INTRODUCTION(POSTGRES) INTRDUCTION(POSTGRES)

SECTION 1 — INTRODUCTION

OVERVIEW
This document is the reference manual for RIESTGRESdatabase management system undeelole-
ment at the Uniersity of California at Ber&ley. The POSTGRESroject, led by Professor Michael Stone-
braker has been sponsored by the Defense ahded Research Projects Agen©ARPA), the Army
Research OfficeAR0O), the National Science Foundatiotsf), andeESL, Inc.

POSTGRESs distributed in source code format and is the property of tgerRe of the Uniersity of Cal-
ifornia. However, the Unversity will grant unlimited commercialization rights foryaderived work on
the condition that it obtain an educational license to theaework. For further information, consult the
Berkeley Campus Software Office, 295 Evans Hall, tnsity of California, Berkley, CA 94720. Note
that there is no genization who can help you with pfugs you may encounter or withyaather prob-
lems. Inother words, this isnsupported software.

POSTGRESDISTRIBUTION
This reference describes Version 4. 2P0fSTGRES The POSTGRESsoftware is about 200,000 lines of C
code. Informatioron obtaining the source code isitable from:

Claire Mosher

Computer Science Division
521 Evans Hall

University of California
Berkelsy, CA 94720

(510) 642-4662

Version 4.2 has been tuned modestlyence, on the Wconsin benchmark, one should expect perfor
mance about twice that of the public domain,vérsity of California version ofNGRES a relational pro-
totype from the late 1970s.

As distrituted, POSTGRESUns on Digital Equipment Corporation computers basetli® R2000 and

R3000 processors (under Ultrix 4.2A and 4.3A), Digital Equipment Corporation computers based on
Alpha AXP (DECchip 21064) processors (under OSF/1 1.3 and 2.0), Sun Microsystems computers based
on SPARCprocessors (under SunOS 4.1.3 and Solaris 2.3))dttePackard Model 9000 Series 700 and

800 computers based on PA-RISC processors (under HP-UX 9.00, 9.01 and 9.03), and International Busi-
ness Machines RS/6000 computers based on POWER processors (under AIXPD&BERESuUSers

have ported previous releases of the system toynaher architectures and operating systems, including
NeXTSTEP |RIX 5.1, Intel System V Release 4, Linux, FreeBSD and NetBSD.

POSTGRESDOCUMENTATION
This reference manual describes the functionality of Version 4.2 and contains notations where appropriate
to indicate which features are not implemented émsbn 4.2. Application delopers should note that
this reference contains only the specification for thelkvel call-oriented application program intade,
LIBPQ. A companion volume, theOSTGRESUser Manual, contains tutorial examples of the ways in
which the system can be extended.

The remainder of this reference manual is structured asvflldn Section 2 (UNIX), we discuss the
POSTGREScapabilities that arevailable directly from the operating systensection 3 (RJILT-INS)
describesPOSTGRESinternal data types, functions, and operato8ection 4 (COMMANDS) then
describe?OSTQUEL the language by which a user interacts wiltOSTGRESIatabase. Theigection 5
(LIBPQ) describes a library ofwlevd routines through which a user can formule@STQUELqueries

03/12/94 1

INTRODUCTION(POSTGRES) INTRDUCTION(POSTGRES)

from a C program and get appropriate return information back to his prodtext. Section 6 (BST
PATH) continues with a description of a method by which applications megut functions irPOST-
GRESwith very high performanceSection 7 (LARGE OBJECTS) describes the inteR@TGRESnter-

face for accessing large objects. Section 8 (SYSTEMALIOGS) gves a brief explanation of the tables
used internally byPOSTGRES The reference concludes with Section 9 (FILES), a collection of file format
descriptions for files used IBOSTGRES

ACKNOWLEDGEMENTS
POSTGREShas been constructed by a team of ugidetuate, graduate, and $fafogrammers. Theon-
tributors (in alphabetical order) consisted of:f Jefiton, Rl Aoki, James Bell, Jennifer Caetta, Philip
Chang, Jolly Chen, Ron Choi, Matt Dillon, Zelaineng, Adam Glass, Jeéy Goh, Steen Grady, Serge
Granik, Marti Hearst, JgeHellerstein, Michael Hirohama, Chin-heng Hong, Wei Hong, Anant Jhingran,
Greg Kemnitz, Marcel Krnackey Case Larsen, Boris Livshitz, Jefieredith, Ginger Ogle, Michael
Olson, Nels Olson, Lay-Peng Ong, CarakBon, Avi Pfefier, Spyros Potamianos, Sunita Sagi, David
Muir Sharnoff, Mark Sullkan, Cimarron aylor, Marc Teitelbaum, Yongdong Wang, Kristin Wright and
Andrew Yu. TheHP-UX port is courtesy of Richardufhtull (University of Liverpool) and Sebastian Fer
nandez (Uniersity of California at Berkley). Theinitial AIX port was performed by Rafael Morales
Gamboa (ITESM Campus Morelos, Cuerazn). CarlStaelin of H-P Laboratories and #&eMiley of
UCSB/CRSEO provided the computing resources that enabled usdmiatéhese ports into tHEOST-
GRESdistribution.

Marc Teitelbaum served as chief programmer for Version 4.2 and was responsibidtircoordination
of the project.

This reference was colleedly written by the abee implementation team, assisted by Bob Devine, Jim
Frew, Chandra Ghosh, Claire Mosher and Michael Stonebraker.

LEGAL NOTICES
POSTGRESSs copyright © 1989, 1994 by the Regents of thevemsity of California. Permission to use,
copy, modify, and distribute this software and its documentation for educational, research, and non-profit
purposes and without fee is hereby granted, provided that the alqyright notice appear in all copies
and that both that cgpght notice and this permission notice appear in supporting documentation, and that
the name of the Uweérsity of California not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. Permission to incorporate thigreoiftuo com-
mercial products can be obtained from the Campus Software Office, 295 Evans Hatkityrof Califor
nia, Berleley, Ca., 94720. The Unérsity of California maks no representations about the suitability of
this software for anpurpose. lis provided “as is” without express or implied warranty.

UNIX is a trademark of X/Open, Ltd. Sun4,A®C, SunOS and Solaris are trademarks of Sun Microsys-
tems, Inc. DEC, DECstation, Alpha AXP and ULTRIX are trademarks of Digital Equipment Cé#p.
RISC and HP-UX are trademarks ofwett-Packard Co. RS/6000, POWER and AlX are trademarks of
International Business Machines Corp. OSF/1 is a trademark of the Open Sysianuatién.
NeXTSTEP is a trademark of NeXT Compuyterc. MIPSand IRIX are trademarks of Silicon Graphics,
Inc.

03/12/94 2

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

SECTION 2 — UNIX COMMANDS (UNIX)

OVERVIEW
This section contains information on the interaction betvEaSTGRESand the operating system. In par
ticular, the pages of this section describe F@STGRESsupport programs that argeeutable agdUNIX
commands.

TERMINOLOGY
In the following documentation, the tesite may be interpreted as the host machine on Wh@8TGRES
is installed. However, dnce it is possible to install more than one sePOSTGRESdatabases on a single
host, this term more precisely denoteg particular set of installeBOSTGRESinaries and databases.

The POSTGRESuper-uselis the user named “postgres” (usually) who ownsROSTGREShinaries and
database files. As the database swper al protection mechanisms may be bypassed and data
accessed arbitrarilyln addition, thePOSTGRESsuperuser is allowed toxecute some support programs
which are generally notvailable to all users.Note that theeOSTGRESsuperuser isnot the same as the
UNIX super-usemoot, and should hee a ron-zero userid.

The database base adminiator or DBA, is the person who is responsible for installf@STGRESt0

enforce a security policfor a site. The DB will add nev users by the method described belaghange
the status of user-defined functions framtrusted to trusted as explained imefine functiofcommands),
and maintain a set of template databases for useshyedlfunix).

The postmasters the process that acts as a clearing-house for requestsPOIMSRESystem. Frontend
applications connect to thgostmaster which keeps tracks of gnsystem errors and communication
between the baekd processesThe postmastercan tale sveal command-line arguments to tune its
behavior but supplying aguments is necessary only if you intend to run multiple sites or a non-default site.
Seepostmastefunix) for details.

The POSTGRE®adkend (.../bin/postgres) may bexecuted directly from the user shell by tROSTGRES
superuser (with the database name as gument). Havever, doing this bypasses the sharadfér pool
and lock table associated with a postmaster/site, so this is not recommended in a multiuser site.

NOTATION
“...I" at the front of a file name is used to represent the path teGB&GRESsuper-uses home directory
Anything in brackets (“[” and “]") is optional Anything in braces (“{" and “}") can be repeated O or more
times. Rrentheses (“(" and “)") are used to group boolegessions. “|is the boolean operat@R .

USING POSTGRESFROM UNIX
All POSTGRESommands that arexecuted directly from aJNIX shell are found in the directory “.../bin".
Including this directory in your search path will neadkecuting the commands easier.

A collection of system catalogs exist at each site. These include a class (“pg_user”) that contains an
instance for eachalid POSTGRESuUser The instance specifies a setRISTGRESprivileges, such as the

ability to act aPOSTGRESsuper-userthe ability to create/desyadatabases, and the ability to update the
system catalogsA UNIX user cannot do anything wiBtDSTGRESuntil an appropriate instance is installed

in this class.Further information on the system catalogsvilable by running queries on the appropriate
classes.

USER AUTHENTICATION
Authenticationis the process by which the backend serverpoaimasteensure that the user requesting
access to data is in fact who he/she claims to be. All users whl@iROSTGRESare checked against the
contents of the “pg_user” class to ensure thaj tne authorized to do soHowever, verification of the

03/12/94 3

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

users actual identity is performed in a variety of ways.
From the user shell

A baclkend serer started from a user shell notes the gsggal) user-id before performingsetuid3) to
the user-id of user “postgresThe real user-id is used as the basis for access control checks. No other
authentication is conducted.

From the network

If the POSTGRESsystem is built as distnilbed, access to the Internet TCP port ofgbstmasteprocess is
completely unrestricted. That is,yaaser may connect to this port, spoof gustmasterpose as an autho-
rized user and issue yamommands desiredHowever, snce this port is configurable and not normally
adwertised in ap public files (e.g./etc/servicey some administrators may be satisfied with security-by-
obscurity.

If greater security is desireBOSTGRESand its clients may be modified to use a network authentication
system. Br example, thpostmastermonitorandlibpq have dready been configured to use eitherafon

4 or \ersion 5 of the&Kerberosauthentication system from the Massachusetts Institutedinblogy For
more information on usingerberoswith POSTGRESsee the appendix belo

ACCESS CONTROL
POSTGRESprovides mechanisms to allousers to limit the access to their data that is provided to other
users.

Database superusers

Database super-users (i.e., users whe Hag_useusesuper” set) silently bypass all of the access controls
described belo with two exceptions: manual system catalog updates are not permitted if the user does not
have “pg_useusecatupd” set, and destruction of system catalogs (or modification of their schemas) is ne
allowed.

Access control lists

The use of access control lists to limit reading, writing and setting of rules on classesédd anchange
acl(commands).

Class remwal and schema modification

Commands that desror modify the structure of an existing class, sucladdattr, destroy rename and
remove inde, only operate for the owner of the class. As mentionedealilbese operations arever per-
mitted on system catalogs.

FUNCTIONS AND RULES
Functions and rules allousers to insert code into the backend server that other userscesageewithout
knowing it. Hence, both mechanisms permit users ¢gan horseothers with relatie impunity The only
real protection is tight controler who can define functions (e.g., write to relations WIE TQUELfields)
and rules. Audit trails and alerters on “pg_class”, “pg_user” and “pg_group” are also recommended.

Functions

Functions written in anlanguage xceptPOSTQUELwith “pg_proc.proistrusted” set run inside the back-

end server process with the permissions of the user “postgres” (the backend server runs with its real and
effective wserid set to “postgres”). It is possible for users to change thesiseiaternal data structures

from inside of trusted functions. Hence, among ynather things, such functions can circumveny ays-

tem access controls. This is an inherent problem with trusted functions.

Non-POSTQUELfunctions that do not wa “pg_proc.proistrusted” set run in a separtatgusted-function
processspavned by the backend senv If correctly installed, this process runs with real aridotif’e user-
id set to “nobody” (or some other user with strictly limited permissions). It should be notesiehdahat

03/12/94 4

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

the primary purpose of untrusted functions is actually to simplifugging of user-defined functions
(since buggy functions will only crash or corrupt the untrusted-function process instead of the server pro-
cess). Theurrent RPC protocol only avks in one direction, so griunction that mad function-manager

calls (e.g., access method calls) or performs other database file operations must be trusted.

Since untrusted functions are aannieature in Version 4.2, theéefine function command still defaults to
making n&v functions trusted. This is a massiscurity hole that will be remved in a later release, once
the (mis)features and intarfe of untrusted functions\Veagabilized. (Anadditional access control will be
added for defining functions, analogous to the access control on defining rules.)

Like aher functions that perform database file operati®@STQUEL functions must run in the same
address space as the backendeservhe “pg_proc.proistrusted” field has no effect RBSTQUELfunc-
tions, which alvays run with the permissions of the user wheoked the backend seev. (Otherwise,
users could circumvent access controls — the “nobody” user may well bedltpeater access to apar
ticular object than a gen user.)

Rules

Like POSTQUELfunctions, rules afays run with the identity and permissions of the user wiiokigd the
backend server.

SEE ALSO
postmaster(unix), addattr(commands), append(commands), change acl(commang&onutoands),
define rule(commands), delete(commands), destroy(commands)veremdex(commands), reme

rule(commands), rename(commands), replace(commands)ye@ommands), &beros(1), kinit(1), &r-
beros(3)

CAVEATS
There are no plans to explicitly support encrypted data insid@8TGRESthough there is nothing to pre-
vent users from encrypting data within user-defined functioi$lere are no plans to explicitly support
encrypted network connections, eith@nding a total rewrite of the frontend/backend protocol.

User names, group names and associated system identifiers (e.g., the contents of “pg_user.usesysid”) are
assumed to be unique throughout a database. Unpredictable results may ocgaréf nioe

User system identifiers are currentidIX user-ids.

APPENDIX: USING KERBEROS
Availability

The Kerberosauthentication system is not distributed WMSTGRESnor is it available from the Unier-

sity of California at Ber&ley. Versions ofKerberosare typically &ailable as optional software from oper
ating system endors. Imaddition, a source code distribution may be obtained through MIT Project Athena
by anorymous FTP from AHENA-DIST.MIT.EDU (18.71.0.38).(You may wish to obtain the MITev-

sion &en if your vendor provides a version, since somedor ports hae been deliberately crippled or ren-
dered non-interoperable with the MIErgion.) Userdocated outside the United States of America and
Canada are warned that distribution of the actual encryption cateliarosis restricted by U. S. gern-

ment export regulations.

Any additional inquiries should be directed to youendor or MIT Project Athena (“info-
kerberos@ATHENA.MITEDU"). Note that FAQLs (Frequently-Asked Questions Lists) are periodically
posted to theKerberos mailing list, “kerberos@ATHENA.MITEDU” (send mail to “krberos-
request@ATHENA.MIT.EDU” to subscribe), and USENET news group, “comp.protocols.kerberos”.

Installation

Installation ofKerberositself is cavered in detail in theKerberos Installation Notes Make aure that the
server ley file (thesrvtabor keytab) is somehav readable by user “postgres”.

03/12/94 5

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

POSTGRESand its clients can be compiled to use eithensién 4 or Version 5 of the MIKerberosproto-
cols by setting th&RBVERS variable in the file “.../src/Madfile.global” to the appropriatealue. You can
also change the location whe?®STGRES=xpects to find the associated libraries, header files andiits o
server ley file.

After compilation is completePOSTGRESmMust be registered askarberos service. Sedhe Kerberos
Operations Noteand related manual pages for more details on registering services.

Operation

After initial installation,POSTGRESshould operate in all ways as a noriidalberosservice. Br details on
the use of authentication, see the manual paggm&imastefunix) andmonitor(unix).

In the Kerberos Version 5 hooks, the following assumptions are made about user and service naming: (1)
user principal names (anames) are assumed to contain the UeEPOSTGRESuUser name in the first
component; (2) theOSTGRESservice is assumed to beveawo components, the service name and a host-
name, canonicalized as in Version 4 (i.e., all domain suffixesvezhno

user example: frew@S2K.ORG
user example: aoki/HOST=miyu.S2K.Berkeley. EDU@S2K.ORG
host example: postgres_dbms/uchvax@S2K.ORG

Support for Version 4 will disappear sometime after the production release of Version 5 by MIT.

03/12/94 6

CREATEDB(UNIX) CREATEDB(UNIX)

NAME
createdb — create a database
SYNOPSIS
createdb[-a system] fh host] [p port] [dbname]
DESCRIPTION
Createdbcreates a nve database. Thperson who xecutes this command becomes the database adminis-
trator, or DBA, for this database and is the only person, other thaRP@$TGRESsuper-userwho can
destry it.
Createdbis a shell script that wokes the POSTGRESMonitor. Hence, gpostmasteprocess must be run-
ning on the database servhost beforereatedbis executed. Inaddition, thePGOPTIONand PGREALM
environment variables will be passed omrtonitorand processed as describednianitor(unix).
The optional agumentdbnamespecifies the name of the database to be credtaslname must be unique
among allPOSTGRESIatabasesDbnamedefaults to the value of th¢SERenvironment variable.
Createdbunderstands the following command-line options:
-a system
Specifies an authentication systsgstem(seeintroduction(unix)) to use in connecting to tipost-
masterprocess. Theefault is site-specific.
-h host
Specifies the hostname of the machine on whiclptis¢émasteis running. Defaults to the hame of
the local host, or the value of tR6HOSTenvironment variable (if set).
-p port
Specifies the Internet TCP port on which fiestmastelis listening for connectionsDefaults to
4321, or the value of tHRGPORTenvironment variable (if set).
EXAMPLES
create the demo database
createdb demo
create the demo database using the postmaster on host eden,
port 1234, using the Kerberos authentication system.
createdb -a kerberos -p 1234 -h eden demo
FILES
$PGDATA/basedbname
The location of the files corresponding to the datadbeame
SEE ALSO
createdb(commands), destroydb(unix), initdb(unix), monitor(unix), postmaster(unix).
DIAGNOSTICS

Error: Failed to connect to backend (hostxxx, port=xxx)
Createdbcould not attach to thpostmasteprocess on the specified host and port. If you see this
message, ensure that thestmastelis running on the proper host and that youehgecified the
proper port. If your site uses an authentication system, ensure that weuditained the required
authentication credentials.

01/23/93 7

CREATEDB(UNIX) CREATEDB(UNIX)

user “usernaméis not in “pg_user”
You do rot have aalid entry in the relation “pg_user” and cannot do anything RGBTGRESat all;

contact youPOSTGRESsite administrator.

user “usernaméis not allowed to create/destroy databases
You do rot have permission to create medatabases; contact yoROSTGRESsite administrator.

dbnamealready exists
The database already exists.

database creation failed ordbname
An internal error occurred imonitoror the backend see¢ Ensure that youPOSTGRESsite admin-

istrator has properly installefDSTGRESaNd initialized the site withitdb.

01/23/93

CREATEUSER(UNIX) CREAEUSER(UNIX)

NAME

createuser — createP®STGRESIser
SYNOPSIS

createuser[-a system] fh host] Fp port] [username]
DESCRIPTION

Createusecreates a me POSTGRESuser Only users with “usesuper” set in the “pg_user” class can create
newPOSTGRESusers. Ashipped, the user “postgres” can create users.

Createuseris a shell script that wokes monitor. Hence, apostmastemprocess must be running on the
database server host befareateuseis executed. Inaddition, thePGOPTIONandPGREALM environment
variables will be passed on monitorand processed as describednionitor(unix).

The optional ayumentusernamespecifies the name of tiIOSTGRESIser to be created. (Thevoker will
be prompted for a name if none is specified on the command Tiiés)name must be unique among all
POSTGRESusers.

Createuseunderstands the following command-line options:

-a system
Specifies an authentication systsgstem(seeintroduction(unix)) to use in connecting to tipost-
masterprocess. Theefault is site-specific.

-h host
Specifies the hostname of the machine on whiclptis¢masteis running. Defaults to the hame of
the local host, or the value of tR6HOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which fiestmasteiis listening for connectionsDefaults to

4321, or the value of tHRGPORTenvironment variable (if set).

INTERACTIVE QUESTIONS
Once ivoked with the abwe gtions,createusewill ask a series of questions. Theaneserss login name
(if not given on he command line) and usiermust be specified. (Note that thR@STGRESuserid must be
the same as the usetNIX userid.) In addition, you must describe the security capabilities of tine ne
user Specifically you will be askd whether the meuser should be able to act ROSTGRESsuper-user,
create ne databases and update the system catalogs manually.

SEE ALSO
destroyuser(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS
Error: Failed to connect to backend (hostxxx, port=xxx)
Createusercould not attach to thpostmasteprocess on the specified host and port. If you see this
message, ensure that thestmastelis running on the proper host and that youehgecified the
proper port. If your site uses an authentication system, ensure thatymuabkt@ined the required
authentication credentials.

user “usernaméis not in “pg_user”
You do not have a \alid entry in the relation “pg_user” and cannot do anything RGBTGRESat all;
contact youPOSTGRESsite administrator.

usernamecannot create users.
You do rot have permission to create neusers; contact yolROSTGRESsite administrator.

user “usernaméalready exists
The user to be added already has an entry in the “pg_user” class.

01/23/93 9

CREATEUSER(UNIX) CREAEUSER(UNIX)

database access failed
An internal error occurred imonitoror the backend seev Ensure that youPOSTGRESsite admin-
istrator has properly installeDSTGRESanNd initialized the site withitdb.

BUGS
POSTGRESuser-ids and user names should notbamnything to do with the constraints oNIX.

01/23/93 10

DESTROYDB(UNIX) DESTROYDB(UNIX)

NAME
destroydb — destyoan «isting database

SYNOPSIS
destroydb [-a system] th host] [-p port] [dbname]

DESCRIPTION
Destroydhdestrys an existing databas@o execute this command, the user must be the database adminis-
trator, or DBA, for this databaseThe program runs silently; no confirmation message will be displayed.
After the database is destroyed/NiX shell prompt will reappear.

Destroydbis a shell script that wokes monitor. Hence, apostmastemprocess must be running on the
database server host befaoiestroydhs executed. Inaddition, thePGOPTIONand PGREALM environment
variables will be passed on monitorand processed as describednionitor(unix).

The optional ayumentdbnamespecifies the name of the database to be gestroAll references to the
database are remwad, including the directory containing this database and its associatedOesame
defaults to the value of théSERenvironment variable.

Destroydhunderstands the following command-line options:

-a system
Specifies an authentication systegstem(seeintroductionunix)) to use in connecting to thmost-
masterprocess. Theefault is site-specific.

-h host
Specifies the hostname of the machine on whiclptis¢masteis running. Defaults to the name of
the local host, or the value of tR&EHOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which fiestmastelis listening for connectionsDefaults to

4321, or the value of tHrGPORTenvironment variable (if set).

EXAMPLES
destroy the demo database
destroydb demo

destroy the demo database using the postmaster on host eden,
port 1234, using the Kerberos authentication system.
destroydb -a kerberos -p 1234 -h eden demo

FILES
$PGDATA/basedbname
The location of the files corresponding to the datadbsame

SEE ALSO
destroydb(commands), createdb(unix), initdb(unix), monitor(unix). postmaster(unix).

DIAGNOSTICS
Error: Failed to connect to backend (hostxxx, port=xxx)
Destroydbcould not attach to thpostmasteprocess on the specified host and port. If you see this
message, ensure that thestmastelis running on the proper host and that youehgecified the
proper port. If your site uses an authentication system, ensure thatymuablt@ined the required
authentication credentials.

01/23/93 11

DESTROYDB(UNIX) DESTROYDB(UNIX)

user “usernaméis not in “pg_user”
You do not have aalid entry in the relation “pg_user” and cannot do anything RABTGRESat all;

contact youPOSTGRESsite administrator.

user “usernaméis not allowed to create/destroy databases
You do rot have permission to destsodatabases; contact yoROSTGRESsite administrator.

database “dbname” does not exist
The database to be remed does not hee an entry in the “pg_database” class.

database ‘dbnaméis not owned by you
You ae not DBA for the specified database.

database destroy failed omlbname
An internal error occurred imonitor or the backend seex Contact yourPOSTGRESsite adminis-

trator to ensure that ensure that the files and database entries associated with the database are com-

pletely remwoed.

01/23/93 12

DESTROYUSER(UNIX) DESTROYUSER(UNIX)

NAME

destroyuser — destya POSTGRESuser and associated databases
SYNOPSIS

destroyuser[-a system] {h host] Fp port] [username]
DESCRIPTION

Destroyusedestrys an &isting POSTGRESUser and the databases for which that user is database adminis-
trator Only users with “usesuper” set in the “pg_user” class can desgew POSTGRESusers. As
shipped, the user “postgres” can degtisers.

Destroyuseris a shell script that wiokes monitor. Hence, apostmasteiprocess must be running on the
database server host befatestroyuselis executed. Inaddition, thePGOPTIONand PGREALM environ-
ment variables will be passed omtonitorand processed as describednionitor(unix).

The optional agumentusernamespecifies the name of tlROSTGREuser to be destyed. (Theinvoker
will be prompted for a name if none is specified on the command line.)

Destroyuseunderstands the following command-line options:

-a system
Specifies an authentication systsgstem(seeintroduction(unix)) to use in connecting to tipost-
masterprocess. Theefault is site-specific.

-h host
Specifies the hostname of the machine on whiclptis#émasteis running. Defaults to the nhame of
the local host, or the value of tR6HOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which fiestmasteiis listening for connectionsDefaults to

4321, or the value of tHRGPORTenvironment variable (if set).

INTERACTIVE QUESTIONS

Once ivoked with the abee qotions,destroyusewill warn you about the databases that will be dgsiio
in the process and permit you to abort the neainaf the user if desired.

SEE ALSO

createuser(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS

Error: Failed to connect to backend (hostxxx, port=xxx)
Destroyusercould not attach to theostmasteprocess on the specified host and port. If you see this
message, ensure that thestmasteiis running on the proper host and that youehgecified the
proper port. If your site uses an authentication system, ensure that yeuditained the required
authentication credentials.

user “usernameis not in “pg_user”
You do rot have aalid entry in the relation “pg_user” and cannot do anything R@BTGRESat all;
contact youPOSTGRESsite administrator.

usernameannot delete users.
You do rot have permission to delete users; contact ypISTGRESsite administrator.

user “usernaméd oes not exist
The user to be remed does not hae an entry in the “pg_user” class.

database access failed

01/23/93 13

DESTROYUSER(UNIX) DESTROYUSER(UNIX)

destroydb ondbnamefailed - exiting

delete of usemusernamavas UNSUCCESSFUL
An internal error occurred imonitor or the backend segr Contact yourPOSTGRESsite adminis-
trator to ensure that the files and database entries associated with the user and his/her associated
databases are completely rered

01/23/93 14

ICOPY(UNIX) ICOPY(UNIX)

NAME
icopy — copy files between Unix and version file systems

SYNOPSIS
icopy direction—d dbname-s smgr

[-R] [-a] [-h host] [-p portnum] FV] srcfile destfile

DESCRIPTION
Icopy copies files between theviarsion file system and theNIX file system. This program is dibpq
client program, and the\ersion file system is a transaction-protected file system used by the Sequoia 2000
research project at UC Beley. Invasion provides the same file system servicesigea by theUNIX
fast file system, but does not support an NFS interface at prdseotder to mak it easier to use her-
sion, a suite of utility programs, includiimgppy, has been written to manage files.
The user specifies the host and port on wRIOBTGRESS running, and the database and storage manager
to use for file storageThe direction of the coy specifies whether files should be copied fromiX to
Inversion (n), or from Irversion toUNIX (out). Theuser also supplies twfile names for the source and
destination of the cgp

ARGUMENTS

The first five aguments listed here are required.

direction The direction of the cgp If the direction isn, then the file is copied froraNIX into Inver-
sion. If the direction isout, then the file is copied out of yersion toUNIX. The direction
argument dfects the interpretation of the source and destination file names, and may mak
some other flags (such as) optional (see bel@). This agument must immediately follo
the program name.

—-d dbname
The database to use for file storage. The user shoukl feamission to create objects in
dbname The database name must be supplied; there is no default.

-ssmgr Usesmgras thestorage manageffor the file. Storage managersFOSTGRESmanage pysi-
cal devices, so this flagwgs the user a way of controlling thevdee on which his file should
be stored. If the direction of the gojsin, then the storage manager must be specifiethe
direction of the copis out, then the storage manager flag is optional, and is ignored if it is
supplied.

The list of aailable storage managers may be obtained by typing

icopy

with no options; the resulting usage message includes a list of storage managers supported.

srcfile The file from which to cop If directionis in, then this is the name of a file or directory on the
UNIX file system. If directionis out, then this is the name of a file or directory on thestn
sion file system.

If srcfileis a directory and theR flag is supplied, then the tree rooted@fileis copied. It is
an error to specify a directory to gowithout supplying the-R flag.

destfile The file to which to cop If directionis in, then this is the name of anvhmsion file or direc-
tory. If directionis out, thendestfileis the name of &NIX file or directory.

If destfilealready exists and is a directptiyensrcfilewill be created in the directodestfile

The following arguments are optional.

03/11/93 15

ICOPY(UNIX) ICOPY(UNIX)

-h host Specifieshe hostname of the machine on which plestmasteiis running. Defaults to the
name of the local host, or the value of BH@HOSTenvironment variable (if set).

—p port Specifieghe Internet TCP port on which tipestmasteis listening for connectionsDefaults
to 4321, or the value of tHEGPORTenvironment variable (if set).

-R Copy a drectory tree recurgely. Rather than copying a single file, the tree rootestcltleis
copied to a tree rooted déstfile

-a Copy dll files, including those beginning with a dothis flag is useful only in conjunction
with —R. Normally, recursve wpies of a directory tree will not cgfiiles or directories whose
names begin with a dot.

