pecify only the upper index for each dimension
* (each lower index defaults to 1)
*/

att_name[uIndex-1]..[uIndex-i] = array_str

/*
* Use the upper index bounds as specified within array_str
* (each lower index defaults to 1)
*/

att_name = array_str

where eachlIndex or uIndex is an integer constant andarray_str is an array constant (seeintroduc-
tion(commands)).

If the user does not specify any array bounds (as in the third form) thenPOSTGRESwill attempt to deduce
the actual array bounds from the contents ofarray_str.

If the user does specify explicit array bounds (as in the first and second forms) then the array may be initial-
ized partly or fully using a C-like syntax for array initialization.However, the uninitialized array elements
will contain garbage.

The keyword all can be used when it is desired to append all fields of a class to another class.

If the attribute is a complex type, its contents are specified as a query which will return the tuples in the set.
See the examples below.

You must have write or append access to a class in order to append to it, as well as read access on any class
whose values are read in the target list or qualification (seechange acl(commands)).

03/12/94 60

APPEND(COMMANDS) APPEND(COMMANDS)

EXAMPLES

/*
* Make a new employee Jones work for Smith
*/

append emp (newemp.name, newemp.salary, mgr = "Smith",
bdate = 1990 - newemp.age)

where newemp.name = "Jones"

/*
* S ame command using the from list clause
*/

append emp (n.name, n.salary, mgr = "Smith",
bdate = 1990 - n.age)

from n in newemp
where n.name = "Jones"

/*
* A ppend the newemp1 class to newemp
*/

append newemp (newemp1.all)

/*
* Create an empty 3x3 gameboard for noughts-and-crosses
* (all of these queries create the same board attribute)
*/

append tictactoe (game = 1, board[1:3][1:3] =
"{{"","",""},{},{"",""}}")

append tictactoe (game = 2, board[3][3] =
"{}")

append tictactoe (game = 3, board =
"{{,,},{,,},{,,}}")

/*
* Create a 3x3 noughts-and-crosses board that is
* c ompletely filled-in
*/

append tictactoe (game = 4, board =
"{{X,O,X},{O,X,O},{X,X,X}}")

/*
* Create a 3x3 noughts-and-crosses board that has
* o nly 1 place filled-in
*/

append tictactoe (game = 4, board[3][3] =
"{{},{,X,}}")

03/12/94 61

APPEND(COMMANDS) APPEND(COMMANDS)

/*
* Create a tuple containing a large-object array.
* T he large object "/large/tictactoe/board" will be
* c reated if it does not already exist. The flag "-invert"
* i ndicates that the large object is of type Inversion
* (the default type is Unix).
*/

append tictactoe (board[3][3] =
"/large/tictactoe/board -invert")

/*
* Create a tuple containing a large-object array and "chunk"
* i t. The Inversion file "/large/tictactoe/board" must already
* e xist. The external file "/etc/acc_patt" holds the access
* p attern used to cluster (chunk) the array elements. A new
* l arge object is created to hold the chunked array.
* (See "src/doc/papers/arrays/paper.ps" for more information)
*/

append tictactoe (board[3][3] =
"/large/tictactoe/board -chunk /etc/acc_patt")

/*
* A ppend a tuple with a set attribute "mgr" of type emp. The
* q uery to produce the manager of "carol" (specified dynamically
* h ere) will be stored as a POSTQUEL function in the system
* c atalog "pg_proc". The object ID of this tuple in "pg_proc"
* will be used in the name of the procedure, resulting in a
* p rocedure name of the form "set<OID of the tuple>". Two
* b ackslashes are needed here to escape the inner quotes when
* e ntering this query from the monitor.
*/

append emp (name = "carol",
mgr = "retrieve (emp.all)

where emp.name = \\"mike\\"")

SEE ALSO

postquel(commands), create(commands), define type(commands), replace(commands), retrieve(commands)
introduction(large objects).

BUGS

Once an array is created by anappendquery, its size (in bytes) cannot be changed.This has several impli-
cations.

First, there is no longer any notion of a “variable-length array.“ In fact, since variable-length arrays
were not actually supported in previous versions ofPOSTGRES, this is not much of a change.

Second, arrays of variable-length types (e.g., text) cannot be updated. Since the array cannot
grow, replacement of individual array elements cannot be supported in general.

03/12/94 62

ATTA CHAS(COMMANDS) ATTACHAS(COMMANDS)

NAME

attachas — reestablish communication using an exising portal

SYNOPSIS

attachasname

DESCRIPTION

This command allows application programs to use a logical name,name, in interactions withPOSTGRES.
Suppose the user of an application program specifies a collection of rules that retrieve data and that the pro-
gram fails for some reason.Then, under ordinary circumstances, all the rules would need to be reentered
when the program is restored.Alternatively, theattachascommand may be used before defining the rules
the first time. Then, upon restoring the program, theattachascommand will reattach the user to the active
rules.

BUGS

Attachas is not implemented in Version 4.2.

01/23/93 63

BEGIN(COMMANDS) BEGIN(COMMANDS)

NAME

begin — begins a transaction

SYNOPSIS

begin

DESCRIPTION

This command begins a user transaction whichPOSTGRESwill guarantee is serializable with respect to all
concurrently executing transactions.POSTGRESuses two-phase locking to perform this task. If the trans-
action is committed,POSTGRESwill ensure that all updates are done or none of them are done.Transac-
tions have the standard ACID (atomic, consistent, isolatable, and durable) property.

SEE ALSO

abort(commands), end(commands).

01/23/93 64

CHANGE ACL(COMMANDS) CHANGEACL(COMMANDS)

NAME

change acl — change access control list(s)

SYNOPSIS

change acl[group|user] [name]+{ a|r |w|R} class-1 {, class-i}
change acl[group|user] [name]-{ a|r |w|R} class-1 {, class-i}
change acl[group|user] [name]={ a|r |w|R} class-1 {, class-i}

DESCRIPTION

Introduction

An access control list(ACL) specifies the access modes that are permitted on a given class for a set of users
and groups of users. These modes are:

a − append data to a class
r − read data from a class
w − write data (append, delete, replace) to a class
R − define rules on a class

Application of ACLs to users

Each entry in an ACL consists of an identifier and a set of permitted access modes.The identifier may
apply to a singleuser, a group of users, or allother users. Ifa user has a personal entry in an ACL, then
only the listed access modes are permitted. If a user does not have a personal entry but is a member of
some group(s) listed in the ACL, then access is permitted ifall of the listed groups of which the user is a
member have the desired access mode.Finally, if a user does not have a personal entry and is not a mem-
ber of any listed groups, then the desired access mode is checked against the "other" entry.

Database superusers (i.e., users who have pg_user.usesuper set) silently bypass all access controls with one
exception: manual system catalog updates are never permitted if the user does not have pg_user.usecatupd
set. Thisis intended as a convenience (safety net) for careless superusers.

Application of ACLs through time

The access control system always uses the ACLs that are currently valid, i.e., time travel is not supported.
This may change if/when a more general notion of time-travel is documented.

CHANGING ACLS

In the syntax shown above, nameis a user or group identifier. If the user or group keywords are left out,
nameis assumed to be a user name.If no nameis listed at all, then the ACL entry applies to the "other"
category.

Access modes are added, deleted or explicitly set using exactly one of the+, - and= mode-change flags.
The access modes themselves are specified using any number of the single-letter mode flags listed above.

Only the owner of a class (or a database superuser) may change an ACL.

By default, classes start without any ACLs. Classescreated using the inheritance mechanism do not inherit
ACLs.

EXAMPLES

/*
* Deny any access to "other" to classes "gcmdata" and "btdata".
*/

change acl = gcmdata, btdata

/*
* Grant "dozier" all permissions to "gcmdata" and "btdata".

01/23/93 65

CHANGE ACL(COMMANDS) CHANGEACL(COMMANDS)

*/
change acl user dozier=arwR gcmdata, btdata

/*
* A llow group "sequoia" to read and append data to "gcmdata".
*/

change acl group sequoia+ra gcmdata

/*
* Deny "frew" the ability to define rules on "gcmdata".
*/

change acl frew-R gcmdata

SEE ALSO

introduction(unix), append(commands), copy(commands), delete(commands), define rule(commands),
replace(commands), retrieve(commands).

CAVEATS

The command syntax, patterned afterchmod(1), is admittedly somewhat cryptic.

A facility like umask(2) will be added in the future.

User authentication is only conducted if the frontend process and backend server have been compiled with
thekerberos(5) libraries. Seeintroduction(unix).

As shipped, the system does not have any installed ACLs.

An access control mode for defining trusted functions (analogous to the access control on defining rules)
will be added after the (mis)features and interface of untrusted functions have stabilized.

User names, group names and associated system identifiers (e.g., the contents of pg_user.usesysid) are
assumed to be unique throughout a database. Unpredictable results may occur if they are not.

User system identifiers, as mentioned in a previous section of the manual, are currently UNIX user-id’s.
This may change at some time in the future.

It is possible for users to change the server’s internal data structures from inside of trusted (fast path) C
functions. Hence,among many other things, such functions can circumvent any system access controls.
This is an inherent problem with trusted functions.

No POSTQUELcommand is provided to clean up ACLs by removing entries (as opposed to removing the
associated permissions).However, the built-in ACL functions provided make most administrative tasks
fairly trivial. For example, to remove all ACL references to a user "mao" who is about to be fired, use:

replace pg_class (relacl = pg_class.relacl - "mao="::aclitem)

Security should be implemented with a clever query modification or rule-based scheme.

01/23/93 66

CLOSE(COMMANDS) CLOSE(COMMANDS)

NAME

close — close a portal

SYNOPSIS

close[portal_name]

DESCRIPTION

Close frees the resources associated with a portal,portal_name.After this portal is closed, no subsequent
operations are allowed on it.A portal should be closed when it is no longer needed.If portal_nameis not
specified, then the blank portal is closed.

EXAMPLE

/*
* c lose the portal FOO
*/

close FOO

SEE ALSO

fetch(commands), move(commands), retrieve(commands).

01/23/93 67

CLUSTER(COMMANDS) CLUSTER(COMMANDS)

NAME

cluster — give storage clustering advice toPOSTGRES

SYNOPSIS

cluster classnameon attname [usingoperator]

DESCRIPTION

This command instructsPOSTGRESto keep the class specified byclassnameapproximately sorted on
attnameusing the specified operator to determine the sort order. The operator must be a binary operator
and both operands must be of typeattnameand the operator must produce a result of type boolean. If no
operator is specified, then “<” is used by default.

A class can be reclustered at any time on a differentattnameand/or with a differentoperator.

POSTGRESwill try to keep the heap data structure which stores the instances of this class approximately in
sorted order. If the user specifies an operator which does not define a linear ordering, this command will
produce unpredictable orderings.

Also, if there is no index for the clustering attribute, then this command will have no effect.

EXAMPLE

/*
* c luster employees in salary order
*/

cluster emp on salary

BUGS

Clusterhas no effect in Version 4.2.

01/23/93 68

COPY(COMMANDS) COPY(COMMANDS)

NAME

copy — copy data to or from a class from or to aUNIX file.

SYNOPSIS

copy [binary] [nonulls] classname
to|from "filename"|stdin|stdout

DESCRIPTION

Copy moves data betweenPOSTGRESclasses and standardUNIX files. Thekeyword binary changes the
behavior of field formatting, as described below. Classnameis the name of an existing class.Filenameis
the UNIX pathname of the file. In place of a filename, the keywords stdin andstdout can be used so that
input tocopy can be written by aLIBPQ application and output from thecopy command can be read by a
LIBPQ application. Thebinary keyword will force all data to be stored/read as binary objects rather than as
ASCII text. It is somewhat faster than the normalcopy command, but is not generally portable, and the
files generated are somewhat larger, although this factor is highly dependent on the data itself.

You must have read access on any class whose values are read by thecopy command, and either write or
append access to a class to which values are being appended by thecopycommand.

FORMAT OF OUTPUT FILES

ASCII COPY FORMAT

Whencopy is used without thebinary keyword, the file generated will have each instance on a line, with
each attribute separated by tabs (\t).Embedded tabs will be preceeded by a backslash character (\).The
attribute values themselves are strings generated by the output function associated with each attribute type.
The output function for a type should not try to generate the backslash character; this will be handled by
copy itself.

Note that on input tocopy, backslashes are considered to be special control characters, and should be dou-
bled if you want to embed a backslash, i.e., the string “12\\19\88” will be converted bycopy to “12\1988”.
The actual format for each instance is

<attr1><tab><attr2><tab>...<tab><attrn><newline>

If copy is sending its output to standard output instead of a file, it will send a period (.) followed immedi-
ately by a newline, on a line by themselves, when it is done.Similarly, if copy is reading from standard
input, it will expect a period (.) followed by a newline, as the first two characters on a line, to denote end-
of-file. However, copywill terminate (followed by the backend itself) if a true EOF is encountered.

NULL attributes are handled simply as null strings, that is, consecutive tabs in the input file denote a
NULL attribute.

BINARY COPY FORMAT

In the case ofcopy binary, the first four bytes in the file will be the number of instances in the file. If this
number iszero,thecopy binary command will read until end of file is encountered. Otherwise, it will stop
reading when this number of instances has been read. Remaining data in the file will be ignored.

The format for each instance in the file is as follows. Notethat this format must be followedEXACTLY .
Unsigned four-byte integer quantities are called uint32 in the below description.

uint32 totallength (not including itself),
uint32 number of null attributes
[uint32 attribute number of first null attribute
...
uint32 attribute number of nth null attribute],
<data>

ALIGNMENT OF BINAR Y DAT A

01/23/93 69

COPY(COMMANDS) COPY(COMMANDS)

On Sun-3’s, 2-byte attributes are aligned on two-byte boundaries, and all larger attributes are aligned on
four-byte boundaries. Character attributes are aligned on single-byte boundaries.On other machines, all
attributes larger than 1 byte are aligned on four-byte boundaries.Note that variable length attributes are
preceded by the attribute’s length; arrays are simply contiguous streams of the array element type.

SEE ALSO

append(commands), create(commands), vacuum(commands), libpq.

BUGS

Files used as arguments to thecopy command must reside on or be accessable to the the database server
machine by being either on local disks or a networked file system.

Copy stops operation at the first error. This should not lead to problems in the event of acopy from, but
the target relation will, of course, be partially modified in acopy to. Thevacuum(commands) query should
be used to clean up after a failedcopy.

BecausePOSTGRESoperates out of a different directory than the user’s working directory at the timePOST-

GRESis invoked, the result of copying to a file “foo” (without additional path information) may yield unex-
pected results for the naive user. In this case, “foo” will wind up in$PGDAT A/foo. In general, the full path-
name should be used when specifying files to be copied.

Copy has virtually no error checking, and a malformed input file will likely cause the backend to crash.
Humans should avoid usingcopy for input whenever possible.

01/23/93 70

CREATE(COMMANDS) CREATE(COMMANDS)

NAME

create — create a new class

SYNOPSIS

createclassname(attname-1= type-1 {, attname-i= type-i})
[key (attname-1 [usingoperator-1]

{, attname-i [usingoperator-i]})]
[inherits (classname-1 {, classname-i})]
[archive =archive_mode]
[store = “smgr_name”]
[arch_store = “smgr_name”]

DESCRIPTION

Create will enter a new class into the current data base. The class will be “owned” by the user issuing the
command. Thename of the class isclassnameand the attributes are as specified in the list ofattnames.
The i th attribute is created with the type specified bytype-i. Eachtype may be a simple type, a complex
type (set) or an array type.

Each array attribute stores arrays that must have the same number of dimensions but may have different
sizes and array index bounds. Anarray of dimensionn is specified by appendingn pairs of square brackets:

att_name = type[][]..[]

The optionalkey clause is used to specify that a field or a collection of fields is unique. If no key clause is
specified,POSTGRESwill still gi ve every instance a unique object-id (OID). This clause allows other fields
to be additional keys. Theusing part of the clause allows the user to specify what operator should be used
for the uniqueness test.For example, integers are all unique if “=” is used for the check, but not if “<” is
used instead.If no operator is specified, “=” is used by default. Any specified operator must be a binary
operator returning a boolean. If there is no compatible index to allow the key clause to be rapidly checked,
POSTGRESdefaults to not checking rather than performing an exhaustive search on each key update.

The optionalinherits clause specifies a collection of class names from which this class automatically inher-
its all fields. If any inherited field name appears more than once,POSTGRESreports an error. POSTGRES

automatically allows the created class to inherit functions on classes above it in the inheritance hierarchy.
Inheritance of functions is done according to the conventions of the Common Lisp Object System (CLOS).

Each new classclassnameis automatically created as a type. Therefore, one or more instances from the
class are automatically a type and can be used inaddattr(commands) or othercreatestatements. Seeintro-
duction(commands) for a further discussion of this point.

The optionalstore andarch_storekeywords may be used to specify a storage manager to use for the new
class. Thereleased version ofPOSTGRESsupports only “magnetic disk” as a storage manager name; the
research system at Berkeley provides additional storage managers.Store controls the location of current
data, andarch_storecontrols the location of historical data.Arch_store may only be specified ifarchive
is also specified. If eitherstoreor arch_store is not declared, it defaults to “magnetic disk”.

The new class is created as a heap with no initial data.A class can have no more than 1600 domains (real-
istically, this is limited by the fact that tuple sizes must be less than 8192 bytes), but this limit may be con-
figured lower at some sites.A class cannot have the same name as a system catalog class.

Thearchive keyword specifies whether historical data is to be saved or discarded.Arch_modemay be one
of:

none No historical access is supported.

03/12/94 71

CREATE(COMMANDS) CREATE(COMMANDS)

light Historical access is allowed and optimized for light update activity.

heavy Historical access is allowed and optimized for heavy update activity.

Arch_modedefaults to “none”. Once the archive status is set, there is no way to change it.For details of
the optimization, see [STON87].

EXAMPLES

/*
* Create class emp with attributes name, sal and bdate
*/

create emp (name = char16, salary = float4, bdate = abstime)

/*
* Create class permemp with pension information that
* i nherits all fields of emp
*/

create permemp (plan = char16) inherits (emp)

/*
* Create class foo on magnetic disk and archive historical data
*/

create foo (bar = int4) archive = heavy
store = "magnetic disk"

/*
* Create class tictactoe to store noughts-and-crosses
* b oards as a 2-dimensional array
*/

create tictactoe (game = int4, board = char[][])

/*
* Create a class newemp with a set attribute "manager". A
* s et (complex) attribute may be of the same type as the
* r elation being defined (as here) or of a different complex
* t ype. The type must exist in the "pg_type" catalog or be
* t he one currently being defined.
*/

create newemp (name = text, manager = newemp)

SEE ALSO

destroy(commands).

BUGS

Thekey clause is not implemented in Version 4.2.

Optional specifications (i.e.,inherits, archive andstore) must be supplied in the order given above, if they
are supplied at all.

03/12/94 72

CREATEDB(COMMANDS) CREATEDB(COMMANDS)

NAME

createdb — create a new database

SYNOPSIS

createdbdbname

DESCRIPTION

Createdbcreates a newPOSTGRESdatabase. Thecreator becomes the administrator of the new database.

SEE ALSO

createdb(unix), destroydb(commands), destroydb(unix), initdb(unix).

BUGS

This command shouldNOT be executed interactively. Thecreatedb(unix) script should be used instead.

01/23/93 73

CREATE VERSION(COMMANDS) CREATE VERSION(COMMANDS)

NAME

create version — construct a version class

SYNOPSIS

create versionclassname1from classname2 [[abstime]]

DESCRIPTION

This command creates a version classclassname1which is related to its parent class,classname2. Initially,
classname1has the same contents asclassname2.As updates toclassname1occur, howev er, the content of
classname1diverges fromclassname2.On the other hand, any updates toclassname2show transparently
through toclassname1, unless the instance in question has already been updated inclassname1.