-V Turn verbose mode oricopy will report its progress as it mes files to or from Imersion.

EXAMPLES
The command

icopy in —h myhost —p 4321 —d mydb -s d /vmunix /inv_vmunix

copies theUNIX file “/vmunix” to the Irversion file “/inv_vmunix”. Thelnversion file is stored in the
database “mydb” by theOSTGRESbaclkend running on machine “myhost” and listening on port number
4321.

The command
icopy out —h myhost —p 4321 —d mydb /inv_vmunix /vmunix.dup

copies it back out again, putting the gap the UNIX file “/vmunix.dup”.

BUGS
The POSTGRESile system code should support operations via NFS, so this program actually has no right
to exist.

Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

03/11/93 16

INITDB(UNIX) INITDB(UNIX)

NAME
initdb — initalize the database templates and primary directories

SYNOPSIS
initdb [-v][-d][-n]

DESCRIPTION
Initdb sets up the initial template databases and is normabuted as part of the installation proce$te
template database is created under the directory specified by the the enviramabi@RGDATA , or to a
default specified at compile-time. The template database ivdcenmed.

Initdb is a shell script that uokes the backend server directlyHence, it must bexecuted by thePOST-
GRESsuper-user.

Initdb understands the following command-line options:
Y Produce verbose output, printing messages stating where the directories are being created, etc.

-d Print debugging output from the backend servhis option generates a tremendous amount of
information. Thisoption also turns 6the final vacuuming step.

-n Run in “noclean” mode. By datfilt,initdb cleans up (recungtly unlinks) the data directory if gn
error occurs, which also rewes any core files left by the backend serv This option inhibits an
tidying-up.

FILES

$PGDATA/base
The location of global (shared) classes.

$PGDATA/base/templatel
The location of the template database.

$PGDATA ffiles/{globall,locall_templatel}.bki
Command files used to generate the global and template databases, generated and installed by the
initial compilation process.

SEE ALSO
createdb(unix), vacuum(commands), bki(files), template(files).

02/14/94 17

IPCCLEAN(UNIX) IPCCLEAN(UNIX)

NAME
ipcclean — clean up shared memory and semaphores from aborted backends

SYNOPSIS
ipcclean

DESCRIPTION
Ipccleancleans up shared memory and semaphore space from aborteddsably deleting all instances
owned by user “postgres”. Only the BBhould eecute this program as it can cause bizarre iehé.e.,
crashes) if run during multi-usexezution. Thisprogram should bexecuted if messages such samget:
No space left on devicare encountered when starting up plestmasteor the backend server.

BUGS

If this command is xecuted while gpostmasteis running, the shared memory and semaphores allocated
by the postmastemwill be deleted. This will result in a general failure of the backendesestarted by
thatpostmaster

This script is a hack,ub in the mag years since it was written, no one has come up with an equigty ef
tive and portable solution. Suggestions are welcome.

01/23/93 18

MONITOR(UNIX) MONITOR(UNIX)

NAME

monitor — run the interaaté terminal monitor

SYNOPSIS

monitor [-N] [-Q] [-T] [-a system] fc query] [Fd path]
[-h hostname]{p port] [-q] [t tty_device] [dbname]

DESCRIPTION

The interactre erminal monitor is a simple frontend BROSTGRES It enables one to formulate, edit and
review queries before issuing them BROSTGRES If changes must be madepaliX editor may be called
to edit thequery buffer managed by the terminal monitofhe editor used is determined by the value of
the EDITOR environment @riable. IfEDITORIs not set, theri is used by default.

Monitor is a frontend application, kikany other Hence, apostmasteprocess must be running on the
database server host befonenitoris executed. Inaddition, the corregbostmasteport number must be
specified as described belo

The optional ggumentdbnamespecifies the name of the database to be acce3¢ssl.database must
already hge keen created usingreatedb Dbnamedefaults to the value of theSERervironment \ariable.

Monitor understands the following command-line options:

-N Specifies that query results will be dumped to the screen withgudtteampt at formatting.This is
useful in conjunction with thec option in shell scripts.

-Q Produces extremely uerbose output. This is useful in conjunction with thec option in shell

scripts.

-T Specifies that attribute names will not be printed. This is useful in conjunction witb dp&on in
shell scripts.

-a system

Specifies an authentication systegstem(seeintroductionunix)) to use in connecting to thmost-
masterprocess. Theefault is site-specific.

-c query
Specifies thamonitor is to execute one query stringjuery, and then git. This is useful for shell
scripts, typically in conjunction with théN and-T options. Examplesf shell scripts in th®OST-
GRES distribution usingmonitor -c include createdh destroydb createuser destroyuser and vac-
uum

-d path
path specifies the path name of the file or tty to which frontend fhenitor) debugging messages
are to be written; the default is not to generajedaugging messages.

-h hostname
Specifies the hostname of the machine on whiclptis¢masteis running. Defaults to the hame of
the local host, or the value of tR6HOSTenvironment variable (if set).

-p port
Specifies the Internet TCP port on which fiestmastelis listening for connectionsDefaults to

4321, or the value of tHRGPORTenvironment variable (if set).

-q Specifies that the monitor should do its work quieBy default, it prints welcome and exit mes-
sages and the queries it sends to thedratk Ifthis option is used, none of this happens.

-t tty_device
tty _devicespecifies the path name to the file or tty to which backendpostgre$ debugging mes-
sages are to be written; the defauldisv/null

02/12/94 19

MONITOR(UNIX) MONITOR(UNIX)

You may set environment variables teoa typing some of the ale @tions. Sedghe ENVIRONMENT
VARIABLES section bela.

MESSAGES AND PROMPTS
The terminal monitor ges a \ariety of messages t@&p the user informed of the status of the monitor and
the query buffer.

When the terminal monitor isxecuted, it displays the current date and time as well as a prompt.

The terminal monitor displays tmkinds of messages:

go Thequery luffer is empty and the terminal monitor is ready for inpAhything typed will be
added to the buffer.

* This prompt is typed at the beginning of each line when the terminal monitor is waiting for input.
TERMINAL MONITOR COMMANDS

\e Enterthe editor to edit the query buffer.

\g Submitquery buffer tcPOSTGRESor execution.

\h Geton-line help.

\i filename

Include the fildilenameinto the query buffer.

\p Printthe current contents of the query buffer.

\q Exit from the terminal monitor.

\r Resef(clear) the query buffer.

\s Escapéo aUNIX subshell. ® return to the terminal monitotype “exit” at the shell prompt.
\t Printthe current time.

\w filename

Store (write) the query buffer to an external filename
\\ Producea sngle backslash at the current location in query buffer.

ENVIRONMENT VARIABLES
You may set ap of the following environment variables toad specifying command-line options:

hostname: PGHOST
port: PGPOR

tty: PGTTY
options: PGOPTION
realm: PGREALM

If PGOPTIONIs specified, then the options it contains are pavséate any command-line options.

PGREALM only applies ifKerberosauthentication is in use. If this environment variable iSB@ETGRES
will attempt authentication with servers for this realm and use separage filek to @oid conflicts with
local ticket files. Se@troduction(unix) for additional information oKerberos

Seeintroduction(libpq) for additional details.

RETURN VALUE
When eecuted with the-c option, monitor returns O to the shell on successful query completion, 1-other
wise.

02/12/94 20

MONITOR(UNIX) MONITOR(UNIX)

SEE ALSO
introduction(libpq), createdb(unix), createuser(unix), postgres(unix), postmaster(unix).

BUGS
Does not poll for asynchronous natificatiorests generated biysten(commands) andotify(commands).

Escapes (backslash characters) cannot be commented out.

02/12/94 21

NEWBKI(UNIX) NEWBKI(UNIX)

NAME
newbki — change theOSTGRESuperuser in the database template files

SYNOPSIS
newbki username

DESCRIPTION
Newbkiis a script that changes tb&lIX user name and user ID of tROSTGRESuperuser in the database
template files.

As packagedPOSTGRESassumes that thereists a user named “postgres” on your system with the same
user ID as on our system3his will not (in general) be the case. Before trying to creayedatabases,
you should rumewbkito update the template files.

Note that this only updates the files from which the template database willilbef kyou run the
initdb(unix) command. This in turn implies that you willMeato run cleardbdir(unix) to destrg the eist-
ing template database and/aisting user databases #itdb will not run unless this has been done.

FILES
$PGMATA/base
The location of global (shared) classes.

$PGDATA /base/templatel
The location of the template database.

$PGDATA ffiles/{globall,locall_templatel}.bki
Command files used to generate the global and template databases, generated and installed by the
initial compilation process. These are the only files modifiedevybki

SEE ALSO
initdb(cleardbdir), createdb(unix), initdb(unix), bki(files), template(files).

CAVEATS
There is no good way to change H@STGRESuser ID after you ha darted creating ve databasesnew-
bki is definitely not the recommended way to try to do thigou might think that you can sa your
databases in flat files usimgpycommands) and then restore them aftédb has been>ecuted. Hav-
eva, there is the additional problem that thR@STGRESuser ID is embedded in the system catalog data
itself.

02/14/94 22

PAGEDOC(UNIX) PAGEDOC(UNIX)

NAME
pagedoc —POSTGRESlata page editor

SYNOPSIS
pagedoc[-h|b|r] [-d level] [-s start] Fn count] filename

DESCRIPTION
The pagedoc program understands the layout of dataP@STGRESdata pages and can be used tavvie
contents of a relatioflenameif it becomes corrupted. Contents are printed to standard output, and proba-
ble errors are flagged with four asterisks (“****”) and a description of the problem.

Several levels of detail areeilable. Level zero prints only a single summary line per data page in the rela-
tion. Thesummary line includes the number of items on the page, some allocation information, and what-
eve additional detail is appropriate for the relation type beirgn@ined. L&el one also prints a single
summary line for each tuple that appears on each petgetuple summary includes the tuplgdsition on

the page, its length, and some allocation informatioevel two (or higher) prints all of the information
printed by leel one, and prints tuple headers foey tuple on the page. The header information displayed
depends on the type of relation being viewed; either HeapTuple ofTingle structure entries are possible.

If the relations mntents are badly damaged, then onllleero is likely to vork. Finerlevels of detail
assume that more page structure is correct, and so are moreasdmsdiruption.

Pagelocunderstands the following command-line options:

-h|b|r The type of the relationTypehis heapp is btree, and is rtree. The default is.
-d level The detail lgel to use in displaying pages.

-sstart Starfat page humbestart (zero-based) rather than on page zero.

-n count
Display data focountpages rather than all of them.

EXAMPLES
Print page and line pointer summaries and tuple headers for a btreépgdeypeidind”:

pagedoc —b —d2 pg_typeidind
Shaw the default (leel zero) summary of a heap relation “pg_user”:

pagedoc pg_user

SEE ALSO
page(files).

BUGS
Finer levels of detail produce a lot of output.

Theres no way to skip forward to a page that shows some corruption.

You can only examine contents, you daegtually fix them.

01/23/93 23

PCAT(UNIX) PCAT(UNIX)

NAME
pcat — cat an hersion file to stdout

SYNOPSIS
pcat [-D database]-H host] [P port] filenamg{, filename ...}

DESCRIPTION
Pcat catenates files from theversion file system to standard output.

ARGUMENTS
flename The name of the imrsion file to cog to ¢andard output.If flenameis “~" (a single dash),

then standard input is copied.

-D database
Specifies the database to udgefaults to the alue of the environmentaviable DATABASE

(see below).

-H host Specifieshe hostname of the machine on which plestmasteiis running. Defaults to the
name of the local host, or the value of BHGHOSTenvironment variable (if set).

-P port Specifieghe Internet TCP port on which tipestmasters listening for connectionsDefaults
to 4321, or the value of tHEGGPORTenvironment variable (if set).

EXAMPLES
The command
pcat /myfilel - /myfile2
copies the contents ofversion file “/myfilel”, standard input, and the contents e&tsion file “/myfile2”
to standard output.

ENVIRONMENT
If no database is g&n on he command line, the @nonment \ariableDATABASE is checled. If no enwi-

ronment variabl®ATABASEIs present, the command exits with an error status.

BUGS
Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

01/23/93 24

PCD(UNIX) PCD(UNIX)

NAME
pcd - change directories in arvérmsion file system
SYNOPSIS
pcd [-D database]-H host] FP port] [pathnamg
DESCRIPTION
Pcdupdates the current working directory environment variable.
ARGUMENTS
pathname The name of the directory to change to. If no pathnamevés gihe path is assumed to be "/".
-D database
Specifies the database to udgefaults to the alue of the environmentaviable DATABASE
(see below).

-H host Specifieshe hostname of the machine on which plostmasteiis running. Defaults to the
name of the local host, or the value of B@GHOSTenvironment variable (if set).

-P port Specifieghe Internet TCP port on which tipestmasters listening for connectionsDefaults
to 4321, or the value of tHEGGPORTenvironment variable (if set).

ENVIRONMENT
The environment variableFCWDis checked and updated.

If no database is gen on he command line, the environmerariableDATABASE is checled. If no ewi-
ronment variabl®ATABASEIs present, the command exits with an error status.

BUGS
Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

01/23/93 25

PLS(UNIX) PLS(UNIX)

NAME
pls - list contents of the Varsion file system
SYNOPSIS
pls < Is flags>
DESCRIPTION
Pls prints directory listings of the Wersion file system. It takes the same arguments agiine Is com-
mand.
EXAMPLES

The command
pls —Isga /

prints a long-format listing of all the files in the root directory afeigion, including size andwmership
information.

ENVIRONMENT
The environmentariableDATABASEIs checked to determine the name of the database to use tovénd In
sion files. PGHOSTandPGPORTmMust be used to specify the hostname of the machine on whigoshe
masteris running (dedults to the name of the local host) and the Internet TCP port on whipbdtmeaster
is listening for connections (defaults to 4321), respelgti

BUGS
The database name, port numizad host name to use for database accesses should be passed on the com-
mand line. UnfortunateJydmost all the gailable option letters are already useddy

Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

01/23/93 26

PMKDIR(UNIX) PMKDIR(UNIX)

NAME
pmkdir — create a nelnversion file system directory
SYNOPSIS
pmkdir [-D database]-H host] [P port] path{ path ...}
DESCRIPTION
Pmkdir creates n& directories on the kersion file system. The Wersion file system has a hierarchical
namespace with the same rules as that of the Unix filesystem: components in a pathname are separated by
slashes, and an initial slash refers to the root directory of the file system.
ARGUMENTS
pathname The name of the directory to create.
-D database
Specifies the database to udgefaults to the alue of the environmentaviable DATABASE
(see below).
-H host Specifieshe hostname of the machine on which plestmasteiis running. Defaults to the
name of the local host, or the value of H@GHOSTenvironment variable (if set).
-P port Specifieghe Internet TCP port on which tipestmasteirs listening for connectionsDefaults
to 4321, or the value of ttRGPORTenvironment variable (if set).
EXAMPLES

The command
pmkdir /a/b/c/d

creates a e directory “d” as a child of “/a/b/c”. “/a/b/c” must already exist.

ENVIRONMENT
If no database is gen on he command line, the environmerariableDATABASE is checled. If no enwi-
ronment variabl®ATABASEIs present, the command exits with an error status.

The environment variableFCWDis used for the current directory if the pathname specified isveelati

BUGS
Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

01/23/93 27

PMV(UNIX) PMV(UNIX)

NAME
pmv — rename an Wersion file or directory
SYNOPSIS
pmv [-D database]-H host] [P port] oldpath newpath
DESCRIPTION
Pmv changes the name of an existing file or directory on th@dion file system. In the case that a direc-
tory is moved, the children of the original directory remain children of the directory undemtsarae.
ARGUMENTS
oldpath The path name of the file or directory to rename. This must be a fully-qualified path rooted at
“/", and the named file or directory must exist.
newpath The nev pathname for the file or directoryAgan, this must be fully qualified, and intermedi-
ate components must exist — that is, you cannatengofle to a directory which does not yet
exist.
-D database
Specifies the database to udgefaults to the alue of the environmentaviable DATABASE
(see below).
-H host Specifieshe hostname of the machine on which plestmasteiis running. Defaults to the
name of the local host, or the value of HGHOSTenvironment variable (if set).
-P port Specifieghe Internet TCP port on which tipestmasteis listening for connectionsDefaults
to 4321, or the value of ttRGPORTenvironment variable (if set).
EXAMPLES

The command
pmv c/d b/c/longname

renames the lrersion file “d” in directory “c” to “b/c/longname”.

ENVIRONMENT

BUGS

If no database is g&n on he command line, the environmerariableDATABASE is checled. If no enwi-
ronment variabl®ATABASEIs present, the command exits with an error status.
The environment variableFCWDis used for the current directory if the pathname specified isveslati

Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

01/23/93 28

POSTGRES(UNIX) POSTGRES(UNIX)

NAME
postgres — th@OSTGRESackend server

SYNOPSIS
postgres[-B n_buffers] fE] [-P filedes] [Q]
[-d debug_le€l] [-0 output_file] Fs] [dbname]

DESCRIPTION
The POSTGRESbaclend server can bexecuted directly from the user shellhis should be done only
while debugging by the DBA, and should not be done while ®tbSTGREDaclends are being managed
by apostmastepn this set of databases.

The optional ayumentdbnamespecifies the name of the database to be acceBdsthmedefaults to the
value of theUSERenvironment variable.

Thepostgresserver understands the following command-line options:

-B n_buffers
If the baclend is running under theostmastern_buffersis the number of shared-memoryfiers
that thepostmastehas allocated for the backend server processes that it starts. If the backend is run-
ning standalone, this specifies the number of buffers to allocate. This value defaults to 64.

-E Echo all queries.

-P filedes
filedesspecifies the file descriptor that corresponds to thees@phkrt) on which to communicate to
the frontend process. This optiomist useful for interactie wse.

-Q Specifies “quiet” mode.

-d debug_led
Turns on debugging at the numerigdedebug_level Turning on debugging will cause query parse
trees and query plans to be displayed.

-o output_file
Sends all debugging and error outpubtdput_file If the backnd is running under th@ostmaster
error messages are still sent to the frontend process as webapuo file but debugging output is
sent to the controlling tty of theostmastersince only one file descriptor can be sent to an actual
file).

-s Print time information and other statistics at the end of each.qui&ry is useful for benchmarking
or for use in tuning the number of buffers.

DEPRECATED COMMAND OPTIONS
There are seral other options that may be specified, used mainly for debugging purposes. These are listed
here only for the use FOSTGRESsystem deelopers. Use of any of these options is highly discouraged
Furthermore, anof these options may disappear or change yatiare.

-An|r|b||Xn
Turns on memory manager tracimn prints allocations/deallocatiorvents when thg occur, Ar
enables silent record-collectioAb enables both record-collection and-printing, AQn prints
recorded eents eacm tuples processed, a#dK n prints recordedwents each transactions pro-
cessed.

This option generates a tremendous amount of output.
-C Don't check whether database metadescriptions B®.VVERSIONfiles) are consistent.

-L Turns of the locking system.

03/12/94 29

POSTGRES(UNIX) POSTGRES(UNIX)

-N Disables use of newline as a query delimiter.

-S Indicates that the transaction system can run with the assumption of stable main, rtresredsy
avading the necessary flushing of data and log pages to disk at the end of each transaction system.
This is only used for performance comparisons for stable vs. non-stable storage. Do not use this in
other cases, as ra@y after a system crash may be impossible when this option is specified in the
absence of stable main memory.

-b Enables generation ofubly query plan trees (as opposed to left-deep query plans tréesge
query plans are not intended for actuedoaition; in addition, this flag often cause®@STGRES0
run out of memory.

-f Forbids the use of particular scan and join methesdsndi disable sequential and indscans
respectiely, while n, m and h disable nested-loop, merge and hash joins resphctiThis is
another feature that may not necessarily prodxeeugable plans.

-p Indicates to the backend serthat it has been started bp@stmasteand malk dfferent assump-
tions about buffer pool management, file descriptors, etc.

-tpa[rser]|pl[anner]|e[xecutor]
Print timing statistics for each query relating to each of the major system modtiesoption
cannot be used witls.

SEE ALSO
ipcclean(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS
Of the nigh-infinite number of error messages you may see wherxgoutethe backend server directly
the most common will probably be:

semget: No space left on device
If you see this message, you should runipeeleancommand. Aftedoing this, try startingost-
gresagain. Ifthis still doesrt work, you probably need to configure your kernel for shared mem-
ory and semaphores as described in the installation notes.

03/12/94 30

POSTMASTER(UNIX) POSTMASTER(UNIX)

NAME
postmaster — run thROSTGRESostmaster

SYNOPSIS
postmaster[-B n_buffers] [D data_dir] [S] [-a system]
[-b backend_pathname]d [debug_le€l]] [-n]
[-0 backend_options}p port] [-5]

DESCRIPTION
The postmastemanages the communication between frontend andcehdgbrocesses, as well as allocating
the shared uiffer pool and semaphores (on machines without a test-and-set instrudtienpostmaster
does not itself interact with the user and should be started as a background otessme postmaster
should be run on a machine.

Thepostmasteunderstands the following command-line options:

-B n_buffers
n_buffersis the number of shared-memonyfiers for thepostmasteto allocate and manage for the
backend server processes that it starts. This value defaults to 64.

-D data_dir
Specifies the directory to use as the root of the tree of database directories. This directory uses the
value of the environmentariablePGDATA. If PGDATA is not set, then the directory usedsROST-
GRESHOMHdata. Ifneither environmentariable is set and this command-line option is not speci-
fied, the default directory that was set at compile-time is used.

-S Specifies that thpostmasteprocess should start up in silent modénat is, it will disassociate from
the usess (controlling) tty and start its own process groughis should not be used in combination
with debugging options becauseyanessages printed to standard output and standard error are dis-
carded.

-a system
Specifies whether or not to use the authentication systetan(seeintroduction(unix)) for frontend
applications to use in connecting to thestmasteprocess. Specifgystento enable a system, or
nosystemo disable a systemkor example, to permit users to ugerberos authentication, usea
kerberos; to dery any unauthenticated connections, uaenounauth . The default is site-specific.

-b backend_pathname
badend_pathnamas the full pathname of theOSTGRESbaclend server x@cutable file that the
postmastemwill invoke when it receies a @nnection from a frontend application. If this option is
not used, then thpostmastertries to find this ®ecutable file in the directory in which itsva
executable is located (this is done by looking at the pathname under whighostraastemwas
invoked. If no pathname was specified, then #&FH ervironment variable is searched for an
executable named “postgres”).

-d [debug_ledl]
The optional agumentdebug_levetletermines the amount of debugging output the backendrserv
will produce. If debug_levels one, the postmaster will trace all connection traffic, and nothing else.
For levds two and higher debugging is turned on in the backend process and the postmaster displays
more information, including the backend environment and procefis.tridbtethat if no file is spec-
ified for baclend servers to send their debugging output (e.g., using dption ofmonitoror the-o
option ofpostgre$ then this output will appear on the controlling tty of their papaistmaster

-n, -s
The -s and-n options control the behavior of tim@stmastewhen a backend dies abnormalNei-
ther option is intended for use in ordinary operation

02/12/94 31

POSTMASTER(UNIX) POSTMASTER(UNIX)

The ordinary strategy for this situation is to notify all other bads that the must terminate and
then reinitialize the shared memory and semaphores. This is because an eremd baald hee
corrupted some shared state before terminating.

If the -s option is supplied, then th@ostmastewwill stop all other bacénd processes by sending the
signal SIGSTOP , but will not cause them to terminat&his permits system programmers to collect
core dumps from all backend processes by hand.

If the -n option is supplied, then tiEostmastedoes not reinitialize shared data structurknowl-
edagpble system programmer can then usestimemdogrogram to examine shared memory and
semaphore state.

-0 backend_options
The postgregunix) options specified ibadkend_optionsare passed to all backend server processes
started by thipostmaster If the option string contains yspaces, the entire string must be quoted.

-p port
Specifies the Internet TCP port on which gestmasteiis to listen for connections from frontend
applications. Defults to 4321, or the value of tiR&PORTenvironment variable (if set)If you
specify a port other than the default port then all frontend application users must specify the same
port (using command-line options BGPORTY when starting anlibpqg application, including the ter
minal monitor.

WARNINGS
If at all possible,do not use SIGKILL when killing thepostmaster SIGHUR SIGINT, or SIGTERM (the
default signal fokill (1)) should be used instead. Henomi@

kill -KILL
or its alternatie form
kill -9

as this will preent thepostmastefrom freeing the system resources (e.g., shared memory and semaphores)
that it holds before dying. This pmrnts you from haing to deal with the problem witthmat2) described
below.

EXAMPLES
start postmaster using default values
postmaster &

This command will start upostmasteron the default port (4321) and will sear6PATH to find an
executable file called “postgresq. This is the simplest and most common way to sparstinaster

start with specific port and executable name
postmaster -p 1234 -b /usr/postgres/bin/postgres &

This command will start up postmastecommunicating through the port 1234, and will attempt to use the
baclend located at “/usr/postgres/bin/postgres”. In order to connect tpdbimasteusing the terminal
monitor, you would need to either specifp 1234on themonitor command-line or set the \Wronment
variable PGPORTt0 1234.

SEE ALSO
ipcs(1), ipcrm(1), ipcclean(unix), monitor(unix), postgres(unix), shmemdoc(unix).

02/12/94 32

POSTMASTER(UNIX) POSTMASTER(UNIX)

DIAGNOSTICS

semget: No space left on device
If you see this message, you should runiploeleancommand. Afterdoing this, try starting the
postmasteagain. If this still doesrt work, you probably need to configure yowrtel for shared
memory and semaphores as described in the installation fiby@sl run multiplepostmastes on
a dngle host, or hee reduced the shared memory and semaphore parameters fromahisdef
the generic kernel, you mayveato go kack and increase the shared memory and semaphores con-
figured into your kernel.

StreamSewerPort: cannot bind to port
If you see this message, you should be certain that there is ngpo#iterasteprocess already
running. Theeasiest way to determine this is by using the command

ps -ax | grep postmaster
on BSD-based systems (the eglént syntax is
ps -e | grep postmast

on System Mike or FOSIX-compliant systems such as HP-UX). If you are sure that no other
postmasteprocesses are running and you still get this etrprspecifying a different port using
the-p option. You may also get this error if you terminate plostmasteand immediately restart

it using the same port; in this case, you must simglif afev seconds until the operating system
closes the port before trying a@g. Finally you may get this error if you specify a port number
that your operating system considers to be resenfor example, manversions ofuNIX con-
sider port numbers under 1024 to be “trusted” and only permiiNine superuser to access them.

IpcMemoryAttach: shmat() failed: Permission denied
A likely explanation is that another user attempted to stpdsémasteprocess on the same port
which acquired shared resources and then diidcePOSTGRESshared memorydys ae based
on the port number assigned to fiwstmastersuch conflicts are ligly if there is more than one
installation on a single hostf there are no othepostmastemprocesses currently running (see
above), runipccleanand try agin. If other postmastes ae running, you will hee o find the
owners of those processes to coordinate the assignment of port numbers and/draeomused
shared memory segments.

02/12/94 33

PPWD(UNIX) PPWD(UNIX)

NAME
ppwd — return laersion file system working directory name

SYNOPSIS
ppwd

DESCRIPTION
Ppwd writes the absolute pathname of the current working directory to the standard output.

Ppwd exits with status 0 on success, and >0 if an error occurs.

ENVIRONMENT
The environment variableFCWDstores the currentwersion working directory.

SEE ALSO
pcd(unix), p_getwd(large_objects).

01/23/93 34

PRM(UNIX) PRM(UNIX)

NAME
prm - reme@e an Invesion file

SYNOPSIS
prm [-D database]-H host] [-P port] pathname

DESCRIPTION
Prm remaves a fle stored by the kersion file system. Directories must be rewe using theprmdir

command.

ARGUMENTS
pathname The fully-qualified pathname of the file to reweprooted at “/”.

-D database
Specifies the database to udgefaults to the value of the environmerariable DATABASE

(see below).

-H host Specifieshe hostname of the machine on which plestmasteiis running. Defaults to the
name of the local host, or the value of BHGHOSTenvironment variable (if set).

-P port Specifieghe Internet TCP port on which tipestmasters listening for connectionsDefaults
to 4321, or the value of tHEGGPORTenvironment variable (if set).

EXAMPLES
The command

prm b/c/d

removes file “d” from directory “b/c”.

ENVIRONMENT
If no database is gen on he command line, the @nonment \ariableDATABASE is checled. If no ewi-
ronment variabl®ATABASEIs present, the command exits with an error status.

The environment variabFCWDis used for the current directory if the pathname specified isveelati

BUGS
It is not possible to renve files stored on write-once storage managers (e.g., thedptinal disk julebox

at Berkeley).

Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

01/23/93 35

PRMDIR(UNIX) PRMDIR(UNIX)

NAME
prmdir — reme@e an Inveasion directory
SYNOPSIS
prmdir [-D database]-H host] [P port] pathname
DESCRIPTION
Prmdir removes a drectory from the Iaersion file system.The directory must be emptyiles in directo-
ries may be rem@d by using theprm command.
ARGUMENTS
pathname The fully-qualified pathname of the directory to reigaooted at “/”.
-D database
Specifies the database to udgefaults to the value of the environmerariable DATABASE
(see below).
-H host Specifieshe hostname of the machine on which plestmasteiis running. Defaults to the
name of the local host, or the value of HGHOSTenvironment variable (if set).
-P port Specifieghe Internet TCP port on which tipestmasters listening for connectionsDefaults
to 4321, or the value of tHEGGPORTenvironment variable (if set).
EXAMPLES

The command
prmdir b/c

removes drectory “b/c” from the Inersion file system.

ENVIRONMENT
If no database is gen on he command line, the @nonment \ariableDATABASE is checled. If no ewi-
ronment variabl®ATABASEIs present, the command exits with an error status.

The environment variabFCWDis used for the current directory if the pathname specified isveelati

BUGS
It is not possible to renve files stored on write-once storage managers (e.g., thedptinal disk julebox

at Berkeley).

Seeintroduction(large objects) for filename and path limitations imposed by treesion file system.

01/23/93 36

REINDEXDB(UNIX) REINDEXDB(UNIX)

NAME
reindexdb - reconstruct damaged system catalog indices

SYNOPSIS
reindexdb dbname

DESCRIPTION
In normal processing modeOPSTGRESequires secondary indices on certain system catalog cldsses.
possible that these indices can be damaged during updates, e.g., if the backend server is killed during a
query that creates a weclass. Oncethe indices are damaged, it becomes impossible to access the
databaseReindexdbremorves the old indices and attempts to reconstruct them from the base class data.
Before runningeindexdlh make aure that thgpostmasteprocess is not running on the databaseesdrast.
Reindexdhbis a shell script that uokes the backend server directliHence, it must bexecuted by the
POSTGRESsuper-user.

SEE ALSO
initdb(unix), postmaster(unix).

CAVEATS

Should only be used as a last resdfiany problems are better solved by simply shutting downpibst-
masterprocess and restarting it.

If the base system catalog classes are damagjadexdbwill generally print a cryptic message aral f
In this case, there is very little recourse but to reload the data.

02/14/94 37

S2KINIT(UNIX) S2KINIT(UNIX)

NAME
s2kutils — scripts to alle operation with a different Kerberos realm
SYNOPSIS
s2kinit
s2klist
s2kdestroy
DESCRIPTION
s2kinit, s2klistands2kdestroyare wrappers around th@rberosprogramskinit(1), klist(1) andkdestroy1)
that cause them to operate in the realm indicated by theement \ariablePGREALM. This includes the
use of ticket files distinct from those obtained for use in the local realm.
The PGREALM environmentariable is also understood by the authentication codskéd by LIBPQ
applications. Henceéf PGREALM is set, tickets obtained usis@kinitare used bynonitorand the Imer-
sion file system utilities. IPGREALMis not set, then the programs display the ukedderosbehavior.
SEE ALSO
monitor(UNIX), kerberos(1), kinit(1), klist(1), kdestroy(1)
BUGS

These hee dmost nothing to do wittPOSTGRES They are here as a coenience to Sequoia 2000
researchers who do not work in the Sequoia 2000 realm exceptRQBFERES

You 4ill have b insert the correct realm-server mapping ileto/krb.conf .

01/23/93 38

SHMEMDOC(UNIX) SHMEMDOC(UNIX)

NAME
shmemdoc —POSTGRESshared memory editor

SYNOPSIS
shmemdod]-p port] [-B nbuffers]

DESCRIPTION
The shmemdocprogram understands the layoutRISTGRESdata in shared memory and can be used to
examine these shared structures. This program is intended only foygiepPOSTGRESand should not
be used in normal operation.

When some backend server dies abnormd#fly postmaster normally reinitializes shared memory and
semaphores and forces all peers of the dead procest. tdf gpostmasteis started with then flag, then
shared memory will not be reinitialized asidmemdoccan be used to examine shared state after the crash.

Shmemdoanderstands the following command-line options:

-B nbuffers
The number of bffers used by the baekd. Thisvalue is ignored in the present implementation of
shmemdogchut is important if you choose to change the number allocateelO$TGRES In that
case, you're out of luck for mo

-p port
The port on which the postmasteasvlistening. This value is used to compute the shared memory
key used by the postmaster when shared memory was initialized.

A simple command interpreter reads user commands from standard input and prints results on standard out-
put. Theavailable commands are:

semstat
Shaw the status of system semaphor&satus includes semaphore names and values, the process id
of the last process to change each semaphore, and a count of processes sleeping on each semaphore.

semsemn val
Set the value of semaphore numbédwith zero being the first semaphore nameddystaj to val.
This is really only useful for resetting system state manually after a crash, which is something you
don't really want to do.

bufdescs
Print the contents of the shared buffer descriptor table.

bufdescn
Print the shared buffer descriptor table entry for buffer

buffer n type level
Print the contents ofuffer numbem in the shared uffer table. The bffer is interpreted as a page
from a type relation, wheretype may beheap btreg or rtree. The level agument controls the
amount of detail presented.evel zero prints only page headersydeone prints page headers and
line pointer tables, andvel two (or higher) prints headers, line pointer tables, and tuples.

linp nwhich
Print line pointer table entrnyhichof buffern.
tuple n type which

Print tuplewhichof buffer n. The huffer is interpreted as a page frortyperelation, wherdypemay
beheap btreg or rtree.

02/12/94 39

SHMEMDOC(UNIX) SHMEMDOC(UNIX)

setbaseptr
Set the logical base address of shared memorghimemdod¢o ptr. Normally, shmemdoawses the
address of each structure in its own address space when interpreting commands and printing results.
If setbasas used, then on input and output, addresses are translated so that the shared mgemory se
ment appears to start at addrpss This is useful when a debugger is examining a core file pro-
duced byPOSTGRESand you want to use the shared memory addresses that appear in the core file.
The base of shared memoryA@STGRESSs stored in the ariableShmemBaseavhich may be xam-
ined by a debgger. Ptr may be expressed in octal (leading zero), decimal, or hexadecimal (leading
0x).

shmemstat
Print shared memory layout and allocation statistics.

whatis ptr
Identify the shared memory structure pointed aptoy

help Print a brief command summary.

quit Exit shmemdoc

SEE ALSO

BUGS

ipcclean(unix).

All of the sizes, offsets, andhlues for shared data are hardwired into this program; it shares no code with
the ordinaryPOSTGRESsystem, so changes to shared memory layout will require changes to this program,
as well. This hast’been done recentlgo as of ¥rsion 4.2 this program doesmiork correctly for man
structures (most notably the shared memory buffer pool). Use of this command is highly discouraged.

02/12/94 40

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

SECTION 3 — WHAT COMES WITH POSTGRES(BUILT-INS)

DESCRIPTION
This section describes the data types, functions and operadideble to users iIPOSTGRESas it is dis-
tributed.

BUILT-IN AND SYSTEM TYPES
This section describes botluilt-in and systemdata types. Built-in types are required fIDSTGRES0
run. Systentypes are installed invery database, but are not strictly required. Built-in types are edark
with asterisks in the table belo

Users may add metypes toPOSTGRESusing thedefine typecommand described in this manudlser-
defined types are not described in this section.

POSTGRES Type Meaning Required
abstime absolutdate and time *
aclitem accessontrol list item *
bool boolean *
box 2-dimensionalectangle

bytea ariable length array of bytes *
char character *
char2 arrayf 2 characters *
char4 arrayf 4 characters *
char8 arrayf 8 characters *
charl6 arrayf 16 characters *
cid commanddentifier type *
filename lage object filename *
int2 two-byte signed intger *
int28 arrayof 8 int2 *
int4 four-byte signed intger *
float4 single-precisiofloating-point number *
float8 double-precisioftoating-point number *
Iseg 2-dimensional line segment

oid objectidentifier type *
0id8 arrayof 8 oid *
oidcharl6 oicand char16 composed *
oidint2 oidand int2 composed *
oidint4 oidand int4 composed *
path \ariable-length array of Iseg

point 2-dimensionajjeometric point

polygon 2-dimensionglolygon

regproc rgistered procedure *
reltime relatve date and time *
smgr storagenanager *
text variable length array of characters *
tid tupleidentifier type *
tinterval timeinterval *
xid transactiondentifier type *

As a rule, the built-in types are all either (1) internal types, in which case the user should not worry about

02/18/94 41

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

their external format, or (2) kia dovious formats. The exceptions to this rule are the three time types.

ABSOLUTE TIME
Absolute time is specified using the following syntax:

Month Day [Hour: Minute : Second] Year [Timezone]

where Monthis Jan, Feb, ..., Dec

Dayis1, 2, ...,,31

Hour is 01, 02, ..., 24

Minute is 00, 01, ..., 59

Second is 00, 01, ..., 59

Year is 1901, 1902, ..., 2038
Valid dates are from Dec 13 20:45:53 1901 GMT to Jan 19 03:14:04 2038 @&Mdf \ersion 3.0, times
are no longer read and written using Greenwich Mean Time; the input and output routndistdahe
local time zone.

The special absolute timates “current”, “infinity” and “-infinity” are also praded. “infinity” specifies
a time later than anvalid time, and “-infinity” specifies a time earlier tharyasmlid time. “current” indi-
cates that the current time should be substituted wietigs value appears in a computation.

The strings “now” and “epoch” can be used to specify tialaas. “nev” means the current time, and dif-
fers from “current” in that the current time is immediately substituted féefioch” means Jan 1 00:00:00
1970 GMT.

RELATIVE TIME
Relative ime is specified with the following syntax:

@ Qantity Unit [Direction]

where Quantitys ‘1’, ‘2', ...
Unit is “second”, “minute”, “hour”, “day”, “week”,
“ month’ (30-days), or “yeat’(365-days),
or PLURAL of these units.
Direction is “ago”
(Note: Valid relative imes are less than or equal to 68 years.) In addition, the specialerétatt “Unde-
fined RelTime” is provided.

TIME RANGES
Time ranges are specified as:

[' abstime’ 'abstime’]

whereabstimeis a time in the absolute time formapecial abstime values such as “current”, “infinity”
and “-infinity” can be used.

OPERATORS
POSTGRESrovides a large number ofilit-in operators on system types. These operators are declared in
the system catalog “pg_operatorEvery entry in “pg_operator” includes the object ID of the procedure
that implements the operator.

Users may imoke perators using the operator name, as in

retrieve (emp.all) where emp.salary < 40000

02/18/94 42

INTRODUCTION(BUILT-INS)

INTRODUCTION(BUILT-INS)

Alternatively, users may call the functions that implement the operators dirdctlihis case, the query
above would be expressed as

retrieve (emp.all) where int4lt(emp.salary, 40000)

The rest of this section provides a list of theéltkin operators and the functions that implement them.

Binary operators are listed first, followed by unary operators.

BINARY OPERATORS

This list was generated from tROSTGRESystem catalogs with the query

retrieve (argtype = tl.typname, o.oprname,

t0.typname, p.proname,
ltype=tl.typname, rtype=t2.typname)

from p in pg_proc, t0 in pg_type, t1 in pg_type,
t2 in pg_type, 0 in pg_operator

where p.prorettype = t0.oid
and RegprocToOid(o.oprcode) = p.oid
and p.pronargs = 2
and o.oprleft = t1.0id
and o.oprright = t2.0id

The list is sorted by the built-in type name of the first operdrt function pototypecolumn gves the
return type, function name, and argument types for the procedure that implements the. odetattrat
these function prototypes are cast in termB@ETQUELtypes and so anmeot directly usable as C function

prototypes.
Type Operator POSTGRES Function Piototype Operation
abstime t bool abstimene(abstime, abstime) inequality
+ abstime timepl(abstime, reltime) addition
- abstime timemi(abstime, reltime) subtraction
<= bool abstimele(abstime, abstime) less or equal
<?> boolininterval(abstime, tinteal) abstiman tinterval?
< bool abstimelt(abstime, abstime) less than
= bool abstimeeq(abstime, abstime) equality
>= bool abstimege(abstime, abstime) greater or equal
> bool abstimegt(abstime, abstime) greater than
bool = bool booleq(bool, bool) equality
I= bool boolne(bool, bool) inequality
box && bool box_werlap(box, box) boxeswerlap
&< bool box_overleft(box, box) box A overlaps box B, but does not
extend to right of box B
&> bool box_overright(box, box) box A overlaps box B, bt does not
extend to left of box B
<< boolbox_left(box, box) Aisleft of B
<= bool box_le(box, box) area less or equal
< bool box_lt(box, box) area less than
= bool box_eq(box, box) area equal
>= bool box_ge(box, box) area greater or equal

02/18/94

43

INTRODUCTION(BUILT-INS)

INTRODUCTION(BUILT-INS)

>> boolbox_right(box, box) Alisright of B
> bool box_gt(box, box) area greater than
@ bool box_contained(box, box) Ais contained in B
"= bool box_same(box, box) box equality
~ bool box_contain(box, box) A contains B
char E bool charne(chachar) inequality
* bool charmul(charchar) multiplication
+ bool charpl(charchar) addition
- bool charmi(charchar) subtraction
/ bool chardiv(charchar) diision
<= bool charle(charchar) lesor equal
< bool charlt(charchar) lesghan
= bool chareq(chachar) equality
>= bool charge(chachar) greateor equal
> bool chargt(charchar) greatethan
char2 E bool char2ne(char2, char2) inequality
I bool char2regexne(char2, text) A does not match regularxgres-
sion B POSTGRESuses the libc
regexp calls for this operation)
<= bool char2le(char2, char2) less or equal
< bool char2lt(char2, char2) less than
= bool char2eqg(char2, char2) equality
>= bool char2ge(char2, char2) greater or equal
> bool char2gt(char2, char2) greater than
~ bool char2regeeq(char2, text) A matches rgular expression B
(POSTGRESuses the libc gexp
calls for this operation)
char4 E bool chardne(char4, char4) inequality
I bool char4regexne(char4, text) A does not match regularxgres-
sion B POSTGRESuses the libc
regexp calls for this operation)
<= bool chardle(char4, char4) less or equal
< bool char4lt(char4, char4) less than
= bool chardeq(char4, char4) equality
>= bool chardge(char4, char4) greater or equal
> bool char4gt(char4, char4) greater than
~ bool char4regeeq(char4, text) A matches rgular expression B
(POSTGRESuses the libc gexp
calls for this operation)
char8 E bool char8ne(char8, char8) inequality
I bool char8regexne(char8, text) A does not match regularxgres-
sion B POSTGRESuses the libc
regexp calls for this operation)
<= bool char8le(char8, char8) less or equal
< bool char8lt(char8, char8) less than
= bool char8eq(char8, char8) equality
>= bool char8ge(char8, char8) greater or equal
> bool char8gt(char8, char8) greater than

02/18/94

44

INTRODUCTION(BUILT-INS)

bool char8regeeq(char8, text)

INTRODUCTION(BUILT-INS)

A matches rgular expression B
(POSTGRESuses the libc gexp
calls for this operation)

charl6 E bool charl6ne(charl6, charl6) inequality
I bool charl6regexne(charl6, text) A does not match regularxgres-
sion B POSTGRESuses the libc
regexp calls for this operation)
<= bool charl6le(charl6, charl6) less or equal
< bool charl6lt(charl6, charl6) less than
= bool charl6eq(charl6, charl6) equality
>= bool charl6ge(charl6, charl6) greater or equal
> bool charl6gt(charl6, charl6) greater than
- bool charl6regesg(charl6, text) A matches rgular expression B
(POSTGRESuses the libc mgexp
calls for this operation)
float4 E bool float4ne(float4, float4) inequality
* fl oat4 floatdmul(float4, float4) multiplication
+ float4 float4pl(float4, float4) addition
- float4 float4mi(float4, float4) subtraction
/ float4 float4div(float4, float4) division
<= bool float4le(float4, float4) less or equal
< bool floatdlt(float4, float4) less than
= bool float4eq(float4, float4) equality
>= bool float4ge(float4, float4) greater or equal
> bool float4gt(float4, float4) greater than
float8 = bool float8ne(float8, float8) inequality
* fl oat8 float8mul(float8, float8) multiplication
+ float8 float8pl(float8, float8) addition
- float8 float8mi(float8, float8) subtraction
/ float8 float8div(float8, float8) division
<= bool float8le(float8, float8) less or equal
< bool float8lt(float8, float8) less thanl
= bool float8eq(float8, float8) equality
>= bool float8ge(float8, float8) greater or equal
> bool float8gt(float8, float8) greater than
" float8 dpow(float8, float8) exponentiation
int2 I= bool int2ne(int2, int2) inequality
I= int4 int24ne(int2, int4) inequality
% int2 int2mod(int2, int2) modulus
% int4 int24mod(int2, int4) modulus
* int2 int2mul(int2, int2) multiplication
* int4 int24mul(int2, int4) multiplication
+ int2 int2pl(int2, int2) addition
+ int4 int24pl(int2, int4) addition
- int2 int2mi(int2, int2) subtraction
- int4 int24mi(int2, int4) subtraction
/ int2 int2div(int2, int2) division
/ int4 int24div(int2, int4) division
<= bool int2le(int2, int2) less or equal

02/18/94

45

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

<= int4 int24le(int2, int4) less or equal
< bool int2lt(int2, int2) less than
int4 int241t(int2, int4) less than
= bool int2eq(int2, int2) equality
= int4 int24eq(int2, int4) equality
>= bool int2ge(int2, int2) greater or equal
>= int4 int24ge(int2, int4) greater or equal
> bool int2gt(int2, int2) greater than
> int4 int24gt(int2, int4) greater than
int2 int2inc(int2) increment
int4 = bool int4notin(int4, charl6) This is the relational “not in‘oper-
ator, and is not intended for public
use.
I= bool int4ne(int4, int4) inequality
I= int4 int42ne(int4, int2) inequality
% int4 int42mod(int4, int2) modulus
% int4 intdmod(int4, int4) modulus
* int4 int42mul(int4, int2) multiplication
* int4 int4mul(int4, int4) multiplication
+ int4 int42pl(int4, int2) addition
+ int4 int4pl(int4, int4) addition
- int4 int42mi(int4, int2) subtraction
- int4 int4mi(int4, int4) subtraction
/ int4 int42div(int4, int2) division
/ int4 int4div(int4, int4) division
<= bool intdle(int4, int4) less or equal
<= int4 int42le(int4, int2) less or equal
< bool int4lt(int4, int4) less than
< int4 int42lt(int4, int2) less than
= bool int4eq(int4, int4) equality
= int4 int42eq(int4, int2) equality
>= bool int4ge(int4, int4) greater or equal
>= int4 int42ge(int4, int2) greater or equal
> bool int4gt(int4, int4) greater than
> int4 int42lt(int4, int2) less than
int4 intdinc(int4) increment
oid = bool oidnotin(oid, char16) This is the relational “not in‘oper-
ator, and is not intended for public
use.
I= bool oidne(oid, oid) inequality
I= bool oidne(oid, rgproc) inequality
<= bool oidle(oid, oid) less or equal
< bool oidlt(oid, oid) less than
= bool oideq(oid, oid) equality
= bool oideq(oid, rgproc) equality
>= bool oidge(oid, oid) greater or equal
> bool oidgt(oid, oid) greater than
oidcharle £ bool oidcharl6ne(oidcharl6, oidcharl6) inequality
< bool oidchar16lt(oidcharl6, oidcharl6) less than

02/18/94 46

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

<= bool oidcharl6le(oidcharl6, oidcharl6) less or equal
= bool oidcharl6eq(oidcharl6, oidcharl6) equality
bool oidchar16gt(oidchar16, oidcharl6) greater than

>= bool oidcharl6ge(oidcharl6, oidcharl6) greater or equal
oidint2 = bool oidint2ne(oidint2, oidint2) inequality
< bool oidint2lt(oidint2, oidint2) less than
<= bool oidint2le(oidint2, oidint2) less or equal
= bool oidint2eq(oidint2, oidint2) equality
bool oidint2gt(oidint2, oidint2) greater than
>= bool oidint2ge(oidint2, oidint2) greater or equal
oidint4 = bool oidint4ne(oidint4, oidint4) inequality
< bool oidint4lt(oidint4, oidint4) less than
<= bool oidint4le(oidint4, oidint4) less or equal
= bool oidint4eq(oidint4, oidint4) equality
bool oidint4gt(oidint4, oidint4) greater than
>= bool oidint4ge(oidint4, oidint4) greater or equal
point I< bool point_left(point, point) Ais left of B
1> bool point_right(point, point) Ais right of B
I bool point_abee(point, point) Ais above B
1| bool point_below(point, point) Ais belov B
== bool point_eq(point, point) equality
-——> boolon_pb(point, box) point inside box
bool on_ppath(point, path) point on path
<> int4 pointdist(point, point) distance between points
polygon && bool poly_werlap(polygon, polygon) polygonsverlap
&< bool poly_overleft(polygon, polygon) A overlaps B but does not extend to
right of B
&> bool poly_overright(polygon, polygon) A overlaps B but does not extend to
left of B
<< boolpoly_left(polygon, polygon) Aisleft of B
>> boolpoly_right(polygon, polygon) Alisright of B
bool poly_contained(polygon, polygon) A is contained by B
"= bool poly _same(polygon, polygon) equality
~ bool poly_contain(polygon, polygon) A contains B
reltime = bool reltimene(reltime, reltime) inequality
<= bool reltimele(reltime, reltime) less or equal
< bool reltimelt(reltime, reltime) less than
= bool reltimeeq(reltime, reltime) equality
>= bool reltimege(reltime, reltime) greater or equal
> bool reltimegt(reltime, reltime) greater than
text I= bool textne(text, te) inequality
I bool textregexne(text, text) A does not contain the galar

expression B.POSTGRESuses the
libc regexp interface for this opera-

tor.
<= bool text_le(text, tet) lessor equal
< bool text_lt(text, tet) lessthan
= bool texteq(text, te) equality

02/18/94 47

INTRODUCTION(BUILT-INS)

INTRODUCTION(BUILT-INS)

>= bool text_ge(text, te) greateror equal

> bool text_gt(text, tet) greatetthan

- bool textregaeq(text, text) A contains the regularxgression
B. POSTGRESuses the libc gexp
interface for this operator.

tinterval #l= bool intervallenne(tinterval, reltime) intealvlength not equal to reltime.

#<= bool intervallenle(tinterval, reltime) interval length less or equal reltime

#< boolintervallenlt(tinterval, reltime) interval length less than reltime

#= bool intervalleneq(tinterval, reltime) interval length equal to reltime

#>= bool intervallenge(tinterval, reltime) intexivlength greater or equal rel-
time

#> boolintervallengt(tinterval, reltime) interval length greater than reltime

&& bool intervalov(tinterval, tinteral) intenals overlap

<< boolintervalct(tinterval, tinteral) A contains B

= bool intervaleq(tinterval, tinteal) equality

<> tintenal mktinterval(abstime, abstime) interval bounded by #stimes

UNARY OPERATORS

The tables belw give right and left unary operators. Left unary operatongehthe operator precede the

operand; right unary operatorsveahe operator follav the operand.

Right Unary Operators

Type

Operator

POSTGRES Function Pototype

Operation

float8

%

Left Unary Operators

float8 dround(float8)

round to nearest integer

Type Operator POSTGRES Function Pototype Operation
box @@ point box_center(box) center of box
float4 @ float4 float4abs(float4) absolute value
float8 @ float8 float8abs(float8) absolute value
% float8 dtrunc(float8) truncate to integer
|/ float8dsqrt(float8) squarmot
I/ float8dcbrt(float8) cubeoot
: float8 dep(float8) a&ponential function
; float8 dlogl(float8) natural logarithm
tinterval | abstime intervalstart(tinteay) startof interval

AGGREGATE FUNCTIONS
The table bela gives the aggrgate functions that are normally registered in the system cataldgse of
them are required f(*OSTGRESO0 operate.

Name
int2ave
int4ave
float4ave
float8ave

Operation
int2 average
int4 average
float4 aerage
float8 aerage

02/18/94

48

INTRODUCTION(BUILT-INS)

int2sum
int4sum
float4sum
float8sum
int2max
int4max
float4max
float8max
int2min
int4min
float4min
float8min
count

SEE ALSO

int2sum (total)

int4sum (total)

float4um (total)

float&um (total)
int2maximum (high value)
intAmaximum (high value)
float4naximum (high value)
float8naximum (high value)
int2minimum (lov value)
int4Aminimum (lov value)
floatdminimum (lov value)
float8minimum (lov value)
ary count

INTRODUCTION(BUILT-INS)

For examples on specifying literals of built-in types, pestque{commands).

BUGS

The lists of types, functions, and operators are accurate only for Versiomhdists will be incomplete

and contain extraneous entries in future versiomOETGRES

Although most of the input and output functions correponding to the base types (eygrsiatad floating
point numbers) do some error-checking, none of them are particularly rigorous atdatatimportantly

almost none of the operators and functions (e.g., addition and multiplication) perfoemasthecking at
all. Consequentlymary of the numeric operations will (for example) silently undevfto overflow.

Some of the input and output functions are negriible. Thatis, the result of an output function may lose

precision when compared to the original input.

02/18/94

49

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

SECTION 4 — POSTQUEL COMMANDS (COMMANDS)

DESCRIPTION
The following is a description of the general syntalOSTQUEL Individual POSTQUELstatements and
commands are treated separately in the document; this section describes the syntactic classes from which
the constituent parts ®OSTQUELStatements are drawn.

Comments
A comments an arbitrary sequence of characters bounded on the left by “/*” and on the right by “*/", e.qg:

[* This is a comment */

Names
Namesin POSTQUELare sequences of not more than 16 alphanumeric characters, starting with an alpha-
betic characterUnderscore (*_") is considered an alphabetic character.

Keywords
The following identifiers are reserved for us&kaavordsand may not be used otherwise:

abort define is quel
acl delete ISNULL r elation
addattr demand key remove
after descending leftouter rename
aggregate destoy light replace
all destroydb listen retrieve
always do load returns
and empty merge rewrite
append end move rightouter
archive execute never rule
arch_store extend new setof
arg fetch none sort
as orward nonulls stdin
ascending fom not stdout
attachas function notify store
backward group NOTNULL to
before heavy NULL transaction
begin in on type
binary index once union
by indexable operator unique
cfunction inherits or user
change input_proc output_proc using
close instance parallel vacuum
cluster instead pfunction version
copy intersect portal view
create into postquel whee
createdb intotemp priority with
current iportal purge

In addition, allPOSTGRESlasses ha sveaal predefined attributes used by the syst&iar.a list of these,

see the sectioRields, below.

03/12/94

50

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Constants
There are six types abnstantfor use inPOSTQUEL They are described bela

Character Constants
Singlecharacter constantsnay be used iROSTQUELby surrounding them by single quotes, e.g., ‘n’.

String Constants
Stringsin POSTQUELare arbitrary sequences of ASCII characters bounded by double quotes (" "). Upper
case alphabetics within strings are accepted literéllgn-printing characters may be embedded within
strings by prepending them with a backslash, e.g., \n’. Also, in order to embed quotes within strings, it is
necessary to prefix them with ‘' The same carention applies to ‘\' itself. Because of the limitations on
instance sizes, string constants are currently limited to a length of a little less than 8192 axges.
objects may be created using #f@STGREd arge Object interface.

Integer Constants
Integer constantsin POSTQUELare collection of ASCII digits with no decimal poiritegd values range
from —2147483647 to +2147483647. This will vary depending on the operating system and host machine.

Floating Point Constants
Floating point constantsonsist of an iniger part, a decimal point, and a fraction part or scientific notation
of the following format:

{<dig>} .{<dig>} [e [+-] {<dig>}]

Where <dig> is a digit.You must include at least one <dig> after the period and after the [+-] if you use
those options. An exponent with a missing mantissa has a mantissa of 1 inserted. There mayrae no e
characters embedded in the string. Floating constants ae takbe double-precision quantities with a

range of approximately10® to 10°® and a precision of 17 decimal digits. This will vary depending on the
operating system and host machine.

Constants ofPOSTGRESUser-Defined Types
A constant of amarbitrary type can be entered using the notation:

"string"::type-name

In this case the value inside the string is passed to the inpudrsiom routine for the type called type-
name. The result is a constant of the indicated type. The explicit typecast may be omitted if there is no
ambiguity as to the type the constant must be, in which case it is automatically coerced.

Array constants
Array constantare arrays of gnPOSTGRESype, including other arrays, string constants, etc. The general
format of an array constant is the following:

"{<vall><delim><val2><delim>}"

Where<delim> is the delimiter for the type stored in the “pg_type” cla@r built-in types, this is the
comma charactet,”.) Anexample of an array constant is

"{{1,2,3},{4,5,6},{7,8,9}}"

This constant is a two-dimensional, 3 by 3 array consisting of three sub-arrays of integers.

Individual array elements can and should be placed between quotation marksewpessible to aoid
ambiguity problems with respect to leading white space.

03/12/94 51

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Arrays of fixed-length types may also be stored RBSTGRESlarge objects (seéntroduction(large
objects)). Thesyntax for an array constant of this form is

"large_object [-unix | -invert] [-chunk (DEFAULT | acc_pat_file)]"

That is, ay array constant that does not begin and end in curly braces is assumed to wshonlfile
system filename that contains the appropriate array ddta.lrnversion file will be created if it does not
already exist. The flag "unix" or ert" is used to indiacte the type of the large object. The default type is
"unix". An array stored in large object can be chunked to optimizevasiby using the "-chunk" flag.
The array can be chue# using a default chunk size (by using tlesword DEFAULT) or by wsing an
access pattern stored in a watfile "acc_patt_file". The access pattern is expected to be in theifagilo
format.

<n><A 11 A_12..A 1dP_1>..<A_n1A_n2. A_ndP_n>
where n isthe number of tuples in the access pattern and d is the number of dimensions of th®marray

each i, <A i1 A_i2 .. A_id> is the dimension of an access request on the array and P_i is Heefrelati
gueng of the access.

Fields

A fieldis either an attribute of agin dass or one of the following:

all

oid

tmin

tmax

Xmin

Xmax

cmin

cmax

vtype
As in INGRES all is a shorthand for all normal attributes in a class, and may be used profitably ige¢he tar
list of a retrie#e datement.
Oid stands for the unique identifier of an instance which is addeBYGRESo0 all instances automati-
cally. Oids are not reused and are 32 bit quantities.
Tmin, tmax, xmin, cmin, xmaxdcmaxstand respectely for the time that the instanceaw inserted, the
time the instance was deleted, the identity of the inserting transaction, the command identifier within the
transaction, the identity of the deleting transaction and its associated deleting confimrafindither infor
mation on these fields consult [SW87]. Times are represented internally as instances of the “abstime”
data type. Transaction identifiers are 32 bit quantities which are assigned sequentially starting at 512.
Command identifiers are 16 bit objects; hence, it is an errorvi® tare than 6553%0STQUELcom-
mands within one transaction.