If the optionalabstimeclause is specified, then the version is constructed relative to a snapshotof class-
name2as of the time specified.

POSTGRESuses the query rewrite rule system to ensure thatclassname1is differentially encoded relative to
classname2.Moreover, classname1is automatically constructed to have the same indexes as classname2.
It is legal to cascade versions arbitrarily, so a tree of versions can ultimately result.The algorithms that
control versions are explained in [ONG90].

EXAMPLE

/*
* c reate a version foobar from a snapshot of
* b arfoo as of January 17, 1990
*/

create version foobar from barfoo ["Jan 17 1990"]

SEE ALSO

define view(commands), merge(commands), postquel(commands).

BUGS

Snapshots (i.e., the optionalabstimeclause) are not implemented in Version 4.2.

01/23/93 74

DEFINE AGGREGATE(COMMANDS) DEFINEAGGREGATE(COMMANDS)

NAME

define aggregate — define a new aggregate

SYNOPSIS

define aggregateagg-name [as]
([sfunc1 =state-transition-function-1
, basetype =data-type
, stype1 =sfunc1-return-type]
[, sfunc2 = state-transition-function-2
, stype2 =sfunc2-return-type]
[, finalfunc = final-function]
[, initcond1 = initial-condition-1]
[, initcond2 = initial-condition-2])

DESCRIPTION

An aggregate function can use up to three functions, twostate transitionfunctions, X1 and X2:
X1(internal-state1, next-data_item) ---> next-internal-state1
X2(internal-state2) ---> next-internal-state2

and afinal calculation function, F:
F(internal-state1, internal-state2) ---> aggregate-value

These functions are required to have the following properties:

The arguments to state-transition-function-1 must be(stype1,basetype), and its return value must
be stype1.

The argument and return value of state-transition-function-2 must bestype2.

The arguments to the final-calculation-function must be(stype1,stype2), and its return value must
be a POSTGRES base type (not necessarily the same as basetype.

The final-calculation-function should be specified if and only if both state-transition functions are
specified.

Note that it is possible to specify aggregate functions that have varying combinations of state and final
functions. For example, the “count” aggregate requiressfunc2 (an incrementing function) but notsfunc1
or finalfunc, whereas the “sum” aggregate requiressfunc1 (an addition function) but notsfunc2 or final-
func and the “average” aggregate requires both of the above state functions as well as afinalfunc (a divi-
sion function) to produce its answer. In any case, at least one state function must be defined, and any
sfunc2must have a correspondinginitcond2.

Aggregates also require two initial conditions, one for each transition function.These are specified and
stored in the database as fields of typetext.

EXAMPLE

This avg aggregate consists of two state transition functions, a addition function and a incrementing func-
tion. Thesemodify the internal state of the aggregate through a running sum and and the number of values
seen so far. It accepts a new employee salary, increments the count, and adds the new salary to produce the
next state. The state transition functions must be passed correct initialization values. Thefinal calculation
then divides the sum by the count to produce the final answer.

/*
* Define an aggregate for int4 average
*/

define aggregate avg (sfunc1 = int4add, basetype = int4,
stype1 = int4, sfunc2 = int4inc, stype2 = int4,
finalfunc = int4div, initcond1 = "0", initcond2 = "0")

01/23/93 75

DEFINE AGGREGATE(COMMANDS) DEFINEAGGREGATE(COMMANDS)

SEE ALSO

define function(commands), remove aggregate(commands).

01/23/93 76

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

NAME

define function — define a new function

SYNOPSIS

define function function_name(
language ={"c" | "postquel"},
returntype = type-r
[, iscachable]
[, trusted = {"t" | "f"}]
[, percall_cpu = "costly{ !*} "]
[, perbyte_cpu = "costly{ !*} "]
[, outin_ratio = percentage]
[, byte_pct = percentage]
)

arg is ([type-1 { , type-n }])
as{"/full/path/to/objectfile" | "list-of-postquel-queries"}

DESCRIPTION

With this command, aPOSTGRESuser can register a function withPOSTGRES. Subsequently, this user is
treated as the owner of the function.

When defining a function with arguments, the input data types,type-1, type-2, ..., type-n, and the return data
type, type-r must be specified, along with the language, which may be“c” or “postquel”. (The arg is
clause may be left out if the function has no arguments, or alternatively the argument list may be left
empty.) The input types may be base or complex types, orany. Any indicates that the function accepts
arguments of any type, or takes an invalid POSTQUELtype such as (char *). The output type may be speci-
fied as a base type, complex type,setof <type>, or any. Thesetofmodifier indicates that the function will
return a set of items, rather than a single item.The as clause of the command is treated differently for C
andPOSTQUELfunctions, as explained below.

C FUNCTIONS

Functions written in C can be defined toPOSTGRES, which will dynamically load them into its address
space. Theloading happens either usingload(commands) or automatically the first time the function is
necessary for execution. Repeated execution of a function will cause negligible additional overhead, as the
function will remain in a main memory cache.

The iscachableflag indicates to the system that the return value of the function can be associatively cached.

The trusted flag specifies that the function can run inside thePOSTGRESserver’s address space with the
user-id of thePOSTGRESsuper-user. If this flag is not specified, the function will be run in a separate pro-
cess.

The percall_cpu, perbyte_cpu, outin_ratio , and byte_pct flags are provided for C functions to give a
rough estimate of the function’s running time, allowing the query optimizer to postpone applying expensive
functions used in a query’s where clause. Thepercall_cpu flag captures the overhead of the function’s
invocation (regardless of input size), while theperbyte_cpu flag captures the sensitivity of the function’s
running time to the size of its inputs. The magnitude of these two parameters is determined by the number
of exclamation points appearing after the word costly: specifically, each exclamation point can be thought
of as another order of magnitude in cost, i.e.,

cost = 10 number-of-exclamation-points

The default value forpercall_cpu and perbyte_cpu is 0. Examples of reasonable cost values may be
found in the system catalog “pg_proc”; most simple functions on base types have costs of 0.

03/12/94 77

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

The outin_ratio is provided for functions which return variable-length types, such astext or bytea. It
should be set to the size of the function’s output as a percentage of the size of the input.For example, a
function which compresses its operands by 2 should haveoutin_ratio = 50. Thedefault value is 100.

The byte_pct flag should be set to the percentage of the bytes of the arguments that actually need to be
examined in order to compute the function.This flag is particularly useful for functions which generally
take a large object as an argument, but only examine a small fixed portion of the object. The default value
is 100.

Writing C Functions

The body of a C function following asshould be theFULL PATH of the object code (.o file) for the func-
tion, bracketed by quotation marks.(POSTGRESwill not compile a function automatically — it must be
compiled before it is used in adefine functioncommand.)

C functions with base type arguments can be written in a straightforward fashion. TheC equivalents of
built-in POSTGREStypes are accessible in a C file if

.../src/backend/utils/builtins.h

is included as a header file. This can be achieved by having

#include <utils/builtins.h>

at the top of the C source file and by compiling all C files with the following include options:

-I.../src/backend
-I.../src/backend/port/<portname>
-I.../src/backend/obj

before any “ .c” programs in thecccommand line, e.g.:

cc -I.../src/backend \
-I.../src/backend/port/<portname> \
-I.../src/backend/obj \
-c progname.c

where “...” i s the path to the installedPOSTGRESsource tree and “<portname>” is the name of the port for
which the source tree has been built.

The convention for passing arguments to and from the user’s C functions is to use pass-by-value for data
types that are 32 bits (4 bytes) or smaller, and pass-by-reference for data types that require more than 32
bits.

The following table gives the C type required for parameters in the C functions that will be loaded into
POSTGRES. The “Defined In” column gives the actual header file (in the

.../src/backend

directory) that the equivalent C type is defined.However, if you include “utils/builtins.h”, these files will
automatically be included.

03/12/94 78

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

Equivalent C Types for Built-In POSTGRESTypes

Built-In T ype CType DefinedIn

abstime AbsoluteTime utils/nabstime.h
bool bool tmp/c.h
box (BOX *) utils/geo-decls.h
bytea (bytea*) tmp/postgres.h
char char N/A
char16 Char16or (char16 *) tmp/postgres.h
cid CID tmp/postgres.h
int2 int2 tmp/postgres.h
int28 (int28*) tmp/postgres.h
int4 int4 tmp/postgres.h
float4 float32or (float4 *) tmp/c.h or tmp/postgres.h
float8 float64or (float8 *) tmp/c.h or tmp/postgres.h
lseg (LSEG *) tmp/geo-decls.h
oid oid tmp/postgres.h
oid8 (oid8*) tmp/postgres.h
path (PATH *) utils/geo-decls.h
point (POINT*) utils/geo-decls.h
regproc regproc or REGPROC tmp/postgres.h
reltime RelativeTime utils/nabstime.h
text (text *) tmp/postgres.h
tid ItemPointer storage/itemptr.h
tinterval TimeInterval utils/nabstime.h
uint2 uint16 tmp/c.h
uint4 uint32 tmp/c.h
xid (XID *) tmp/postgres.h

Complex arguments to C functions are passed into the C function as a special C type, TUPLE, defined in

.../src/libpq/libpq-fe.h.

Given a variablet of this type, the C function may extract attributes from the function using the function
call:

GetAttributeByName(t, "fieldname", &isnull)

whereisnull is a pointer to abool, which the function sets totrue if the field is null. The result of this func-
tion should be cast appropriately as shown in the examples below.

Compiling Dynamically-Loaded C Functions

Different operating systems require different procedures for compiling C source files so thatPOSTGREScan
load them dynamically. This section discusses the required compiler and loader options on each system.

Under Ultrix, all object files thatPOSTGRESis expected to load dynamically must be compiled using
/bin/ccwith the “-G 0” option turned on. The object file name in theasclause should end in “.o”.

Under HP-UX, DEC OSF/1, AIX and SunOS 4, all object files must be turned intoshared libraries using
the operating system’s native object file loader,ld(1).

Under HP-UX, an object file must be compiled using the native HP-UX C compiler, /bin/cc, with both the
“+z” and “+u” flags turned on. The first flag turns the object file into “position-independent code” (PIC);

03/12/94 79

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

the second flag removes some alignment restrictions that the PA-RISC architecture normally enforces.The
object file must then be turned into a shared library using the HP-UX loader, /bin/ld. The command lines to
compile a C source file, “foo.c”, look like:

cc <other flags> +z +u -c foo.c
ld <other flags> -b -o foo.sl foo.o

The object file name in theasclause should end in “.sl”.

An extra step is required under versions of HP-UX prior to 9.00. If thePOSTGRESheader file

tmp/c.h

is not included in the source file, then the following line must also be added at the top of every source file:

#pragma HP_ALIGN HPUX_NATURAL_S500

However, this line must not appear in programs compiled under HP-UX 9.00 or later.

Under DEC OSF/1, an object file must be compiled and then turned into a shared library using the OSF/1
loader,/bin/ld. In this case, the command lines look like:

cc <other flags> -c foo.c
ld <other flags> -shared -expect_unresolved ’*’ -o foo.so foo.o

The object file name in theasclause should end in “.so”.

Under SunOS 4, an object file must be compiled and then turned into a shared library using the SunOS 4
loader,/bin/ld. The command lines look like:

cc <other flags> -PIC -c foo.c
ld <other flags> -dc -dp -Bdynamic -o foo.so foo.o

The object file name in theasclause should end in “.so”.

Under AIX, object files are compiled normally but building the shared library requires a couple of steps.
First, create the object file:

cc <other flags> -c foo.c

You must then create a symbol “exports” file for the object file:

mkldexport foo.o ‘pwd‘ > foo.exp

Finally, you can create the shared library:

ld <other flags> -H512 -T512 -o foo.so -e _nostart \
-bI:.../lib/postgres.exp -bE:foo.exp foo.o \
-lm -lc 2>/dev/null

You should look at thePOSTGRESUser Manual for an explanation of this procedure.

03/12/94 80

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

POSTQUEL FUNCTIONS

POSTQUELfunctions execute an arbitrary list ofPOSTQUELqueries, returning the results of the last query
in the list. POSTQUELfunctions in general return sets. If their returntype is not specified as asetof, then
an arbitrary element of the last query’s result will be returned. The expensive function parametersper-
call_cpu, perbyte_cpu, outin_ratio,andbyte_pct are not used forPOSTQUELfunctions; their costs are
determined dynamically by the query optimizer.

The body of aPOSTQUELfunction following asshould be a list of queries separated by whitespace charac-
ters and bracketed within quotation marks.Note that quotation marks used in the queries must be escaped,
by preceding them with two backslashes (i.e. \\").

Arguments to thePOSTQUELfunction may be referenced in the queries using a $n syntax: $1 refers to the
first argument, $2 to the second, and so on. If an argument is complex, then a “dot” notation may be used
to access attributes of the argument (e.g. “$1.emp”), or to invoke functions via a nested-dot syntax.

EXAMPLES: C Functions

The following command defines a C function, overpaid, of two basetype arguments.

define function overpaid
(language = "c", returntype = bool)
arg is (float8, int4)
as "/usr/postgres/src/adt/overpaid.o"

The C file "overpaid.c" might look something like:

#include <utils/builtins.h>

bool overpaid(salary, age)
float8 *salary;
int4 age;

{
if (*salary > 200000.00)

return(TRUE);
if ((age < 30) && (*salary > 100000.00))

return(TRUE);
return(FALSE);

}

The overpaid function can be used in a query, e.g:

retrieve (EMP.name)
where overpaid(EMP.salary, EMP.age)

One can also write this as a function of a single argument of type EMP:

define function overpaid_2
(language = "c", returntype = bool)
arg is (EMP)
as "/usr/postgres/src/adt/overpaid_2.o"

The following query is now accepted:

03/12/94 81

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

retrieve (EMP.name) where overpaid_2(EMP)

In this case, in the body of the overpaid_2 function, the fields in the EMP record must be extracted. TheC
file "overpaid_2.c" might look something like:

#include <utils/builtins.h>
#include <tmp/libpq-fe.h>

bool overpaid_2(t)
TUPLE t;
{

float8 *salary;
int4 age;
bool salnull, agenull;

salary = (float8 *)GetAttributeByName(t, "salary",
&salnull);

age = (int4)GetAttributeByName(t, "age", &agenull);
if (!salnull && *salary > 200000.00)

return(TRUE);
if (!agenull && (age<30) && (*salary > 100000.00))

return(TRUE);
return(FALSE)

}

EXAMPLES: POSTQUEL Functions

To illustrate a simplePOSTQUELfunction, consider the following, which might be used to debit a bank
account:

define function TP1
(language = "postquel", returntype = int4)
arg is (int4, float8)
as "replace BANK (balance = BANK.balance - $2)

where BANK.accountno = $1
retrieve(x = 1)"

A user could execute this function to debit account 17 by $100.00 as follows:

retrieve (x = TP1(17,100.0))

The following more interesting examples take a single argument of type EMP, and retrieve multiple results:

define function hobbies
(language = "postquel", returntype = setof HOBBIES)
arg is (EMP)
as "retrieve (HOBBIES.all)

where $1.name = HOBBIES.person"

define function children
(language = "postquel", returntype = setof KIDS)

03/12/94 82

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

arg is (EMP)
as "retrieve (KIDS.all)

where $1.name = KIDS.dad
or $1.name = KIDS.mom"

Then the following query retrieves overpaid employees, their hobbies, and their children:

retrieve (name=name(EMP), hobby=name(hobbies(EMP)),
kid=name(children(EMP)))

where overpaid_2(EMP)

Note that attributes can be projected using function syntax (e.g.name(EMP)), as well as the traditional dot
syntax (e.g. EMP.name).

An equivalent expression of the previous query is:

retrieve (EMP.name, hobby=EMP.hobbies.name,
kid=EMP.children.name)

where overpaid_2(EMP)

This "nested dot" notation for functions can be used to cascade functions of single arguments. Notethat the
function after a dot must have only one argument, of the type returned by the function before the dot.

POSTGRESflattensthe target list of the queries above. That is, it produces the cross-product of the hobbies
and the children of the employees. For example, given the schema:

create BANK (accountno = int4, balance = float8)
append BANK (accountno = 17,

balance = "10000.00"::float8)
create EMP (name = char16, salary = float8,

dept = char16, age = int4)
create HOBBIES (name = char16, person = char16)
create KIDS (name = char16, dad = char16, mom = char16)
append EMP (name = "joey", salary = "100000.01"::float8,

dept = "toy", age = 24)
append EMP (name = "jeff", salary = "100000.01"::float8,

dept = "shoe", age = 23)
append EMP (name = "wei", salary = "100000"::float8,

dept = "tv", age = 30)
append EMP (name = "mike", salary = "500000"::float8,

dept = "appliances", age = 30)
append HOBBIES (name = "biking", person = "jeff")
append HOBBIES (name = "jamming", person = "joey")
append HOBBIES (name = "basketball", person = "wei")
append HOBBIES (name = "swimming", person = "mike")
append HOBBIES (name = "philately", person = "mike")
append KIDS (name = "matthew", dad = "mike",

mom = "teresa")
append KIDS (name = "calvin", dad = "mike",

mom = "teresa")

The query above returns

03/12/94 83

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

name hobby kid

jeff biking (null)
joey jamming (null)
mike swimming matthew
mike philately matthew
mike swimming calvin
mike philately calvin

Note that flattening preserves the name and hobby fields even when the “kid” field is null.

SEE ALSO

information(unix), load(commands), remove function(commands).

NOTES

Expensive Functions

Thepercall_cpu andperbyte_cpuflags can take integers surrounded by quotes instead of the"costly{!*}"
syntax described above. This allows a finer grain of distinction between function costs, but is not encour-
aged since such distinctions are difficult to estimate accurately.

Name Space Conflicts

More than one function may be defined with the same name, as long as the arguments they take are differ-
ent. Inother words, function names can beoverloaded. A function may also have the same name as an
attribute. Inthe case that there is an ambiguity between a function on a complex type and an attribute of
the complex type, the attribute will always be used.

RESTRICTIONS

The name of the C function must be a legal C function name, and the name of the function in C code must
be exactly the same as the name used indefine function. There is a subtle implication of this restriction:
while the dynamic loading routines in most operating systems are more than happy to allow you to load any
number of shared libraries that contain conflicting (identically-named) function names, they may in fact
botch the load in interesting ways. For example, if you define a dynamically-loaded function that happens
to have the same name as a function built intoPOSTGRES, the DEC OSF/1 dynamic loader causesPOST-

GRESto call the function within itself rather than allowing POSTGRESto call your function. Hence, if you
want your function to be used on different architectures, we recommend that you do not overload C func-
tion names.

There is a clever trick to get around the problem just described. Since there is no problem overloading
POSTQUELfunctions, you can define a set of C functions with different names and then define a set of
identically-namedPOSTQUEL function wrappers that take the appropriate argument types and call the
matching C function.

anycannot be given as an argument to aPOSTQUELfunction.

BUGS

The iscachableflag does not do anything in Version 4.2.

Untrusted functions cannot make any function calls using access methods or built-in functions that have not
been loaded into the untrusted-function process.

Untrusted functions must be explicitly designated as such in a separate query, e.g.:

replace pg_proc (proistrusted = "f"::bool)
where pg_proc.proname = "mynewfunction"

03/12/94 84

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

C functions cannot return a set of values.