Attributes

An attributeis a construct of the form:
Instance-variable{.composite_field}.field ‘["numberT

Instance-variableédentifies a particular class and can be thought of as standing for the instances of that

03/12/94 52

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

class. Aninstance variable is either a class name, a surrogate for a class defined by méans céase,
or the leyword new or current. New and current can only appear in the action portion of a rule, while
other instance variables can be used yROSTQUELcommand. Composite_fields a field of of one of
the POSTGRESomposite types indicated in thiormationlcommands) section, while successmompos-
ite fields address attributes in the class(s) to which the compositeViildtes. Lastlyfield is a normal
(base type) field in the class(s) last addres#efield is of type arraythen the optionahumberdesignator
indicates a specific element in the arréfyno number is indicated, then all array elements are returned.

Operators
Any built-in system, or usedefined operator may be usetP@STQUEL For the list of built-in and system
operators consulhtroduction (built-ins). For a list of user-defined operators consult your system adminis-
trator or run a query on the pg_operator cldsentheses may be used for arbitrary grouping of operators.

Expressions (a_expr)
An expressionis one of the following:

(a_expr)

constant

attribute

a_expr binary_operator a_expr

a_expr right_unary_operator

left_unary_operator a_expr

parameter

functional expressions

aggregate expressions

set expressions (no general implementation in Version 4.2)
class expression (no general implementation in Version 4.2)

We havealready discussed constants and atteéb. Thdawo kinds of operator expressions indicate respec-
tively binary and left_unaryx@ressions. Théollowing sections discuss the remaining options.

Parameters
A parameteris used to indicate a parameter iR@STQUELfunction. Typically this is used iPOSTQUEL
function definition statement. The form of a parameter is:
‘$’ number
For example, consider the definition of a function, DEBST
define function DEPT
(language="postquel", returntype = dept)

arg is (charl6) as
retrieve (dept.all) where dept.name = $1

Functional Expressions
A functional &pressionis the name of a gl POSTQUELfunction, followed by its argument list enclosed
in parentheses, e.g.:

fn-name (a_expr{, a_expr})

For example, the following computes the square root of an employee salary.

03/12/94 53

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

sqrt(emp.salary)

Aggregate Expression
An aggegate &pressiorrepresents a simple aggete (i.e., one that computes a single value) or an aggre-
gate function (i.e., one that computes a setadfigs). Thesyntax is the following:

aggregate_name ‘{’ [unique [using] opr] a_expr
[from from_list]
[where qualification]}’

Here, aggegate_namemust be a prgously defined agggste. Thefrom_list indicates the class to be
aggrgdaed oser while qualificationgives restrictions which must be satisfied by the instances to be aggre-
gated. Net, thea exprgives the expression to be aggeted, while theuniquetag indicates whether all
values should be aggyeted or just the unique values af expr. Two expressionsa_exprlanda_ expr2

are the same d_exprl opr a_exprvduates to true.

In the case that all instance variables used in the gaigrexpression are defined in tiem list, a simple
aggr@ae has been definedor example, to sum employee salaries whose age is greater than 30, one
would write:

retrieve (total = sum {e.salary from e in emp
where e.age > 30})

or
retrieve (total = sum {emp.salary where emp.age > 30})

In either casePOSTGRESSs instructed to find the instances in flem_listwhich satisfy the qualification
and then compute the aggete of thea_exprindicated.

On the other hand, if there are variables used in the gajgrexpression that are not defined in fifoen
list, e.q:

avg {emp.salary where emp.age = e.age}

then this aggmgete function has a value for each possible value taken on by “e.Bge&xample, the fol-
lowing complete query finds theeage salary of each possible employee age 18:

retrieve (e.age, eavg = avg {emp.salary where emp.age = e.age})
from e in emp
where e.age > 18

Aggregae functions are not supported in Version 4.2.

In general, the following aggyetes (i.e., the expression within the braces) will not work:
Aggregae functions of apkind.
Aggregaes containing more than one range variable.
Aggregaes that refer to range variables that use class inheritance (e.g., “e from emp*”).

Aggregates containing clauses other tharexprandwherequalification clauses. (In otheronds,
from clauses within agggetes are not supported.)

03/12/94 54

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

In addition, aggrgate expressions may only appear within the target list of a query — that is, ngaggre
expression may appear in a query qualificationafoereclause).

Therefore, of the three example queriesgj only the second is actually supported.

Set Expressions
Generalized set expressions arnot supported in Version 4.2. For information on sets as attributes, see

the manual pages for tiseeatdcommands)appendcommands) ancktrieve(lcommands) commands.

A set expressiodefines a collection of instances from some class and uses the following syntax:
{target_list from from_list where qualification}
For example, the set of all employee nameeralO is:
{emp.name where emp.age > 40}

In addition, it is Igd to construct set expressions whichvean instance variable which is defined outside
the scope of thexpression. Br example, the followingxpression is the set of employees in each depart-
ment:

{emp.name where emp.dept = dept.dname}

Set expressions can be used in class expressions which are defimed belo

Class Expression
Generalized class expressions amot supported in Version 4.2. For information on classes as attribs,

see the manual pages for ttreat§commands)appendcommands) antetrieve(lcommands) commands.
A class expressiois an expression of the form:

class_constructor binary_class_operator class_constructor
unary_class_operator class_constructor

where binary_class_operator is one of the following:

union unionof two dasses
intersect intersectioaf two dasses

- difference of tvo dasses

>> left class contains right class
<< rightclass contains left class

== rightclass equals left class
and unary_class_operator can be:
empty rightclass is empty

A class_constructors either an instance variable, a class name, #eewf a composite field or a set
expression.

An example of a query with a class expression is one to find all the departments with no employees:

retrieve (dept.dname)
where empty {emp.name where emp.dept = dept.dname}

03/12/94 55

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Target_list

A target listis a parenthesized, comma-separated list of one or more elements, each of which must be of the

form:
[result_attname =] a_expr

Here, result_attname is the name of the atteitio be created (or an already existing attribute name in the
case of update statementdf)result_attnamds not present, thea_exprmust contain only one attrite

name which is assumed to be the name of the result field. In Version 4.2 default naming is only used if
a_expris an attribute.

Qualification
A qualificationconsists of apnumber of clauses connected by the logical operators:

not
and
or

A clause is amm_exprthat evaluates to a Boolearver a st of instances.

From List
Thefrom listis a comma-separated listfoadm expressions

Eachfrom expressiois of the form:

instance_variable-1 {, instance_variable-2}
in class_reference

whereclass_references of the form
class_name [time_expression] [*]

The from epressiondefines one or more instance variables to rangs the class indicated in
class_reference Adding atime_expressionvill indicate that a historical class is desired. One can also
request the instancanable to rangewer al classes that are beneath the indicated class in the inheritance
hierarcly by postpending the designator “*”.

Time Expressions
A time expressiois in one of tve forms:

[Ildatell]
['date-1", "date-2"]

The first case requires instances that atiel\at the indicated time. The second case requires instances that
are valid at some time within the date range specified. If no tkpeession is indicated, the default is

“ ”

now-.

In each case, the date is a character string of the form
[MON-FRI] "MMM DD [HH:MM:SS] YYYY" [Timezone]

where MMM is the month (Jan — Dec), DD is gdeday number in the specified month, HH:MM:SS is an
optional time in that day (24-hour clock), and YYYY is the yeldrthe time of day HH:MM:SS is not

03/12/94 56

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

specified, it defaults to midnight at the start of the specified dayof Version 3.0, times are no longer
read and written using Greenwich Mean Time; the input and output routines default to the local time zone.

For example,

["Jan 1 1990
["Mar 3 00:00:00 1980", "Mar 3 23:59:59 1981"]

are valid time specifications.

Note that this syntax is slightly different than that used by the time-range type.
SEE ALSO

append(commands), delete(commands)eceete(commands), replace(commands), ref@mmands),
monitor(unix).
BUGS

The following constructs are notallable in Version 4.2:
class expressions
set expressions

03/12/94 57

ABORT(COMMANDS) ABORT(COMMANDS)

NAME
abort — abort the current transaction

SYNOPSIS
abort

DESCRIPTION

This command aborts the current transaction and causes all the updates made by the transaction to be dis-
carded.

SEE ALSO
begin(commands), end(commands).

01/23/93 58

ADDATTR(COMMANDS) ADDATTR(COMMANDS)

NAME
addattr — add attributes to a class

SYNOPSIS
addattr (attnameX typel {, attname-i type-i})
to classname*|

DESCRIPTION
The addattr command causes weattributes to be added to anigting class,classname The nev
attributes and their types are specified in the same style and with the the same restrictionge-as in
ate(commands).

In order to add an attribute to each class in an entire inheritance hyetsehheclassnamef the super
class and append a “*”. (By default, the attribute will not be addedytofathe subclasses.) This should
always be done when adding an attribute to a supercldigsis not, queries on the inheritance hierarch
such as

retrieve (s.all) from s in super*

will not work because the subclasses will be missing an attribute found in the superclass.

For efficieng/ reasons, default values for added atitiéls are not placed in existing instances of a class.
That is, existing instances will & NULL values in the ne attributes. Ifnon-NULL values are desired, a
subsequeneplacgcommands) query should be run.

You must own the class in order to change its schema.
EXAMPLE
/*
* a dd the date of hire to the emp class
*/
addattr (hiredate = abstime) to emp

/*
* add a health-care number to all persons
* (' including employees, students, ...)
*/

addattr (health_care_id = int4) to person*

SEE ALSO
create(commands), rename(commands), replace(commands).

02/08/94 59

APPEND(COMMANDS) APPEND(COMMANDS)

NAME
append — append tuples to a relation

SYNOPSIS
appendclassname
(att_expr-1= expressionl {att_expr-i= expression-i})
[from from_list] [where qual]

DESCRIPTION
Append adds instances that satisfy the qualificatiuml, to classname Classnamanust be the name of
an existing class. The tgt list specifies the values of the fields to be appendethdename That is,
eachatt_exprspecifies a field (either an attribute name or an ateibhame plus an array specification) to
which the correspondingxpressionshould be assigned. The fields in the target list may be listedyin an
order Fields of the result class which do not appear in thgetdist default to NULL. If the expression for
each field is not of the correct data type, automatic type coercion will be attempted.

An array initialization may takexactly one of the following forms:

/*
* S pecify a lower and upper index for each dimension
*
att_name[lindex-1:ulndex-1]..[lindex-i:ulndex-i] = array_str

/*
* S pecify only the upper index for each dimension
* (each lower index defaults to 1)
*

att_ name[ulndex-1]..[ulndex-i] = array_str

/*
* Use the upper index bounds as specified within array_str
* (each lower index defaults to 1)
*

att_name = array_str

where eachindex or ulndexis an integer constant arafray stris an array constant (seetroduc-
tion(commands)).

If the user does not specifyyaarray bounds (as in the third form) the®@STGRESwill attempt to deduce
the actual array bounds from the contentarody_str.

If the user does specifglicit array bounds (as in the first and second forms) then the array may be initial-
ized partly or fully using a C-li& syntax for array initialization.However, the uninitialized array elements
will contain garbage.

The keyword all can be used when it is desired to append all fields of a class to another class.

If the attritute is a completype, its contents are specified as a query which will return the tuples in the set.
See the examples balo

You must hae write or append access to a class in order to append to it, as well as read accgstasa an
whose values are read in the target list or qualificationcfse®e acl(commands)).

03/12/94 60

APPEND(COMMANDS) APPEND(COMMANDS)

EXAMPLES
/-k
* Make a new employee Jones work for Smith
*
append emp (hewemp.name, newemp.salary, mgr = "Smith",
bdate = 1990 - newemp.age)
where newemp.name = "Jones"

/*
* Same command using the from list clause
*
append emp (n.name, n.salary, mgr = "Smith",
bdate = 1990 - n.age)
from n in newemp
where n.name = "Jones"

/-k
* Append the newempl class to newemp
*/

append newemp (newempl.all)

/-k
* Create an empty 3x3 gameboard for noughts-and-crosses
* (all of these queries create the same board attribute)

*

append tictactoe (game = 1, board[1:3][1:3] =
RS A1 S)

append tictactoe (game = 2, board[3][3] =
)

append tictactoe (game = 3, board =
RUHAIAtN)

/-k

* Create a 3x3 noughts-and-crosses board that is
* ¢ ompletely filled-in
*

append tictactoe (game = 4, board =
"{{X,0,X}.{O0,X,01{X. X, X}}")

/*
* Create a 3x3 noughts-and-crosses board that has
* only 1 place filled-in
*
append tictactoe (game = 4, board[3][3] =
X1

03/12/94 61

APPEND(COMMANDS) APPEND(COMMANDS)

/-k
* Create a tuple containing a large-object array.
* T he large object "/large/tictactoe/board” will be
* ¢ reated if it does not already exist. The flag "-invert"
* | ndicates that the large object is of type Inversion
* (the default type is Unix).
*/
append tictactoe (board[3][3] =
"/largeftictactoe/board -invert")

/*
* Create a tuple containing a large-object array and "chunk”
* | t. The Inversion file "/largeltictactoe/board" must already
* exist. The external file "/etc/acc_patt" holds the access
* p attern used to cluster (chunk) the array elements. A new
* | arge object is created to hold the chunked array.
* (See "src/doc/papers/arrays/paper.ps" for more information)
*/
append tictactoe (board[3][3] =
"/largeftictactoe/board -chunk /etc/acc_patt”)

/*
* Append a tuple with a set attribute "mgr" of type emp. The
* g uery to produce the manager of "carol" (specified dynamically
* h ere) will be stored as a POSTQUEL function in the system
* ¢ atalog "pg_proc". The object ID of this tuple in "pg_proc"
* will be used in the name of the procedure, resulting in a
* p rocedure name of the form "set<OID of the tuple>". Two
* b ackslashes are needed here to escape the inner quotes when
* e ntering this query from the monitor.
*/
append emp (hame = "carol",
mgr = "retrieve (emp.all)
where emp.name = \\'mike\\"")

SEE ALSO

postquel(commands), create(commands), define type(commands), replace(commandg;oatnands)
introduction(large objects).

BUGS

Once an array is created by @ppendquery its size (in bytes) cannot be changddhis has seeral impli-
cations.

First, there is no longer ymotion of a “variable-length arrdyin fact, since variable-length arrays
were not actually supported in previous versionB@STGRESthis is not much of a change.

Second, arrays of variable-length types (e.gt)teannot be updated. Since the array cannot
grow, replacement of individual array elements cannot be supported in general.

03/12/94 62

ATTACHAS(COMMANDS) ATTACHAS(COMMANDS)

NAME
attachas — reestablish communication using an exising portal

SYNOPSIS
attachasname

DESCRIPTION
This command alles application programs to use a logical nan@ne in interactions wittPOSTGRES
Suppose the user of an application program specifies a collection of rules that dataeand that the pro-
gram fails for some reasorihen, under ordinary circumstances, all the rules would need to be reentered
when the program is restoredlternatively, the attachascommand may be used before defining the rules
the first time. Then, upon restoring the program att@chascommand will reattach the user to the aeti
rules.

BUGS

Attachasis not implemented in Version 4.2.

01/23/93 63

BEGIN(COMMANDS) BEGIN(COMMANDS)

NAME
begin — begins a transaction

SYNOPSIS
begin

DESCRIPTION
This command begins a user transaction wRIOBTGRESwill guarantee is serializable with respect to all
concurrently gecuting transactionsPOSTGRESuses tw-phase locking to perform this task. If the trans-
action is committedPOSTGRESwill ensure that all updates are done or none of them are doaasac-
tions hae the standard ACID (atomic, consistent, isolatable, and durable) property.

SEE ALSO

abort(commands), end(commands).

01/23/93 64

CHANGE ACL(COMMANDS) CHANGEACL(COMMANDS)

NAME
change acl — change access control list(s)

SYNOPSIS
change acl[group|user] [name}{ ar|w|R} class-1 {, class-i}
change aclgroup|user] [name}{ ar |[w|R} class-1 {, class-i}
change acl[groupluser] [name¥{ar|w|R} class-1 {, class-i}

DESCRIPTION
Introduction

An access control listACL) specifies the access modes that are permitted wmeradass for a set of users
and groups of users. These modes are:

a — gpend data to a class

r — read data from a class

w — write data (append, delete, replace) to a class

R - define rules on a class

Application of ACLs to users

Each entry in an ACL consists of an identifier and a set of permitted access ribdeislentifier may
apply to a singleuser, agroup of users, or albtherusers. Ifa user has a personal entry in a@€l4A then
only the listed access modes are permitted. If a user doesveoahmrsonal entry but is a member of
some group(s) listed in the ACL, then access is permittalll df the listed groups of which the user is a
member hee the desired access modeinally, if a user does not va a @rsonal entry and is not a mem-
ber of ary listed groups, then the desired access mode is checked against the "other" entry.

Database superusers (i.e., users whe lgg_usemsesuper set) silently bypass all access controls with one
exception: manual system catalog updates avermgermitted if the user does notJeapg_user.usecatupd
set. Thigs intended as a ceenience (safety net) for careless superusers.

Application of ACLs through time

The access control systemways uses the ACLs that are currently valid, i.e., timeetris not supported.
This may change if/when a more general notion of timesttia documented.

CHANGING ACLS
In the syntax shown akie, nameis a user or group identifietf the user or group keywords are left out,
nameis assumed to be a user nanifeno nameis listed at all, then the ACL entry applies to the "other"
category.

Access modes are added, deletedxpligtly set using exactly one of thg - and= mode-change flags.
The access modes themselves are specified usimmmber of the single-letter mode flags listedwaho

Only the owner of a class (or a database superuser) may change an ACL.

By default, classes start withoutygACLs. Classesreated using the inheritance mechanism do not inherit

ACLs.
EXAMPLES
/*
* Deny any access to "other" to classes "gcmdata" and "btdata”.
*/

change acl = gcmdata, btdata

/*
* Grant "dozier" all permissions to "gcmdata” and "btdata".

01/23/93 65

CHANGE ACL(COMMANDS) CHANGEACL(COMMANDS)

*/
change acl user dozier=arwR gcmdata, btdata

/*
* Allow group "sequoia” to read and append data to "gcmdata”.
*/

change acl group sequoia+ra gcmdata

/*
* Deny "frew" the ability to define rules on "gcmdata".
*/

change acl frew-R gcmdata

SEE ALSO
introduction(unix), append(commands), copy(commands), delete(commands), define rule(commands),
replace(commands), retvigcommands).

CAVEATS
The command syntax, patterned aftamod(1), is admittedly somewhat cryptic.

A facility like umask?) will be added in the future.

User authentication is only conducted if the frontend process andrhskrver ha keen compiled with
thekerberog5) libraries. Seéntroduction(unix).

As shipped, the system does notérany nstalled ACLs.

An access control mode for defining trusted functions (analogous to the access control on defining rules)
will be added after the (mis)features and interface of untrusted functieasthlilized.

User names, group names and associated system identifiers (e.g., the contents of pg_user.usesysid) are
assumed to be unique throughout a database. Unpredictable results may ocgaréf nioe

User system identifiers, as mentioned in a previous section of the manual, are currently UNdP§.user
This may change at some time in the future.

It is possible for users to change the e€svinternal data structures from inside of trusted (fast path) C
functions. Henceamong man other things, such functions can circumveny apstem access controls.
This is an inherent problem with trusted functions.

No POSTQUELcommand is provided to clean up ACLs by removing entries (as opposed tangrie
associated permissionsHowever, the built-in ACL functions preided male most administratie tasks
fairly trivial. For example, to rem dl ACL references to a user "mao” who is about to be fired, use:

replace pg_class (relacl = pg_class.relacl - "mao="::aclitem)

Security should be implemented with avelequery modification or rule-based scheme.

01/23/93 66

CLOSE(COMMANDS) CLOSE(COMMANDS)

NAME
close — close a portal

SYNOPSIS
close[portal_name]

DESCRIPTION
Closefrees the resources associated with a pgrtatal _name. After this portal is closed, no subsequent
operations are allowed on iA portal should be closed when it is no longer needegortal_nameis not
specified, then the blank portal is closed.

EXAMPLE
/*
* ¢ lose the portal FOO
*
close FOO

SEE ALSO
fetch(commands), m@(commands), retrie(commands).

01/23/93 67

CLUSTER(COMMANDS) CLUSTER(COMMANDS)

NAME
cluster — gve gorage clustering advice RIDSTGRES
SYNOPSIS
cluster classnamen atthame [using operator |
DESCRIPTION
This command instructBOSTGRESto keep the class specified blassnameapproximately sorted on
attnameusing the specified operator to determine the sort .offiee operator must be a binary operator
and both operands must be of tygitnhameand the operator must produce a result of type boolean. If no
operator is specified, then “<” is used by default.
A class can be reclustered aydime on a differenattnameand/or with a differenbperator.
POSTGRESWwiIll try to keep the heap data structure which stores the instances of this class approximately in
sorted order If the user specifies an operator which does not define a linear ordering, this command will
produce unpredictable orderings.
Also, if there is no indefor the clustering attribute, then this command willeheo effect.
EXAMPLE
/*
* ¢ luster employees in salary order
*
cluster emp on salary
BUGS

Clusterhas no effect in Version 4.2.

01/23/93 68

COPY(COMMANDS) COPY(COMMANDS)

NAME
copy — copy data to or from a class from or taalIX file.

SYNOPSIS
copy [binary] [nonulls] classname
tolfrom "filename"gtdin|stdout

DESCRIPTION
Copy moves data betwee®OSTGRESclasses and standadNIX files. Thekeyword binary changes the
behaior of field formatting, as described beloClassnameés the name of an existing classSilenameis
the UNIX pathname of the file. In place of a filename, tegnlords stdin andstdout can be used so that
input tocopy can be written by alBPQ application and output from ttepy command can be read by a
LIBPQ application. Théinary keyword will force all data to be stored/read as binary objects rather than as
ASCII text. It is somewhat faster than the norneaby command, bt is not generally portable, and the
files generated are somewhat laygithough this factor is highly dependent on the data itself.

You must hae read access on artlass whose values are read by topy command, and either write or
append access to a class to which values are being appendeddyytbemmand.

FORMAT OF OUTPUT FILES
ASCII COPY FORMAT

Whencopy is used without théinary keyword, the file generated will kia each instance on a line, with

each attribute separated by tabs (Embedded tabs will be preceeded by a backslash charact@h@).
attribute values themselves are strings generated by the output function associated with astehtyeib

The output function for a type should not try to generate the backslash character; this will be handled by
copy itself.

Note that on input toopy, backslashes are considered to be special control characters, and should be dou-
bled if you want to embed a backslash, i.e., the string “12\\19\88” will beectad bycopy to “1211988".
The actual format for each instance is

<attrl><tab><attr2><tab>...<tab><attrn><newline>

If copyis sending its output to standard output instead of a file, it will send a period (.) followed immedi-
ately by a newline, on a line by themssdy when it is doneSimilarly, if copy is reading from standard
input, it will expect a period (.) followed by a newline, as the firsi tivaracters on a line, to denote end-
of-file. However, copy will terminate (followed by the backend itself) if a true EOF is encountered.

NULL attributes are handled simply as null strings, that is, conseciabs in the input file denote a
NULL attribute.

BINARY COPY FORMAT

In the case o€opy binary, the first four bytes in the file will be the number of instances in the file. If this
number iszero,the copy binary command will read until end of file is encountered. Otherwise, it will stop
reading when this number of instances has been read. Remaining data in the file will be ignored.

The format for each instance in the file is as fedo Notethat this format must be folleed EXACTLY .
Unsigned four-byte integer quantities are called uint32 in theviadscription.

uint32 totallength (not including itself),

uint32 number of null attributes

[uint32 attribute number of first null attribute

uint32 attribute number of nth null attribute],
<data>

ALIGNMENT OF BINAR Y DATA

01/23/93 69

COPY(COMMANDS) COPY(COMMANDS)

On Sun-3's, 2-byte attributes are aligned on two-byte boundaries, and all larger attributes are aligned on
four-byte boundaries. Character attributes are aligned on single-byte boundamiegher machines, all
attributes larger than 1 byte are aligned on four-byte boundaNege that variable length attributes are
preceded by the attribugslength; arrays are simply contiguous streams of the array element type.

SEE ALSO
append(commands), create(commands), vacuum(commands), libpg.

BUGS
Files used as arguments to ttepy command must reside on or be accessable to the the database serv
machine by being either on local disks or a networked file system.

Copy stops operation at the first errdrhis should not lead to problems in the@ of acopy from, but
the target relation will, of course, be partially modified topy to. Thevacuunfcommands) query should
be used to clean up after a failzpy.

BecausePOSTGRESperates out of a different directory than the gseorking directory at the timeOST-
GRESis invoked, the result of copying to a file “foo” (without additional path information) may yield-une
pected results for the nai iser In this case, “foo” will wind up iIrsPGDATA/foo. Ingeneral, the full path-
name should be used when specifying files to be copied.

Copy has virtually no error checking, and a malformed input file wikliikcause the backend to crash.
Humans shouldwaid usingcopy for input whenger possible.

01/23/93 70

CREATE(COMMANDS) CREAE(COMMANDS)

NAME
create — create aweclass
SYNOPSIS
create classnaméattname-X type-1 {, attname-i= type-i})
[key (atthame-1ising operator-1]
{, atthame-i [ising operator-i]}]
[inherits (classname-1 {classname-i}]
[archive =archive_mode]
[store =“smgr_name”]
[arch_store =“smgr_name”]
DESCRIPTION

Create will enter a na class into the current data base. The class will be “owned” by the user issuing the
command. Thename of the class ”dassnamend the attributes are as specified in the lisitobfames.
Theith attribute is created with the type specifiediypei. Eachtype may be a simple type, a comple
type (set) or an array type.

Each array attribute stores arrays that muse Hae same number of dimensions but mayehdfferent
sizes and array indéounds. Anarray of dimensiom is specified by appendingpairs of square braeks:

att_name = type[][]..[]

The optionakey clause is used to specify that a field or a collection of fields is unique. Hynddkse is
specified POSTGRESWill still give every instance a unique object-idI0). This clause allows other fields

to be additional &ys. Theusing part of the clause alles the user to specify what operator should be used
for the uniqueness teskor example, intgers are all unique if “=" is used for the check, but not if “<” is
used insteadlf no operator is specified, “=" is used by delt. Any specified operator must be a binary
operator returning a boolean. If there is no compatiblexital@low the key dause to be rapidly cheeH,
POSTGRESIefaults to not checking rather than performing an exhaustarch on eachey ydate.

The optionalnherits clause specifies a collection of class names from which this class automatically inher
its all fields. If ay inherited field name appears more than oRGSTGRESeports an errorPOSTGRES
automatically allavs the created class to inherit functions on classegeabm the inheritance hierargh
Inheritance of functions is done according to theventions of the Common Lisp Object System (CLOS).

Each n& classclassnamas automatically created as a type. Therefore, one or more instances from the
class are automatically a type and can be usaddattr(commands) or othereate statements. Seastro-
ductioncommands) for a further discussion of this point.

The optionalstore andarch_store keywords may be used to specify a storage manager to use fomthe ne
class. Theaeleased version FOSTGRESsupports only “magnetic disk” as a storage manager name; the
research system at Betky provides additional storage manageftore controls the location of current
data, andarch_store controls the location of historical datérch_store may only be specified #drchive

is also specified. If eithestore or arch_storeis not declared, it defaults to “magnetic disk”.

The nev class is created as a heap with no initial d&taclass can ha& o more than 1600 domains (real-
istically, this is limited by the fact that tuple sizes must be less than 8192 byte#)isdimit may be con-
figured lower at some site#\ class cannot he the same name as a system catalog class.

The archive keyword specifies whether historical data is to beedar dscarded.Arch_modemay be one
of:

none No historical access is supported.

03/12/94 71

CREATE(COMMANDS)

light

heavy

Historical access is allowed and optimized for light update activity.

Historical access is allowed and optimized for heavy update activity.

CREAE(COMMANDS)

Arch_modedefaults to “none”. Once the arcia gatus is set, there is no way to changerir details of
the optimization, see [STON87].

EXAMPLES
/*
* Create class emp with attributes name, sal and bdate
*/
create emp (name = charl6, salary = float4, bdate = abstime)
/*
* Create class permemp with pension information that
* | nherits all fields of emp
*/
create permemp (plan = charl6) inherits (emp)
/-k
* Create class foo on magnetic disk and archive historical data
*/
create foo (bar = int4) archive = heavy
store = "magnetic disk"
/-k
* Create class tictactoe to store noughts-and-crosses
* b oards as a 2-dimensional array
*
create tictactoe (game = int4, board = char[][])
/*
* Create a class newemp with a set attribute "manager”. A
* s et (complex) attribute may be of the same type as the
* r elation being defined (as here) or of a different complex
* t ype. The type must exist in the "pg_type" catalog or be
* t he one currently being defined.
*/
create newemp (name = text, manager = newemp)
SEE ALSO
destroy(commands).
BUGS

Thekey clause is not implemented in Version 4.2.

Optional specifications (i.einherits, archive andstore) must be supplied in the ordewgn above, if they
are supplied at all.

03/12/94

72

CREATEDB(COMMANDS) CREAEDB(COMMANDS)

NAME
createdb — create awalatabase
SYNOPSIS
createdbdbname
DESCRIPTION
Createdb creates a ne®ROSTGRESIatabase. Thereator becomes the administrator of the database.
SEE ALSO
createdb(unix), destroydb(commands), destroydb(unix), initdb(unix).
BUGS

This command shoulMOT be executed interactiely. Thecreatedlfunix) script should be used instead.

01/23/93 73

CREATE VERSION(COMMANDS) CREATE VERSION(COMMANDS)

NAME
create version — construct a version class
SYNOPSIS
create versionclassnamefrom classname2[fbstimé]
DESCRIPTION
This command creates a version claassnamevhich is related to its parent clastassname2 Initially,
classnamehas the same contentsa@dassname2As updates talassnamebccur howeve, the content of
classnametiverges fromclassname2.0On the other hand, grupdates taclassnameahaow transparently
through toclassnamelunless the instance in question has already been updatiedsnamel
If the optionalabstimeclause is specified, then the version is constructedvelatia snapshotof class-
name2as of the time specified.
POSTGRESuses the query rewrite rule system to ensurecthasnameis differentially encoded relat ©
classname2 Moreover, classnamels automatically constructed toveathe same indess & classname2
It is legd to cascade versions arbitrarilgo a tee of versions can ultimately resulthe algorithms that
control versions are explained in [ONG90].
EXAMPLE
/-k
* ¢ reate a version foobar from a snapshot of
* b arfoo as of January 17, 1990
*/
create version foobar from barfoo ["Jan 17 1990"]
SEE ALSO
define view(commands), merge(commands), postquel(commands).
BUGS

Snapshots (i.e., the optioradstimeclause) are not implemented in Version 4.2.

01/23/93 74

DEFINE AGGREGAE(COMMANDS) DEFINEAGGREGATE(COMMANDS)

NAME
define aggrgate — define a ne aggregae
SYNOPSIS
define aggregateagg-nameds
([sfuncl =state-transition-function-1
, basetype =data-type
, stypel =sfuncl-return-type]
[, sfunc2 = state-transition-function-2
, Stype2 =sfunc2-return-type]
[, finalfunc = final-function]
[, initcond1 =initial-condition-1]
[, initcond?2 =initial-condition-2)
DESCRIPTION
An aggr@éae function can use up to three functions, state transitiorfunctions, X1 and X2:
X1(internal-statel, next-data_item) ---> next-internal-statel
X2(internal-state2) ---> next-internal-state2
and dfinal calculation function, F:
F(internal-statel, internal-state2) ---> aggte-value
These functions are required toshahe following properties:
The arguments to state-transition-function-1 mustsbgoelbasetypg and its return value must
be stypel.
The argument and return value of state-transition-function-2 mustype2
The arguments to the final-calculation-function mus(stgpelstyped, and its return value must
be a POSTGRES base type (not necessarily the same as basetype.
The final-calculation-function should be specified if and only if both state-transition functions are
specified.
Note that it is possible to specify aggae functions that he varying combinations of state and final
functions. er example, the “count” aggyete requiressfunc2 (an incrementing function) but nefuncl
or finalfunc, whereas the “sum” aggyee requiressfuncl (an addition function) but nafunc?2 or final-
func and the “serage” aggrgdae requires both of the ab® gate functions as well asfmalfunc (a dwvi-
sion function) to produce its answeln any case, at least one state function must be defined, and an
sfunc2must hae a orrespondingnitcond2.
Aggregates also require twinitial conditions, one for each transition functionhese are specified and
stored in the database as fields of tigpe
EXAMPLE

This avg aggr@ate consists of te gate transition functions, a addition function and a incrementing func-
tion. Thesemodify the internal state of the aggae through a running sum and and the numbeahfes
seen sodr. It accepts a neg employee salaryincrements the count, and adds the salary to produce the
next state. The state transition functions must be passed correct initializalims.v Thdinal calculation
then divides the sum by the count to produce the final answer.

/*
* Define an aggregate for int4 average
*/
define aggregate avg (sfuncl = int4add, basetype = int4,
stypel = int4, sfunc2 = intdinc, stype2 = int4,
finalfunc = int4div, initcond1 = "0", initcond2 = "0")

01/23/93 75

DEFINE AGGREGAE(COMMANDS)

SEE ALSO
define function(commands), rer@aygregate(commands).

01/23/93

DEFINEAGGREGATE(COMMANDS)

76

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

NAME
define function — define a wefunction
SYNOPSIS
define functionfunction_nam¢
language ={"c" | "postquel"},
returntype = type-r
[, iscachable]
[, trusted ={"t"| "'}]
[, percall_cpu ="costhy{!*}"]
[, perbyte_cpu = "costiy{!*} "]
[, outin_ratio = percentage]
[, byte_pct = percentage]
)
argis ([type-1 {,type-n}])
as{"/full/path/to/objectfile" | "list-of-postquel-queries"}
DESCRIPTION
With this command, R0STGRESuser can register a function wiBtDSTGRES Subsequentlythis user is
treated as the owner of the function.
When defining a function with arguments, the input data typps;J type-2 ..., type-n and the return data
type, type-r must be specified, along with the language, which ma$cbeor “postquel’. (The arg is
clause may be left out if the function has nguamnents, or alternagly the argument list may be left
empty) Theinput types may be base or comptgpes, orany. Any indicates that the function accepts
arguments of antype, or takes anvalid POSTQUELtype such as (char *). The output type may be speci-
fied as a base type, comylype, setof <type> or any. The setofmodifier indicates that the function will
return a set of items, rather than a single itdrhe as clause of the command is treated differently for C
andPOSTQUELfunctions, as explained belo
C FUNCTIONS

Functions written in C can be definedROSTGRES which will dynamically load them into its address
space. Thdoading happens either usihgad(commands) or automatically the first time the function is
necessary forxacution. Repeatedxecution of a function will cause negligible additionaiexdhead, as the
function will remain in a main memory cache.

Theiscachableflag indicates to the system that the retualug of the function can be assoaidij cached.

The trusted flag specifies that the function can run inside RRSTGRESservers aldress space with the
userid of thePOSTGRESsuper-user If this flag is not specified, the function will be run in a separate pro-
cess.

The percall_cpu, perbyte_cpy, outin_ratio, and byte pct flags are provided for C functions tovgia
rough estimate of the functianfunning time, allowing the query optimizer to postpone applykpgesve
functions used in a ques/fvhere clause. Thepercall_cpu flag captures theverhead of the functios’
invocation (rgardless of input size), while theerbyte cpuflag captures the sensitivity of the functien’
running time to the size of its inputs. The magnitude of thesganameters is determined by the number
of exclamation points appearing after theravcostly. specifically each exclamation point can be thought
of as another order of magnitude in cost, i.e.,

cost = 10 number-of-exclamation-points

The default value fopercall_cpu and perbyte_cpuis 0. Examples of reasonable cosiues may be
found in the system catalog “pg_proc”; most simple functions on base typeskts of 0.

03/12/94 77

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

The outin_ratio is provided for functions which return variable-length types, suctexsor bytea. It
should be set to the size of the functioaitput as a percentage of the size of the inpiat. example, a
function which compresses its operands by 2 shouwld dnatin_ratio = 50. Thedefault value is 100.

The byte_pct flag should be set to the percentage of the bytes of the arguments that actually need to be
examined in order to compute the functiohhis flag is particularly useful for functions which generally

take a brge object as an argument, but only examine a small fixed portion of the object. The a@ddiault v

is 100.

Writing C Functions
The body of a C function folleing asshould be th&ULL PATH of the object code (.o file) for the func-
tion, bracketed by quotation mark€POSTGRESwill not compile a function automatically — it must be
compiled before it is used ind&fine functioncommand.)

C functions with base type arguments can be written in a straightforasingbfi. TheC equivalents of
built-in POSTGRESypes are accessible in a C file if

...Isrc/backend/utils/builtins.h
is included as a header file. This can be aedidy having

#include <utils/builtins.h>

at the top of the C source file and by compiling all C files with the following include options:

-l.../src/backend
-l.../src/backend/port/<porthame>
-l.../src/backend/obj

before ag “.c” programs in theccommand line, e.g.:

cc -l.../src/backend \
-l.../src/backend/port/<portname> \
-l.../src/backend/obj \
-C progname.c
where “..” is the path to the installedOSTGRESsource tree and “<portname>" is the name of the port for
which the source tree has been built.

The cowention for passing guments to and from the uselC functions is to use pass-by-value for data
types that are 32 bits (4 bytes) or smaléad pass-by-reference for data types that require more than 32
bits.

The following table gies the C type required for parameters in the C functions that will be loaded into
POSTGRES The “Defined In” column gies the actual header file (in the

...Isrc/backend

directory) that the equilent C type is definedHowever, if you include “utils/builtins.h”, these files will
automatically be included.

03/12/94 78

DEFINE FUNCTION(COMMANDS)

Equivalent C Types for Built-In POSTGRESTypes

DEFINE FUNCTION(COMMANDS)

Built-In Type CType Definedin
abstime Absoluteime utils/nabstime.h
bool bool tmp/c.h

box (BOX *) utils/geo-decls.h
bytea (byted&) tmp/postgres.h
char char N/A

charl6 Char16r (charl6 *) tmp/postgres.h
cid CID tmp/postgres.h
int2 int2 tmp/postgres.h
int28 (int28%) tmp/postgres.h
int4 int4 tmp/postgres.h
float4 float32or (float4 *) tmp/c.h or tmp/postgres.h
float8 float64or (float8 *) tmp/c.h or tmp/postgres.h
Iseg (LSEG *) tmp/geo-decls.h
oid oid tmp/postgres.h
0id8 (0id8*) tmp/postgres.h
path (ATH*) utils/geo-decls.h
point (POINT*) utils/geo-decls.h
regproc rgproc or REGPRC tmp/postgres.h
reltime RelatieTime utils/nabstime.h
text (text *) tmp/postgres.h
tid ItemPointer storage/itemptr.h
tintenal Timelntenal utils/nabstime.h
uint2 uintl6 tmp/c.h

uint4 uint32 tmp/c.h

xid (XID *) tmp/postgres.h

Complex arguments to C functions are passed into the C function as a special C type, TUPLE, defined in
...Isrc/libpg/libpg-fe.h.

Given a variablet of this type, the C function may extract attributes from the function using the function
call:

GetAttributeByName(t, "fieldname", &isnull)

whereisnullis a pointer to &ool, which the function sets toue if the field is null. The result of this func-
tion should be cast appropriately as shown in the examples.belo

Compiling Dynamically-Loaded C Functions
Different operating systems require different procedures for compiling C source filesPIN@RESan
load them dynamicallyThis section discusses the required compiler and loader options on each system.

Under Ultrix, all object files thaPOSTGRESIis expected to load dynamically must be compiled using
/bin/ccwith the “-G 0” option turned on. The object file name indkelause should end in “.0”.

Under HP-UX, DEC OSF/1, AIX and SunOS 4, all object files must be turnedhated libraries using
the operating systeshative dbject file loaderld(1).

Under HP-UX, an object file must be compiled using thevaatP-UX C compiler/bin/cc, with both the
“+z” and “+u” flags turned on. The first flag turns the object file into “position-independent code” (PIC);

03/12/94 79

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

the second flag remes some alignment restrictions that th&-RISC architecture normally enforce$he
object file must then be turned into a shared library using the HP-UX |daiddd. The command lines to
compile a C source file, “foo.c”, look like:

cc <other flags> +z +u -c foo.c
Id <other flags> -b -0 foo.sl foo.o

The object file name in thesclause should end in “.sl”.

An extra step is required under versions of HP-UX prior to 9.00. PG®TGRESeader file
tmp/c.h

is not included in the source file, then the following line must also be added at the tery sbarce file:
#pragma HP_ALIGN HPUX_NATURAL_S500

However, this line must not appear in programs compiled under HP-UX 9.00 or later.

Under DEC OSF/1, an object file must be compiled and then turned into a shared library using the OSF/1
loader,/bin/ld. In this case, the command lines look like:

cc <other flags> -c foo.c
Id <other flags> -shared -expect_unresolved "*' -0 foo.so foo.0

The object file name in thesclause should end in “.so0”.

Under SunOS 4, an object file must be compiled and then turned into a shared library using the SunOS 4
loader,/bin/ld. The command lines look like:

cc <other flags> -PIC -c foo.c
Id <other flags> -dc -dp -Bdynamic -o foo.so foo.0

The object file name in thesclause should end in “.so0”.

Under AlX, object files are compiled normally but building the shared library requires a couple of steps.
First, create the object file:

cc <other flags> -c foo.c
You must then create a symbol “exports” file for the object file:
mkldexport foo.o ‘pwd* > foo.exp
Finally, you can create the shared library:
Id <other flags> -H512 -T512 -0 f00.50 -e _nostart \
-bl:.../lib/postgres.exp -bE:foo.exp foo.o \

-Im -lc 2>/dev/null

You should look at theeOSTGRESJser Manual for an explanation of this procedure.

03/12/94 80

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

POSTQUEL FUNCTIONS
POSTQUELfunctions &ecute an arbitrary list dPOSTQUELqueries, returning the results of the last query
in the list. POSTQUELfunctions in general return sets. If their returntype is not specifiedsamfithen
an arbitrary element of the last queryésult will be returned. Thexpensve function parameterper-
call_cpu, perbyte_cpu, outin_ratio,andbyte_pct are not used foPOSTQUELfunctions; their costs are
determined dynamically by the query optimizer.

The body of 20STQUELfunction folloving asshould be a list of queries separated by whitespace charac-
ters and bracketed within quotation markéote that quotation marks used in the queries must be escaped,
by preceding them with twbackslashes (i.e. \\").

Arguments to th@OSTQUELfunction may be referenced in the queries using a $n syntax: $1 refers to the
first argument, $2 to the second, and so on. If garaent is complex, then a “dot” notation may be used
to access attributes of the argument (e.g. “$1.emp”), ovtlénfunctions via a nested-dot syntax.

EXAMPLES: C Functions
The following command defines a C functiomenpaid, of two basetype arguments.

define function overpaid
(language = "c", returntype = bool)
arg is (float8, int4)
as "/usr/postgres/src/adt/overpaid.o”

The C file "averpaid.c” might look something like:
#include <utils/builtins.h>

bool overpaid(salary, age)
float8 *salary;
int4 age;

if (*salary > 200000.00)
return(TRUE);
if ((age < 30) && (*salary > 100000.00))
return(TRUE);
return(FALSE);

}

The wverpaid function can be used in a quexyg:

retrieve (EMP.name)
where overpaid(EMP.salary, EMP.age)

One can also write this as a function of a single argument of type EMP:
define function overpaid_2
(language = "c", returntype = bool)
arg is (EMP)

as "/usr/postgres/src/adt/overpaid_2.0"

The following query is n@ accepted:

03/12/94 81

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

retrieve (EMP.name) where overpaid_2(EMP)

In this case, in the body of theeppaid_2 function, the fields in the EMP record mustdeaeted. TheC
file "overpaid_2.c" might look something like:

#include <utils/builtins.h>
#include <tmp/libpg-fe.h>

bool overpaid_2(t)

TUPLE t;
{
float8 *salary;
int4 age;
bool salnull, agenull;

salary = (float8 *)GetAttributeByName(t, "salary",
&salnull);
age = (int4)GetAttributeByName(t, "age", &agenull);
if (salnull && *salary > 200000.00)
return(TRUE);
if (lagenull && (age<30) && (*salary > 100000.00))
return(TRUE);
return(FALSE)

EXAMPLES: POSTQUEL Functions

To illustrate a simpleeOSTQUELfunction, consider the following, which might be used to debit a bank
account:

define function TP1
(language = "postquel”, returntype = int4)
arg is (int4, float8)
as "replace BANK (balance = BANK.balance - $2)
where BANK.accountno = $1
retrieve(x = 1)"

A user could gecute this function to debit account 17 by $100.00 as follows:
retrieve (x = TP1(17,100.0))
The following more interesting exampleseaksngle argument of type EMBnd retrieve nrultiple results:
define function hobbies
(language = "postquel", returntype = setof HOBBIES)
arg is (EMP)
as "retrieve (HOBBIES.all)
where $1.name = HOBBIES.person"

define function children
(language = "postquel”, returntype = setof KIDS)

03/12/94 82

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

arg is (EMP)
as "retrieve (KIDS.all)
where $1.name = KIDS.dad
or $1.name = KIDS.mom"

Then the following query retnes overpaid employees, their hobbies, and their children:

retrieve (hame=name(EMP), hobby=name(hobbies(EMP)),
kid=name(children(EMP)))
where overpaid_2(EMP)

Note that attributes can be projected using function syntax felge(EMP)), as well as the traditional dot
syntax (e.g. EMP.name).

An equialent expression of the previous query is:

retrieve (EMP.name, hobby=EMP.hobbies.name,
kid=EMP.children.name)
where overpaid_2(EMP)

This "nested dot" notation for functions can be used to cascade functions of ginghests. Not¢hat the
function after a dot must tila anly one argument, of the type returned by the function before the dot.

POSTGREHlattensthe target list of the queries al@ That is, it produces the cross-product of the hobbies
and the children of the emplees. Br example, gien the schema:

create BANK (accountno = int4, balance = float8)
append BANK (accountno =17,
balance ="10000.00"::float8)
create EMP (name = charl6, salary = float8,
dept = charl6, age = int4)
create HOBBIES (name = charl6, person = charl6)
create KIDS (name = charl6, dad = charl6, mom = charl6)
append EMP (name = "joey", salary = "100000.01"::float8,
dept = "toy", age = 24)
append EMP (name = "jeff", salary = "100000.01"::float8,
dept = "shoe", age = 23)
append EMP (name = "wei", salary = "100000"::float8,
dept = "tv", age = 30)
append EMP (name = "mike", salary = "500000"::float8,
dept = "appliances", age = 30)
append HOBBIES (name = "biking", person = "jeff")
append HOBBIES (name = "jamming", person = "joey")
append HOBBIES (name = "basketball", person = "wei")
append HOBBIES (name = "swimming", person = "mike")
append HOBBIES (name = "philately", person = "mike")
append KIDS (name = "matthew", dad = "mike",
mom = "teresa")
append KIDS (name = "calvin", dad = "mike",
mom = "teresa")

The query abee returns

03/12/94 83

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

name holby kid

jeff biking (null)
joey jamming (null)
mike swimming matthew
mike philately matthew
mike swimming calvin
mike philately calvin

Note that flattening preserves the name and hobby fieédsadnen the “kid” field is null.

SEE ALSO
information(unix), load(commands), remgofunction(commands).

NOTES

Expensie Functions
Thepercall_cpuandperbyte_cpuflags can tag integers surrounded by quotes instead of 'twestly{!*}"
syntax described ake. This allows a finer grain of distinction between function costs, but is not encour
aged since such distinctions are difficult to estimate accurately.

Name Space Conflicts
More than one function may be defined with the same name, as long agutneras the take ae differ-
ent. Inother words, function names can derloaded A function may also ha the same name as an
attribute. Inthe case that there is an ambiguity between a function on a cotypéeand an attribute of
the compla& type, the attribute will alays be used.

RESTRICTIONS
The name of the C function must be gdeC function name, and the name of the function in C code must
be eactly the same as the name usedéfine function There is a subtle implication of this restriction:
while the dynamic loading routines in most operating systems are more thgrtddpgpwv you to load an
number of shared libraries that contain conflicting (identically-named) function namesndiiein fact
botch the load in interestingays. Fr example, if you define a dynamically-loaded function that happens
to have the same name as a function built IFOSTGRESthe DEC OSF/1 dynamic loader causesST-
GRESto call the function within itself rather than allmg POSTGRESo0 call your function. Hence, if you
want your function to be used on different architectures, we recommend that you derfazdC func-
tion names.

There is a cheer trick to get around the problem just described. Since there is no probkzlnading
POSTQUEL functions, you can define a set of C functions with different names and then define a set of
identically-namedPOSTQUEL function wrappers that tekthe appropriate argument types and call the
matching C function.

anycannot be gien as an ggument to @0STQUELfunction.

BUGS
Theiscachableflag does not do anything in Version 4.2.

Untrusted functions cannot makny function calls using access methods or built-in functions thet e
been loaded into the untrusted-function process.

Untrusted functions must be explicitly designated as such in a separateeguery

replace pg_proc (proistrusted = "f"::bool)
where pg_proc.proname = "mynewfunction”

03/12/94 84

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

C functions cannot return a set of values.

03/12/94 85

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

NAME
define ind& — construct a secondary index
SYNOPSIS
define[archive] index index-name
on classname@ising am-name
(atthame type_clags
[where qual]
define[archive] index index-name
on classname&sing am-name
(funcnamg atthame-1 {, atthame-i)}type_clasg
DESCRIPTION

This command constructs an ixdealled index-name.If the archive keyword is absent, thelassname
class is indeed. Whenarchive is present, an indeis created on the arohe dass associated with the
classnamelass.

Am-namas the name of the access method which is used for the index.

In the first syntax shown ab@ the ley field for the inde is gecified as an attribute name and an associ-
atedoperator class An operator class is used to specify the operators to be used for a particutarfode
example, a btree inaeon four-byte integers would use tiv@4_opsclass; this operator class includes com-
parison functions for four-byte integers.

If a qualis given, the ind& will be apartial index, which will index only those instances iclassnaméor
which the predicate specified lopal is true. Note that the predicate may only refer to attributes of the
indexed dass, classname POSTGRESmMay use a partial indeas an acess path only for queries that
include a restriction that implies that the predicate is tRoe.example, if the inde predicate is

emp.age < 30

then the inde can be used for a query with the restriction
where emp.age < 25

but not for a query with the restriction
where emp.age < 40

and so forth. Although partial indes cannot be used to satisfy as wide a range of queries as complete
indexes, they can be constructed more quickly and extended incrementallefss® indexcommands)).

In the second syntax slvo abave, an ndex can be defined on the result of a user-defined funétino-
nameapplied to one or more attributes of a single cladsesefunctional indicesare primarily useful in
two dtuations. Firstfunctional indices can be used to simulate mudij-kndices. Thais, the user can
define a n& base type (a simple combination of, s&id” and “int2”) and the associated functions and
operators on this metype such that the access method can us@rtce this has been done, the standard
techniques for interfacing netypes to access methods (described inPth8 TGRESUser manual) can be
applied. Secondunctional indices can be used to obtain fast access to data based on operatangldhat w
normally require some transformation to be applied to the base Bataexample, say you ha@ an
attribute in class “myclass” called “pt” that consists of a 2D point tyigew, suppose that you would kk

to inde this attribute but you only ke index operator classes for 2D polygon typeéou can define an
index on the point attrilnte using a function that you write (call it “point_to_polygon”) and youstiang

03/12/94 86

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

polygon operator class; after that, queries using existing polygon operators that reference
“point_to_polygon(myclass.pt)” on one side will use the precomputed polygons stored in the functional
index instead of computing a polygon for each amgeinstance in “myclass” and then comparing it to the
vaue on the other side of the operat@bviously, the decision to tild a functional inde represents a
tradeof between space (for the index) ang@ition time.

POSTGRESVersion 4.2 provides btree, rtree and hash access methods for secondary ihbedsree
access method is an implementation of the Lehman-Yao high-congubteees. Thetree access method
implements standard rtrees using Guttreapadratic split algorithmThe hash access method is an imple-
mentation of Litwins linear hashing.We nention the algorithms used solely to indicate that all of these
access methods are fully dynamic and do netth@a be gotimized periodically (as is the case with, for
example, static hash access methods).

The operator classes defined on btrees are

int2_ops char2_ops oidint2_ops
int4_ops char4_ops oidint4_ops
int24_ops char8 ops oidcharl6_ops
int42_ops charl6_ops

float4_ops oid_ops

float8 ops text_ops

char_ops abstime_ops

Theint24_opsoperator class is useful for constructing indices on int2 data, and doing compareoss ag
int4 data in query qualificationsSimilarly, int42_opssupport indices on int4 data that is to be compared
against int2 data in queries.

The operator classeidint2_ops oidint4_ops and oidcharl6_opsepresent the use ffnctional indicego
simulate multi-ley indices.

The POSTGRESjuery optimizer will consider using btree indices in a scan wieea@ indexed atribute is
involved in a comparison using one of

< <= = >= >

The operator classes defined on rtrees are

box_ops
bigbox_ops
poly ops

Both box classes support indices on the “box” datatyBTGRES The diference between them is that
bigbox_opsscales box coordinates down, teoia floating point exceptions from doing multiplication,
addition, and subtraction on very large floating-point coordindfabe field on which your rectangles lie
is about 20,000 units square orgar you should uséigbox_ops The poly_opsoperator class supports
rtree indices on “polygon” data.

The POSTGRESquery optimizer will consider using an rtree iRdeheneer an indexed atribute is
involved in a comparison using one of

<< &< &> >> @ "= &&

The operator classes defined on the hash access method are

03/12/94 87

DEFINE INDEX(COMMANDS)

char_ops int2_ops
char2_ops int4_ops
chard_ops float4_ops
char8_ops float8_ops
charl6_ops oid_ops
text_ops

DEFINE INDEX(COMMANDS)

The POSTGRESjuery optimizer will consider using a hash irdéhenerer an indexed atribute is irvolved
in a comparison using the

operator.

EXAMPLES

/*
* Create a btree index on the emp class using the age attribute.
*/

define index empindex on emp using btree (age int4_ops)

/*
* Create a btree index on employee name.
*/
define index empname
on emp using btree (name charl6_ops)

/*
* Create an rtree index on the bounding rectangle of cities.
*/
define index cityrect
on city using rtree (boundbox box_ops)

/-k
* Create a rtree index on a point attribute such that we
* ¢ an efficiently use box operators on the result of the
* ¢ onversion function. Such a qualification might look
* | ike "where point2box(points.pointloc) = boxes.box".
*
define index pointloc
on points using rtree (point2box(location) box_ops)

/*
* Create a partial btree index on employee salaries for
* e mployees over age 50
*
define index empsal
on emp using btree (salary int4_ops) where emp.age > 49

03/12/94

88

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

Note: if the partial-inde predicate refers to an attribute of a discrete-valued type (such as integers), it
is slightly preferable toxpress the predicate as, e.g., "emp.age > 49" rather than as "emp.age >= 50",
becauseen though both indees would, in theorybe ejually usablePOSTGRESvould only be able

to use a partial indewith the former predicate in theyent of a query that had the exact restriction
"emp.age > 49".

BUGS
Archive indices are not supported in Version 4.2.

There should be an access method desiggeide.

Indices may only be defined on a singés.kThis can be hacked around by defining special types and using
the POSTGRESsupport for indices on functional values of attributes.

The only kind of partial indepredicatesPOSTGRES/ersion 4.2 understands are those made up of boolean
combinations of simple clauses of the form

ATTR OP CONST
where ATTR is a single attiitbe of the indeed dass, and OP is an operator in a btree operator class

defined on the types of ATTR and CONSIT some other form of predicate is specified, Version 4.2 will
never use the resulting partial index.

03/12/94 89

DEFINE OPERAOR(COMMANDS) DEFINEOPERA'OR(COMMANDS)

NAME
define operator — define ameiser operator

SYNOPSIS

define operatoroperator_name
([argl =type-1]
[,arg2 =type-2]
, procedure =func_name
[, precedence =number]
[, associativity = (left | right | none | any]
[, commutator = com_op]
[, negator =neg_op]
[, restrict =res_proc]
[, hashe$
[, join =join_proc]
[, sort = sor_opl {sor_op2}]

DESCRIPTION
This command defines aweiser operatgoperator_name The user who defines an operator becomes its
owner.

The operator_namas a sequence of up to sixteen punctuation characters. The following characters are
valid for single-character operator names:

Tl@# % &?

If the operator name is more than one character long, it may consist afrahination of the abe dar-
acters or the following additional characters:

| $:+-*/<>=

At least one ofargl and arg2 must be definedFor binary operators, both should be defined. For right
unary operators, onlgrgl should be defined, while for left unary operators @my?2 should be defined.

The name of the operat@perator_namecan be composed of symbols anklso, thefunc_nameproce-

dure must hae keen previously defined usimgfine functiofcommands) and must Ve me or tw argu-

ments. Thdypes of the gguments for the operator and the type of the answer are as defined by the func-
tion. Precedencerefers to the order that multiple instances of the same operatorahrated. Thenext

several fields are primarily for the use of the query optimizer.

The associativity value is used to indicate fwoan expression containing this operator should bauated

when precedence and explicit grouping are insufficient to produce a complete ordduwaifan. Left and

right indicate that expressions containing the operator are tesh&ated from left to right or from right to

left, respectiely. Nonemeans that it is an error for this operator to be used without explicit grouping when
there is ambiguity And any, the default, indicates that the optimizer may choosedo&e an gpression
which contains this operator arbitrarily.

The commutator operator is present so HRSTGRESan reerse the order of the operands if it wishes.
For example, the operator area-less-than, >>buld have a @mmutator operatperea-greatethan, <<<.
Suppose that an operatarea-equal, ===, exists, as well as an area not equal, '==. Hence, the query opti-
mizer could freely corert:

"0,0,1,1"::box >>> MYBOXES.description

03/12/94 90

DEFINE OPERAOR(COMMANDS) DEFINEOPERA'OR(COMMANDS)

to
MYBOXES.description <<<"0,0,1,1"::box

This allows the xecution code to alays use the latter representation and simplifies the query optimizer
somewhat.

The ngator operator allows the query optimizer to eem
not MYBOXES.description === "0,0,1,1"::box
to
MYBOXES.description !=="0,0,1,1"::box

If a commutator operator name is supplie@STGRESsearches for it in the catalog. If it is found and it
does not yet ha&e a ommutator itself, then the commutatentry is updated to ha the current (n@)
operator as its commutatorhis applies to the mgtor, as well.

This is to allev the definition of tw operators that are the commutators or thgaimes of each otherThe
first operator should be defined without a commutator gaoe(as appropriate). When the second opera-
tor is defined, name the first as the commutator gatae The first will be updated as a side effect.

The next tvo Pecifications are present to support the query optimizer in performing p@GTGRES an
always evaluate a join (i.e., processing a clause witlo tiwple variables separated by an operator that
returns a boolean) by iteredi substitution [WONG76]. Inaddition,POSTGRESS planning on implement-
ing a hash-join algorithm along the lines of [SHAP86]wbheer, it must knav whether this strategy is
applicable. Br example, a hash-join algorithm is usable for a clause of the form:

MYBOXES.description === MYBOXES2.description
but not for a clause of the form:
MYBOXES.description <<< MYBOXES2.description.

The hashesflag gives the needed information to the query optimizer concerning whether a hash join strat-
egy is usable for the operator in question.

Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a usable jogystrate

and what operators should be used to sort theoperand classes-or the === clause alve, the optimizer
must sort both relations using the operatar<. Onthe other hand, merge-sort is not usable with the
clause:

MYBOXES.description <<< MYBOXES2.description

If other join stratgies are found to be practicRIDSTGRESwill change the optimizer and run-time system
to use them and will require additional specification when an operator is defiotghately the research
community ivents nev join strategies infrequentlgnd the added generality of user-defined join sgiate
was ot felt to be worth the complexityvnolved.