03/12/94 85

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

NAME

define index — construct a secondary index

SYNOPSIS

define[archive] index index-name
on classnameusingam-name
(attname type_class)
[wherequal]

define[archive] index index-name
on classnameusingam-name
(funcname(attname−1 { , attname−i }) type_class)

DESCRIPTION

This command constructs an index called index-name.If the archive keyword is absent, theclassname
class is indexed. Whenarchive is present, an index is created on the archive class associated with the
classnameclass.

Am-nameis the name of the access method which is used for the index.

In the first syntax shown above, the key field for the index is specified as an attribute name and an associ-
atedoperator class. An operator class is used to specify the operators to be used for a particular index. For
example, a btree index on four-byte integers would use theint4_opsclass; this operator class includes com-
parison functions for four-byte integers.

If a qual is given, the index will be apartial index, which will index only those instances inclassnamefor
which the predicate specified byqual is true. Note that the predicate may only refer to attributes of the
indexed class,classname. POSTGRESmay use a partial index as an access path only for queries that
include a restriction that implies that the predicate is true.For example, if the index predicate is

emp.age < 30

then the index can be used for a query with the restriction

where emp.age < 25

but not for a query with the restriction

where emp.age < 40

and so forth. Although partial indexes cannot be used to satisfy as wide a range of queries as complete
indexes, they can be constructed more quickly and extended incrementally (seeextend index(commands)).

In the second syntax shown above, an index can be defined on the result of a user-defined functionfunc-
nameapplied to one or more attributes of a single class.Thesefunctional indicesare primarily useful in
two situations. First,functional indices can be used to simulate multi-key indices. Thatis, the user can
define a new base type (a simple combination of, say, “oid” and “int2”) and the associated functions and
operators on this new type such that the access method can use it.Once this has been done, the standard
techniques for interfacing new types to access methods (described in thePOSTGRESuser manual) can be
applied. Second,functional indices can be used to obtain fast access to data based on operators that would
normally require some transformation to be applied to the base data.For example, say you have an
attribute in class “myclass” called “pt” that consists of a 2D point type.Now, suppose that you would like
to index this attribute but you only have index operator classes for 2D polygon types.You can define an
index on the point attribute using a function that you write (call it “point_to_polygon”) and your existing

03/12/94 86

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

polygon operator class; after that, queries using existing polygon operators that reference
“point_to_polygon(myclass.pt)” on one side will use the precomputed polygons stored in the functional
index instead of computing a polygon for each and every instance in “myclass” and then comparing it to the
value on the other side of the operator. Obviously, the decision to build a functional index represents a
tradeoff between space (for the index) and execution time.

POSTGRESVersion 4.2 provides btree, rtree and hash access methods for secondary indices.The btree
access method is an implementation of the Lehman-Yao high-concurrency btrees. Thertree access method
implements standard rtrees using Guttman’s quadratic split algorithm.The hash access method is an imple-
mentation of Litwin’s linear hashing.We mention the algorithms used solely to indicate that all of these
access methods are fully dynamic and do not have to be optimized periodically (as is the case with, for
example, static hash access methods).

The operator classes defined on btrees are

int2_ops char2_ops oidint2_ops
int4_ops char4_ops oidint4_ops
int24_ops char8_ops oidchar16_ops
int42_ops char16_ops
float4_ops oid_ops
float8_ops text_ops
char_ops abstime_ops

The int24_opsoperator class is useful for constructing indices on int2 data, and doing comparisons against
int4 data in query qualifications.Similarly, int42_opssupport indices on int4 data that is to be compared
against int2 data in queries.

The operator classesoidint2_ops, oidint4_ops, and oidchar16_opsrepresent the use offunctional indicesto
simulate multi-key indices.

ThePOSTGRESquery optimizer will consider using btree indices in a scan whenever an indexed attribute is
involved in a comparison using one of

< <= = >= >

The operator classes defined on rtrees are

box_ops
bigbox_ops
poly_ops

Both box classes support indices on the “box” datatype inPOSTGRES. The difference between them is that
bigbox_opsscales box coordinates down, to avoid floating point exceptions from doing multiplication,
addition, and subtraction on very large floating-point coordinates.If the field on which your rectangles lie
is about 20,000 units square or larger, you should usebigbox_ops. The poly_opsoperator class supports
rtree indices on “polygon” data.

The POSTGRESquery optimizer will consider using an rtree index whenever an indexed attribute is
involved in a comparison using one of

<< &< &> >> @ ˜= &&

The operator classes defined on the hash access method are

03/12/94 87

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

char_ops int2_ops
char2_ops int4_ops
char4_ops float4_ops
char8_ops float8_ops
char16_ops oid_ops
text_ops

ThePOSTGRESquery optimizer will consider using a hash index whenever an indexed attribute is involved
in a comparison using the

=

operator.

EXAMPLES

/*
* Create a btree index on the emp class using the age attribute.
*/

define index empindex on emp using btree (age int4_ops)

/*
* Create a btree index on employee name.
*/

define index empname
on emp using btree (name char16_ops)

/*
* Create an rtree index on the bounding rectangle of cities.
*/

define index cityrect
on city using rtree (boundbox box_ops)

/*
* Create a rtree index on a point attribute such that we
* c an efficiently use box operators on the result of the
* c onversion function. Such a qualification might look
* l ike "where point2box(points.pointloc) = boxes.box".
*/

define index pointloc
on points using rtree (point2box(location) box_ops)

/*
* Create a partial btree index on employee salaries for
* e mployees over age 50
*/

define index empsal
on emp using btree (salary int4_ops) where emp.age > 49

03/12/94 88

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

Note: if the partial-index predicate refers to an attribute of a discrete-valued type (such as integers), it
is slightly preferable to express the predicate as, e.g., "emp.age > 49" rather than as "emp.age >= 50",
because even though both indexes would, in theory, be equally usable,POSTGRESwould only be able
to use a partial index with the former predicate in the event of a query that had the exact restriction
"emp.age > 49".

BUGS

Archive indices are not supported in Version 4.2.

There should be an access method designer’s guide.

Indices may only be defined on a single key. This can be hacked around by defining special types and using
thePOSTGRESsupport for indices on functional values of attributes.

The only kind of partial index predicatesPOSTGRESVersion 4.2 understands are those made up of boolean
combinations of simple clauses of the form

ATTR OP CONST

where ATTR is a single attribute of the indexed class, and OP is an operator in a btree operator class
defined on the types of ATTR and CONST. If some other form of predicate is specified, Version 4.2 will
never use the resulting partial index.

03/12/94 89

DEFINE OPERATOR(COMMANDS) DEFINEOPERATOR(COMMANDS)

NAME

define operator — define a new user operator

SYNOPSIS

define operatoroperator_name
([arg1 = type-1]
[, arg2 = type-2]
, procedure = func_name
[, precedence =number]
[, associativity = (left | right | none | any)]
[, commutator = com_op]
[, negator =neg_op]
[, restrict = res_proc]
[, hashes]
[, join = join_proc]
[, sort = sor_op1 {, sor_op2 }]
)

DESCRIPTION

This command defines a new user operator, operator_name. The user who defines an operator becomes its
owner.

The operator_nameis a sequence of up to sixteen punctuation characters. The following characters are
valid for single-character operator names:

˜ ! @ # % ˆ & ‘ ?

If the operator name is more than one character long, it may consist of any combination of the above char-
acters or the following additional characters:

| $: + - * / < > =

At least one ofarg1 and arg2 must be defined.For binary operators, both should be defined. For right
unary operators, onlyarg1should be defined, while for left unary operators onlyarg2should be defined.

The name of the operator, operator_name, can be composed of symbols only. Also, thefunc_nameproce-
dure must have been previously defined usingdefine function(commands) and must have one or two argu-
ments. Thetypes of the arguments for the operator and the type of the answer are as defined by the func-
tion. Precedencerefers to the order that multiple instances of the same operator are evaluated. Thenext
several fields are primarily for the use of the query optimizer.

Theassociativityvalue is used to indicate how an expression containing this operator should be evaluated
when precedence and explicit grouping are insufficient to produce a complete order of evaluation. Left and
right indicate that expressions containing the operator are to be evaluated from left to right or from right to
left, respectively. Nonemeans that it is an error for this operator to be used without explicit grouping when
there is ambiguity. And any, the default, indicates that the optimizer may choose to evaluate an expression
which contains this operator arbitrarily.

The commutator operator is present so thatPOSTGREScan reverse the order of the operands if it wishes.
For example, the operator area-less-than, >>>, would have a commutator operator, area-greater-than, <<<.
Suppose that an operator, area-equal, ===, exists, as well as an area not equal, !==. Hence, the query opti-
mizer could freely convert:

"0,0,1,1"::box >>> MYBOXES.description

03/12/94 90

DEFINE OPERATOR(COMMANDS) DEFINEOPERATOR(COMMANDS)

to

MYBOXES.description <<< "0,0,1,1"::box

This allows the execution code to always use the latter representation and simplifies the query optimizer
somewhat.

The negator operator allows the query optimizer to convert

not MYBOXES.description === "0,0,1,1"::box

to

MYBOXES.description !== "0,0,1,1"::box

If a commutator operator name is supplied,POSTGRESsearches for it in the catalog. If it is found and it
does not yet have a commutator itself, then the commutator’s entry is updated to have the current (new)
operator as its commutator. This applies to the negator, as well.

This is to allow the definition of two operators that are the commutators or the negators of each other. The
first operator should be defined without a commutator or negator (as appropriate). When the second opera-
tor is defined, name the first as the commutator or negator. The first will be updated as a side effect.

The next two specifications are present to support the query optimizer in performing joins.POSTGREScan
always evaluate a join (i.e., processing a clause with two tuple variables separated by an operator that
returns a boolean) by iterative substitution [WONG76]. Inaddition,POSTGRESis planning on implement-
ing a hash-join algorithm along the lines of [SHAP86]; however, it must know whether this strategy is
applicable. For example, a hash-join algorithm is usable for a clause of the form:

MYBOXES.description === MYBOXES2.description

but not for a clause of the form:

MYBOXES.description <<< MYBOXES2.description.

Thehashesflag gives the needed information to the query optimizer concerning whether a hash join strat-
egy is usable for the operator in question.

Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a usable join strategy
and what operators should be used to sort the two operand classes.For the === clause above, the optimizer
must sort both relations using the operator, <<<. On the other hand, merge-sort is not usable with the
clause:

MYBOXES.description <<< MYBOXES2.description

If other join strategies are found to be practical,POSTGRESwill change the optimizer and run-time system
to use them and will require additional specification when an operator is defined.Fortunately, the research
community invents new join strategies infrequently, and the added generality of user-defined join strategies
was not felt to be worth the complexity involved.

The last two pieces of the specification are present so the query optimizer can estimate result sizes.If a
clause of the form:

03/12/94 91

DEFINE OPERATOR(COMMANDS) DEFINEOPERATOR(COMMANDS)

MYBOXES.description <<< "0,0,1,1"::box

is present in the qualification, thenPOSTGRESmay have to estimate the fraction of the instances in
MYBOXES that satisfy the clause. The function res_proc must be a registered function (meaning it is
already defined usingdefine function(commands)) which accepts one argument of the correct data type and
returns a floating point number. The query optimizer simply calls this function, passing the parameter

"0,0,1,1"

and multiplies the result by the relation size to get the desired expected number of instances.

Similarly, when the operands of the operator both contain instance variables, the query optimizer must esti-
mate the size of the resulting join.The function join_proc will return another floating point number which
will be multiplied by the cardinalities of the two classes involved to compute the desired expected result
size.

The difference between the function

my_procedure_1 (MYBOXES.description, "0,0,1,1"::box)

and the operator

MYBOXES.description === "0,0,1,1"::box

is thatPOSTGRESattempts to optimize operators and can decide to use an index to restrict the search space
when operators are involved. However, there is no attempt to optimize functions, and they are performed
by brute force.Moreover, functions can have any number of arguments while operators are restricted to
one or two.

EXAMPLE

/*
* T he following command defines a new operator,
* a rea-equality, for the BOX data type.
*/

define operator === (
arg1 = box,
arg2 = box,
procedure = area_equal_procedure,
precedence = 30,
associativity = left,
commutator = ===,
negator = !==,
restrict = area_restriction_procedure,
hashes,
join = area-join-procedure,
sort = <<<, <<<)

SEE ALSO

define function(commands), remove operator(commands).

03/12/94 92

DEFINE OPERATOR(COMMANDS) DEFINEOPERATOR(COMMANDS)

BUGS

Operator names cannot be composed of alphabetic characters in Version 4.2.

Operator precedence is not implemented in Version 4.2.

If an operator is defined before its commuting operator has been defined (a case specifically warned against
above), a dummy operator with invalid fields will be placed in the system catalogs.This may interfere with
the definition of later operators.

03/12/94 93

DEFINE RULE(COMMANDS) DEFINERULE(COMMANDS)

NAME

define rule — define a new rule

SYNOPSIS

define[instance| rewrite] rule rule_name
[as exception torule_name_2]
is onev ent
to object [[from clause]whereclause]

do [instead]
[action | nothing |[actions...]]

DESCRIPTION

Define rule is used to define a new rule. Thereare two implementations of the rules system, one based on
query rewrite and the other based oninstance-level processing. Ingeneral, the instance-level system is
more efficient if there are many rules on a single class, each covering a small subset of the instances.The
rewrite system is more efficient if large scope rules are being defined. The user can optionally choose which
rule system to use by specifyingrewrite or instance in the command.If the user does not specify which
system to use,POSTGRESdefaults to using the instance-level system. Inthe long runPOSTGRESwill auto-
matically decide which rules system to use and the possibility of user selection will be removed.

Here,event is one ofretrieve, replace, deleteor append. Objectis either:
a class name

or
class.column

The from clause, thewhere clause, and theactionare respectively normalPOSTQUELfrom clauses,where
clauses and collections ofPOSTQUELcommands with the following change:

new or current can appear instead of an instance variable whenever an instance
variable is permissible inPOSTQUEL.

The semantics of a rule is that at the time an individual instance is accessed, updated, inserted or deleted,
there is acurrent instance (for retrieves, replaces and deletes) and anew instance (for replaces and
appends). Ifthe event specified in theon clause and the condition specified in thewhere clause are true for
the current instance, then theaction part of the rule is executed. First,however, values from fields in the
current instance and/or the new instance are substituted for:

current.attribute-name
new.attribute-name

The action part of the rule executes with same command and transaction identifier as the user command
that caused activation.

A note of caution aboutPOSTQUELrules is in order. If the same class name or instance variable appears in
the event, where clause and theaction parts of a rule, they are all considered different tuple variables.
More accurately, new andcurrent are the only tuple variables that are shared between these clauses.For
example, the following two rules have the same semantics:

on replace to EMP.salary where EMP.name = "Joe"
do replace EMP (...) where ...

on replace to EMP-1.salary where EMP-2.name = "Joe"
do replace EMP-3 (...) where ...

Each rule can have the optional taginstead. Without this tagaction will be performed in addition to the
user command when the event in the condition part of the rule occurs.Alternately, the action part will be
done instead of the user command. In this later case, the action can be the keyword nothing.

01/23/93 94

DEFINE RULE(COMMANDS) DEFINERULE(COMMANDS)

When choosing between the rewrite and instance rule systems for a particular rule application, remember
that in the rewrite systemcurrent refers to a relation and some qualifiers whereas in the instance system it
refers to an instance (tuple).

It is very important to note that therewrite rule system will neither detect nor process circular rules. For
example, though each of the following two rule definitions are accepted byPOSTGRES, the retrieve com-
mand will causePOSTGRESto crash:

/*
* E xample of a circular rewrite rule combination.
*/

define rewrite rule bad_rule_combination_1 is
on retrieve to EMP
do instead retrieve to TOYEMP

define rewrite rule bad_rule_combination_2 is
on retrieve to TOYEMP
do instead retrieve to EMP

/*
* T his attempt to retrieve from EMP will cause POSTGRESto crash.
*/

retrieve (EMP.all)

You must have rule definitionaccess to a class in order to define a rule on it (seechange acl(commands).

EXAMPLES

/*
* Make Sam get the same salary adjustment as Joe
*/

define rule example_1 is
on replace to EMP.salary where current.name = "Joe"
do replace EMP (salary = new.salary)

where EMP.name = "Sam"

At the time Joe receives a salary adjustment, the event will become true and Joe’s current instance and pro-
posed new instance are available to the execution routines.Hence, his new salary is substituted into the
actionpart of the rule which is subsequently executed. Thispropagates Joe’s salary on to Sam.

/*
* Make Bill get Joe’s salary when it is accessed
*/

define rule example_2 is
on retrieve to EMP.salary

where current.name = "Bill"
do instead

retrieve (EMP.salary) where EMP.name = "Joe"

/*
* Deny Joe access to the salary of employees in the shoe

01/23/93 95

DEFINE RULE(COMMANDS) DEFINERULE(COMMANDS)

* d epartment. (pg_username() returns the name of the current user)
*/

define rule example_3 is
on retrieve to EMP.salary

where current.dept = "shoe"
and pg_username() = "Joe"

do instead nothing

/*
* Create a view of the employees working in the toy department.
*/

create TOYEMP(name = char16, salary = int4)

define rule example_4 is
on retrieve to TOYEMP
do instead retrieve (EMP.name, EMP.salary)

where EMP.dept = "toy"

/*
* A ll new employees must make 5,000 or less
*/

define rule example_5 is
on append to EMP where new.salary > 5000
do replace new(salary = 5000)

SEE ALSO

postquel(commands), remove rule(commands), define view(commands).

BUGS

Exceptions are not implemented in Version 4.2.

The object in aPOSTQUELrule cannot be an array reference and cannot have parameters.

Aside from the “oid” field, system attributes cannot be referenced anywhere in a rule.Among other things,
this means that functions of instances (e.g., “foo(emp)” where “emp” is a class) cannot be called anywhere
in a rule.

Thewhereclause cannot have afrom clause.

Only onePOSTQUELcommand can be specified in theaction part of a tuple rule and it can only be a
replace, append, retrieveor deletecommand.

The rewrite rule system does support multiple action rules as long asevent is notretrieve.

The query rewrite rule system now supports most rule semantics, and closely parallels the tuple system.It
also attempts to avoid odd semantics by running instead rules before non-instead rules.

Both rule systems store the rule text and query plans as text attributes. Thisimplies that creation of rules
may fail if the rule plus its various internal representations exceed some value that is on the order of one
page (8KB).

01/23/93 96

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

NAME

define type — define a new base data type

SYNOPSIS

define typetypename(internallength = (number | variable),
[externallength= (number | variable),]
input = input_function,
output = output_function
[, element= typename]
[, delimiter = <character>]
[, default = "string"]
[, send= send_function]
[, receive= receive_function]
[, passedbyvalue])

DESCRIPTION

Define typeallows the user to register a new user data type withPOSTGRESfor use in the current data
base. Theuser who defines a type becomes its owner. Typenameis the name of the new type and must be
unique within the types defined for this database.

Define type requires the registration of two functions (usingdefine function(commands)) before defining
the type. The representation of a new base type is determined byinput_function, which converts the type’s
external representation to an internal representation usable by the operators and functions defined for the
type. Naturally, output_functionperforms the reverse transformation.Both the input and output functions
must be declared to take one or two arguments of type “any”.

New base data types can be fixed length, in which caseinternallength is a positive integer, or variable
length, in which casePOSTGRESassumes that the new type has the same format as thePOSTGRES-supplied
data type, “text”. To indicate that a type is variable-length, setinternallength to variable. The external
representation is similarly specified using theexternallengthkeyword.

To indicate that a type is an array and to indicate that a type has array elements, indicate the type of the
array element using theelementkeyword. For example, to define an array of 4 byte integers (“int4”), spec-
ify

element = int4

To indicate the delimiter to be used on arrays of this type,delimiter can be set to a specific character. The
default delimiter is the comma (“,”) character.