The last tvo pieces of the specification are present so the query optimizer can estimate resulf sizes.
clause of the form:

03/12/94 91

DEFINE OPERAOR(COMMANDS) DEFINEOPERA'OR(COMMANDS)

MYBOXES.description <<<"0,0,1,1"::box

is present in the qualification, the®OSTGRESmay hae t© estimate the fraction of the instances in
MYBOXES that satisfy the clause. The function res_proc must begisteed function (meaning it is
already defined usingefine functiofcommands)) which accepts one argument of the correct data type and
returns a floating point numbefthe query optimizer simply calls this function, passing the parameter

"0,0,1,1"

and multiplies the result by the relation size to get the desired expected number of instances.

Similarly, when the operands of the operator both contain instance variables, the query optimizer must esti-
mate the size of the resulting joiithe function join_proc will return another floating point number which

will be multiplied by the cardinalities of the twdasses imolved to compute the desired expected result
size.

The difference between the function

my_procedure_1 (MYBOXES.description, "0,0,1,1"::box)
and the operator

MYBOXES.description ==="0,0,1,1"::box

is thatPOSTGRESattempts to optimize operators and can decide to use antmdsstrict the search space
when operators areviolved. Havever, there is no attempt to optimize functions, and/tae performed

by brute force.Moreover, functions can ha any mmber of arguments while operators are restricted to
one or two.

EXAMPLE
/*
* T he following command defines a new operator,
* area-equality, for the BOX data type.

*/
define operator ===
argl = box,
arg2 = box,

procedure = area_equal_procedure,
precedence = 30,

associativity = left,

commutator = ===,

negator = ==,

restrict = area_restriction_procedure,
hashes,

join = area-join-procedure,

sort = <<<, <<<)

SEE ALSO
define function(commands), rer@@erator(commands).

03/12/94 92

DEFINE OPERAOR(COMMANDS) DEFINEOPERA'OR(COMMANDS)

BUGS
Operator names cannot be composed of alphabetic characters in Version 4.2.

Operator precedence is not implemented in Version 4.2.

If an operator is defined before its commuting operator has been defined (a case spedcifivatlyaginst
above), a dummy operator with valid fields will be placed in the system catalodis may interfere with
the definition of later operators.

03/12/94 93

DEFINE RULE(COMMANDS) DEFINERULE(COMMANDS)

NAME
define rule — define a nerule

SYNOPSIS
define[instance| rewrite] rule rule_name
[as exception taule_name_2]
is onevent
to object [from clause)where clause]
do [instead
[action | nothing Jactions.]]

DESCRIPTION
Define ruleis used to define a werule. Thereare two implementations of the rules system, one based on
query rewrite and the other based amstance-level processing. Irgeneral, the instancevid system is
more efficient if there are mgamules on a single class, eachveing a small subset of the instanc@he
rewrite system is more efficient if ige scope rules are being defined. The user can optionally choose which
rule system to use by specifyingwrite or instancein the commandIf the user does not specify which
system to useROSTGRESIefaults to using the instancesg system. Inthe long runrPOSTGRESWwill auto-
matically decide which rules system to use and the possibility of user selection will edemo

Here,ewentis one ofretrieve, replace deleteor append Obijectis either:
a dass name
or
class.column
Thefrom clause, thavhere clause, and thactionare respectely normalPOSTQUELfrom clauseswhere
clauses and collections BOSTQUELcommands with the following change:

new or current can appear instead of an instance variable wieeras instance
variable is permissible iROSTQUEL

The semantics of a rule is that at the time an individual instance is accessed, updated, inserted or deleted,
there is acurrent instance (for retriees, replaces and deletes) andhew instance (for replaces and
appends). Ithe event specified in then clause and the condition specified in tigere clause are true for
the current instance, then thetion part of the rule isxecuted. Firsthowever, values from fields in the
current instance and/or themenstance are substituted for:

current.attribute-name

new.attribute-name
The action part of the rule xecutes with same command and transaction identifier as the user command
that caused aefition.

A note of caution abolROSTQUELrules is in order If the same class name or instance variable appears in
the event, where clause and thaction parts of a rule, theare all considered different tupleanables.
More accuratelynew andcurrent are the only tuple variables that are shared between these cl&oses.
example, the following tw rules hae the same semantics:

on replace to EMP.salary where EMP.name = "Joe"
do replace EMP (...) where ...

on replace to EMP-1.salary where EMP-2.name = "Joe"
do replace EMP-3 (...) where ...

Each rule can ha the optional tagnstead Without this tagaction will be performed in addition to the

user command when thegeat in the condition part of the rule occurilternately the action part will be
done instead of the user command. In this later case, the action can égbre kothing.

01/23/93 94

DEFINE RULE(COMMANDS) DEFINERULE(COMMANDS)

When choosing between the rewrite and instance rule systems for a particular rule application, remember

that in the rewrite systeurrent refers to a relation and some qualifiers whereas in the instance system it
refers to an instance (tuple).

It is very important to note that threwrite rule system will neither detect nor process circular rules. F

example, though each of the folling two rule definitions are accepted BYpDSTGRESthe retrieve com-
mand will caus®OSTGRESo crash

/*
* E xample of a circular rewrite rule combination.
*/
define rewrite rule bad_rule_combination_1 is
on retrieve to EMP
do instead retrieve to TOYEMP

define rewrite rule bad_rule_combination_2 is
on retrieve to TOYEMP
do instead retrieve to EMP

/*
* T his attempt to retrieve from EMP will cause POSTGRESto crash.
*/

retrieve (EMP.all)

You must hae rule definitionaccess to a class in order to define a rule on itcfsa®e acl(commands).

EXAMPLES
/-k
* Make Sam get the same salary adjustment as Joe
*/
define rule example_1 is
on replace to EMP.salary where current.name = "Joe"
do replace EMP (salary = new.salary)
where EMP.name = "Sam"

At the time Joe recets a slary adjustment, thevent will become true and Jaeturrent instance and pro-
posed ne instance arevailable to the gecution routines.Hence, his ne salary is substituted into the
actionpart of the rule which is subsequentkeeuted. Thigpropagates Jogsalary on to Sam.

/-k
* Make Bill get Joe’s salary when it is accessed
*/
define rule example_2 is
on retrieve to EMP.salary
where current.name = "Bill"
do instead
retrieve (EMP.salary) where EMP.name = "Joe"

/*
* Deny Joe access to the salary of employees in the shoe

01/23/93 95

DEFINE RULE(COMMANDS) DEFINERULE(COMMANDS)

* d epartment. (pg_username() returns the name of the current user)
*/
define rule example_3 is
on retrieve to EMP.salary
where current.dept = "shoe"
and pg_username() = "Joe"
do instead nothing

/*
* Create a view of the employees working in the toy department.
*

create TOYEMP(name = charl®6, salary = int4)

define rule example_4 is
on retrieve to TOYEMP
do instead retrieve (EMP.name, EMP.salary)
where EMP.dept = "toy"

/*
* All new employees must make 5,000 or less
*
define rule example 5 is
on append to EMP where new.salary > 5000
do replace new(salary = 5000)

SEE ALSO
postquel(commands), rew®ule(commands), define view(commands).

BUGS
Exceptions are not implemented in Version 4.2.

The object in @0STQUELrule cannot be an array reference and canna pirameters.

Aside from the “oid” field, system attributes cannot be referenced anywhere in &Anubgg other things,
this means that functions of instances (e.g., “foo(emp)” where “emp” is a class) cannot be galleztan
inarule.

Thewhere clause cannot va afrom clause.

Only onePOSTQUELcommand can be specified in thetion part of a tuple rule and it can only be a
replace append retrieve or deletecommand.

The rewrite rule system does support multiple action rules as langratss notretrieve.

The query rewrite rule systemw@upports most rule semantics, and closely parallels the tuple syktem.

also attempts tovaid odd semantics by running instead rules before non-instead rules.

Both rule systems store the rule text and query plans as texttatibThismplies that creation of rules

may fail if the rule plus itsarious internal representations exceed some value that is on the order of one

page (8KB).

01/23/93 96

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

NAME
define type — define a webase data type

SYNOPSIS
define typetypenameinternallength = (number | variable),

[externallength= (number | variable),]
input = input_function,
output = output_function
[, dement=typename]
[, delimiter = <character>]
[, default = "string"]
[, send=send_function]
[, receve =receve_function]
[, passedbyvalu§)

DESCRIPTION
Define typeallows the user to register ameiser data type witlPOSTGRESfor use in the current data
base. Thaiser who defines a type becomes wser. Typenameds the name of the metype and must be
unique within the types defined for this database.

Define typerequires the registration of onfunctions (usinglefine functiofcommands)) before defining

the type. The representation of awtaase type is determined lyput_function which comwerts the types

external representation to an internal representation usable by the operators and functions defined for the
type. Naturallyoutput_functiorperforms the neerse transformationBoth the input and output functions

must be declared to takne or tw arguments of type “any”.

New base data types can beéeiik length, in which cas@ternallength is a positve integer or variable
length, in which casBOSTGRESassumes that theweype has the same format as BH@STGRESsupplied
data type, “tet”. To indicate that a type is variable-length, sgérnallength to variable The eternal
representation is similarly specified using ¢éhernallengthkeyword.

To indicate that a type is an array and to indicate that a type has array elements, indicate the type of the
array element using thdementkeyword. For example, to define an array of 4 byte integers (“int4”), spec-

ify

element = int4

To indicate the delimiter to be used on arrays of this tgpkmiter can be set to a specific charactéhe

default delimiter is the comma (“,”) character.

A default value is optionally gailable in case a user wants some specific bit pattern to mean “data not pre-
sent.”

The optional functionsend_functiorandreceive_functiorare used when the application program request-

ing POSTGRESservices resides on a different machine. In this case, the machine orP@SITBRESUNS

may use a different format for the data type than used on the remote mdnltinis.case it is appropriate

to corvert data items to a standard form wheamdng from the server to the client and eerting from the
standard format to the machine specific format when theseseives the data from the client. If these
functions are not specified, then it is assumed that the internal format of the type is acceptable on all rele-
vant machine architecturedzor example, single characters do nowéd be orverted if passed from a

Sun-4 to a DECstation, but maather types do.

The optionalpassedbyvaludlag indicates that operators and functions which use this data type should be
passed an argument bglwe rather than by reference. Note that only types whose internal representation is
at most four bytes may be passed by value.

01/23/93 97

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

For new base types, a user can define operators, functions andyaggrasing the appropriatadilities
described in this section.

ARRAY TYPES
Two generalized built-in functionsarray_in and array_out, exist for quick creation of ariable-length
array types. These functions operate on arraysy&dsting POSTGRESype.

LARGE OBJECT TYPES
A “regular’POSTGRESype can only be 8192 bytes in lenglfiyou need a larger type you must create a
Large Object type. The interface for these types is discussed at length in Section 7, the large object inter
face. Theength of all large object types isnglys variable,meaning thénternallength for large objects is
always -1.

EXAMPLES
/*
* T his command creates the box data type and then uses the
* t ype in a class definition
*/
define type box (internallength = 8,
input = my_procedure_1, output = my_procedure_2)

create MYBOXES (id = int4, description = box)

/*
* T his command creates a variable length array type with
* i nteger elements.
*/
define type intdarray
(input = array_in, output = array_out,
internallength = variable, element = int4)

create MYARRAYS (id = int4, numbers = intd4array)

/*
* T his command creates a large object type and uses it in
* a c lass definition.
*
define type bigobj
(input = lo_filein, output = lo_fileout,
internallength = variable)

create BIG_OBJS (id = int4, obj = bigobj)

RESTRICTIONS
Type names cannot begin with the underscore character (*_") and can only be 15 charactérkisoisg.

becausePOSTGRESsilently creates an array type for each base type with a name consisting of the base
type’s rame prepended with an underscore.

01/23/93 98

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

SEE ALSO
define function(commands), define operator(commands), venygpe(commands), introduction(tpe
objects).

01/23/93 99

DEFINE VIEW(COMMANDS) DEFINE VIEW(COMMANDS)

NAME
define viev — construct a virtual class
SYNOPSIS
define viewview_name
([dom_name_%] expression_1
{, [dom_name_&] expression_i})
[from from_list]
[wherequal]
DESCRIPTION
Define viewwill define a viev of a dass. Thisview is not physically materialized; instead the rule system
is used to support wieprocessing as in [SIN90]. Specificallya query rewrite retriee rule is automati-
cally generated to support retrgeegperations on vies. Thenthe user can add as nyaupdate rules as he
wishes to specify the processing of update operationswsvi€egSTON9O0] for a detailed discussion of
this point.
EXAMPLE
/*
* d efine a view consisting of toy department employees
*/
define view toyemp (e.name)
from e in emp
where e.dept = "toy"
/*
* S pecify deletion semantics for toyemp
*/
define rewrite rule examplel is
on delete to toyemp
then do instead delete emp where emp.OID = current.OID
SEE ALSO

create(commands), define rule(commands), postquel(commands).

01/23/93 100

DELETE(COMMANDS) DELETE(COMMANDS)

NAME
delete — delete instances from a class

SYNOPSIS
deleteinstance_variableffom from_list] [where qual]

DESCRIPTION
Delete removes instances which satisfy the qualificatiomual, from the class specified by
instance_variable Instance_variablés either a class name or a variable assignéhby list If the qual-
ification is absent, the effect is to delete all instances in the class. The result is a valid, but empty class.

You must hae write access to the class in order to modify it, as well as read accegsctassnwvhose al-
ues are read in the qualification (skange acl(commands).

EXAMPLE
/*
* Remove all employees who make over $30,000
*
delete emp where emp.sal > 30000

/*
* Clear the hobbies class
*/

delete hobbies

SEE ALSO
destroy(commands).

01/23/93 101

DESTROY(COMMANDS) DESTROY(COMMANDS)

NAME
destry — destrgy existing classes

SYNOPSIS
destroy classname-1 {classname-i }

DESCRIPTION
Destroy removes dasses from the data base. Only its owner may deatdass. Aclass may be emptied
of instances, but not destroyed, by usietptécommands).

If a class being destroyed has secondary indices on it, thewilhbe remwed first. Theremoval of just a
secondary indewill not affect the indred dass.

This command may be used to degteo version class which is not a parent of some ottesion.
Destrgying a class which is a parent of ersion class is disalleed. Insteadmeige(commands) should be
used. Morewer, destrgying a class whose fields are inherited by other classes is similarly wis@llcAn
inheritance hierarghmust be destroyed from leaf/i# to root level.

The destruction of classes is notasable. Thusa destrgred class will not be rewgered if a transaction
which destroys this class fails to commit. In addition, historical access to instances in yededtss is
not possible.

EXAMPLE
/*
* Destroy the emp class
*/
destroy emp

/*
* Destroy the emp and parts classes
*/

destroy emp, parts

SEE ALSO
delete(commands), merge(commands), reiedex(commands).

02/14/94 102

DESTROYDB(COMMANDS) DESTROYDB(COMMANDS)

NAME
destroydb — destyoan «isting database

SYNOPSIS
destroydb dbname

DESCRIPTION
Destroydb removes the catalog entries for an existing database and deletes the directory containing the
data. Itcan only be xecuted by the database administrator (yeatedlifcommands) for details).

SEE ALSO
createdb(commands), destroydb(unix).

BUGS
This query shoultNOT be executed interactiely. Thedestroydlfunix) script should be used instead.

01/23/93 103

END(COMMANDS) END(COMMANDS)

NAME
end — commit the current transaction

SYNOPSIS
end

DESCRIPTION
This commands commits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

SEE ALSO
abort(commands), begin(commands).

01/23/93 104

EXTEND INDEX(COMMANDS) EXTEND INDEX(COMMANDS)

NAME
extend indet — extend a partial secondary index
SYNOPSIS
extend indexindex-name\jvhere qual]
DESCRIPTION
This command extends the existing partial indaledindex-name.
If a qual is given, the ind& will be extended to aer al instances that satisfy the predicate specified by
qual (in addition to the instances the ixd@ready cwers). If noqualis given, the ind& will be extended
to be a complete inde Notethat the predicate may only refer to attributes of the class on which the speci-
fied partial ind& was defined (sedefine indegcommands)).
EXAMPLE
/*
* Extend a partial index on employee salaries to include
* all employees over 40
*/
extend index empsal where emp.age > 39
SEE ALSO

define index(commands), rem®index(commands).

02/13/94 105

FETCH(COMMANDS) FETCH(COMMANDS)

NAME
fetch — fetch instance(s) from a portal
SYNOPSIS
fetch [(forward | backward)] [(number [all)] [in portal_name]
DESCRIPTION
Fetch allows a user to retne instances from a portal nam@drtal hame The number of instances
retrieved is ecified bynumber If the number of instances remaining in the portal is lessrbarber
then only those \ailable are fetched.Substituting the &word all in place of a number will cause all
remaining instances in the portal to be regik Instancesnay be fetched in botforward and backward
directions. Thealefault direction iorward.
Updating data in a portal is not supportedHFySTGRES because mapping portal updates back to base
classes is impossible in general as witwipdates. Consequentlysers must issue explicit replace com-
mands to update data.
Portals may only be used inside of transaction blocks markdskdiy(commands) anéndcommands)
because the data that yretore spans multiple user queries.
EXAMPLE
/-k
* s et up and use a portal
*/
begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g
end \g
/*
* F etch all the instances available in the portal FOO
*/
fetch all in FOO
/*
* Fetch 5 instances backward in the portal FOO
*/
fetch backward 5 in FOO
SEE ALSO
begin(commands), end(commands), close(commandskg(commands), retrie(commands).
BUGS

Currently the smallest transaction ROSTGRESS a singlePOSTQUELcommand. Ishould be possible for
a dngle fetch to be a transaction.

01/23/93 106

LISTEN(COMMANDS) LISTEN(COMMANDS)

NAME
listen — listen for notification on a relation

SYNOPSIS
listen class_name

DESCRIPTION
listen is used to register the current backend as a listener on the relassnname When the command
notify class_namés called either from within a rule or at the queryelethe frontend applications corre-
sponding to the listening backends are notified. When the backend process exits, this registration is cleared.
This event notification is performed through théBPQ protocol and frontend application intace. The
application program must explicitly polllaBPQ global \ariable,PQAsyncNotifyWaitingand call the rou-
tine PQnotifiesin order to find out the name of the class to whichvangiotification corresponds. If this
code is not included in the application, tlverg notification will be queued andvee be pocessed.

SEE ALSO
define rule(commands), notify(commands), reasfeommands), libpg.

BUGS

There is no way to ulisten except to drop the connection (i.e., restart the backend server).

Themonitor(unix) command does not poll for asynchronousts.

03/12/94 107

LOAD(COMMANDS) LOAD(COMMANDS)

NAME
load — dynamically load an object file
SYNOPSIS
load "filename"
DESCRIPTION
Load loads an object (or ".0") file INtBOSTGRES address space. Once a file is loaded, all functions in
that file can be accessed. This function is used in support of ADT'’s.
If a file is not loaded using tHead command, the file will be loaded automatically the first time the func-
tion is called byPOSTGRES Load can also be used to reload an object file if it has been edited and recom-
piled. Onlyobjects created from C language files are supported at this time.
EXAMPLE
/*
* | oad the file /usr/postgres/demol/circle.o
*
load "/usr/postgres/demol/circle.o”
CAVEATS

Functions in loaded object files should not call functions in other object files loaded throlmadtbem-
mand, meaning, for example, that all functions in file A should call each fihetions in the standard or
math libraries, or iPOSTGREStself. The should not call functions defined in a féifent loaded file B.
This is because if B is reloaded, tr@STGREJoader is not "smart" enough to relocate the calls from the
functions in A into the ng address space of B. If B is not reloaded, hesuethere will not be a problem.

On DECstations, you must uSen/ccwith the “-G 0” option when compiling object files to be loaded.

Note that if you are portingOSTGRES0 a nev platform, theload command will hae t work in order to
support ADTs.

01/23/93 108

MERGE(COMMANDS) MERGE(COMMANDS)

NAME
merge — merge tovdasses

SYNOPSIS
mergeclassnameinto classname2

DESCRIPTION
Merge will combine a version clasglassnamelwith its parent,classname2 If classnameds a base
class, then this operation merges a differently encodsdtoflassnamelinto its parent. On the other
hand, if classnameds also a version, then this operation combines tifferentially encoded &ets
together into a single one. In either casg @nldren ofclassnamebecome children aflassname2

A version class may not be merged into its parent class when the parent class is also the parent of another
version class.
However, merging in the reerse direction is alled. Specificallymeming the parentlassnamelwith a

version, classname2causesclassname2o become disassociated from its parent. As a sigete€lass-
namelwill be destroyed if is not the parent of some other version class.

EXAMPLE
/*
* Combine office class and employee class
*/
merge office into employee
SEE ALSO

create version(commands), destroy(commands).

BUGS
Merge is not implemented in Version 4.2.

02/12/94 109

MOVE(COMMANDS) MOVE(COMMANDS)

NAME
move — move he pointer in a portal

SYNOPSIS
move [(forward | backward)]
[(number [all |to (number | record_qual))]
[in portal_name]

DESCRIPTION
Move allows a user to me theinstance pointewithin the portal namegortal_name Each portal has an

instance pointerwhich points to the previous instance to be fetched. wgya points to before the first
instance when the portal is first created. The pointer can bedrfarward or backward It can be mued
to an absolute position ove a certain distance. An absolute position may be specified by tmjrdis-
tance is specified by a numbétecord _quals a qualification without instance variables, agges, or set
expressions which can bgatuated completely on a single instance in the portal.

EXAMPLE
/*
* Move backwards 5 instances in the portal FOO
*
move backward 5 in FOO

/*
* Move to the 6th instance in the portal FOO
*

move to 6 in FOO

SEE ALSO
close(commands), fetch(commands), regieommands).

BUGS
Move is not implemented in Version 4.2. The portal pointer may beethasing fetchlcommands) and

ignoring its return values.

02/12/94 110

NOTIFY(COMMANDS) NOTIFY(COMMANDS)

NAME
notify — signal all frontends and backends listening on a class

SYNOPSIS
notify class_name

DESCRIPTION
notify is used to waken dl backends and consequently all frontends thae lexeutedlisten(commands)
on class_name This can be used either within an instanaelleule as part of the action body or from a
normal query When used from within a normal quetliis can be thought of as interprocess communica-
tion (IPC). When used from within a rule, this can be thought of as an alerter mechanism.

Notice that the mereatt that anotify has beenecuted does not imply anything in particular about the
state of the class (e.g., that it has been updated), nor does the notification protocol trgnseftibimfor
mation other than the class naniherefore, alhotify does is indicate that some backend wishes its peers
to examineclass_namén some application-specific way.

This event notification is performed through théBPQ protocol and frontend application intacke. The
application program muskplicitly poll a LIBPQ global \ariable,PQAsyncNotifyWaitingand call the rou-
tine PQnotifiesin order to find out the name of the class to whichvaengnotification corresponds. If this
code is not included in the application, tlverg notification will be queued andvee be processed.

SEE ALSO
define rule(commands), listen(commands), libpg.

03/14/94 111

PURGE(COMMANDS) PURGE(COMMANDS)

NAME
purge — discard historical data

SYNOPSIS
purge classname lpefore abstime] [after reltime]

DESCRIPTION
Purge allows a user to specify the historical retention properties of a dia®e date specified is an abso-
lute time such as “Jan 1 198POSTGRESWill discard tuples whose validity expired before the indicated
time. Purge with no beforeclause is equielent to “purge before now”. Until specified with a purge com-
mand, instance preservation defaults to ‘feré

The user may pge a class at grtime as long as the purge dateeradecreasesPOSTGRESWill enforce
this restriction, silently.

Note that theourge command does not do anything except set a parameter for system opddageac-
uum(commands) to enforce this parameter.

EXAMPLE
/*
* Always discard data in the EMP class
* prior to January 1, 1989
*/
purge EMP before "Jan 1 1989"

/*
* Retain only the current data in EMP
*/

purge EMP

SEE ALSO
vacuum(commands).

BUGS AND CAVEATS
Error messages are quite unhelpfalcomplaint about “inconsistent times” followed byeel nine-digit

numbers indicates an attempt to “back up” a purge date on a relation.

You cannot purge certain system catalogs (nanfgly_class”, “pg_attribute”, “pg_am”, and “pg_amop”)
due to circularities in the system catalog code.

This definition of thepurge command is really only useful for non-anedd relations, since tuples will not
be discarded from arche relations (thg are never vacuumed).

02/08/94 112

REMOVE AGGREGA E(COMMANDS) REMOVE AGGREGATE(COMMANDS)

NAME
remove ggregae — remee the definition of an agggete

SYNOPSIS
remove aggregateaggname

DESCRIPTION
Remove aggregatewill remove dl reference to an existing aggate definition. To execute this command
the current user must be the the owner of the ggigre

EXAMPLE
/*
* Remove the average aggregate
*
remove aggregate avg

SEE ALSO
define aggrgate(commands).

01/23/93 113

REMOVE FUNCTION(COMMANDS) REMOVE FUNCTION(COMMANDS)

NAME
remove function — remue a er-defined C function
SYNOPSIS
remove function function_name [type-1 {, type-n}])
DESCRIPTION
Remove function will remove references to an existing C functiofio execute this command the user
must be the owner of the function. The input argument types to the function must be specified, as only the
function with the gien name and argument types will be rered.
EXAMPLE
/*
* t his command removes the square root function
*/
remove function sqrt(int4)
SEE ALSO
define function(commands).
BUGS

No checks are made to ensure that types, operators or access methods that rely on the fis&ien ha
removed first.

03/12/94 114

REMOVE INDEX(COMMANDS) REMOVE INDEX(COMMANDS)

NAME
remove index — removes an ndex from POSTGRES

SYNOPSIS
remove indexindex_name

DESCRIPTION
This command drops an existing indeom thePOSTGRESsystem. © execute this command you must be
the owner of the index.

EXAMPLE
/*
* t his command will remove the "emp_index" index
*
remove index emp_index

SEE ALSO
define index(commands).

03/12/94 115

REMOVE OPERAOR(COMMANDS) REMO/E OPERA'OR(COMMANDS)

NAME
remove goerator — remee a operator from the system
SYNOPSIS
remove gperator opr_desc
DESCRIPTION
This command drops an existing operator from the databEsexecute this command you must be the
owner of the operator.
Opr_desds the name of the operator to be remtbfollowed by a parenthesized list of the operand types
for the operator The left or right type of a left or right unary operat@spectrely, may be specified as
none
It is the uses responsibility to remee any acess methods, operator classes, etc. that rely on the deleted
operator.
EXAMPLE
/*
* Remove power operator a’n for int4
*
remove operator ~ (int4, int4)
/*
* Remove left unary operator 'a for booleans
*
remove operator ! (none, bool)
/*
* Remove right unary factorial operator a! for int4
*
remove operator ! (int4, none)
/*
* Remove right unary factorial operator a! for int4
* (default is right unary)
*/
remove operator ! (int4)
SEE ALSO

define operator(commands).

02/01/94 116

REMOVE RJLE(COMMANDS) REMOVE RULE(COMMANDS)

NAME
remove le — remees a airrent rule fromPOSTGRES

SYNOPSIS
remove [instance| rewrite] rule rule_name

DESCRIPTION
This command drops the rule named rule_name from the spee@i®TUGRESrule system.POSTGRES
will immediately cease enforcing it and will purge its definition from the system catalogs.

EXAMPLE
/*
* T his example drops the rewrite rule example_1
*
remove rewrite rule example_1

SEE ALSO
define rule(commands), ren®\view(commands).

BUGS
Once a rule is dropped, access to historical information the rule has written may disappear.

01/23/93 117

REMOVE TYPE(COMMANDS) REMOVE TYPE(COMMANDS)

NAME
remove ype — remee a ser-defined type from the system catalogs
SYNOPSIS
remove type typename
DESCRIPTION
This command rems a ser type from the system catalogs. Only the owner of a type canedmo
It is the uses responsibility to remee any @erators, functions, aggraes, access methods, sub-types,
classes, etc. that use a deleted type.
EXAMPLE
/-k
* r emove the box type
*
remove type box
SEE ALSO
introduction(commands), define type(commands), kentperator(commands).
BUGS

It is still possible to reme huilt-in types.

01/23/93 118

REMOVE VIEW(COMMANDS) REMOVE VIEW(COMMANDS)

NAME
remove view — removes a view from POSTGRES

SYNOPSIS
remove view view_name

DESCRIPTION
This command drops an existing wiérom thePOSTGRESsystem. © execute this command you must be
the owner of the vig.

EXAMPLE
/*
* t his command will remove the "myview" view
*
remove view myview

SEE ALSO
define view(commands), rem® rule(commands),

04/25/94 119

RENAME(COMMANDS) RENAME(COMMANDS)

NAME
rename — rename a class or an attribute in a class

SYNOPSIS
rename classnamelo classname?2
renameattnameln classname*] to atthame2

DESCRIPTION
The rename command causes the name of a class or atitritn change without changingyaof the data
contained in the affected class. Thus, the class or attribute will remain of the same type and size after this
command isecuted.

In order to rename an attute in each class in an entire inheritance hieyarate theclassnameof the
superclass and append a “*". (By default, the attribute will not be renameg of Hre subclassesJhis
shouldalwaysbe done when changing an attribute name in a superclass. If it is not, queries on the inheri-
tance hierarchsuch as

retrieve (s.all) from s in super*

will not work because the subclasses will be (in effect) missing an attribute found in the superclass.

You must own the class being modified in order to rename it or part of its schema. Renaynpag: ar
the schema of a system catalog is not permitted.

EXAMPLE
/*
* ¢ hange the emp class to personnel
*/
rename emp to personnel

/*
* ¢ hange the sports attribute to hobbies
*/

rename sports in emp to hobbies

/*
* make a change to an inherited attribute
*/
rename last_name in person* to family_name

BUGS
Execution of historical queries using classes and attributes whose naraehdraged will produce incer
rect results in mansituations.

Renaming of types, operators, rules, etc., should also be supported.