A default value is optionally available in case a user wants some specific bit pattern to mean “data not pre-
sent.”

The optional functionssend_functionandreceive_functionare used when the application program request-
ing POSTGRESservices resides on a different machine. In this case, the machine on whichPOSTGRESruns
may use a different format for the data type than used on the remote machine.In this case it is appropriate
to convert data items to a standard form whensending from the server to the client and converting from the
standard format to the machine specific format when the server receives the data from the client. If these
functions are not specified, then it is assumed that the internal format of the type is acceptable on all rele-
vant machine architectures.For example, single characters do not have to be converted if passed from a
Sun-4 to a DECstation, but many other types do.

The optionalpassedbyvalueflag indicates that operators and functions which use this data type should be
passed an argument by value rather than by reference. Note that only types whose internal representation is
at most four bytes may be passed by value.

01/23/93 97

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

For new base types, a user can define operators, functions and aggregates using the appropriate facilities
described in this section.

ARRAY TYPES

Tw o generalized built-in functions,array_in and array_out, exist for quick creation of variable-length
array types. These functions operate on arrays of any existing POSTGREStype.

LARGE OBJECT TYPES

A “ regular”POSTGREStype can only be 8192 bytes in length.If you need a larger type you must create a
Large Object type. The interface for these types is discussed at length in Section 7, the large object inter-
face. Thelength of all large object types is always variable,meaning theinternallength for large objects is
always -1.

EXAMPLES

/*
* T his command creates the box data type and then uses the
* t ype in a class definition
*/

define type box (internallength = 8,
input = my_procedure_1, output = my_procedure_2)

create MYBOXES (id = int4, description = box)

/*
* T his command creates a variable length array type with
* i nteger elements.
*/

define type int4array
(input = array_in, output = array_out,

internallength = variable, element = int4)

create MYARRAYS (id = int4, numbers = int4array)

/*
* T his command creates a large object type and uses it in
* a c lass definition.
*/

define type bigobj
(input = lo_filein, output = lo_fileout,

internallength = variable)

create BIG_OBJS (id = int4, obj = bigobj)

RESTRICTIONS

Type names cannot begin with the underscore character (“_”) and can only be 15 characters long.This is
becausePOSTGRESsilently creates an array type for each base type with a name consisting of the base
type’s name prepended with an underscore.

01/23/93 98

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

SEE ALSO

define function(commands), define operator(commands), remove type(commands), introduction(large
objects).

01/23/93 99

DEFINE VIEW(COMMANDS) DEFINE VIEW(COMMANDS)

NAME

define view — construct a virtual class

SYNOPSIS

define viewview_name
([dom_name_1=] expression_1

{ , [dom_name_i=] expression_i})
[from from_list]
[wherequal]

DESCRIPTION

Define viewwill define a view of a class. Thisview is not physically materialized; instead the rule system
is used to support view processing as in [STON90]. Specifically, a query rewrite retrieve rule is automati-
cally generated to support retrieve operations on views. Then,the user can add as many update rules as he
wishes to specify the processing of update operations to views. See[STON90] for a detailed discussion of
this point.

EXAMPLE

/*
* d efine a view consisting of toy department employees
*/

define view toyemp (e.name)
from e in emp
where e.dept = "toy"

/*
* S pecify deletion semantics for toyemp
*/

define rewrite rule example1 is
on delete to toyemp
then do instead delete emp where emp.OID = current.OID

SEE ALSO

create(commands), define rule(commands), postquel(commands).

01/23/93 100

DELETE(COMMANDS) DELETE(COMMANDS)

NAME

delete — delete instances from a class

SYNOPSIS

deleteinstance_variable [from from_list] [wherequal]

DESCRIPTION

Delete removes instances which satisfy the qualification,qual, from the class specified by
instance_variable. Instance_variableis either a class name or a variable assigned byfrom_list. If the qual-
ification is absent, the effect is to delete all instances in the class. The result is a valid, but empty class.

You must have write access to the class in order to modify it, as well as read access to any class whose val-
ues are read in the qualification (seechange acl(commands).

EXAMPLE

/*
* Remove all employees who make over $30,000
*/

delete emp where emp.sal > 30000

/*
* Clear the hobbies class
*/

delete hobbies

SEE ALSO

destroy(commands).

01/23/93 101

DESTROY(COMMANDS) DESTROY(COMMANDS)

NAME

destroy — destroy existing classes

SYNOPSIS

destroyclassname-1 {, classname-i }

DESCRIPTION

Destroy removes classes from the data base. Only its owner may destroy a class. Aclass may be emptied
of instances, but not destroyed, by usingdelete(commands).

If a class being destroyed has secondary indices on it, then they will be removed first. Theremoval of just a
secondary index will not affect the indexed class.

This command may be used to destroy a version class which is not a parent of some other version.
Destroying a class which is a parent of a version class is disallowed. Instead,merge(commands) should be
used. Moreover, destroying a class whose fields are inherited by other classes is similarly disallowed. An
inheritance hierarchy must be destroyed from leaf level to root level.

The destruction of classes is not reversable. Thus,a destroyed class will not be recovered if a transaction
which destroys this class fails to commit. In addition, historical access to instances in a destroyed class is
not possible.

EXAMPLE

/*
* Destroy the emp class
*/

destroy emp

/*
* Destroy the emp and parts classes
*/

destroy emp, parts

SEE ALSO

delete(commands), merge(commands), remove index(commands).

02/14/94 102

DESTROYDB(COMMANDS) DESTROYDB(COMMANDS)

NAME

destroydb — destroy an existing database

SYNOPSIS

destroydbdbname

DESCRIPTION

Destroydb removes the catalog entries for an existing database and deletes the directory containing the
data. Itcan only be executed by the database administrator (seecreatedb(commands) for details).

SEE ALSO

createdb(commands), destroydb(unix).

BUGS

This query shouldNOT be executed interactively. Thedestroydb(unix) script should be used instead.

01/23/93 103

END(COMMANDS) END(COMMANDS)

NAME

end — commit the current transaction

SYNOPSIS

end

DESCRIPTION

This commands commits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

SEE ALSO

abort(commands), begin(commands).

01/23/93 104

EXTEND INDEX(COMMANDS) EXTEND INDEX(COMMANDS)

NAME

extend index — extend a partial secondary index

SYNOPSIS

extend indexindex-name [wherequal]

DESCRIPTION

This command extends the existing partial index called index-name.

If a qual is given, the index will be extended to cover all instances that satisfy the predicate specified by
qual (in addition to the instances the index already covers). If no qual is given, the index will be extended
to be a complete index. Notethat the predicate may only refer to attributes of the class on which the speci-
fied partial index was defined (seedefine index(commands)).

EXAMPLE

/*
* E xtend a partial index on employee salaries to include
* a ll employees over 40
*/

extend index empsal where emp.age > 39

SEE ALSO

define index(commands), remove index(commands).

02/13/94 105

FETCH(COMMANDS) FETCH(COMMANDS)

NAME

fetch — fetch instance(s) from a portal

SYNOPSIS

fetch [(forward | backward)] [(number |all)] [in portal_name]

DESCRIPTION

Fetch allows a user to retrieve instances from a portal namedportal_name. The number of instances
retrieved is specified bynumber. If the number of instances remaining in the portal is less thannumber,
then only those available are fetched.Substituting the keyword all in place of a number will cause all
remaining instances in the portal to be retrieved. Instancesmay be fetched in bothforward andbackward
directions. Thedefault direction isforward.

Updating data in a portal is not supported byPOSTGRES, because mapping portal updates back to base
classes is impossible in general as with view updates. Consequently, users must issue explicit replace com-
mands to update data.

Portals may only be used inside of transaction blocks marked bybegin(commands) andend(commands)
because the data that they store spans multiple user queries.

EXAMPLE

/*
* s et up and use a portal
*/

begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g

end \g

/*
* F etch all the instances available in the portal FOO
*/

fetch all in FOO

/*
* F etch 5 instances backward in the portal FOO
*/

fetch backward 5 in FOO

SEE ALSO

begin(commands), end(commands), close(commands), move(commands), retrieve(commands).

BUGS

Currently, the smallest transaction inPOSTGRESis a singlePOSTQUELcommand. Itshould be possible for
a single fetch to be a transaction.

01/23/93 106

LISTEN(COMMANDS) LISTEN(COMMANDS)

NAME

listen — listen for notification on a relation

SYNOPSIS

listen class_name

DESCRIPTION

listen is used to register the current backend as a listener on the relationclass_name. When the command
notify class_nameis called either from within a rule or at the query level, the frontend applications corre-
sponding to the listening backends are notified. When the backend process exits, this registration is cleared.

This event notification is performed through theLIBPQ protocol and frontend application interface. The
application program must explicitly poll aLIBPQ global variable,PQAsyncNotifyWaiting, and call the rou-
tine PQnotifiesin order to find out the name of the class to which a given notification corresponds. If this
code is not included in the application, the event notification will be queued and never be processed.

SEE ALSO

define rule(commands), notify(commands), retrieve(commands), libpq.

BUGS

There is no way to un-listen except to drop the connection (i.e., restart the backend server).

Themonitor(unix) command does not poll for asynchronous events.

03/12/94 107

LOAD(COMMANDS) LOAD(COMMANDS)

NAME

load — dynamically load an object file

SYNOPSIS

load "filename"

DESCRIPTION

Load loads an object (or ".o") file intoPOSTGRES’s address space. Once a file is loaded, all functions in
that file can be accessed. This function is used in support of ADT’s.

If a file is not loaded using theload command, the file will be loaded automatically the first time the func-
tion is called byPOSTGRES. Load can also be used to reload an object file if it has been edited and recom-
piled. Onlyobjects created from C language files are supported at this time.

EXAMPLE

/*
* L oad the file /usr/postgres/demo/circle.o
*/

load "/usr/postgres/demo/circle.o"

CAVEATS

Functions in loaded object files should not call functions in other object files loaded through theload com-
mand, meaning, for example, that all functions in file A should call each other, functions in the standard or
math libraries, or inPOSTGRESitself. They should not call functions defined in a different loaded file B.
This is because if B is reloaded, thePOSTGRESloader is not "smart" enough to relocate the calls from the
functions in A into the new address space of B. If B is not reloaded, however, there will not be a problem.

On DECstations, you must use/bin/ccwith the “-G 0” option when compiling object files to be loaded.

Note that if you are portingPOSTGRESto a new platform, theload command will have to work in order to
support ADTs.

01/23/93 108

MERGE(COMMANDS) MERGE(COMMANDS)

NAME

merge — merge two classes

SYNOPSIS

mergeclassname1into classname2

DESCRIPTION

Merge will combine a version class,classname1, with its parent,classname2. If classname2is a base
class, then this operation merges a differently encoded offset, classname1, into its parent. On the other
hand, if classname2is also a version, then this operation combines two differentially encoded offsets
together into a single one. In either case any children ofclassname1become children ofclassname2.

A version class may not be merged into its parent class when the parent class is also the parent of another
version class.

However, merging in the reverse direction is allowed. Specifically, merging the parent,classname1, with a
version, classname2, causesclassname2to become disassociated from its parent. As a side effect, class-
name1will be destroyed if is not the parent of some other version class.

EXAMPLE

/*
* Combine office class and employee class
*/

merge office into employee

SEE ALSO

create version(commands), destroy(commands).

BUGS

Merge is not implemented in Version 4.2.

02/12/94 109

MOVE(COMMANDS) MOVE(COMMANDS)

NAME

move — move the pointer in a portal

SYNOPSIS

move [(forward | backward)]
[(number |all | to (number | record_qual))]
[in portal_name]

DESCRIPTION

Move allows a user to move the instance pointerwithin the portal namedportal_name. Each portal has an
instance pointer, which points to the previous instance to be fetched. It always points to before the first
instance when the portal is first created. The pointer can be moved forward or backward. It can be moved
to an absolute position or over a certain distance. An absolute position may be specified by usingto; dis-
tance is specified by a number. Record_qualis a qualification without instance variables, aggregates, or set
expressions which can be evaluated completely on a single instance in the portal.

EXAMPLE

/*
* Move backwards 5 instances in the portal FOO
*/

move backward 5 in FOO

/*
* Move to the 6th instance in the portal FOO
*/

move to 6 in FOO

SEE ALSO

close(commands), fetch(commands), retrieve(commands).

BUGS

Move is not implemented in Version 4.2. The portal pointer may be moved using fetch(commands) and
ignoring its return values.

02/12/94 110

NOTIFY(COMMANDS) NOTIFY(COMMANDS)

NAME

notify — signal all frontends and backends listening on a class

SYNOPSIS

notify class_name

DESCRIPTION

notify is used to awaken all backends and consequently all frontends that have executedlisten(commands)
on class_name. This can be used either within an instance-level rule as part of the action body or from a
normal query. When used from within a normal query, this can be thought of as interprocess communica-
tion (IPC). When used from within a rule, this can be thought of as an alerter mechanism.

Notice that the mere fact that anotify has been executed does not imply anything in particular about the
state of the class (e.g., that it has been updated), nor does the notification protocol transmit any useful infor-
mation other than the class name.Therefore, allnotify does is indicate that some backend wishes its peers
to examineclass_namein some application-specific way.

This event notification is performed through theLIBPQ protocol and frontend application interface. The
application program must explicitly poll a LIBPQ global variable,PQAsyncNotifyWaiting, and call the rou-
tine PQnotifiesin order to find out the name of the class to which a given notification corresponds. If this
code is not included in the application, the event notification will be queued and never be processed.

SEE ALSO

define rule(commands), listen(commands), libpq.

03/14/94 111

PURGE(COMMANDS) PURGE(COMMANDS)

NAME

purge — discard historical data

SYNOPSIS

purge classname [beforeabstime] [after reltime]

DESCRIPTION

Purge allows a user to specify the historical retention properties of a class.If the date specified is an abso-
lute time such as “Jan 1 1987”,POSTGRESwill discard tuples whose validity expired before the indicated
time. Purge with no beforeclause is equivalent to “purge before now”. Until specified with a purge com-
mand, instance preservation defaults to “forever”.

The user may purge a class at any time as long as the purge date never decreases.POSTGRESwill enforce
this restriction, silently.

Note that thepurge command does not do anything except set a parameter for system operation.Usevac-
uum(commands) to enforce this parameter.

EXAMPLE

/*
* A lways discard data in the EMP class
* p rior to January 1, 1989
*/

purge EMP before "Jan 1 1989"

/*
* Retain only the current data in EMP
*/

purge EMP

SEE ALSO

vacuum(commands).

BUGS AND CAVEATS

Error messages are quite unhelpful.A complaint about “inconsistent times” followed by several nine-digit
numbers indicates an attempt to “back up” a purge date on a relation.

You cannot purge certain system catalogs (namely, “pg_class”, “pg_attribute”, “pg_am”, and “pg_amop”)
due to circularities in the system catalog code.

This definition of thepurge command is really only useful for non-archived relations, since tuples will not
be discarded from archive relations (they are never vacuumed).

02/08/94 112

REMOVE AGGREGATE(COMMANDS) REMOVE AGGREGATE(COMMANDS)

NAME

remove aggregate — remove the definition of an aggregate

SYNOPSIS

remove aggregateaggname

DESCRIPTION

Remove aggregatewill remove all reference to an existing aggregate definition. To execute this command
the current user must be the the owner of the aggregate.

EXAMPLE

/*
* Remove the average aggregate
*/

remove aggregate avg

SEE ALSO

define aggregate(commands).

01/23/93 113

REMOVE FUNCTION(COMMANDS) REMOVE FUNCTION(COMMANDS)

NAME

remove function — remove a user-defined C function

SYNOPSIS

remove function function_name ([type-1 { , type-n }])

DESCRIPTION

Remove function will remove references to an existing C function.To execute this command the user
must be the owner of the function. The input argument types to the function must be specified, as only the
function with the given name and argument types will be removed.

EXAMPLE

/*
* t his command removes the square root function
*/

remove function sqrt(int4)

SEE ALSO

define function(commands).

BUGS

No checks are made to ensure that types, operators or access methods that rely on the function have been
removed first.

03/12/94 114

REMOVE INDEX(COMMANDS) REMOVE INDEX(COMMANDS)

NAME

remove index — removes an index from POSTGRES

SYNOPSIS

remove index index_name

DESCRIPTION

This command drops an existing index from thePOSTGRESsystem. To execute this command you must be
the owner of the index.

EXAMPLE

/*
* t his command will remove the "emp_index" index
*/

remove index emp_index

SEE ALSO

define index(commands).

03/12/94 115

REMOVE OPERATOR(COMMANDS) REMOVE OPERATOR(COMMANDS)

NAME

remove operator — remove an operator from the system

SYNOPSIS

remove operator opr_desc

DESCRIPTION

This command drops an existing operator from the database.To execute this command you must be the
owner of the operator.

Opr_descis the name of the operator to be removed followed by a parenthesized list of the operand types
for the operator. The left or right type of a left or right unary operator, respectively, may be specified as
none.

It is the user’s responsibility to remove any access methods, operator classes, etc. that rely on the deleted
operator.

EXAMPLE

/*
* Remove power operator aˆn for int4
*/

remove operator ˆ (int4, int4)

/*
* Remove left unary operator !a for booleans
*/

remove operator ! (none, bool)

/*
* Remove right unary factorial operator a! for int4
*/

remove operator ! (int4, none)

/*
* Remove right unary factorial operator a! for int4
* (default is right unary)
*/

remove operator ! (int4)

SEE ALSO

define operator(commands).

02/01/94 116

REMOVE RULE(COMMANDS) REMOVE RULE(COMMANDS)

NAME

remove rule − removes a current rule fromPOSTGRES

SYNOPSIS

remove [instance| rewrite] rule rule_name

DESCRIPTION

This command drops the rule named rule_name from the specifiedPOSTGRESrule system.POSTGRES

will immediately cease enforcing it and will purge its definition from the system catalogs.

EXAMPLE

/*
* T his example drops the rewrite rule example_1
*/

remove rewrite rule example_1

SEE ALSO

define rule(commands), remove view(commands).

BUGS

Once a rule is dropped, access to historical information the rule has written may disappear.

01/23/93 117

REMOVE TYPE(COMMANDS) REMOVE TYPE(COMMANDS)

NAME

remove type — remove a user-defined type from the system catalogs

SYNOPSIS

remove type typename

DESCRIPTION

This command removes a user type from the system catalogs. Only the owner of a type can remove it.

It is the user’s responsibility to remove any operators, functions, aggregates, access methods, sub-types,
classes, etc. that use a deleted type.

EXAMPLE

/*
* r emove the box type
*/

remove type box

SEE ALSO

introduction(commands), define type(commands), remove operator(commands).

BUGS

It is still possible to remove built-in types.

01/23/93 118

REMOVE VIEW(COMMANDS) REMOVE VIEW(COMMANDS)

NAME

remove view — removes a view from POSTGRES

SYNOPSIS

remove view view_name

DESCRIPTION

This command drops an existing view from thePOSTGRESsystem. To execute this command you must be
the owner of the view.

EXAMPLE

/*
* t his command will remove the "myview" view
*/

remove view myview

SEE ALSO

define view(commands), remove rule(commands),

04/25/94 119

RENAME(COMMANDS) RENAME(COMMANDS)

NAME

rename — rename a class or an attribute in a class

SYNOPSIS

renameclassname1to classname2
renameattname1in classname [*] to attname2

DESCRIPTION

The rename command causes the name of a class or attribute to change without changing any of the data
contained in the affected class. Thus, the class or attribute will remain of the same type and size after this
command is executed.

In order to rename an attribute in each class in an entire inheritance hierarchy, use theclassnameof the
superclass and append a “*”. (By default, the attribute will not be renamed in any of the subclasses.)This
shouldalwaysbe done when changing an attribute name in a superclass. If it is not, queries on the inheri-
tance hierarchy such as

retrieve (s.all) from s in super*

will not work because the subclasses will be (in effect) missing an attribute found in the superclass.

You must own the class being modified in order to rename it or part of its schema. Renaming any part of
the schema of a system catalog is not permitted.

EXAMPLE

/*
* c hange the emp class to personnel
*/

rename emp to personnel

/*
* c hange the sports attribute to hobbies
*/

rename sports in emp to hobbies

/*
* make a change to an inherited attribute
*/

rename last_name in person* to family_name

BUGS

Execution of historical queries using classes and attributes whose names have changed will produce incor-
rect results in many situations.

Renaming of types, operators, rules, etc., should also be supported.

02/08/94 120

REPLACE(COMMANDS) REPLACE(COMMANDS)

NAME

replace — replace values of attributes in a class

SYNOPSIS

replace instance_variable(att_name-1= expression-1
{ , att_name-i= expression-i })

[from from_list]
[wherequal]

DESCRIPTION

Replacechanges the values of the attributes specified intarget_list for all instances which satisfy the quali-
fication,qual. Only the attributes to be modified need appear intarget_list.

Array references use the same syntax found inretrieve(commands). Thatis, either single array elements, a
range of array elements or the entire array may be replaced with a single query.

You must have write access to the class in order to modify it, as well as read access to any class whose val-
ues are mentioned in the target list or qualification (seechange acl(commands).

EXAMPLES

/*
* Give all employees who work for Smith a 10% raise
*/

replace emp(sal = 1.1 * emp.sal)
where emp.mgr = "Smith"

/*
* Replace the middle element of a 3x3
* n oughts-and-crosses board with an O.
*/

replace tictactoe (board[2][2] = "O")
where tictactoe.game = 1

/*
* Replace the entire middle row of a 3x3
* n oughts-and-crosses board with Os.
*/

replace tictactoe (board[2:2][1:3] = "{O,O,O}")
where tictactoe.game = 2

/*
* Replace the entire 3x3 noughts-and-crosses
* b oard from game 2 with that of game 4
*/

replace tictactoe (board = ttt.board)
frmo ttt in tictactoe
where tictactoe.game = 2 and

ttt.game = 4

06/13/93 121

REPLACE(COMMANDS) REPLACE(COMMANDS)

SEE ALSO

postquel(commands), create(commands), replace(commands), retrieve(commands).

06/13/93 122

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

NAME

retrieve — retrieve instances from a class

SYNOPSIS

retrieve
[(into classname [archive_mode] |

portal portal_name |
iportal portal_name)]

[unique]
([attr_name-1=] expression-1 {, [attr_name-i=] expression-i})
[from from_list]
[wherequal]
[sort by attr_name−1 [usingoperator]

{ , attr_name-j [usingoperator] }]

DESCRIPTION

Retrieve will get all instances which satisfy the qualification,qual, compute the value of each element in
the target list, and either (1) return them to an application program through one of two different kinds of
portals or (2) store them in a new class.

If classnameis specified, the result of the query will be stored in a new class with the indicated name. If an
archive specification,archive_modeof light, heavy, or noneis not specifed, then it defaults tolight archiv-
ing. (Thisdefault may be changed at a site by the DBA). The current user will be the owner of the new
class. Theclass will have attribute names as specified in the target list.A class with this name owned by
the user must not already exist. Thekeyword all can be used when it is desired to retrieve all fields of a
class.

If no resultclassnameis specified, then the result of the query will be available on the specified portal and
will not be saved. If no portal name is specified, the blank portal is used by default. For a portal specified
with the iportal keyword, retrieve passes data to an application without conversion to external format.For
a portal specified with theportal keyword, retrieve passes data to an application after first converting it to
the external representation.For the blank portal, all data is converted to external format. Duplicate
instances are not removed when the result is displayed through a portal unless the optionalunique tag is
appended, in which case the instances in the target list are sorted according to the sort clause and duplicates
are removed before being returned.

Instances retrieved into a portal may be fetched in subsequent queries by using thefetch command. Since
the results of aretrieve portal span queries,retrieve portal may only be executed inside of abegin/end
transaction block. Attempts to use named portals outside of a transaction block will result in a warning
message from the parser, and the query will be discarded.

Thesort clause allows a user to specify that he wishes the instances sorted according to the corresponding
operator. This operator must be a binary one returning a boolean. Multiple sort fields are allowed and are
applied from left to right.

The target list specifies the fields to be retrieved. Eachattr_namespecifies the desired attribute or portion
of an array attribute. Thus,eachattr_nametakes the form

class_name.att_name

or, if the user only desires part of an array,

/*
* S pecify a lower and upper index for each dimension
* (i.e., clip a range of array elements)

03/13/94 123

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

*/
class_name.att_name[lIndex-1:uIndex-1]..[lIndex-i:uIndex-i]

/*
* S pecify an exact array element
*/

class_name.att_name[uIndex-1]..[uIndex-i]

where eachlIndexor uIndexis an integer constant.

When you retrieve an attribute which is of a complex type, the behavior of the system depends on whether
you used "nested dots" to project out attributes of the complex type or not. See the examples below.

You must have read access to a class to read its values (seechange acl(commands).

EXAMPLES

/*
* F ind all employees who make more than their manager
*/

retrieve (e.name)
from e, m in emp
where e.mgr = m.name
and e.sal > m.sal

/*
* Retrieve all fields for those employees who make
* more than the average salary
*/

retrieve into avgsal(ave = float8ave {emp.sal}) \g

retrieve (e.all)
from e in emp
where e.sal > avgsal.ave \g

/*
* Retrieve all employee names in sorted order
*/

retrieve unique (emp.name)
sort by name using <

/*
* Retrieve all employee names that were valid on 1/7/85
* in s orted order
*/

retrieve (e.name)
from e in emp["January 7 1985"]
sort by name using <

03/13/94 124

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

/*
* Construct a new class, raise, containing 1.1
* t imes all employee’s salaries
*/

retrieve into raise (salary = 1.1 * emp.salary)

/*
* Do a r etrieve into a portal
*/

begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g

end \g

/*
* Retrieve an entire 3x3 array that represents
* a p articular noughts-and-crosses board.
* T his retrieves a 3x3 array of char.
*/

retrieve (tictactoe.board)
where tictactoe.game = 2

/*
* Retrieve the middle row of a 3x3 array that
* r epresents a noughts-and-crosses board.
* T his retrieves a 1x3 array of char.
*/

retrieve (tictactoe.board[2:2][1:3])
where tictactoe.game = 2

/*
* Retrieve the middle element of a 3x3 array that
* r epresents a noughts-and-crosses board.
* T his retrieves a single char.
*/

retrieve (tictactoe.board[2][2])
where tictactoe.game = 2

/*
* Retrieve all attributes of a class "newemp" that
* c ontains two attributes, "name" and a complex type
* " manager" which is of type "newemp". Since each
* c omplex attribute represents a procedure recorded

03/13/94 125

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

* in " pg_proc", the system will return the object IDs
* of e ach procedure. In this example, POSTGRES will
* r eturn tuples of the form ("carol", 34562),
* ("sunita", 45662), and so on. The "manager" field
* is r epresented as an object ID.
*/

retrieve (newemp.name, newemp.manager)

/*
* In o rder to see the attributes of a complex type, they
* must be explicitly projected. The following query will
* r eturn tuples of the form
* ("carol", "mike", 23434), ("sunita", "mike", 23434)
*/

retrieve (newemp.name, newemp.manager.name,
newemp.manager.manager)

SEE ALSO

append(commands), close(commands), create(commands), fetch(commands), postquel(commands),
replace(commands).

BUGS

Retrieve into does not delete duplicates.

Archive_modeis not implemented in Version 4.2.

If the backend crashes in the course of executing aretrieve into, the class file will remain on disk. It can
be safely removed by the database DBA, but a subsequentretrieve into to the same name will fail with a
cryptic error message about "BlockExtend".

Retrieve iportal returns data in an architecture dependent format, namely that of the server on which the
backend is running.A standard data format, such as XDR, should be adopted.

Aggregate functions can only appear in the target list.

03/13/94 126

VA CUUM(COMMANDS) VACUUM(COMMANDS)

NAME

vacuum — vacuum a database

SYNOPSIS

vacuum

DESCRIPTION

Vacuum is thePOSTGRESvacuum cleaner. It opens every class in the database, moves deleted records to
the archive for archived relations, cleans out records from aborted transactions, and updates statistics in the
system catalogs. The statistics maintained include the number of tuples and number of pages stored in all
classes. Runningvacuum periodically will increasePOSTGRES’s speed in processing user queries.

The open database is the one that is vacuumed. Thisis a new POSTQUELcommand in Version 4.2; earlier
versions ofPOSTGREShad a separate program for vacuuming databases. That program has been replaced
by thevacuum(unix) shell script.

We recommend that production databases be vacuumed nightly, in order to keep statistics relatively current.
The vacuum query may be executed at any time, however. In particular, after copying a large class into
POSTGRESor deleting a large number of records, it may be a good idea to issue avacuum query. This will
update the system catalogs with the results of all recent changes, and allow thePOSTGRESquery optimizer
to make better choices in planning user queries.

SEE ALSO

vacuum(unix).

01/23/93 127

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SECTION 5 — LIBPQ

DESCRIPTION

LIBPQ is the programmer’s interface toPOSTGRES. LIBPQ is a set of library routines which allow queries
to pass to thePOSTGRESbackend and instances to return through an IPC channel.

This version of the documentation is based on the C library. Three short programs are listed at the end of
this section as examples ofLIBPQ programming (though not necessarily of good programming).

There are several examples ofLIBPQ applications in the following directories:

.../src/regress/demo

.../src/regress/regress

.../src/regress/video

.../src/bin/monitor

.../src/bin/fsutils

CONTROL AND INITIALIZATION

Environment Variables

The following environment variables can be used to set up default values for an environment and to avoid
hard-coding database names into an application program:

PGHOST sets the default server name.

PGDAT ABASE sets the defaultPOSTGRESdatabase name.

PGPORT sets the default communication port with thePOSTGRESbackend.

PGTTY sets the file or tty on which debugging messages from the backend server are displayed.

PGREALM sets theKerberosrealm to use withPOSTGRES, if it is different from the local realm.If
PGREALM is set,POSTGRESapplications will attempt authentication with servers for
this realm and use separate ticket files to avoid conflicts with local ticket files. This envi-
ronment variable is only used ifKerberos authentication is enabled; seeintroduc-
tion(unix) for additional information onKerberos.

Internal Variables

The following internal variables ofLIBPQ can be accessed by the programmer:

char *PQhost; /* the server on which POSTGRES

backend is running. */

char *PQport = NULL; /* The communication port with the
POSTGRESbackend. */

char *PQtty; /* The tty on the PQhost backend on
which backend messages are
displayed. */

char *PQoption; /* Optional arguements to the backend */

char *PQdatabase; /* backend database to access */

03/12/94 128

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

int PQportset = 0; / * 1 if c ommunication with
backend is established */

int PQxactid = 0; / * T ransaction ID of the current
transaction */

int PQtracep = 0; / * 1 to p rint out front-end
debugging messages */

int PQAsyncNotifyWaiting = 0; /* 1 if o ne or more asynchronous
notifications have been
triggered */

char PQerrormsg[]; /* null-delimited string containing the
error message (usually from the backend)
when the execution of a query or function
fails */

QUERY EXECUTION FUNCTIONS

The following routines control the execution of queries from a C program.

PQsetdb Make the specified database the current database and reset communication usingPQreset
(see below).

void PQsetdb(dbname)
char *dbname;

PQdb Returns the name of thePOSTGRESdatabase being accessed, orNULL if no database is
open. Onlyone database can be accessed at a time. The database name is a string lim-
ited to 16 characters.

char *PQdb()

PQreset Reset the communication port with the backend in case of errors.This function will
close the IPC socket connection to the backend thereby causing the next PQexeccall to
ask for a new one from thepostmaster. When the backend notices the socket was closed
it will exit, and when thepostmasteris asked for the new connection it will start a new
backend.

void PQreset()

PQfinish Close communication ports with the backend. Terminates communications and frees up
the memory taken up by theLIBPQ buffer.

void PQfinish()

PQfn Send a function call to thePOSTGRESbackend. Provides access to thePOSTGRESfast
path facility, a trapdoor into the system internals.See theFAST PATH section of the
manual.

03/12/94 129

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

The fnid argument is the object identifier of the function to be executed. result_lenand
result_bufspecify the expected size (in bytes) of the function return value and a buffer in
which to load the return value. Theactual size of the returned value will be loaded into
the space pointed to byactual_result_lenif it is a valid pointer. result_typeshould be set
to 1 if the return type is an integer and 2 in all other cases.args and nargs specify a
pointer to a PQArgBlock structure (see

.../src/backend/tmp/libpq.h

for more details) and the number of arguments, respectively.

PQfn returns a string containing the character “G” when a return-value has been loaded
into result_buf, or “V” if the function returned nothing.PQfn returns aNULL pointer
and loadsPQerrormsgif any error (fatal or non-fatal) occurs.

PQfnreturns an error ifresult_bufis not large enough to contain the returned value.

char *PQfn(fnid, result_buf, result_len,
actual_result_len,

result_type, args, nargs)
int fnid;
int *result_buf;
int result_len;
int *actual_result_len;
int result_type;
PQArgBlock *args;
int nargs;

PQexec Submit a query toPOSTGRES. Returns a status indicator or an error message.

If the query returns data (e.g.,fetch), PQexecreturns a string consisting of the character
“P” followed by the name of the portal buffer.

If the query does not return any instances, as in the case with update queries,PQexec
will return a string consisting of the character “C” followed by the command tag (e.g.,
“CREPLACE”).

If a “copy from stdin” or “copy to stdout” query is executed (seecopy(commands) for
more details),PQexecwill return the strings “DCOPY” and “BCOPY”, respectively.

A string beginning with the character “I” indicates that the server has finished sending
the results of a multi-query command (e.g., has finished processing an asynchronous por-
tal command).

If a non-fatal error occurred during the execution of the query, PQexecwill return (for
historical reasons) the character “R” and load an error message intoPQerrormsg. If a
fatal error occurred (i.e., the backend crashed),PQexecreturns the character “E” and
loads an error message intoPQerrormsg.

char *PQexec(query)
char *query;

PQFlushI The frontend/backend protocol has a serious flaw in that the queries executed when using
PQfn andPQexeccan cause several query responses to come back to the frontend.For

03/12/94 130

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

example, during the definition of a view, the server actually executes several queries on
its own to modify the system catalogs.Unfortunately, the implementation of this was
botched and these queries return status messages to the frontend of their own. If the
frontend application only reads one response and then goes on to execute more queries,
these extra responses sit in the message queue and the frontend will read these leftovers
instead of reading the responses from its latest queries.

If you aren’t completely positive that a call toPQexecwon’t do something more compli-
cated than a simpleretrieve, you should probably wrap it in a loop that processes “P”
and “C” responses in the usual way, but also performs

result = PQexec(" "); /* dummy query */
++dummies_sent;

after receiving each good protocol result. When the first character of aPQexecresult is
“I”, you know you have received the last result and have started receiving responses to
your dummy queries.To get rid of the “I” protocol responses that are now stuffed into
your message buffer, call PQFlushIwith the number of dummy queries you sent.

This is horrendously complicated and should be fixed. Meanwhile,you should look at

.../src/bin/monitor/monitor.c

to see an example of a program that handles this problem correctly.

int PQFlushI(i_count)
int i_count;

PORTAL FUNCTIONS

A portal is aPOSTGRESbuffer from which instances can befetched. Eachportal has a string name (cur-
rently limited to 16 bytes).A portal is initialized by submitting aretrievestatement using thePQexecfunc-
tion, for example:

retrieve portal foo (EMP.all)

The programmer can then move data from the portal intoLIBPQ by executing afetchstatement, e.g:

fetch 10 in foo

fetch all in foo

If no portal name is specified in a query, the default portal name is the string “blank”, known as theblank
portal . All qualifying instances in a blank portal are fetched immediately, without the need for the pro-
grammer to issue a separatefetchcommand.

Data fetched from a portal intoLIBPQ is moved into aportal buffer . Portal names are mapped to portal
buffers through an internal table.Each instance in a portal buffer has an index number locating its position
in the buffer. In addition, each field in an instance has a name (attribute name) and a field index (attribute
number).

A single retrieve command can return multiple types of instances. This can happen if aPOSTGRESfunc-
tion is executed in the evaluation of a query or if the query returns multiple instance types from an

03/12/94 131

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

inheritance hierarchy. Consequently, the instances in a portal are set up ingroups. Instances in the same
group are guaranteed to have the same instance format.

Portals that are associated with normal user commands are calledsynchronous. In this case, the applica-
tion program is expected to issue a retrieval followed by one or more fetch commands. The functions that
follow can now be used to manipulate data in the portal.

PQnportals Return the number of open portals.If rule_p is not 0, then only return the number of
asynchronous portals.

int PQnportals(rule_p)
int rule_p;

PQpnames Return all portal names.If rule_p is not 0, then only return the names of asynchronous
portals. The caller is responsible for allocating sufficent storage for
pnames.Thenumberofnamesreturnedcanbedeterminedwithacallto PQnpor-
tals().EachportalnameisatmostPortalNameLength characters long (see
.../src/backend/tmp/libpq.h).

void PQpnames(pnames, rule_p)
char **pnames;
int rule_p;

PQparray Return the portal buffer given a portal name,pname.

PortalBuffer *PQparray(pname)
char *pname;

PQclear Free storage claimed by portalpname.

void PQclear(pname)
char *pname;

PQntuples Return the number of instances (tuples) in a portal bufferportal.

int PQntuples(portal)
PortalBuffer *portal;

PQngroups Return the number of instance groups in a portal bufferportal.

int PQngroups(portal)
PortalBuffer *portal

PQntuplesGroup
Return the number of instances in an instance groupgroup_indexassociated with a por-
tal bufferportal.

int PQntuplesGroup(portal, group_index)
PortalBuffer *portal;

03/12/94 132

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

int group_index;

PQnfieldsGroup Return the number of fields (attributes) for the instances (tuples) in instance group
group_indexassociated with portal bufferportal.

int PQnfieldsGroup(portal, group_index)
PortalBuffer *portal;
int group_index;

PQfnameGroup Return the field (attribute) name for the instances (tuples) in instance groupgroup_index
(associated with portal bufferportal) and the field indexfield_number.

char *PQfnameGroup(portal, group_index, field_number)
PortalBuffer *portal;
int group_index;
int field_number;

PQfnumberGroup
Return the field index (attribute number) given the instance groupgroup_index(associ-
ated with portal bufferportal) and the field (attribute) namefield_name.

int PQfnumberGroup(portal, group_index, field_name)
PortalBuffer *portal;
int group_index;
char *field_name;

PQgetgroup Returns the index of the instance group (associated with portal buffer portal) that con-
tains a particular instancetuple_index.

int PQgetgroup(portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

PQnfields Returns the number of fields (attributes) in an instancetuple_indexcontained in portal
bufferportal.

int PQnfields(portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

PQfnumber Returns the field index (attribute number) of a given field namefield_namewithin an
instancetuple_indexcontained in portal bufferportal.

int PQfnumber(portal, tuple_index, field_name)
PortalBuffer *portal;
int tuple_index;
char *field_name;

03/12/94 133

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQfname Returns the name of a field (attribute)field_numberof instancetuple_indexcontained in
portal bufferportal.

char *PQfname(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

PQftype Returns the type of a field (attribute) field_numberof instancetuple_indexcontained in
portal bufferportal. The type returned is an internal coding of a type.

int PQftype(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

PQsametype Returns 1 if two instancestuple_index1andtuple_index2, both contained in portal buffer
portal, hav ethe same field (attribute) types.

int PQsametype(portal, tuple_index1, tuple_index2)
PortalBuffer *portal;
int tuple_index1;
int tuple_index2;

PQgetvalue Returns a field (attribute) value.

char *PQgetvalue(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

PQgetlength Return the length of a field (attribute) value in bytes.If the field is astruct varlena, the
length returned here doesnot include the size field of the varlena, i.e., it is 4 bytes less.

char *PQgetlength(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

If the portal is blank, or the portal was specified with theportal keyword, all values are returned as null-
delimited strings. It is the programmer’s responsibility to convert them to the correct type. If the portal is
specified with theiportal keyword, all values are returned in an architecture-dependent internal (binary)
format, namely, the format generated by theinput function specified throughdefine type(commands).
Again, it is the programmer’s responsibility to convert the data to the correct type.