02/08/94 120

REPLACE(COMMANDS) REPLACE(COMMANDS)

NAME
replace — replace values of attributes in a class
SYNOPSIS
replaceinstance_variabléatt name-E expression-1
{, att_name-F expression-i })
[from from_list]
[wherequal]
DESCRIPTION
Replacechanges the values of the attributes specifigdrget_list for all instances which satisfy the quali-
fication,qual. Only the attributes to be modified need appedaige_list.
Array references use the same syntax fourrdtiteve(commands). Thds, either single array elements, a
range of array elements or the entire array may be replaced with a single query.
You must hae write access to the class in order to modify it, as well as read acceysctassnwhose al-
ues are mentioned in the target list or qualification ¢barge acl(commands).
EXAMPLES
/*
* Give all employees who work for Smith a 10% raise
*/

replace emp(sal = 1.1 * emp.sal)
where emp.mgr = "Smith"

/-k
* Replace the middle element of a 3x3
* n oughts-and-crosses board with an O.
*/
replace tictactoe (board[2][2] = "O")
where tictactoe.game = 1

/*
* Replace the entire middle row of a 3x3
* n oughts-and-crosses board with Os.
*/
replace tictactoe (board[2:2][1:3] = "{0,0,0}")
where tictactoe.game = 2

/*
* Replace the entire 3x3 noughts-and-crosses
* b oard from game 2 with that of game 4
*/
replace tictactoe (board = ttt.board)
frmo ttt in tictactoe
where tictactoe.game = 2 and
ttt.game = 4

06/13/93 121

REPLACE(COMMANDS) REPLACE(COMMANDS)

SEE ALSO
postquel(commands), create(commands), replace(commandsygfetiemands).

06/13/93 122

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

NAME

retrieve — retrieve instances from a class

SYNOPSIS

retrieve

[(into classname [arct®_mode] |

portal portal_name |

iportal portal_name)]
[unique]
([attr_name-1=] expression-1 {[attr_name-F] expression-i})
[from from_list]
[where qual]
[sort by attr_name-1Using operator]

{ , attr_name-j{ising operator] }]

DESCRIPTION

Retrieve will get all instances which satisfy the qualificatigual, compute the alue of each element in
the target list, and either (1) return them to an application program through one d@ffesent kinds of
portals or (2) store them in amelass.

If classnamés specified, the result of the query will be stored inva class with the indicated name. If an
archive gecification,archive_modeof light, heavy or noneis not specifed, then it defaults ltght archiv-
ing. (Thisdefault may be changed at a site by theADBThe current user will be thewmer of the ne
class. Theclass will hae dtribute names as specified in the target I&tclass with this name owned by
the user must not alreadyigt. Thekeyword all can be used when it is desired to rewidl fields of a
class.

If no resultclassnames specified, then the result of the query will beilable on the specified portal and
will not be saed. If no portal name is specified, the blank portal is used utlefror a portal specified
with theiportal keyword, retrizze passes data to an application withoutvasion to external formatFor

a portal specified with theortal keyword, retrieve passes data to an application after firstveding it to

the external representatiorzor the blank portal, all data is comted to aternal format. Duplicate
instances are not rewl when the result is displayed through a portal unless the optioigle tag is
appended, in which case the instances in tlyetéist are sorted according to the sort clause and duplicates
are remoed before being returned.

Instances retriged into a portal may be fetched in subsequent queries by usirigtthecommand. Since
the results of aetrieve portal span queriesetrieve portal may only be gecuted inside of &egin/end
transaction block. Attempts to use named portals outside of a transaction block will resulétinirgw
message from the parsand the query will be discarded.

Thessort clause allows a user to specify that he wishes the instances sorted according to the corresponding
operator This operator must be a binary one returning a boolean. Multiple sort fields are allowed and are
applied from left to right.

The target list specifies the fields to be retie Eachattr_namespecifies the desired attribute or portion
of an array attribte. Thusgachattr _nametakes the form

class_name.att_name
or, if the user only desires part of an array,
/-k

* Specify a lower and upper index for each dimension
* (i.e., clip arange of array elements)

03/13/94 123

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

*/
class_name.att_name][lindex-1:ulndex-1]..[liIndex-i:ulndex-i]

/*

* Specify an exact array element

*
class_name.att_name[ulndex-1]..[ulndex-i]

where eactindexor ulndexis an integer constant.

When you retriee an atribute which is of a completype, the behavior of the system depends on whether
you used "nested dots" to project out attributes of the conype or not. See the examples belo

You must hae read access to a class to read its valuesc{sage acl(commands).

EXAMPLES
/-k
* Find all employees who make more than their manager
*/
retrieve (e.name)
from e, min emp
where e.mgr = m.name
and e.sal > m.sal

/*
* Retrieve all fields for those employees who make
* more than the average salary
*/

retrieve into avgsal(ave = float8ave {emp.sal}) \g

retrieve (e.all)
from e in emp
where e.sal > avgsal.ave \g

/*
* Retrieve all employee names in sorted order
*/
retrieve unique (emp.name)
sort by name using <

/*
* Retrieve all employee names that were valid on 1/7/85
* in s orted order
*/
retrieve (e.name)
from e in emp["January 7 1985"]
sort by name using <

03/13/94 124

RETRIEVE(COMMANDS)

/-k
* Construct a new class, raise, containing 1.1
* t imes all employee’s salaries
*/

retrieve into raise (salary = 1.1 * emp.salary)

/-k
* Do a r etrieve into a portal
*
begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g
end \g

/-k
* Retrieve an entire 3x3 array that represents
* a p articular noughts-and-crosses board.
* T his retrieves a 3x3 array of char.
*
retrieve (tictactoe.board)
where tictactoe.game = 2

/*
* Retrieve the middle row of a 3x3 array that
* r epresents a noughts-and-crosses board.
* T his retrieves a 1x3 array of char.
*/
retrieve (tictactoe.board[2:2][1:3])
where tictactoe.game = 2

/-k
* Retrieve the middle element of a 3x3 array that
* r epresents a noughts-and-crosses board.
* T his retrieves a single char.
*
retrieve (tictactoe.board[2][2])
where tictactoe.game = 2

/*
* Retrieve all attributes of a class "newemp" that
* ¢ ontains two attributes, "name" and a complex type
* " manager" which is of type "newemp". Since each
* ¢ omplex attribute represents a procedure recorded

03/13/94

RETRIEVE(COMMANDS)

125

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

* in pg_proc", the system will return the object IDs
* of e ach procedure. In this example, POSTGRES will
* r eturn tuples of the form ("carol", 34562),
* ("sunita", 45662), and so on. The "manager" field
* is r epresented as an object ID.
*
retrieve (newemp.name, newemp.manager)

/*
* In o rder to see the attributes of a complex type, they
* must be explicitly projected. The following query will
* r eturn tuples of the form
* ("carol", "mike", 23434), ("sunita", "mike", 23434)
*/

retrieve (newemp.name, newemp.manager.name,

newemp.manager.manager)

SEE ALSO
append(commands), close(commands), create(commands), fetch(commands), postquel(commands),
replace(commands).

BUGS
Retrieve into does not delete duplicates.

Archive_modas not implemented in Version 4.2.

If the backend crashes in the course>aating aretrieve into, the class file will remain on disk. It can
be safely remeed by the database DBA, but a subsequettrie ve into to the same name will fail with a
cryptic error message about "BlockExtend".

Retrieve iportal returns data in an architecture dependent format, namely that of the server on which the
backend is runningA standard data format, such as XDR, should be adopted.

Aggregae functions can only appear in the target list.

03/13/94 126

VACUUM(COMMANDS) VACUUM(COMMANDS)

NAME
vacuum — vacuum a database

SYNOPSIS
vacuum

DESCRIPTION
Vacuum is thePOSTGRESvacuum cleaner It opens gery class in the database, ves celeted records to
the archie for archved relations, cleans out records from aborted transactions, and updates statistics in the
system catalogs. The statistics maintained include the number of tuples and number of pages stored in all
classes. Runningacuum periodically will increasé?OSTGRES speed in processing user queries.

The open database is the one thagisuumed. Thiss a nev POSTQUELcommand in Version 4.2; earlier
versions ofPOSTGREShad a separate program for vacuuming databases. That program has been replaced
by thevacuungunix) shell script.

We recommend that production databases be vacuumed nigtalger to keep statistics reladly current.
The vacuum query may be xecuted at ay time, havever. In particular after copying a large class into
POSTGRESor deleting a large number of records, it may be a good idea to isagauam query This will
update the system catalogs with the results of all recent changes, anthaBh®STGRESjuery optimizer
to male better choices in planning user queries.

SEE ALSO
vacuum(unix).

01/23/93 127

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SECTION 5 — LIBPQ

DESCRIPTION
LIBPQ is the programmeg’interface toPOSTGRES LIBPQ is a set of library routines which aloqueries
to pass to theOSTGRESackend and instances to return through an IPC channel.

This wersion of the documentation is based on the C libr&hyee short programs are listed at the end of
this section as examplesldBPQ programming (though not necessarily of good programming).

There are agral examples ofIBPQ applications in the following directories:

...Isrc/regress/demo
...Isrc/regress/regress
...Isrc/regress/video
.../src/bin/monitor
.../src/bin/fsutils

CONTROL AND INITIALIZATION
Environment Variables

The following environmentariables can be used to set up default values for an environment amiito a
hard-coding database names into an application program:

PGHOST sets the default server name.

PGDATABASE sets the defauROSTGRESIatabase name.

PGPORT sets the default communication port with FH@STGRESackend.
PGTTY sets the file or tty on which debugging messages from the backend server are displayed.
PGREALM sets theKerberosrealm to use witlPOSTGRESIf it is different from the local realmif

PGREALM is set,POSTGRESapplications will attempt authentication with serw for
this realm and use separate ticket filesvimcaconflicts with local tickt files. This eni-
ronment variable is only used Kerberos authentication is enabled; sémtroduc-
tion(unix) for additional information oKerberos

Internal Variables

The following internal variables @fiBPQ can be accessed by the programmer:

char *PQhost; [* the server on which POSTGRES
backend is running. */

char *PQport = NULL; [* The communication port with the
POSTGRESbackend. */

char *PQtty; [* The tty on the PQhost backend on
which backend messages are
displayed. */

char *PQoption; /* Optional arguements to the backend */

char *PQdatabase; /* backend database to access */

03/12/94 128

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

int PQportset = 0; /[* 1 if ¢ ommunication with

backend is established */

int PQxactid = 0; / * Transaction ID of the current
transaction */
int PQtracep = 0; /[* 1 to p rintout front-end
debugging messages */
int PQAsyncNotifyWaiting =0; *1if o neormore asynchronous
notifications have been
triggered */
char PQerrormsg([]; /* null-delimited string containing the

error message (usually from the backend)
when the execution of a query or function
fails */

QUERY EXECUTION FUNCTIONS
The following routines control thexecution of queries from a C program.

PQsetdb

PQdb

PQreset

PQfinish

PQfn

Make the specified database the current database and reset communicati®Quesel
(see below).

void PQsetdb(dbname)
char *dbname;

Returns the name of ttROSTGRESJatabase being accessedNoiLL if no database is
open. Onlyone database can be accessed at a time. The database name is a string lim-
ited to 16 characters.

char *PQdb()

Reset the communication port with the backend in case of erfdiis. function will
close the IPC socket connection to the backend thereby causing<ti®Qexeccall to

ask for a n& one from thepostmaster When the backend notices the socket was closed
it will exit, and when thgoostmasteis asked for the me connection it will start a e
backend.

void PQreset()

Close communication ports with the baokl. Brminates communications and frees up
the memory taken up by théBPQ buffer.

void PQfinish()

Send a function call to thtOSTGRESbaclkend. Preides access to tHeOSTGRESast
path facility, a rapdoor into the system internalSee theFAST FATH section of the
manual.

03/12/94 129

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQexec

PQFlushl

Thefnid agument is the object identifier of the function to Becated. result_lenand
result_bufspecify the expected size (in bytes) of the function retalmevand a tiffer in
which to load the returnalue. Theactual size of the returned value will be loaded into
the space pointed to kactual_result_lenf it is a valid pointer result_typeshould be set
to 1 if the return type is an irger and 2 in all other caseargs and nargs specify a
pointer to a PQArgBIlock structure (see

...Isrc/backend/tmpl/libpg.h

for more details) and the number of arguments, resghcti

PQfnreturns a string containing the character “G” when a return-value has been loaded
into result_buf, or “V” if the function returned nothingPQfn returns aNULL pointer
and load$*Qerrormsgdf any error (fatal or non-fatal) occurs.

PQfnreturns an error ifesult_bufis not large enough to contain the returned value.
char *PQfn(fnid, result_buf, result_len,

actual_result_len,
result_type, args, nargs)

int fnid;
int *result_buf;
int result_len;

int *actual_result_len;
int result_type;
PQArgBIlock *args;
int nargs;

Submit a query tOSTGRES Returns a status indicator or an error message.

If the query returns data (e.getch), PQexeaeturns a string consisting of the character
“P” followed by the name of the portal buffer.

If the query does not returnyaimstances, as in the case with update quePi@exec
will return a string consisting of the character “C” followed by the command tag (e.g.,
“CREPLACE").

If a “copy from stdin” or “copy to gdout” query is gecuted (seeopycommands) for
more details)PQexeawill return the strings “DCOPY” and “BCOPY”, respecy.

A string beginning with the character “I” indicates that the server has finished sending
the results of a multi-query command (e.g., has finished processing an asynchronous por
tal command).

If a non-fatal error occurred during theeeution of the queryPQexecwill return (for
historical reasons) the character “R” and load an error messageQetwormsg If a
fatal error occurred (i.e., the backend crash@f)execreturns the character “E” and
loads an error message i@errormsg

char *PQexec(query)
char *query;

The frontend/backend protocol has a seriows iflethat the queriesxecuted when using
PQfnandPQexeccan cause seral query responses to come back to the frontétud.

03/12/94 130

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

example, during the definition of a viethe server actuallyxecutes seeral queries on

its own to modify the system catalog&nfortunately the implementation of this as
botched and these queries return status messages to the frontend ofithelf the
frontend application only reads one response and then goes xattibeemore queries,
these gtra responses sit in the message queue and the frontend will read theseslefto
instead of reading the responses from its latest queries.

If you arent completely positie that a call td?Qexeavon’t do ©mething more compli-
cated than a simplestrieve, you should probably wrap it in a loop that processes “P”
and “C” responses in the usual whyt also performs

result = PQexec(" "
++dummies_sent;

); I* dummy query */

after receiving each good protocol result. When the first charactePQEgeaesult is
“1", you know you hare receved the last result and kia sarted receiving responses to
your dummy queriesTo get rid of the “I” protocol responses that arevnguffed into
your message buffecall PQFlushlwith the number of dummy queries you sent.

This is horrendously complicated and should bedixMeanwhileyou should look at
...Isrc/bin/monitor/monitor.c
to see an example of a program that handles this problem correctly.

int PQFlushli(i_count)
inti_count;

PORTAL FUNCTIONS
A portal is aPOSTGRESuffer from which instances can Beiched. Eachportal has a string name (eur
rently limited to 16 bytes)A portal is initialized by submitting eetrieve statement using theQexedunc-
tion, for example:

retrieve portal foo (EMP.all)

The programmer can then w@data from the portal intblBPQ by executing afetchstatement, e.g:
fetch 10 in foo
fetch all in foo

If no portal name is specified in a quete default portal name is the string “blank”, known ashilaak
portal. All qualifying instances in a blank portal are fetched immediateihout the need for the pro-
grammer to issue a separégechcommand.

Data fetched from a portal intdBPQ is moved into aportal buffer. Portal names are mapped to portal
buffers through an internal tabl&ach instance in a portalitier has an indenumber locating its position
in the luffer. In addition, each field in an instance has a name (attribute name) and a figldaittdieute
number).

A single retrieve command can return multiple types of instances. This can happetO$ BGRESunc-
tion is eecuted in the waluation of a query or if the query returns multiple instance types from an

03/12/94 131

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

inheritance hierargh Consequentlythe instances in a portal are set ugtioups. Instances in the same
group are guaranteed tovieahe same instance format.

Portals that are associated with normal user commands are syaligittonous In this case, the applica-
tion program is expected to issue a reti¢ollowed by one or more fetch commands. The functions that
follow can nav be wsed to manipulate data in the portal.

PQnportals Return the number of open portal$.rule_pis not 0, then only return the number of
asynchronous portals.

int PQnportals(rule_p)
int rule_p;

PQpnames Return all portal namedf rule_pis not 0, then only return the names of asynchronous
portals. The caller is responsible for allocating sufficent storage for
pnameslhenumbenfnameseturneadanbedeterminedvithacallto PQnpor-
tals().Eactportal nameasatmostPortalNameLength characters long (see
.../src/backend/tmpl/libpg.h).

void PQpnames(pnames, rule_p)

char **pnames;
int rule_p;

PQparray Return the portal buffer gén a portal namepname.

PortalBuffer *PQparray(pname)
char *pname;

PQclear Free storage claimed by porfalame

void PQclear(pname)
char *pname;

PQntuples Return the number of instances (tuples) in a portal bpéeal.

int PQntuples(portal)
PortalBuffer *portal;

PQngroups Return the number of instance groups in a portal bptietal.

int PQngroups(portal)
PortalBuffer *portal

PQntuplesGroup
Return the number of instances in an instance ggooygp_indexassociated with a por
tal bufferportal.

int PQntuplesGroup(portal, group_index)
PortalBuffer *portal;

03/12/94 132

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

int group_index;

PQnfieldsGroup Return the number of fields (attnfes) for the instances (tuples) in instance group

group_indexassociated with portal buffeortal.

int PQnfieldsGroup(portal, group_index)
PortalBuffer *portal;
int group_index;

PQfnameGroup Return the field (attrilite) name for the instances (tuples) in instance ggooygp_index

(associated with portal buffportal) and the field indefield_number

char *PQfnameGroup(portal, group_index, field_number)
PortalBuffer *portal;
int group_index;
int field_number;

PQfnumberGroup

PQgetgroup

PQnfields

PQfnumber

Return the field inde (attribute nhumber) gien the instance grougroup_index(associ-
ated with portal buffeportal) and the field (attribute) nanfeeld_name

int PQfnumberGroup(portal, group_index, field_name)
PortalBuffer *portal;
int group_index;
char *field_name;

Returns the indeof the instance group (associated with portafdy portal) that con-
tains a particular instan¢eple_index

int PQgetgroup(portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

Returns the number of fields (attributes) in an instanpke_indexcontained in portal
buffer portal.

int PQnfields(portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

Returns the field inde(attribute number) of a gén field namefield_namewithin an
instancetuple_indexcontained in portal buffguortal.

int PQfnumber(portal, tuple_index, field_name)
PortalBuffer *portal;
int tuple_index;
char *field_name;

03/12/94 133

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQfname

PQftype

PQsametype

PQgetvalue

PQgetlength

If the portal is blank, or the portalas specified with thportal keyword, all values are returned as null-
delimited strings. It is the programmgresponsibility to covert them to the correct type. If the portal is
specified with thaportal keyword, all values are returned in an architecture-dependent internal (binary)

Returns the name of a field (attrtb) field_numbeiof instanceuple_indexcontained in
portal bufferportal.

char *PQfname(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

Returns the type of a field (atte) field_numbemnf instancetuple_indexcontained in
portal bufferportal. The type returned is an internal coding of a type.

int PQftype(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

Returns 1 if tw instancesuple_indexlandtuple_index2both contained in portaluffer
portal, havethe same field (attribute) types.

int PQsametype(portal, tuple_index1, tuple_index?2)
PortalBuffer *portal;
int tuple_index1,;
int tuple_index2;

Returns a field (attribute) value.

char *PQgetvalue(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

Return the length of a field (attribute) value in bytdghe field is astruct varlena the
length returned here doast include the size field of the varlena, i.e., it is 4 bytes less.

char *PQgetlength(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

format, namely the format generated by theput function specified througldefine typécommands).
Again, it is the programmex’responsibility to covert the data to the correct type.

ASYNCHRONOUS PORTALS AND NOTIFICATION
Asynchronous portals — query results of rules — are implemented usingehanisms: relations and

notification. Thequery result is transferred through a relation. The notification is done with special

POSTQUELcommands and the frontend/backend protocol.

03/12/94 134

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

The first step in using asynchronous portals issten(commands) on a gén dass name. The fact that a
process is listening on the class is shared with all backend servers running on a database; whenfone sets of
the rule, it signals its peers. The backend server associated with the listening frontend process then sends
its client an IPC message, which the frontend process nxpditidy catch by polling the ariable
PQAsyncNotify When this wariable is non-zero, the frontend process must first issue a null (empty) query

ie.,

PQexec("");

Then the frontend should check theriable, PQAsyncNotifyWaiting When this variable is non-zero, the
frontend can retriee the notification data held usingQNotifies The frontend must caPQNotifiesin
order to find out which classes the data corresponds to (i.e., which notifica#iua kbae been set dj.
These gents must then be individually cleared by calliB@RemoveNotifpn each element of the list
returned byPQNotifies

Notice that the asynchronous notification process does not itself trangfdatan but only a class name.
Hence the frontend and backend must come to agreement on the class to be used yalptspraor to
notification and data transfer f@busly, snce the frontend must specify this table name in the correspond-
ing listencommand).

The second sample progranves an éample of the use of asynchronous portals in which the frontend pro-
gram retriges the entire contents of the result class each time it is notified.

PQNotifies Return the list of relations on which notification has occurred.

PQNotifyList *PQNotifies()

PQRemoveNotify
Remore the notification from the list of unhandled notifications.

PQNotifyList *PQRemoveNotify(pgNotify)
PQNotifyList *pgNotify;

FUNCTIONS ASSOCIATED WITH THE COPY COMMAND
The copy command inPOSTGREShas options to read from or write to the network connection used by
LIBPQ. Therefore, functions are necessary to access this network connection directly so applications may
take full advantage of this capability.

For more information about theopycommand, seeopycommands).

PQgetline Reads a newline-terminated line of characters (transmitted by thershskrver) into a
buffer string of sizelength Like fgetg3), this routine copies up fength-1 characters
into string. It is like gets(3), havever, in that it cowerts the terminating newline into a
null character.

PQgetlinereturns EOF at EQP if the entire line has been read, and 1 if thifelb is
full but the terminating newline has not yet been read.

Notice that the application must check to see ifwa lirge consists of the single character
“.”, which indicates that the backend smmhas finished sending the results of cbpy
command. Thereforéf the application eer expects to recee lines that are more than
length1 characters long, the application must be sure to check the reflum of

PQgetlinevery carefully.

03/12/94 135

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

The code in
.../src/bin/monitor/monitor.c
contains routines that correctly handle theycaqtocol.

PQgetline(string, length)
char *string;
int length

PQputline Sends a null-terminatesdring to the backend server.

The application must explicitly send the single charactetd.indicate to the baekd
that it has finished sending its data.

PQputline(string)
char *string;

PQendcopy Syncs with the ba@nd. Thisfunction waits until the backend has finished processing
the copy. It should either be issued when the last string has been sent to thendback
using PQputline or when the last string has been reegifrom the backend using
PGgetline It must be issued or the backend may get “out of sync” with the frontend.
Upon return from this function, the backend is ready to vedre next query.

The return value is 0 on successful completion, nonzero otherwise.
int PQendcopy()

As an example:
PQexec("create foo (a=int4, b=char16, d=float8)");
PQexec("copy foo from stdin");
PQputline("3<TAB>hello world<TAB>4.5\n");
PQputline("4<TAB>goodbye world<TAB>7.11\n");

;qutline(".\n");
PQendcopy();

LIBPQ TRACING FUNCTIONS
PQtrace Enable tracing.The routine sets thBQtracepvariable to 1 which causes debug mes-
sages to be printedYou should note that the messages will be printed to stdout by
default. If you would like dfferent behavior you must set the variable
FILE *debug_port

to the appropriate stream.

void PQtrace()

03/12/94 136

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQuntrace Disable tracing started B3Qtrace

void PQuntrace()

USER AUTHENTICATION FUNCTIONS
If the user has generated the appropriate authentication credentials (e.g., obtaipéngs tickets), the

frontend/backnd authentication process is handledPifyexecwithout ary further interention. Thefol-
lowing routines may be called hyBPQ programs to tailor the behavior of the authentication process.

fe_getauthname Returns a pointer to static space containing wieateame the user has authenticated.
Use of this routine in place of calls geteny3) or getpwuid(3) by applications is highly
recommended, as it is entirely possible that the authenticated user naohéhiss same
as value of theUSER ervironment \ariable or the uses’ entry in /etc/passwd This
becomes an important issue if the user name is being useda® anva database inter
action (e.g., using the user name as thauefdatabase name, as is donenfgni-

tor (unix).

char *fe_getauthname()

fe_setauthsvc Specifies thatIBPQ should use authentication servitemerather than its compiled-in
default. Thisvalue is typically taken from a command-line switch.

void fe_setauthsvc(name)
char *name;

BUGS
The query buffer is 8192 bytes long, and queries that length will be silently truncated.

03/12/94 137

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 1

/*
* t estlibpg.c —
* T est the C version of LIBPQ, t he POSTGRESfrontend library.
*

#include <stdio.h>
#include "tmp/libpg.h"

main ()
{
inti,j, k,g,n,mt;
PortalBuffer *p;
char pnames[MAXPORTALS][portal_name_length];

/* Specify the database to access. */
PQsetdb ("pic_dema");

[* Start a transaction block for eportal */
PQexec ("begin®);

[* Fetch instances from the EMP class. */
PQexec ("retrieve portal eportal (EMP.all)");
PQexec ("fetch all in eportal™);

/* Examine all the instances fetched. */
p = PQparray ("eportal™);

g = PQngroups (p);
t=20;

for (k=0; k< g; k++) {
printf ("\nA new instance group:\n");
n = PQntuplesGroup (p, k);
m = RQnfieldsGroup (p, K);

/* Print out the attribute names. */
for (i=0;i<m;i+t)

printf ("%-15s", PQfnameGroup (p, k, i));
printf ("\n");

/* Print out the instances. */
for (i=0;i<n;it+) {
for j=0;j <m;j++)
printf("%-15s", PQgetvalue(p, t+i,));
printf ("\n");
}
t +=n;

}

/* Close the portal. */
PQexec ("close eportal™);

03/12/94 138

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

/* End the transaction block */
PQexec("end");

/* Try out some other functions. */

/* Print out the number of portals. */
printf ("\nNumber of portals open: %d.\n",
PQnportals ());

/* If any tuples are returned by rules, print out
* t he portal name. */
if (PQnportals (1)) {
printf ("Tuples are returned by rules. \n");
PQpnames (pnames, 1);
for (i=0; i < MAXPORTALS; i++)
if (pnames]i] = NULL)
printf ("portal used by rules: %s\n", pnames]i]);

}

/* finish execution. */
PQfinish ();

03/12/94 139

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 2
/*
* T esting of asynchronous notification interface.

* Do t he following at the monitor:

* * create testl (i = int4) \g

* * create testla (i = int4) \g

*

* * define rule rl is on append to testl do
* [append testla (i = new.i)

* n otify testla] \g

* T hen start up this process.

* * append testl (i = 10) \g

* The value i = 10 should be printed by this process.
*/

#include <tmp/simplelists.h>
#include <tmp/libpg.h>
#include <tmp/postgres.h>

extern int PQAsyncNotifyWaiting;

void main() {
PQNotifyList *I;
PortalBuffer *portalBuf;
char *res;
int ngroups, tupno, grpno, ntups, nflds;

PQsetdb(getenv("USER"));
PQexec("listen testla");

while (1) {

res = PQexec("");

if (*res 1="1) {
printf("Unexpected result from a null query --> %s", res);
PQfinish();
exit(1);

}

if (PQAsyncNotifyWaiting) {
PQAsyncNotifyWaiting = 0;
for (I = PQnotifies() ; | '= NULL ; | = PQnotifies()) {
PQremoveNotify(l);
printf("Async. notification on relation %s, our backend pid is %d\n",

03/12/94 140

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

[->relname, |->be_pid);
res = PQexec("retrieve (testla.i)");

if (*res I="P") {
fprintf(stderr, "%s\nno portal”, ++res);
PQfinish();
exit(1);

}

portalBuf = PQparray(++res);
ngroups = PQngroups(portalBuf);
for (grpno = 0 ; grpno < ngroups ; grpno++) {
ntups = PQntuplesGroup(portalBuf, grpno);
nflds = PQnfieldsGroup(portalBuf, grpno);
if (nflds 1= 1) {
fprintf(stderr, "expected 1 attributes, got %d\n", nflds);
PQfinish();
exit(1);
}
for (tupno = 0 ; tupno < ntups ; tupno++) {
printf("i = %s\n", PQgetvalue(portalBuf, tupno, 0));
}
}
}
PQfinish();
exit(0);
}
sleep(1);
}
}

03/12/94 141

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 3
/*
* T est program for the binary portal interface.

* Create a test database and do the following at the monitor:

* * create testl (i = int4, d = float4, p = polygon)\g
* * appendtestl (i=1, d=3.567,

* p = "(3.0,4.0,1.0,2.0)"::polygon)\g
* * append testl (i =2, d = 89.05,
* p = "(4.0,3.0,2.0,1.0)"::polygon)\g

* adding as many tuples as desired.