ASYNCHRONOUS PORTALS AND NOTIFICATION

Asynchronous portals — query results of rules — are implemented using two mechanisms: relations and
notification. Thequery result is transferred through a relation. The notification is done with special
POSTQUELcommands and the frontend/backend protocol.

03/12/94 134

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

The first step in using asynchronous portals is tolisten(commands) on a given class name. The fact that a
process is listening on the class is shared with all backend servers running on a database; when one sets off
the rule, it signals its peers. The backend server associated with the listening frontend process then sends
its client an IPC message, which the frontend process must explicitly catch by polling the variable
PQAsyncNotify. When this variable is non-zero, the frontend process must first issue a null (empty) query,
i.e.,

PQexec(" ");

Then the frontend should check the variable,PQAsyncNotifyWaiting. When this variable is non-zero, the
frontend can retrieve the notification data held usingPQNotifies. The frontend must callPQNotifiesin
order to find out which classes the data corresponds to (i.e., which notification events have been set off).
These events must then be individually cleared by callingPQRemoveNotifyon each element of the list
returned byPQNotifies.

Notice that the asynchronous notification process does not itself transfer any data, but only a class name.
Hence the frontend and backend must come to agreement on the class to be used to pass any data prior to
notification and data transfer (obviously, since the frontend must specify this table name in the correspond-
ing listencommand).

The second sample program gives an example of the use of asynchronous portals in which the frontend pro-
gram retrieves the entire contents of the result class each time it is notified.

PQNotifies Return the list of relations on which notification has occurred.

PQNotifyList *PQNotifies()

PQRemoveNotify
Remove the notification from the list of unhandled notifications.

PQNotifyList *PQRemoveNotify(pqNotify)
PQNotifyList *pqNotify;

FUNCTIONS ASSOCIATED WITH THE COPY COMMAND

The copy command inPOSTGREShas options to read from or write to the network connection used by
LIBPQ. Therefore, functions are necessary to access this network connection directly so applications may
take full advantage of this capability.

For more information about thecopycommand, seecopy(commands).

PQgetline Reads a newline-terminated line of characters (transmitted by the backend server) into a
buffer string of size length. Like fgets(3), this routine copies up tolength-1 characters
into string. It is like gets(3), however, in that it converts the terminating newline into a
null character.

PQgetlinereturns EOF at EOF, 0 if the entire line has been read, and 1 if the buffer is
full but the terminating newline has not yet been read.

Notice that the application must check to see if a new line consists of the single character
“.”, which indicates that the backend server has finished sending the results of thecopy
command. Therefore,if the application ever expects to receive lines that are more than
length-1 characters long, the application must be sure to check the return value of
PQgetlinevery carefully.

03/12/94 135

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

The code in

.../src/bin/monitor/monitor.c

contains routines that correctly handle the copy protocol.

PQgetline(string, length)
char *string;
int length

PQputline Sends a null-terminatedstring to the backend server.

The application must explicitly send the single character “.” to indicate to the backend
that it has finished sending its data.

PQputline(string)
char *string;

PQendcopy Syncs with the backend. Thisfunction waits until the backend has finished processing
the copy. It should either be issued when the last string has been sent to the backend
using PQputline or when the last string has been received from the backend using
PGgetline. It must be issued or the backend may get “out of sync” with the frontend.
Upon return from this function, the backend is ready to receive the next query.

The return value is 0 on successful completion, nonzero otherwise.

int PQendcopy()

As an example:

PQexec("create foo (a=int4, b=char16, d=float8)");
PQexec("copy foo from stdin");
PQputline("3<TAB>hello world<TAB>4.5\n");
PQputline("4<TAB>goodbye world<TAB>7.11\n");
...
PQputline(".\n");
PQendcopy();

LIBPQ TRACING FUNCTIONS

PQtrace Enable tracing.The routine sets thePQtracepvariable to 1 which causes debug mes-
sages to be printed.You should note that the messages will be printed to stdout by
default. If you would like different behavior you must set the variable

FILE *debug_port

to the appropriate stream.

void PQtrace()

03/12/94 136

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQuntrace Disable tracing started byPQtrace.

void PQuntrace()

USER AUTHENTICATION FUNCTIONS

If the user has generated the appropriate authentication credentials (e.g., obtainingKerberos tickets), the
frontend/backend authentication process is handled byPQexecwithout any further intervention. Thefol-
lowing routines may be called byLIBPQ programs to tailor the behavior of the authentication process.

fe_getauthname Returns a pointer to static space containing whatever name the user has authenticated.
Use of this routine in place of calls togetenv(3) orgetpwuid(3) by applications is highly
recommended, as it is entirely possible that the authenticated user name isnot the same
as value of theUSER environment variable or the user’s entry in /etc/passwd. This
becomes an important issue if the user name is being used as a value in a database inter-
action (e.g., using the user name as the default database name, as is done bymoni-
tor(unix).

char *fe_getauthname()

fe_setauthsvc Specifies thatLIBPQ should use authentication servicenamerather than its compiled-in
default. Thisvalue is typically taken from a command-line switch.

void fe_setauthsvc(name)
char *name;

BUGS

The query buffer is 8192 bytes long, and queries over that length will be silently truncated.

03/12/94 137

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 1

/*
* t estlibpq.c —
* T est the C version of LIBPQ, t he POSTGRESfrontend library.
*/

#include <stdio.h>
#include "tmp/libpq.h"

main ()
{

int i, j, k, g, n, m, t;
PortalBuffer *p;
char pnames[MAXPORTALS][portal_name_length];

/* Specify the database to access. */
PQsetdb ("pic_demo");

/* Start a transaction block for eportal */
PQexec ("begin");

/* Fetch instances from the EMP class. */
PQexec ("retrieve portal eportal (EMP.all)");
PQexec ("fetch all in eportal");

/* Examine all the instances fetched. */
p = PQparray ("eportal");
g = PQngroups (p);
t = 0 ;

for (k = 0; k < g; k++) {
printf ("\nA new instance group:\n");
n = PQntuplesGroup (p, k);
m = PQnfieldsGroup (p, k);

/* Print out the attribute names. */
for (i = 0; i < m; i++)

printf ("%-15s", PQfnameGroup (p, k, i));
printf ("\n");

/* Print out the instances. */
for (i = 0; i < n; i++) {

for (j = 0; j < m; j++)
printf("%-15s", PQgetvalue(p, t+i, j));

printf ("\n");
}
t += n ;

}

/* Close the portal. */
PQexec ("close eportal");

03/12/94 138

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

/* End the transaction block */
PQexec("end");

/* Try out some other functions. */

/* Print out the number of portals. */
printf ("\nNumber of portals open: %d.\n",

PQnportals ());

/* If any tuples are returned by rules, print out
* t he portal name. */

if (PQnportals (1)) {
printf ("Tuples are returned by rules. \n");
PQpnames (pnames, 1);
for (i = 0; i < MAXPORTALS; i++)

if (pnames[i] != NULL)
printf ("portal used by rules: %s\n", pnames[i]);

}

/* finish execution. */
PQfinish ();

}

03/12/94 139

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 2

/*
* T esting of asynchronous notification interface.
*
* Do t he following at the monitor:
*
* * create test1 (i = int4) \g
* * create test1a (i = int4) \g
*
* * define rule r1 is on append to test1 do
* [append test1a (i = new.i)
* n otify test1a] \g
*
*
* T hen start up this process.
*
* * append test1 (i = 10) \g
*
* T he value i = 10 should be printed by this process.
*
*/

#include <tmp/simplelists.h>
#include <tmp/libpq.h>
#include <tmp/postgres.h>

extern int PQAsyncNotifyWaiting;

void main() {
PQNotifyList *l;
PortalBuffer *portalBuf;
char *res;
int ngroups, tupno, grpno, ntups, nflds;

PQsetdb(getenv("USER"));

PQexec("listen test1a");

while (1) {
res = PQexec(" ");
if (*res != ’I’) {

printf("Unexpected result from a null query --> %s", res);
PQfinish();
exit(1);

}
if (PQAsyncNotifyWaiting) {

PQAsyncNotifyWaiting = 0;
for (l = PQnotifies() ; l != NULL ; l = PQnotifies()) {
PQremoveNotify(l);
printf("Async. notification on relation %s, our backend pid is %d\n",

03/12/94 140

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

l->relname, l->be_pid);
res = PQexec("retrieve (test1a.i)");

if (*res != ’P’) {
fprintf(stderr, "%s\nno portal", ++res);
PQfinish();
exit(1);

}

portalBuf = PQparray(++res);
ngroups = PQngroups(portalBuf);
for (grpno = 0 ; grpno < ngroups ; grpno++) {

ntups = PQntuplesGroup(portalBuf, grpno);
nflds = PQnfieldsGroup(portalBuf, grpno);
if (nflds != 1) {

fprintf(stderr, "expected 1 attributes, got %d\n", nflds);
PQfinish();
exit(1);

}
for (tupno = 0 ; tupno < ntups ; tupno++) {

printf("i = %s\n", PQgetvalue(portalBuf, tupno, 0));
}

}
}
PQfinish();
exit(0);

}
sleep(1);
}

}

03/12/94 141

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 3

/*
* T est program for the binary portal interface.
*
* Create a test database and do the following at the monitor:
*
* * create test1 (i = int4, d = float4, p = polygon)\g
* * append test1 (i = 1, d = 3.567,
* p = " (3.0,4.0,1.0,2.0)"::polygon)\g
* * append test1 (i = 2, d = 89.05,
* p = " (4.0,3.0,2.0,1.0)"::polygon)\g
*
* a dding as many tuples as desired.
*
* S tart up this program. The contents of class "test1" should be
* p rinted, e.g.:

tuple 0: got
i=(4 bytes) 1,
d=(4 bytes) 3.567000,
p=(72 bytes) 2 points,

boundbox=(hi=3.000000,4.000000 / lo=1.000000,2.000000)
tuple 1: got

i=(4 bytes) 2,
d=(4 bytes) 89.05000,
p=(72 bytes) 2 points,

boundbox=(hi=4.000000,3.000000 / lo=2.000000,1.000000)

*/
#include "tmp/simplelists.h"
#include "tmp/libpq.h"
#include "utils/geo-decls.h"

void main()
{

PortalBuffer *portalbuf;
char *res;
int ngroups, tupno, grpno, ntups, nflds;

PQsetdb("test"); /* change this to your database name */
PQexec("begin");
res = (char *) PQexec("retrieve iportal junk (test1.all)");
if (*res == ’E’) {

fprintf(stderr,"\nError: %s\n",++res);
goto exit_error;

}
res = (char *) PQexec("fetch all in junk");
if (*res != ’P’) {

fprintf(stderr,"\nError: no portal\n");
goto exit_error;

03/12/94 142

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

}
/* get tuples in relation */
portalbuf = PQparray(++res);
ngroups = PQngroups(portalbuf);
for (grpno = 0; grpno < ngroups; grpno++) {

ntups = PQntuplesGroup(portalbuf, grpno);
if ((nflds = PQnfieldsGroup(portalbuf, grpno)) != 3) {

fprintf(stderr, "\nError: expected 3 attributes, got %d\n", nflds);
goto exit_error;

}
for (tupno = 0; tupno < ntups; tupno++) {

int *ival; /* 4 bytes */
float *fval; /* 4 bytes */
unsigned plen;
POLYGON *pval;

ival = (int *) PQgetvalue(portalbuf, tupno, 0);
fval = (float *) PQgetvalue(portalbuf, tupno, 1);
plen = PQgetlength(portalbuf, tupno, 2);
if (!(pval = (POLYGON *) palloc(plen + sizeof(long)))) {

fprintf(stderr, "\nError: palloc returned zero bytes\n");
goto exit_error;

}
pval->size = plen + sizeof(long);
bcopy(PQgetvalue(portalbuf, tupno, 2), (char *) &pval->npts, plen);
printf ("tuple %d: got\n\

\t i=(%d bytes) %d,\n\
\t d=(%d bytes) %f,\n\
\t p=(%d bytes) %d points,\n\
\t\t boundbox=(hi=%f,%f / lo=%f,%f)\n",

tupno,
PQgetlength(portalbuf, tupno, 0),
*ival,
PQgetlength(portalbuf, tupno, 1),
*fval,
PQgetlength(portalbuf, tupno, 2),
pval->npts,
pval->boundbox.xh,
pval->boundbox.yh,
pval->boundbox.xl,
pval->boundbox.yl);

}
}
PQexec("end");
PQfinish();
exit(0);

exit_error:
PQexec("end");
PQfinish();
exit(1);

03/12/94 143

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

}

03/12/94 144

INTRODUCTION(FAST PATH) INTRODUCTION(FAST PATH)

SECTION 6 — FAST PATH

SYNOPSIS

retrieve (retval= function([arg {, arg }]))

DESCRIPTION

POSTGRESallows any valid POSTGRESfunction to be called in this way. Prior implementations offast
path allowed user functions to be called directly. For now, the above syntax should be used, with argu-
ments cast into the appropriate types. By executing the above type of query, control transfers completely to
the user function; any user function can access any POSTGRESfunction or any global variable in thePOST-

GRESaddress space.

There are six levels at which calls can be performed:

1) Traffic cop level
If a function wants to execute aPOSTGREScommand and pass a string representation, this level is
appropriate.

2) Parser
A function can access thePOSTGRESparser, passing a string and getting a parse tree in return.

3) Queryoptimizer
A function can call the query optimizer, passing it a parse tree and obtaining a query plan in
return.

4) Executor
A function can call the executor and pass it a query plan to be executed.

5) Accessmethods
A function can directly call the access methods if it wishes.

6) Functionmanager
A function can call other functions using this level.

Documentation of layers 1-6 will appear at some future time. Meanwhile, fast path users must consult the
source code for function names and arguments at each level.

It should be noted that users who are concerned with ultimate performance can bypass the query language
completely and directly call functions that in turn interact with the access methods.On the other hand, a
user can implement a new query language by coding a function with an internal parser that then calls the
POSTGRESoptimizer and executor. Complete flexibility to use the pieces ofPOSTGRESas a tool kit is
thereby provided. 993/08/2309:03:16 aoki Exp $

01/23/93 145

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

SECTION 7 — LARGE OBJECTS

DESCRIPTION

In POSTGRES, data values are stored in tuples and individual tuples cannot span data pages. Since the size
of a data page is 8192 bytes, the upper limit on the size of a data value is relatively low. To support the stor-
age of larger atomic values,POSTGRESprovides a large object interface. Thisinterface provides file-
oriented access to user data that has been declared to be a large type.

POSTGRESsupports three standard implementations of large objects: as files external toPOSTGRES, as
UNIX files managed byPOSTGRES, and as data stored within thePOSTGRESdatabase. These implementa-
tion allow users to trade-off between access speed, recoverability and security. The choice of implementa-
tion is specified when the large object is created or “registered” withPOSTGRES. In all cases, the large
object becomes associated with a path name within a file system name space managed byPOSTGRES(see
below).

Applications which can tolerate lost data may store large objects as conventional files which are fast to
access, but cannot be recovered in the case of system crashes.For applications requiring stricter data
integrity, the transaction-protected large object implementation is available. Thissection describes each
implementation and the programmatic and query language interfaces toPOSTGRESlarge object data.

The POSTGRESlarge object interface is modeled after theUNIX file system interface, with analogues of
open(2), read(2), write(2), lseek(2), etc. User functions call these routines to retrieve only the data of inter-
est from a large object.For example, if a large object type calledmugshotexisted that stored photographs
of faces, then a function calledbeardcould be declared onmugshotdata. Beardcould look at the lower
third of a photograph, and determine the color of the beard that appeared there, if any. The entire large
object value need not be buffered, or even examined, by thebeard function. Asmentioned above, POST-

GRESsupports functional indices on large object data.In this example, the results of thebeard function
could be stored in a B-tree index to provide fast searches for people with red beards.

UNIX FILES AS LARGE OBJECT ADTS

The simplest large object interface supplied withPOSTGRESis also the least robust. It does not support
transaction protection, crash recovery, or time travel. On the other hand, it can be used on existing data
files (such as word-processor files) that must be accessed simultaneously by the database system and exist-
ing application programs.

POSTGREShas two ways of handlingUNIX files that store large objects. These correspond to theExternal
andUnix large object interfaces.

The simplest way to create a large object is to register the external file containing the large object with the
POSTGRESdatabase. Thisleaves the actual file as-is, outside of thePOSTGRESdata directory, and allows
otherUNIX users to access it without going throughPOSTGRES. The file is, in general, only protected by
the standardUNIX permissions mechanism.In the case of a system crash, or if the file is removed or
deleted,POSTGRESprovides no recovery mechanism.

In the second approach, the user registers the large object in thePOSTGRESdatabase and copies the speci-
fied file into thePOSTGRESdatabase directory structure.Copying the file takes time, so this is not as fast
as the External large object creation process. Furthermore, like External large objects,UNIX large objects
are not recoverable. However, placing the large object files in thePOSTGRESdata area gives them the secu-
rity of POSTGRESdata files.

External large objects provide POSTGRESusers with the ability to share large objects betweenPOSTGRES

and other systems.The files can be read and written by otherUNIX users, andPOSTGREScan be made
aw are of the large object very quickly. Howev er, because of the security implications of the External large

03/18/94 146

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

objects approach, the facility is not provided by default. To enable External large objects, refer to thePOST-

GRESrelease notes.

INVERSION LARGE OBJECTS

In contrast toUNIX files as large objects, the Inversion large object implementation breaks large objects up
into “chunks” and stores the chunks in tuples in the database.A B-tree index guarantees fast searches for
the correct chunk number when doing random access reads and writes.

Only programs that use thePOSTGRESdata manager can read and write Inversion large objects. Inversion
large objects are slower than storing large objects asUNIX files, and they require more space.

LARGE OBJECT INTERF ACES

The facilitiesPOSTGRESprovides to access large objects, both in the backend as part of user-defined func-
tions or the front end as part of an application using theLIBPQ interface, are described below. As POST-

GREShas evolved a newer set of functions providing a more coherent interface have replaced an older set.
The most recent approach will be described first, and the historical information included at the very end for
completeness.

LARGE OBJECTS: BACKEND INTERF ACE

This section describes how large objects may be accessed from dynamically-loaded C functions.

Creating New Large Objects

The routine

int LOcreat(path, mode, objtype)
char *path;
int mode;
int objtype;

creates a new large object.

The pathname is a slash-separated list of components, and must be a unique pathname in thePOSTGRES

large object namespace. There is a virtual root directory (“/”) in which objects may be placed.

Theobjtypeparameter can be one ofInversion, UNIX or External. These are symbolic constants defined in

.../include/catalog/pg_lobj.h

The interpretation of themodeargument depends on theobjtypeselected. (Notethat theExternal type is
conditionally compiled into the backend. Pleaserefer to the Release Notes for information on enabling
External large objects and to the indroduction of this section for a discussion on External large objects.)

For UNIX large objects, themodeis the mode used to protect the file on theUNIX file system. On creation,
the file is open for reading and writing.

For External large objects,modespecifies the desired access permissions.If the file exists, the file permis-
sions on the external file are compared to the requested mode; both the user who is currently connected to
the backend server and the “postgres” user must have the appropriate permissions.Unlike creat(2), an
existing external file is not truncated.

For Inv ersion large objects,modeis a bitmask describing several different attributes of the new object. The
symbolic constants listed here are defined in

.../include/tmp/libpq-fs.h

03/18/94 147

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

the access type (read, write, or both) is controlled byOR’ing together the bitsINV_READ andINV_WRITE.
If the large object should be archived — that is, if historical versions of it should be moved periodically to a
special archive relation — then theINV_ARCHIVE bit should be set. The low-order sixteen bits ofmaskare
the storage manager number on which the large object should reside. In the distributed version ofPOST-

GRES, only the magnetic disk storage manager is supported.For users runningPOSTGRESat UC Berkeley,
additional storage managers are available. For sites other than Berkeley, these bits should always be zero.
At Berkeley, storage manager zero is magnetic disk, storage manager one is a Sony optical disk jukebox,
and storage manager two is main memory.

The commands below open two large objects for writing and reading. The Inversion large object is not
archived, and is located on magnetic disk:

unix_fd = LOcreat("/my_unix_obj", 0600, Unix);

inv_fd = LOcreat("/my_inv_obj",
INV_READ|INV_WRITE, Inversion);

Opening Large Objects

Large objects registered into the database by theLOcreat call described above, or p_opencall described
below may be opened by calling the routine

int LOopen(path, mode)
char *path;
int mode;

where thepathargument specifies the large object’s pathname, and is the same as the pathname used to cre-
ate the object.The modeargument is interpreted by the two implementations differently. For UNIX large
objects, values should be chosen from the set of mode bits passed to theopen system call; that is,
O_CREAT, O_RDONLY, O_WRONLY, O_RDWR, and O_TRUNC. For Inversion large objects, only the bits
INV_READ andINV_WRITE have any meaning.

To open the two large objects created in the last example, a programmer would issue the commands

unix_fd = LOopen("/my_unix_obj", O_RDWR);

inv_fd = LOopen("/my_inv_obj", INV_READ|INV_WRITE);

If a large object is opened before it has been created, then a new large object is created using theUNIX

implementation, and the new object is opened.

Seeking on Large Objects

The command

int
LOlseek(fd, offset, whence)

int fd;
int offset;
int whence;

moves the current location pointer for a large object to the specified position.The fd parameter is the file
descriptor returned by eitherLOcreator LOopen. Offsetis the byte offset in the large object to which to
seek.

03/18/94 148

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

BecauseUNIX large objects are simplyUNIX files, they may have “holes” like any otherUNIX file. Thatis,
a program may seek well past the end of the object and write bytes.Intervening blocks will not be created
and reading them will return zero-filled blocks. Inversion large objects do not support holes.

The following code seeks to byte location 100000 of the example large objects:

unix_status = LOlseek(unix_fd, 100000, L_SET);

inv_status = LOlseek(inv_fd, 100000, L_SET);

On error,LOlseekreturns a value less than zero. On success, the new offset is returned.

Writing to Large Objects

Once a large object has been created, it may be filled by calling

int
LOwrite(fd, wbuf)

int fd;
struct varlena *wbuf;

Here, fd is the file descriptor returned byLOcreator LOopen, and wbuf describes the data to write.The
varlenastructure inPOSTGRESconsists of four bytes in which the length of the datum is stored, followed
by the data itself. The length stored in the length field includes the four bytes occupied by the length field
itself.

For example, to write 1024 bytes of zeroes to the sample large objects:

struct varlena *vl;

vl = (struct varlena *) palloc(1028);
VARSIZE(vl) = 1028;
bzero(VARDATA(vl), 1024);

nwrite_unix = LOwrite(unix_fd, vl);

nwrite_inv = LOwrite(inv_fd, vl);

LOwrite returns the number of bytes actually written, or a negative number on error. For Inversion large
objects, the entire write is guaranteed to succeed or fail. That is, if the number of bytes written is non-
negative, then it equalsVARSIZE(vl).

TheVARSIZEandVARDATA macros are declared in the file

.../include/tmp/postgres.h

Reading from Large Objects

Data may be read from large objects by calling the routine

struct varlena *
LOread(fd, len)

int fd;
int len;

03/18/94 149

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

This routine returns the byte count actually read and the data in a varlena structure.For example,

struct varlena *unix_vl, *inv_vl;
int nread_ux, nread_inv;
char *data_ux, *data_inv;

unix_vl = LOread(unix_fd, 100);
nread_ux = VARSIZE(unix_vl);
data_ux = VARDATA(unix_vl);

inv_vl = LOread(inv_fd, 100);
nread_inv = VARSIZE(inv_vl);
data_inv = VARDATA(inv_vl);

The returned varlena structures have been allocated by thePOSTGRESmemory managerpalloc, and may be
pfreed when they are no longer needed.

Closing a Large Object

Once a large object is no longer needed, it may be closed by calling

int
LOclose(fd)

int fd;

wherefd is the file descriptor returned byLOopenor LOcreat. On success,LOclosereturns zero.A neg-
ative return value indicates an error.

For example,

if (LOclose(unix_fd) < 0)
/* error */

if (LOclose(inv_fd) < 0)
/* error */

Directory Operations

The routine

int
LOmkdir(path, mode)

char *path;
int mode;

creates directories in thePOSTGRESvirtual file system but does not create any physical directories.Natu-
rally,

int
LOrmdir(path)

char *path;

removes directories in thePOSTGRESvirtual file system. Both routines return zero or negative values on

03/18/94 150

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

success and failure, respectively.

Removing Large Objects

The routine to remove large objects works differently for the different large object types.A call to

int
LOunlink(path)

char *path;

will always remove the specified path from thePOSTGRESvirtual file system.However, it will only unlink
the underlying data file in the case of aUNIX large object. Neither External nor Inversion large object files
are actually removed by this call. LOunlinkreturns zero on success, negative values on failure.

LARGE OBJECTS: LIBPQ INTERF ACE

Large objects may also be accessed from database client programs that link theLIBPQ library. This library
provides a set of routines that support opening, reading, writing, closing, and seeking on large objects.The
interface is similar to that provided via the backend, but rather than using varlena structures, a more con-
ventionalUNIX-style buffer scheme is used.

This section describes theLIBPQ interface in detail.

Creating a Large Object

The routine

int
p_creat(path, mode, objtype)

char *path;
int mode;
int objtype;

creates a new large object. Thepathargument specifies a large-object system pathname.

Theobjtypeparameter can be one ofInversion, Unix or External, which are symbolic constants defined in

.../include/catalog/pg_lobj.h

The interpretation of themodeandfilesarguments depends on theobjtypeselected.

For UNIX files, modeis the mode used to protect the file on theUNIX file system. On creation, the file is
open for reading and writing. The path name is an internal convention relative to the specific database and
the actual files are stored in the directory of the database itself.

For External large objects,modespecifies the desired access permissions.If the file exists, the file permis-
sions on the external file are compared to the requested mode; both the user who is currently connected to
the backend server and the “postgres” user must have the appropriate permissions.Unlike creat(2), an
existing external file is not truncated.

For Inv ersion large objects,modeis a bitmask describing several different attributes of the new object. The
symbolic constants listed here are defined in

.../include/tmp/libpq-fs.h

The access type (read, write, or both) is controlled byOR’ing together the bitsINV_READ andINV_WRITE.
If the large object should be archived — that is, if historical versions of it should be moved periodically to a
special archive relation — then theINV_ARCHIVE bit should be set. The low-order sixteen bits ofmaskare

03/18/94 151

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

the storage manager number on which the large object should reside.For sites other than Berkeley, these
bits should always be zero. At Berkeley, storage manager zero is magnetic disk, storage manager one is a
Sony optical disk jukebox, and storage manager two is main memory.

The commands below open large objects of the two types for writing and reading. The Inversion large
object is not archived, and is located on magnetic disk:

unix_fd = p_creat("/my_unix_obj", 0600, Unix);

inv_fd = p_creat("/my_inv_obj",
INV_READ|INV_WRITE, Inversion);

Opening an Existing Large Object

To open an existing large object, call

int
p_open(path, mode)

char *path;
int mode;

The path argument specifies the large object pathname for the object to open. The mode bits control
whether the object is opened for reading, writing, or both.For UNIX large objects, the appropriate flags are
O_CREAT, O_RDONLY, O_WRONLY, O_RDWR, and O_TRUNC. For Inversion large objects, only
INV_READ andINV_WRITE are recognized.

If a large object is opened before it is created, it is created by default using theUNIX file implementation.

Writing Data to a Large Object

The routine

int
p_write(fd, buf, len)

int fd;
char *buf;
int len;

writes len bytes frombuf to large objectfd. The fd argument must have been returned by a previous
p_creator p_open.

The number of bytes actually written is returned. In the event of an error, the return value is negative.

Seeking on a Large Object

To change the current read or write location on a large object, call

int
p_lseek(fd, offset, whence)

int fd;
int offset;
int whence;

This routine moves the current location pointer for the large object described byfd to the new location spec-
ified byoffset. For this release ofPOSTGRES, only L_SET is a legal value forwhence.

03/18/94 152

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

Closing a Large Object

A large object may be closed by calling

int
p_close(fd)

int fd;

wherefd is a large object descriptor returned byp_creator p_open. On success,p_closereturns zero.On
error, the return value is negative.

Directory Operations

The routines

int
p_mkdir(path, mode)

char *path;
int mode;

and

int
p_rmdir(path)

char *path;

are analogous toLOmkdirandLOrmdir in that they only modify thePOSTGRESfile system namespace and
return zero or negative values on success or failure, respectively.

Removing Large Objects

The

int
p_unlink(path)

char *path;

routine removes the specified path from thePOSTGRESfile system namespace and, if the path corresponds
to a UNIX large object, removes the underlying file.The files that store other large object types are not
removed by this call. p_unlinkreturns zero or negative values on success or error, respectively.

SAMPLE LARGE OBJECT PROGRAMS

The POSTGRESlarge object implementation serves as the basis for a file system (the “Inversion file sys-
tem”) built on top of the data manager. This file system provides time travel, transaction protection, and
fast crash recovery to clients of ordinary file system services.It uses the Inversion large object implementa-
tion to provide these services.

The programs that comprise the Inversion file system are included in thePOSTGRESsource distribution, in
the directory

.../src/bin/fsutils

These directories contain a set of programs for manipulating files and directories.These programs are
based on the Berkeley Software Distribution NET-2 release.

These programs are useful in manipulating Inversion files, but they also serve as examples of how to code

03/18/94 153

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

large object accesses inLIBPQ. All of the programs areLIBPQ clients, and all use the interfaces that have
been described in this section.

Interested readers should refer to the files in the directory

.../src/bin/fsutils

for in-depth examples of the use of large objects.Below, a more terse example is provided. Thiscode frag-
ment creates a new large object managed by Inversion, fills it with data from aUNIX file, and closes it.

03/18/94 154

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

#include "tmp/c.h"
#include "tmp/libpq-fe.h"
#include "tmp/libpq-fs.h"
#include "catalog/pg_lobj.h"

#define MYBUFSIZ 1024

main()
int inv_fd;
int fd;
char *qry_result;
char buf[MYBUFSIZ];
int nbytes;
int tmp;

PQsetdb("mydatabase");

/* large object accesses must be */
/* transaction-protected */
qry_result = PQexec("begin");

if (*qry_result == ’E’) /* error */
exit (1);

/* open the UNIX file */
fd = open("/my_unix_file", O_RDONLY, 0666);
if (fd < 0) /* error */

exit (1);

/* create the Inversion file */
inv_fd = p_creat("/inv_file", INV_WRITE, Inversion);
if (inv_fd < 0) /* error */

exit (1);

/* copy the UNIX file to the Inversion */
/* large object */
while ((nbytes = read(fd, buf, MYBUFSIZ)) > 0)
{

tmp = p_write(inv_fd, buf, nbytes);
if (tmp < nbytes) /* error */

exit (1);
}

(void) close(fd);
(void) close(inv_fd);

/* commit the transaction */
qry_result = PQexec("end");

if (*qry_result == ’E’) /* error */

03/18/94 155

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

exit (1);

/* by here, success */
exit (0);

}

BUGS

Shouldn’t hav eto distinguish between Inversion andUNIX large objects when you open an existing large
object. Thesystem knows which implementation was used. The flags argument should be the same in
these two cases.

All large object file names (paths) are limited to 256 characters.

In the Inversion file system, file name components (the sections of the path preceding, following or in
between “/”) are limited to 16 characters each. The maximum path length is still 256 characters.

The unlink routines do not always remove the underlying data files because they do not implement refer-
ence counts.

THE lo_filein() and lo_fileout() INTERFACE

As POSTGREShas evolved, the backend large object interface described above has replaced an earlier back-
end large object interface. Theprevious interface required users to store internal large object descriptors in
their attributes; this worked, but required users to call internalPOSTGRESroutines directly in order to
access their data. The interface documented above is clearer and more consistent, so the interface about to
be described is deprecated and documented only for historical reasons.

The functionslo_filein andlo_fileoutconvert betweenUNIX filenames and internal large object descriptors.
These functions arePOSTGRESregistered functions, meaning they can be used directly inPOSTQUEL

queries as well as from dynamically-loaded C functions.

The routine

LargeObject *lo_filein(filename)
char *filename;

associates a new UNIX file storing large object data with the database system. This routine stores the file-
name in a abstract data structure suitable for inclusion as an attribute of a tuple.

The converse routine,

char *lo_fileout(object)
LargeObject *object;

returns theUNIX filename associated with a large object.

If you are defining a simple large object ADT, these functions can be used as your “input” and “output”
functions (seedefine type(commands)). Asuitable declaration would be

define type LargeObject (internallength = variable,
input = lo_filein, output = lo_fileout)

The file storing the large object must be accessible on the machine on whichPOSTGRESis running. The
data is not copied into the database system, so if the file is later removed, it is unrecoverable.

The data in large objects imported in this manner are only accesible from thePOSTGRESbackend using

03/18/94 156

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

dynamically-loaded functions.However, the internal large object descriptors cannot be used with the
LOopenbackend interface. Instead,these descriptors can only be used by making direct calls to a set of
undocumented routines within thePOSTGRESstorage manager. Furthermore, it becomes the user’s respon-
sibility to make calls to the correct set of routines forUNIX or Inversion large objects.

SEE ALSO

introduction(commands), define function(commands), define type(commands), load(commands).

03/18/94 157

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

SECTION 8 — SYSTEM CATALOGS

DESCRIPTION

Thus far we have made many allusions to the system catalogs and their role in thePOSTGRESextensibility
architecture but have managed to avoid a systematic specification of their layout and contents. In this sec-
tion we list each of the attributes of the system catalogs and define their meanings.

CLASS/TYPE SYSTEM CATALOGS

These catalogs form the core of the extensibility system:

name shared/local description
pg_aggregate local aggregate functions
pg_am local access methods
pg_amop local operators usable with specific access methods
pg_amproc local procedures used with specific access methods
pg_attribute local class attributes
pg_class local classes
pg_index local secondaryindices
pg_inherits local class inheritance hierarchy
pg_language local procedure implementation languages
pg_opclass local operator classes
pg_operator local query language operators
pg_proc local procedures (functions)
pg_type local data types

ENTITIES

These catalogs deal with identification of entities known throughout the site:

name shared/local description
pg_database shared current databases
pg_group shared user groups
pg_user shared valid users

RULE SYSTEM CATALOGS

name shared/local description
pg_listener local processes waiting on alerters
pg_prs2plans local instance system procedures
pg_prs2rule local instance system rules
pg_prs2stub local instance system ‘‘stubs’’
pg_rewrite local rewrite system information

LARGE OBJECT CATALOGS

These catalogs are specific to the Inversion file system and large objects in general:

name shared/local description
pg_lobj local description of a large object
pg_naming local Inversion name space mapping
pg_platter local jukebox platter inventory
pg_plmap local jukebox platter extent map

INTERNAL CA TALOGS

These catalogs are internal classes that are not stored as normal heaps and cannot be accessed through nor-
mal means (attempting to do so causes an error).

03/13/94 158

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

name shared/local description
pg_log shared transaction commit/abort log
pg_magic shared magic constant
pg_time shared commit/abort times
pg_variable shared special variable values

There are several other classes defined with “pg_” names. Aside from those that end in “ind” (secondary
indices), these are all obsolete or otherwise deprecated.

CLASS/TYPE SYSTEM CATALOGS

The following catalogs relate to the class/type system.

/*
* a ggregates
*
* s ee DEFINE AGGREGATE for an explanation of transition functions
*/

pg_aggregate
char16 aggname /* aggregate name (e.g., "count") */
oid aggowner /* usesysid of creator */
regproc aggtransfn1 /* first transition function */
regproc aggtransfn2 /* second transition function */
regproc aggfinalfn /* final function */
oid aggbasetype /* type of data on which aggregate

operates */
oid aggtranstype1 /* type returned by aggtransfn1 */
oid aggtranstype2 /* type returned by aggtransfn2 */
oid aggfinaltype /* type returned by aggfinalfn */
text agginitval1 /* external format of initial

(starting) value of aggtransfn1 */
text agginitval2 /* external format of initial

(starting) value of aggtransfn2 */

pg_am
char16 amname /* access method name */
oid amowner /* usesysid of creator */
char amkind /* - deprecated */

/* originally:
h=hashed
o=ordered
s=special */

int2 amstrategies /* total NUMBER of strategies by which
we can traverse/search this AM */

int2 amsupport /* total NUMBER of support functions
that this AM uses */

regproc amgettuple /* "next valid tuple" function */
regproc aminsert /* "insert this tuple" function */
regproc amdelete /* "delete this tuple" function */
regproc amgetattr /* - deprecated */
regproc amsetlock /* - deprecated */
regproc amsettid /* - deprecated */

03/13/94 159

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

regproc amfreetuple /* - deprecated */
regproc ambeginscan /* "start new scan" function */
regproc amrescan /* "restart this scan" function */
regproc amendscan /* "end this scan" function */
regproc ammarkpos /* "mark current scan position"

function */
regproc amrestrpos /* "restore marked scan position"

function */
regproc amopen /* - deprecated */
regproc amclose /* - deprecated */
regproc ambuild /* "build new index" function */
regproc amcreate /* - deprecated */
regproc amdestroy /* - deprecated */

pg_amop
oid amopid /* access method with which this

operator be used */
oid amopclaid /* operator class with which this

operator can be used */
oid amopopr /* the operator */
int2 amopstrategy /* traversal/search strategy number

to which this operator applies */
regproc amopselect /* function to calculate the operator

selectivity */
regproc amopnpages /* function to calculate the number of

pages that will be examined */

pg_amproc
oid amid /* access method with which this

procedure is associated */
oid amopclaid /* operator class with which this

operator can be used */
oid amproc /* the procedure */
int2 amprocnum /* support function number to which

this operator applies */

pg_class
char16 relname /* class name */
oid relowner /* usesysid of owner */
oid relam /* access method */
int4 relpages /* # of 8KB pages */
int4 reltuples /* # of instances */
abstime relexpires /* time after which instances are

deleted from non-archival storage */
reltime relpreserved /* timespan after which instances are

deleted from non-archival storage */
bool relhasindex /* does the class have a secondary

03/13/94 160

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

index? */
bool relisshared /* is the class shared or local? */
char relkind /* type of relation:

i=index
r=relation (heap)
s=special
u=uncatalogued (temporary) */

char relarch /* archive mode:
h=heavy
l=light
n=none */

int2 relnatts /* current # of non-system
attributes */

int2 relsmgr /* storage manager:
0=magnetic disk
1=sony WORM jukebox
2=main memory */

int28 relkey /* - unused */
oid8 relkeyop /* - unused */
aclitem relacl[1] /* access control lists */

pg_attribute
oid attrelid /* class containing this attribute */
char16 attname /* attribute name */
oid atttypid /* attribute type */
oid attdefrel /* - deprecated */
int4 attnvals /* - deprecated */
oid atttyparg /* - deprecated */
int2 attlen /* attribute length, in bytes

-1=variable */
int2 attnum /* attribute number

>0=user attribute
<0=system attribute */

int2 attbound /* - deprecated */
bool attbyval /* type passed by value? */
bool attcanindex /* - deprecated */
oid attproc /* - deprecated */
int4 attnelems /* # of array dimensions */
int4 attcacheoff /* cached offset into tuple */
bool attisset /* is attribute set-valued? */

pg_inherits
oid inhrel /* child class */
oid inhparent /* parent class */
int4 inhseqno /* - deprecated */

oid indexrelid /* oid of secondary index class */

03/13/94 161

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

oid indrelid /* oid of indexed heap class */
oid indproc /* function to compute index key from

attribute(s) in heap
0=not a functional index */

int28 indkey /* attribute numbers of key
attribute(s) */

oid8 indclass /* opclass of each key */
bool indisclustered /* is the index clustered?

- u nused */
bool indisarchived /* is the index archival?

- u nused */
text indpred /* query plan for partial index

predicate */

pg_type
char16 typname /* type name */
oid typowner /* usesysid of owner */
int2 typlen /* length in internal form

-1=variable-length */
int2 typprtlen /* length in external form */
bool typbyval /* type passed by value? */
char typtype /* kind of type:

c=catalog (composite)
b=base */

bool typisdefined /* defined or still a shell? */
char typdelim /* delimiter for array external form */
oid typrelid /* class (if composite) */
oid typelem /* type of each array element */
regproc typinput /* external-internal conversion

function */
regproc typoutput /* internal-external conversion

function */
regproc typreceive /* client-server conversion function */
regproc typsend /* server-client conversion function */
text typdefault /* default value */

pg_operator
char16 oprname /* operator name */
oid oprowner /* usesysid of owner */
int2 oprprec /* - deprecated */
char oprkind /* kind of operator:

b=binary
l=left unary
r=right unary */

bool oprisleft /* is operator left/right associative? */
bool oprcanhash /* is operator usable for hashjoin? */
oid oprleft /* left operand type */
oid oprright /* right operand type */

03/13/94 162

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

oid oprresult /* result type */
oid oprcom /* commutator operator */
oid oprnegate /* negator operator */
oid oprlsortop /* sort operator for left operand */
oid oprrsortop /* sort operator for right operand */
regproc oprcode /* function implementing this operator */
regproc oprrest /* function to calculate operator

restriction selectivity */
regproc oprjoin /* function to calculate operator

join selectivity */

pg_opclass
char16 opcname /* operator class name */

pg_proc
char16 proname /* function name */
oid proowner /* usesysid of owner */
oid prolang /* function implementation language */
bool proisinh /* - deprecated */
bool proistrusted /* run in server or untrusted function

process? */
bool proiscachable /* can the function return values be

cached? */
int2 pronargs /* # of arguments */
bool proretset /* does the function return a set?

- u nused */
oid prorettype /* return type */
oid8 proargtypes /* argument types */
int4 probyte_pct /* % of argument size (in bytes) that

needs to be examined in order to
compute the function */

int4 properbyte_cpu /* sensitivity of the function’s
running time to the size of its
inputs */

int4 propercall_cpu /* overhead of the function’s
invocation (regardless of input
size) */

int4 prooutin_ratio /* size of the function’s output as a
percentage of the size of the input */

text prosrc /* function definition (postquel only) */
bytea probin /* path to object file (C only) */

pg_language
char16 lanname /* language name */
text lancompiler /* - deprecated */

03/13/94 163

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

ENTITIES

pg_database
char16 datname /* database name */
oid datdba /* usesysid of database administrator */
text datpath /* directory of database under

$PGDATA */

pg_group
char16 groname /* group name */
int2 grosysid /* group’s UNIX group id */
int2 grolist[1] /* list of usesysids of group members */

pg_user
char16 usename /* user’s name */
int2 usesysid /* user’s UNIX user id */
bool usecreatedb /* can user create databases? */
bool usetrace /* can user set trace flags? */
bool usesuper /* can user be POSTGRES superuser? */
bool usecatupd /* can user update catalogs? */

RULE SYSTEM CATALOGS

pg_listener
char16 relname /* class for which asynchronous

notification is desired */
int4 listenerpid /* process id of server corresponding

to a frontend program waiting for
asynchronous notification */

int4 notification /* whether an event notification for
this process id still pending */

pg_prs2rule
char16 prs2name /* rule name */
char prs2eventtype /* rule event type:

R=retrieve
U=update (replace)
A=append
D=delete */

oid prs2eventrel /* class to which event applies */
int2 prs2eventattr /* attribute to which event applies */
float8 necessary /* - deprecated */
float8 sufficient /* - deprecated */
text prs2text /* text of original rule definition */

pg_prs2plans
oid prs2ruleid /* prs2rule instance for which this

03/13/94 164

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

plan is used */
int2 prs2planno /* plan number (one rule may invoke

multiple plans) */
text prs2code /* external representation of the plan */

pg_prs2stub
oid prs2relid /* class to which this rule applies */
bool prs2islast /* is this the last stub fragment? */
int4 prs2no /* stub fragment number */
stub prs2stub /* stub fragment */

pg_rewrite
char16 rulename /* rule name */
char ev_type /* event type:

RETRIEVE, REPLACE, APPEND, DELETE
codes are parser-dependent (!?) */

oid ev_class /* class to which this rule applies */
int2 ev_attr /* attribute to which this rule applies */
bool is_instead /* is this an "instead" rule? */
text ev_qual /* qualification with which to modify

(rewrite) the plan that triggered this
rule */

text action /* parse tree of action */

LARGE OBJECT CATALOGS

pg_lobj
oid ourid /* ’ourid’ from pg_naming that

identifies this object in the
Inversion file system namespace */

int4 objtype /* storage type code:
0=Inversion
1=Unix
2=External
3=Jaquith */

bytea object_descripto/* opaque object-handle structure */

pg_naming
char16 filename /* filename component */
oid ourid /* random oid used to identify this

instance in other instances (can’t
use the actual oid for obscure
reasons */

oid parentid /* pg_naming instance of parent
Inversion file system directory */

pg_platter

03/13/94 165

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

char16 plname /* platter name */
int4 plstart /* the highest OCCUPIED extent */

pg_plmap
oid plid /* platter (in pg_platter) on which

this extent (of blocks) resides */
oid pldbid /* database of the class to which this

extent (of blocks) belongs */
oid plrelid /* class to which this extend (of

blocks) belongs */
int4 plblkno /* starting block number within the

class */
int4 ploffset /* offset within the platter at which

this extent begins */
int4 plextentsz /* length of this extent */

03/13/94 166

INFORMATION(FILES) INFORMATION(FILES)

SECTION 8 — FILES

OVERVIEW

This section describes some of the important files used byPOSTGRES.

NOTATION

“.../” at the front of file names represents the path to the postgres user’s home directory. Anything in square
brackets (“[” and “]”) is optional. Anything in braces (“{” and “}”) can be repeated 0 or more times.
Parentheses(“ (” and“)”) are used to group boolean expressions.| is the boolean operatorOR.

BUGS

The descriptions of

.../data/PG_VERSION,

.../data/base/*/PG_VERSION,

the temporary sort files, and the database debugging trace files are absent.

01/23/93 167

BKI(FILES) BKI(FILES)

NAME

.../src/backend/obj/{local,dbdb}.bki — template scripts

DESCRIPTION

Backend Interface (BKI) files are scripts that describe the contents of the initialPOSTGRESdatabase. This
database is constructed during system installation, by theinitdb command.Initdb executes thePOSTGRES

backend with a special set of flags, that cause it to consume the BKI scripts and bootstrap a database.

These files are automatically generated from system header files during installation.They are not intended
for use by humans, and you do not need to understand their contents in order to usePOSTGRES. These files
are copied to

.../files/{global1,local1_XXX}.bki

during system installation.

All new user databases will be created by copying the template database thatPOSTGRESconstructs from
the BKI files. Thus, a simple way to customize the template database is to let thePOSTGRESinitialization
script create it for you, and then to run the terminal monitor to make the changes you want.

The POSTGRESbackend interprets BKI files as described below. This description will be easier to under-
stand if the example in “.../files/global1.bki” is at hand.

Commands are composed of a command name followed by space separated arguments. Arguments to a
command which begin with a “$” are treated specially. If “ $$” are the first two characters, then the first “$”
is ignored and the argument is then processed normally. If the “$” is followed by space, then it is treated as
a NULL value. Otherwise,the characters following the “$” are interpreted as the name of a macro causing
the argument to be replaced with the macro’s value. Itis an error for this macro to be undefined.

Macros are defined using

define macro macro_name = macro_value

and are undefined using

undefine macro macro_name

and redefined using the same syntax as define.

Lists of general commands and macro commands follow.

GENERAL COMMANDS

openclassname
Open the class calledclassnamefor further manipulation.

close[classname]
Close the open class calledclassname.It is an error ifclassnameis not already opened. If noclass-
nameis given, then the currently open class is closed.

print
Print the currently open class.

insert [oid=oid_value](value1 value2 ...)
Insert a new instance to the open class usingvalue1, value2, etc., for its attribute values and
oid_valuefor its OID. If oid_valueis not “0”, then this value will be used as the instance’s object
identifier. Otherwise, it is an error.

01/23/93 168

BKI(FILES) BKI(FILES)

insert (value1 value2 ...)
As above, but the system generates a unique object identifier.

createclassname(name1 = type1, name2 = type2, ...)
Create a class namedclassnamewith the attributes given in parentheses.

open (name1 = type1, name2 = type2,...) as classname
Open a class namedclassnamefor writing but do not record its existence in the system catalogs.
(This is primarily to aid in bootstrapping.)

destroyclassname
Destroy the class namedclassname.

define indexindex-nameon class-nameusingamname
(opclass attr | function({attr}))
Create an index namedindex_nameon the class namedclassnameusing theamnameaccess method.
The fields to index are calledname1, name2, etc., and the operator collections to use arecollection_1,
collection_2, etc., respectively.

MACRO COMMANDS

define functionmacro_nameasrettype function_name (args)
Define a function prototype for a function namedmacro_namewhich has its value of typerettype
computed from the execution function_namewith the argumentsargsdeclared in a C-like manner.

define macromacro_namefrom file filename
Define a macro namedmacnamewhich has its value read from the file calledfilename.

EXAMPLE

The following set of commands will create the “pg_opclass” class containing theint_ops collection as
object421,print out the class, and then close it.

create pg_opclass (opcname=char16)
open pg_opclass
insert oid=421 (int_ops)
print
close pg_opclass

SEE ALSO

initdb(unix), createdb(unix), createdb(commands), template(files).

01/23/93 169

PA GE(FILES) PAGE(FILES)

NAME

page structure —POSTGRESdatabase file default page format

DESCRIPTION

This section provides an overview of the page format used byPOSTGRESclasses. User-defined access
methods need not use this page format.

In the following explanation, abyte is assumed to contain 8 bits. In addition, the termitem refers to data
which is stored inPOSTGRESclasses.

Diagram 1 shows how pages in both normalPOSTGRESclasses andPOSTGRESindex classes (e.g., a B-tree
index) are structured.

itemPointerData filler itemData...

Unallocated Space

ItemContinuationData

Special Space

‘‘ ItemData 2’’

‘‘ ItemData 1’’

ItemIdDataPageHeaderData

Diagram 1: Sample Page Layout

The first 8 bytes of each page consists of a page header (PageHeaderData). Within the header, the first
three 2-byte integer fields,lower, upper, and special, represent byte offsets to the start of unallocated
space, to the end of unallocated space, and to the start of “special space.” Special space is a region at the
end of the page which is allocated at page initialization time and which contains information specific to an
access method. The last 2 bytes of the page header, opaque, encode the page size and information on the
internal fragmentation of the page.Page size is stored in each page because frames in the buffer pool may
be subdivided into equal sized pages on a frame by frame basis within a class. The internal fragmentation
information is used to aid in determining when page reorganization should occur.

Following the page header are item identifiers (ItemIdData). New item identifiers are allocated from the
first four bytes of unallocated space. Because an item identifier is never moved until it is freed, its index
may be used to indicate the location of an item on a page.In fact, every pointer to an item (ItemPointer)
created byPOSTGRESconsists of a frame number and an index of an item identifier. An item identifier
contains a byte-offset to the start of an item, its length in bytes, and a set of attribute bits which affect its
interpretation.

The items, themselves, are stored in space allocated backwards from the end of unallocated space.Usually,

01/23/93 170

PA GE(FILES) PAGE(FILES)

the items are not interpreted.However when the item is too long to be placed on a single page or when
fragmentation of the item is desired, the item is divided and each piece is handled as distinct items in the
following manner. The first through the next to last piece are placed in an item continuation structure
(ItemContinuationData). This structure containsitemPointerDatawhich points to the next piece and the
piece itself. The last piece is handled normally.

FILES

.../data/...
Location of shared (global) database files.

.../data/base/...
Location of local database files.

BUGS

The page format may change in the future to provide more efficient access to large objects.

This section contains insufficient detail to be of any assistance in writing a new access method.

01/23/93 171

TEMPLATE(FILES) TEMPLATE(FILES)

NAME

.../data/files/global1.bki — global database template

.../data/files/local1_XXX.bki — local database template

.../data/files/template1/* — default database template

DESCRIPTION

These files contain scripts which direct the construction of databases. Note that the “global1.bki” and
“template1_local.bki” files are installed automatically when thePOSTGRESsuper-user runsinitdb. These
files are copied from

.../src/backend/obj/{dbdb,local}.bki

The databases which are generated by the template scripts are normal databases.Consequently, you can
use the terminal monitor or some other frontend on a template database to simplify the customization task.
That is, there is no need to express everything about your desired initial database state using a BKI template
script, because the database state can be tuned interactively.

The system catalogs consist of classes of two types: global and local.There is one copy of each global
class that is shared among all databases at a site.Local classes, on the other hand, are not accessible except
from their own database.

The file

.../data/files/global1.bki

specifies the process used in the creation of global (shared) classes bycreatedb. Similarly, the

.../files/local1_XXX.bki

files specify the process used in the creation of local (unshared) catalog classes for the “XXX” template
database. “XXX”may be any string of 16 or fewer printable characters.If no template is specified in a
createdbcommand, then the template in

.../files/local1_template1.bki

is used.

The .bki files are generated from C source code by an inscrutable set of AWK scripts.

BUGS

POSTGRESVersion 4.2 does not permit users to have separate template databases.

SEE ALSO

bki(files), initdb(unix), createdb(unix).

01/23/93 172

REFERENCES(MANUAL) REFERENCES(MANUAL)

REFERENCES

The following technical reports are referred to in this document.For information on ordering technical
reports, see the installation notes that accompany thePOSTGRESdistribution.

[ONG90] Ong,L. and Goh, J., “A Unified Framework for Version Modeling Using Production
Rules in a Database System,” Electronics Research Laboratory, University of California,
Berkeley, ERL Memo M90/33, April 1990.

[ROWE87] Rowe, L. and Stonebraker, M., “The POSTGRES Data Model,” Proc. 1987 VLDB Con-
ference, Brighton, England, Sept. 1987.

[SHAP86] Shapiro,L., “Join Processing in Database Systems with Large Main Memories,” ACM-
TODS, Sept. 1986.

[STON87] Stonebraker, M., “The POSTGRES Storage System,” Proc. 1987 VLDB Conference,
Brighton, England, Sept. 1987.

[STON90] Stonebraker, M. et. al., “On Rules, Procedures, Caching and Views in Database Sys-
tems,” Proc. 1990 ACM-SIGMOD Conference on Management of Data, Atlantic City,
N.J., June 1990.

[WONG76] Wong, E., “Decomposition: A Strategy for Query Processing,” ACM-TODS, Sept. 1976.

03/10/94 173

REFERENCES(MANUAL) REFERENCES(MANUAL)

03/10/94 0

CONTENTS(MANUAL) CONTENTS(MANUAL)

Table of Contents

Section 1 — Introduction... 1
Section 2 —UNIX Commands (UNIX) ... 2

General Information... 2
Security ..3
Createdb ...7
Createuser ..9
Destroydb ...11
Destroyuser ..13
Icopy .. 15
Initdb ..17
Ipcclean ..18
ThePOSTGRESTerminal Monitor... 19
Newbki ...22
Pagedoc ..23
Pcat ..24
Pcd ...25
Pls ..26
Pmkdir ..27
Pmv ..28
ThePOSTGRESBackend Server ..29
ThePOSTGRESPostmaster ..31
Ppwd ..34
Prm ...35
Prmdir ..36
Reindexdb ..37
Shmemdoc ...39

Section 3 — What comes withPOSTGRES(BUILT-INS) ... 41
Built-in and System Types ...41

List of built-in types... 41
Syntax of date and time types.. 42

Built-in operators and functions.. 42
Binary operators... 43
Unary operators... 48

Built-in aggregate functions.. 48
Section 4 —POSTQUELCommands (COMMANDS)... 50

General Information... 50
Constants ..50
Fields and Attributes ..52
Operators ..53
Expressions ..53
Commands ...58

Abort ..58
Addattr ...59
Append ...60
Attachas ...63
Begin ..64
Change ACL ..65
Close ..67
Cluster ..68
Copy ... 69
Create ...71
Createdb ...73
Create Version ..74
Define Aggregate ...75
Define Function... 77
Define Index ... 86
Define Operator... 90
Define Rule.. 94
Define Type ..97

03/11/94 i

CONTENTS(MANUAL) CONTENTS(MANUAL)

Define View ... 100
Delete ...101
Destroy ... 102
Destroydb ...103
End ...104
Extend Index .. 105
Fetch ..106
Listen ...107
Load ...108
Merge ...109
Move .. 110
Notify ...111
Purge ..112
Remove Aggregate ...113
Remove Function ...114
Remove Index .. 115
Remove Operator ...116
Remove Rule ..117
Remove Type ...118
Remove View ... 119
Rename ..120
Replace ..121
Retrieve .. 123
Vacuum ..127

Section 5 — Libpq... 128
Control and Initialization... 128

Environment Variables ...128
Internal Variables ...128

Query Execution Functions... 129
Portal Functions... 131
Asynchronous Portals and Notification... 134
Miscellaneous Functions... 135

Functions Associated with the COPY Command.. 135
LIBPQ Tracing Functions.. 136
User Authentication Functions.. 137

Sample Programs... 138
Section 6 — Fast Path ..145
Section 7 — Large Objects.. 146

Backend Interface ..147
LIBPQ Interface ...151
Sample Large Object Programs... 153

Section 8 — System Catalogs.. 158
Section 8 — Files... 167

General Information... 167
Backend Interface — BKI... 168
Page Structure.. 170
Template ..172

References ..173

03/11/94 ii