* Start up this program. The contents of class "test1" should be
* printed, e.g.:

tuple 0: got
i=(4 bytes) 1,
d=(4 bytes) 3.567000,
p=(72 bytes) 2 points,
boundbox=(hi=3.000000,4.000000 / lo=1.000000,2.000000)
tuple 1: got
i=(4 bytes) 2,
d=(4 bytes) 89.05000,
p=(72 bytes) 2 points,
boundbox=(hi=4.000000,3.000000 / lo=2.000000,1.000000)

*/
#include "tmp/simplelists.h"
#include "tmp/libpg.h"
#include "utils/geo-decls.h"

void main()
{
PortalBuffer *portalbuf;
char *res;
int ngroups, tupno, grpno, ntups, nflds;

PQsetdb("test"); [* change this to your database name */
PQexec("begin");
res = (char *) PQexec("retrieve iportal junk (testl.all)");
if (*res =="E’) {
fprintf(stderr,"\nError: %s\n",++res);
goto exit_error;

}
res = (char *) PQexec("fetch all in junk");
if (*res !1="P’) {

fprintf(stderr,"\nError: no portal\n");
goto exit_error;

03/12/94 142

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

}

/* get tuples in relation */
portalbuf = PQparray(++res);
ngroups = PQngroups(portalbuf);
for (grpno = 0; grpno < ngroups; grpno++) {
ntups = PQntuplesGroup(portalbuf, grpno);
if ((nflds = PQnfieldsGroup(portalbuf, grpno)) != 3) {
fprintf(stderr, "\nError: expected 3 attributes, got %d\n", nflds);
goto exit_error;
}
for (tupno = 0; tupno < ntups; tupno++) {
int *ival; [* 4 bytes */
float *fval; /* 4 bytes */
unsigned plen;
POLYGON *pval;

ival = (int *) PQgetvalue(portalbuf, tupno, 0);
fval = (float *) PQgetvalue(portalbuf, tupno, 1);
plen = PQgetlength(portalbuf, tupno, 2);
if (/(pval = (POLYGON *) palloc(plen + sizeof(long)))) {
fprintf(stderr, "\nError: palloc returned zero bytes\n");
goto exit_error;
}
pval->size = plen + sizeof(long);
bcopy(PQgetvalue(portalbuf, tupno, 2), (char *) &pval->npts, plen);
printf ("tuple %d: got\n\
\t i=(%d bytes) %d,\n\
\t d=(%d bytes) %f,\n\
\t p=(%d bytes) %d points,\n\
\t\t boundbox=(hi=%f,%f / l0=%f,%f)\n",
tupno,
PQgetlength(portalbuf, tupno, 0),
*jval,
PQgetlength(portalbuf, tupno, 1),
*fval,
PQgetlength(portalbuf, tupno, 2),
pval->npts,
pval->boundbox.xh,
pval->boundbox.yh,
pval->boundbox.xl,
pval->boundbox.yl);
}
}
PQexec("end");
PQfinish();
exit(0);
exit_error:
PQexec("end");
PQfinish();
exit(1);

03/12/94 143

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

03/12/94 144

INTRODUCTION(FAST RATH) INTRODUCTION(FAST RATH)

SECTION 6 — FAST PATH

SYNOPSIS
retrieve (retval=function arg {, arg }1))

DESCRIPTION
POSTGRESallows ary valid POSTGRESunction to be called in this ay. Prior implementations ofast
path allowed user functions to be called directlyor naw, the abee g/ntax should be used, withgaur-
ments cast into the appropriate types. Bgcating the abee type of querycontrol transfers completely to
the user function; anuser function can accessyaPOSTGRESunction or ag global variable in theOST-
GRESaddress space.

There are six lels at which calls can be performed:

1) Traffic cop level
If a function wants toxecute aPOSTGRESommand and pass a string representation, thibike
appropriate.

2) Parser
A function can access tR®OSTGRESarser passing a string and getting a parse tree in return.

3) Queryoptimizer
A function can call the query optimizerassing it a parse tree and obtaining a query plan in
return.

4) Executor

A function can call thexecutor and pass it a query plan to Beceited.

5) Accesanethods
A function can directly call the access methods if it wishes.

6) Functionmanager
A function can call other functions using thigde

Documentation of layers 1-6 will appear at some future time. Meanwhile, fast path users must consult the
source code for function names and arguments at eagh le

It should be noted that users who are concerned with ultimate performance can bypass the query language
completely and directly call functions that in turn interact with the access met@odthe other hand, a

user can implement aweguery language by coding a function with an internal parser that then calls the
POSTGRESoptimizer and xecutor Complete flexibility to use the pieces BOSTGRESas a tool kit is

thereby preided. 993/08/289:03:16 aoki Exp $

01/23/93 145

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

SECTION 7 — LARGE OBJECTS

DESCRIPTION
In POSTGRESdata values are stored in tuples andviial tuples cannot span data pages. Since the size
of a data page is 8192 bytes, the upper limit on the size of a data valueviglydtati. To support the stor
age of larger atomicalues,POSTGRESprovides a large object interfe. Thisinterface provides file-
oriented access to user data that has been declared to be a large type.

POSTGRESsupports three standard implementations of large objects: asxirsaat toPOSTGRES as
UNIX files managed bOSTGRESand as data stored within te®STGRESIatabase. These implementa-
tion allow users to trade-6between access speed, nesability and security The choice of implementa-
tion is specified when the large object is created or “registered’P@8TGRES In dl cases, the lage
object becomes associated with a path name within a file system name space maRaEXGRESsee
below).

Applications which can tolerate lost data may store large objects wentional files which are fast to
access, but cannot be rgeed in the case of system crashé&sr applications requiring stricter data
integrity, the transaction-protected large object implementatiorvadabdle. Thissection describes each
implementation and the programmatic and query language interfae@STGRESarge object data.

The POSTGRESarge object interface is modeled after thiiX file system interface, with analogues of
open(2), read(2), write(2), IseeK2), etc. User functions call these routines to reteienly the data of inter
est from a large object-or example, if a lage object type callethugshotexisted that stored photographs
of faces, then a function calldskard could be declared omugshotdata. Beard could look at the ver
third of a photograph, and determine the color of the beard that appeared theye, Tharentire lage
object value need not beiffered, or gen examined, by théeardfunction. Asmentioned abee, POST-
GRESsupports functional indices on large object ddtathis example, the results of theard function
could be stored in a B-tree indi® provide fast searches for people with red beards.

UNIX FILES AS LARGE OBJECT ADTS
The simplest large object interface supplied VAtISTGRESs also the least roist. It does not support
transaction protection, crash reexy, or time travel. On the other hand, it can be used otistng data
files (such as word-processor files) that must be accessed simultaneously by the database sysstm and e
ing application programs.

POSTGREShas tw ways of handlindJNIX files that store large objects. These correspond t&xternal
andUnix large object interfaces.

The simplest way to create a large object is to registerxteenal file containing the large object with the
POSTGRESatabase. Thikaves the actual file as-is, outside of tR@STGREdata directoryand allovs
otherUNIX users to access it without going throlRDSTGRES The file is, in general, only protected by
the standardJNIX permissions mechanisimin the case of a system crash, or if the file is nehcor
deleted POSTGRESrovides no reogery mechanism.

In the second approach, the user registers thje lavject in theeOSTGRESJatabase and copies the speci-
fied file into thePOSTGRESdatabase directory structur€opying the file takes time, so this is not astf
as the External lge object creation process. Furthermores kkternal large objects)NIX large objects
are not receerable. Havever, placing the lage object files in theOSTGRES]ata area ges them the secu-
rity of POSTGRESata files.

External large objects priale POSTGRESusers with the ability to share dgr objects betweePOSTGRES
and other systemsThe files can be read and written by otb&hX users, andPOSTGREScan be made
awae of the large object very quickl\Howeve, because of the security implications of the Externgldar

03/18/94 146

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

objects approach, the facility is not provided byaddif To enable External large objects, refer to H@ST-
GRESrelease notes.

INVERSION LARGE OBJECTS
In contrast taNIX files as large objects, thevarsion large object implementation breaks large objects up
into “chunks” and stores the chunks in tuples in the databasetree inde guarantees fast searches for
the correct chunk number when doing random access reads and writes.

Only programs that use tlROSTGRESata manager can read and writeetgion large objects. ersion
large objects are slower than storing large objects\as files, and thg require more space.

LARGE OBJECT INTERF ACES
The facilitiesPOSTGRESrovides to access large objects, both in the backend as part -afefised func-
tions or the front end as part of an application using.tBeQ interface, are described beloAs POST-
GREShas @olved a newer set of functions providing a more coherent interfagerdgalaced an older set.
The most recent approach will be described first, and the historical information includedeay tead/for
completeness.

LARGE OBJECTS: BACKEND INTERFACE
This section describes Wdarge objects may be accessed from dynamically-loaded C functions.

Creating New Large Objects
The routine

int LOcreat(path, mode, objtype)
char *path;
int mode;
int objtype;

creates a e large object.

The pathname is a slash-separated list of components, and must be a unique pathnaR@SINGRES
large object namespace. There is a virtual root directory (“/”) in which objects may be placed.

Theobjtypeparameter can be onelofersion UNIX or External These are symbolic constants defined in
.../include/catalog/pg_lobj.h

The interpretation of thenodeargument depends on tlobjtypeselected. (Notehat theExternaltype is
conditionally compiled into the baekhd. Pleaseefer to the Release Notes for information on enabling
External large objects and to the indroduction of this section for a discussion on External large objects.)

For UNIX large objects, thenodeis the mode used to protect the file onthéx file system. On creation,
the file is open for reading and writing.

For External large objectsnodespecifies the desired access permissidihthe file exists, the file permis-

sions on the external file are compared to the requested mode; both the user who is currently connected to
the backend server and the “postgres” user must tee appropriate permissiong)nlike creat(2), an

existing external file is not truncated.

For Inversion lage objectsmodeis a bitmask describing weral different attributes of the meobject. The
symbolic constants listed here are defined in

.../include/tmpl/libpg-fs.h

03/18/94 147

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

the access type (read, write, or both) is controlle®@Ryng together the bittNv_READ andINV_WRITE.
If the large object should be arelil — that is, if historical versions of it should be vid periodically to a
special archie relation — then th&NV_ARCHIVE bit should be set. The low-order sixteen bitsnafskare
the storage manager number on which thgelasbject should reside. In the distributed versioRr@$T-
GRES only the magnetic disk storage manager is suppofftedusers runnindPOSTGRESat UC Berleley,
additional storage managers awailable. For sites other than Begley, these bits should abys be zero.
At Berkeley, gorage manager zero is magnetic disk, storage manager one ig ap8oal disk julebox,
and storage managerdws main memaory.

The commands beloopen two large objects for writing and reading. Thevdrsion large object is not
archived, and is located on magnetic disk:

unix_fd = LOcreat("/my_unix_obj", 0600, Unix);

inv_fd = LOcreat("/my_inv_obj",
INV_READIINV_WRITE, Inversion);

Opening Large Objects
Large objects registered into the database bylLthereatcall described ah@, or p_opencall described
belonv may be opened by calling the routine

int LOopen(path, mode)
char *path;
int mode;

where thepathagument specifies the large objeqgtathname, and is the same as the pathname used to cre-
ate the object.The modeargument is interpreted by the dvimplementations diérently For UNIX large
objects, walues should be chosen from the set of mode bits passed tpéhesystem call; that is,
O_CREAT, O_RDONLY, O_WRONLY, O_RDWR and O_TRUNC For Inversion large objects, only the bits
INV_READ andINV_WRITE have any neaning.

To gpen the tw large objects created in the last example, a programmer would issue the commands
unix_fd = LOopen("/my_unix_obj", O_RDWR);
inv_fd = LOopen("/my_inv_obj", INV_READI|INV_WRITE);

If a large object is opened before it has been created, thew &ame object is created using thNIX
implementation, and the weobject is opened.

Seeking on Large Objects
The command

int

LOlseek(fd, offset, whence)
int fd;
int offset;
int whence;

moves the current location pointer for a large object to the specified posifibafd parameter is the file
descriptor returned by eith&Ocreator LOopen Offsetis the byte offset in the large object to which to
seek.

03/18/94 148

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

BecausaJNIX large objects are simplyNIX files, theg may have “holes” like any atherUNIX file. Thatis,
a program may seek well past the end of the object and write blytesvening blocks will not be created
and reading them will return zero-filled blocksvdrsion large objects do not support holes.

The following code seeks to byte location 100000 of the example large objects:
unix_status = LOIseek(unix_fd, 100000, L_SET);
inv_status = LOIseek(inv_fd, 100000, L_SET);

On error,LOlseekreturns a value less than zero. On success, theffiget is returned.

Writing to Large Objects
Once a large object has been created, it may be filled by calling

int
LOwrite(fd, wbuf)
int fd;
struct varlena *wbuf;

Here,fd is the file descriptor returned IhyOcreator LOopen and wbuf describes the data to writ&he
varlenastructure inPOSTGRESconsists of four bytes in which the length of the datum is storedwidlo

by the data itself. The length stored in the length field includes the four bytes occupied by the length field
itself.

For example, to write 1024 bytes of zeroes to the sample large objects:
struct varlena *vl;
vl = (struct varlena *) palloc(1028);
VARSIZE(vl) = 1028;
bzero(VARDATA(VI), 1024);
nwrite_unix = LOwrite(unix_fd, vl);
nwrite_inv = LOwrite(inv_fd, vl);
LOwrite returns the number of bytes actually written, or gatiee rumber on error For Inversion lage

objects, the entire write is guaranteed to succeedilor Thatis, if the number of bytes written is non-
negdive, then it equal&/ARSIZHVI).

The VARSIZEandVARDATA macros are declared in the file

.../include/tmp/postgres.h

Reading from Large Objects
Data may be read from large objects by calling the routine

struct varlena *
LOread(fd, len)
int fd;
int len;

03/18/94 149

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

This routine returns the byte count actually read and the data in a varlena stiaat@weample,

struct varlena *unix_vl, *inv_vl;
int nread_ux, nread_inv;
char *data_ux, *data_inv;

unix_vl = LOread(unix_fd, 100);
nread_ux = VARSIZE(unix_vl);
data_ux = VARDATA(unix_vl);

inv_vl = LOread(inv_fd, 100);
nread_inv = VARSIZE(inv_vl);
data_inv = VARDATA(Inv_vl);

The returned varlena structurevééeen allocated by tHROSTGRESnemory managepalloc, and may be
pfreed when thg are no longer needed.

Closing a Large Object
Once a large object is no longer needed, it may be closed by calling

int
LOclose(fd)
int fd;

wherefd is the file descriptor returned hyDopenor LOcreat On success] Oclosereturns zero.A neg
ative return value indicates an error.

For example,

if (LOclose(unix_fd) < 0)
[* error */

if (LOclose(inv_fd) < 0)
/* error */

Directory Operations
The routine

int
LOmkdir(path, mode)

char *path;
int mode;

creates directories in tH®OSTGRESvirtual file system but does not createy ahysical directories.Natu-
rally,

int
LOrmdir(path)
char *path;

removes drectories in thePOSTGRESvirtual file system. Both routines return zero ogaive values on

03/18/94 150

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

success and failure, respegely.

Removing Large Objects
The routine to reme large objects works differently for the different large object tygesall to

int
LOunlink(path)
char *path;

will always remae te specified path from tHOSTGRESvirtual file system.However, it will only unlink
the underlying data file in the case afiX large object. Neither External nonersion large object files
are actually remged by this call. LOunlinkreturns zero on successgegve values on failure.

LARGE OBJECTS: LIBPQ INTERF ACE
Large objects may also be accessed from database client programs that lige¢h&brary. This library
provides a set of routines that support opening, reading, writing, closing, and seekirgeabjacts.The
interface is similar to that provided via the backend, but rather than using varlena structures, a more con-
ventional UNIX -style buffer scheme is used.

This section describes théBPQ interface in detail.

Creating a Large Object
The routine

int

p_creat(path, mode, objtype)
char *path;
int mode;
int objtype;

creates a e large object. Theathargument specifies a large-object system pathname.

The objtypeparameter can be onelofersion Unix or External which are symbolic constants defined in
.../include/catalog/pg_lobj.h

The interpretation of thenodeandfilesarguments depends on thigjitypeselected.

For UNIX files, modeis the mode used to protect the file on tinX file system. On creation, the file is
open for reading and writing. The path name is an internalention relatve o the specific database and
the actual files are stored in the directory of the database itself.

For External large objectsnodespecifies the desired access permissidihthe file exists, the file permis-

sions on the external file are compared to the requested mode; both the user who is currently connected to
the backend server and the “postgres” user must le appropriate permissiongnlike creat(2), an

existing external file is not truncated.

For Inversion lage objectsmodeis a bitmask describing weral different attributes of the meobject. The
symbolic constants listed here are defined in

.../include/tmpl/libpg-fs.h
The access type (read, write, or both) is controlle@Ryng together the bittNV_READ andINV_WRITE.

If the large object should be arelil — that is, if historical versions of it should be vied periodically to a
special archie relation — then th&NV_ARCHIVE bit should be set. The low-order sixteen bitsnafskare

03/18/94 151

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

the storage manager number on which the large object should résidgtes other than Begley, these
bits should aliays be zero. At Bemdey, Sorage manager zero is magnetic disk, storage manager one is a
Sory optical disk jukebox, and storage managew tsvimain memory.

The commands beloopen large objects of the owtypes for writing and reading. Theviasion lage
object is not archied, and is located on magnetic disk:
unix_fd = p_creat("/my_unix_obj", 0600, Unix);

inv_fd = p_creat("/my_inv_obj",
INV_READ|INV_WRITE, Inversion);

Opening an Existing Large Object
To gpen an existing large object, call

int

p_open(path, mode)
char *path;
int mode;

The path argument specifies the @ object pathname for the object to open. The mode bits control
whether the object is opened for reading, writing, or b&tr.UNIX large objects, the appropriate flags are
O_CREAT, O_RDONLY, O_WRONLY, O_RDWR and O_TRUNC For Inversion large objects, only
INV_READ andINV_WRITE are recognized.

If a large object is opened before it is created, it is created by default usingixhéle implementation.

Writing Data to a Large Object
The routine

int

p_write(fd, buf, len)
int fd;
char *buf;
int len;

writes len bytes frombuf to large objectfd. The fd amgument must ha been returned by a prieus
p_creator p_open

The number of bytes actually written is returned. In tremeof an errorthe return value is getive.

Seeking on a Large Object
To change the current read or write location on a large object, call

int

p_lseek(fd, offset, whence)
int fd;
int offset;
int whence;

This routine maes the current location pointer for the large object describefd tiythe nev location spec-
ified by offset For this release ?#FOSTGRESonly L_SETis a leyd value forwhence

03/18/94 152

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

Closing a Large Object
A large object may be closed by calling

int
p_close(fd)
int fd;

wherefd is a lage object descriptor returned pycreator p_open On successp_closereturns zero.On
error, the return value is igetive.

Directory Operations
The routines

int

p_mkdir(path, mode)
char *path;
int mode;

and

int
p_rmdir(path)
char *path;

are analogous tbOmkdirandLOrmdir in that thg only modify thePOSTGRESile system namespace and
return zero or rgative values on success or failure, respetyi

Removing Large Objects
The

int
p_unlink(path)
char *path;

routine remwees the specified path from trROSTGRESile system namespace and, if the path corresponds
to aUNIX large object, remees the underlying file.The files that store other large object types are not
removed by this call. p_unlinkreturns zero or rggtive values on success or errmspectiely.

SAMPLE LARGE OBJECT PROGRAMS
The POSTGRESarge object implementation serves as the basis for a file system (tleesitn file sys-
tem”) built on top of the data managerhis file system provides time W&, transaction protection, and
fast crash reogery to clients of ordinary file system servicdsuses the Iversion large object implementa-
tion to provide these services.

The programs that comprise thevdrsion file system are included in tROSTGRESsource distribution, in
the directory

...Isrc/bin/fsutils

These directories contain a set of programs for manipulating files and direcibniese programs are
based on the Berksié&oftware Distribution NET-2 release.

These programs are useful in manipulatingeidsion files, ot they also sere as @amples of ha to code

03/18/94 153

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

large object accesses iBPQ. All of the programs areIlBPQ clients, and all use the interfaces thateha
been described in this section.

Interested readers should refer to the files in the directory
.../src/bin/fsutils

for in-depth examples of the use of large obje8tslow, a nore terse xample is preided. Thiscode frag-
ment creates a melarge object managed byvhsion, fills it with data from &NIX file, and closes it.

03/18/94 154

INTRODUCTION(LARGE OBJECTS)

#include
#include
#include
#include

"tmp/c.h"
"tmp/libpg-fe.h"
"tmp/libpg-fs.h"
"catalog/pg_lobj.h"

#define MYBUFSIZ 1024

main()

intinv_fd;

int fd;

char *qry_result;
char bufMYBUFSIZ];
int nbytes;

int tmp;

PQsetdb("mydatabase");

/* large object accesses must be */
[* transaction-protected */
gry_result = PQexec("begin");

if (*qry_result ==E’) /* error */
exit (1);

/* open the UNIX file */
fd = open("/my_unix_file", O_RDONLY, 0666);
if (fd < 0) [* error */

exit (1);

[* create the Inversion file */
inv_fd = p_creat("/inv_file", INV_WRITE, Inversion);
if (inv_fd < 0) /* error */

exit (1);

/* copy the UNIX file to the Inversion */
/* large object *
while ((nbytes = read(fd, buf, MYBUFSIZ)) > 0)

{
tmp = p_write(inv_fd, buf, nbytes);
if (tmp < nbytes) [* error */
exit (1);
}

(void) close(fd);
(void) close(inv_fd);

/* commit the transaction */
gry_result = PQexec("end");

if (*qry_result =="'E’) /* error */

03/18/94

INTRODUCTION(LARGE OBJECTS)

155

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

exit (1);

/* by here, success */
exit (0);

BUGS
Shouldnt haveto distinguish between Wersion andUNIX large objects when you open an existingyéar
object. Thesystem knows which implementation was used. The flags argument should be the same in
these tw cases.

All large object file names (paths) are limited to 256 characters.

In the Irversion file system, file name components (the sections of the path precedingintplér in
between “/") are limited to 16 characters each. The maximum path length is still 256 characters.

The unlink routines do notwabys remee the underlying data files becauseytld® not implement refer
ence counts.

THE lo_filein() and lo_fileout() INTERFACE
As POSTGREShas ®&olved, the backend large object interface describedealms replaced an earlier back-
end large object inteste. Theprevious interface required users to store interngidarbject descriptors in
their attributes; this wrked, but required users to call intermr@dSTGRESroutines directly in order to
access their data. The interface documentedealsadearer and more consistent, so the interface about to
be described is deprecated and documented only for historical reasons.

The functiondo_fileinandlo_fileoutcornvert betweerUNIX filenames and internal large object descriptors.
These functions areOSTGRESregistered functions, meaning thean be used directly iIROSTQUEL
gueries as well as from dynamically-loaded C functions.

The routine

LargeObiject *lo_filein(filename)
char *filename;

associates a meUNIX file storing lage object data with the database system. This routine stores the file-
name in a abstract data structure suitable for inclusion as an attribute of a tuple.

The cowerse routine,

char *lo_fileout(object)
LargeObiject *object;

returns theJNIX filename associated with a large object.

If you are defining a simple large object Aldfiese functions can be used as your “input” and “output
functions (seelefine typdcommands)). Asuitable declaration would be

define type LargeObject (internallength = variable,
input = lo_filein, output = lo_fileout)

The file storing the lge object must be accessible on the machine on VAOETGRESS running. The

data is not copied into the database system, so if the file is lataregritas unrecwerable.

The data in large objects imported in this manner are only accesible frarO8T&RESbaclend using

03/18/94 156

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

dynamically-loaded functionsHowever, the internal lage object descriptors cannot be used with the
LOopenbaclend interice. Insteadthese descriptors can only be used by making direct calls to a set of
undocumented routines within tROSTGREStorage manageFurthermore, it becomes the usegspon-
sibility to male alls to the correct set of routines foKIX or Inversion large objects.

SEE ALSO
introduction(commands), define function(commands), define type(commands), load(commands).

03/18/94 157

INTRODUCTION(SYSTEM CAALOGS) INTRODUCTION(SYSTEM CAALOGS)

SECTION 8 — SYSTEM CATALOGS

DESCRIPTION
Thus far we hee made maw alusions to the system catalogs and their role inrPth8TGRES=xtensibility
architecture but he managed towid a systematic specification of their layout and contents. In this sec-
tion we list each of the attributes of the system catalogs and define their meanings.

CLASS/TYPE SYSTEM CATALOGS
These catalogs form the core of the extensibility system:

name shaed/local description
pg_aggrgae local aggregae functions
pg_am local access methods
pg_amop local operators usable with specific access methods
pg_amproc local procedures used with specific access methods
pg_attritute local class attributes
pg_class local classes
pg_inde local secondarindices
pg_inherits local class inheritance hierarchy
pg_language local procedure implementation languages
pg_opclass local operator classes
pg_operator local guery language operators
pg_proc local procedures (functions)
pg_type local data types

ENTITIES
These catalogs deal with identification of entities known throughout the site:
name shaed/local description
pg_database shared current databases
pg_group shared user groups
pg_user shared valid users

RULE SYSTEM CATALOGS
name shaed/local description
pg_listener local processes waiting on alerters
pg_prs2plans local instance system procedures
pg_prs2rule local instance system rules
pg_prs2stub local instance system “stubs”
pg_revrite local rewrite system information

LARGE OBJECT CATALOGS
These catalogs are specific to theefsion file system and large objects in general:
name shaed/local description
pg_lobj local description of a large object
pg_naming local Inversion name space mapping
pg_platter local jukebox platter imentory
pg_plmap local jukebox platter extent map

INTERNAL CA TALOGS
These catalogs are internal classes that are not stored as normal heaps and cannot be accessed through not
mal means (attempting to do so causes an error).

03/13/94 158

INTRODUCTION(SYSTEM CAALOGS)

name shaed/local
pg_log shared
pg_magic shared
pg_time shared
pg_\ariable shared

There are seeral other classes defined with “pg_" names. Aside from those that end in “ind” (secondary

description

INTRODUCTION(SYSTEM CAALOGS)

transaction commit/abort log

magic constant

commit/abort times
special variable values

indices), these are all obsolete or otherwise deprecated.

CLASS/TYPE SYSTEM CATALOGS

The following catalogs relate to the class/type system.

/*
* aggregates
*

* s ee DEFINE AGGREGATE for an explanation of transition functions

*

pg_aggregate
charl6 aggname
oid aggowner
regproc aggtransfnl
regproc aggtransfn2
regproc aggfinalfn
oid aggbasetype
oid aggtranstypel
oid aggtranstype2
oid agdfinaltype
text agginitvall
text agginitval2

pg_am
charl6 amname
oid amowner
char amkind
int2 amstrategies
int2 amsupport
regproc amgettuple
regproc aminsert
regproc amdelete
regproc amgetattr
regproc amsetlock
regproc amsettid

/* aggregate name (e.g., "count") */
/* usesysid of creator */
[* first transition function */
/* second transition function */
/* final function */
/* type of data on which aggregate
operates */
/* type returned by aggtransfnl */
/* type returned by aggtransfn2 */
/* type returned by aggfinalfn */
[* external format of initial
(starting) value of aggtransfnl */
/* external format of initial
(starting) value of aggtransfn2 */

[* access method name */

[* usesysid of creator */

/* - deprecated */

/* originally:
h=hashed
o=ordered
s=special */

/* total NUMBER of strategies by which
we can traverse/search this AM */

/* total NUMBER of support functions
that this AM uses */

/* "next valid tuple” function */

/* "insert this tuple" function */

/* "delete this tuple" function */

/* - deprecated */

[* - deprecated */

/* - deprecated */

03/13/94

159

regproc
regproc
regproc
regproc
regproc

regproc

regproc
regproc
regproc
regproc
regproc

pg_amop
oid
oid
oid
int2

regproc

regproc

pg_amproc
oid

oid

oid
int2

pg_class
charl6
oid
oid
int4
int4
abstime

reltime

bool

INTRODUCTION(SYSTEM CAALOGS)

amfreetuple
ambeginscan
amrescan
amendscan
ammarkpos

amrestrpos
amopen
amclose
ambuild

amcreate
amdestroy

amopid
amopclaid

amopopr
amopstrategy

amopselect

amopnpages

amid
amopclaid

amproc
amprocnum

relname
relowner
relam
relpages
reltuples
relexpires

relpreserved

relhasindex

/* access method */

03/13/94

INTRODUCTION(SYSTEM CAALOGS)

[* - deprecated */

[* "start new scan" function */

/* "restart this scan” function */

/* "end this scan" function */

/* "mark current scan position"
function */

/* "restore marked scan position”
function */

[* - deprecated */

/* - deprecated */

/* "build new index" function */

/* - deprecated */

[* - deprecated */

[* access method with which this
operator be used */

[* operator class with which this
operator can be used */

/* the operator */

[* traversal/search strategy number
to which this operator applies */

/* function to calculate the operator
selectivity */

/* function to calculate the number of
pages that will be examined */

/* access method with which this
procedure is associated */

/* operator class with which this
operator can be used */

/* the procedure */

[* support function number to which
this operator applies */

[* class name */
/* usesysid of owner */

/* # of 8KB pages */

[* # of instances */

/* time after which instances are
deleted from non-archival storage */

[* timespan after which instances are
deleted from non-archival storage */

/* does the class have a secondary

160

INTRODUCTION(SYSTEM CAALOGS)

bool relisshared
char relkind
char relarch
int2 relnatts

int2 relsmgr
int28 relkey

0id8 relkeyop

aclitem relacl[1]

pg_attribute

oid attrelid
charl6 attname
oid atttypid
oid attdefrel
int4 attnvals
oid atttyparg
int2 attlen
int2 attnum
int2 attbound
bool attbyval
bool attcanindex
oid attproc
int4 attnelems
int4 attcacheoff
bool attisset
pg_inherits
oid inhrel
oid inhparent
int4 inhsegno
oid indexrelid

INTRODUCTION(SYSTEM CAALOGS)

index? */
[* is the class shared or local? */
[* type of relation:
i=index
r=relation (heap)
s=special
u=uncatalogued (temporary) */
[* archive mode:
h=heavy
I=light
n=none */
[* current # of non-system
attributes */
[* storage manager:
O=magnetic disk
1=sony WORM jukebox
2=main memory */
[* - unused */
/* - unused */
[* access control lists */

/* class containing this attribute */

[* attribute name */

[* attribute type */

[* - deprecated */

/* - deprecated */

/* - deprecated */

[* attribute length, in bytes
-1=variable */

[* attribute number
>0=user attribute
<0=system attribute */

[* - deprecated */

/* type passed by value? */

[* - deprecated */

/* - deprecated */

[* # of array dimensions */

/* cached offset into tuple */

[* is attribute set-valued? */

/* child class */
[* parent class */
/* - deprecated */

/* oid of secondary index class */

161

INTRODUCTION(SYSTEM CAALOGS)

oid indrelid

oid indproc

int28 indkey

0id8 indclass

bool indisclustered

bool indisarchived

text indpred
pg_type

charl6 typname

oid typowner

int2 typlen

int2 typprtlen

bool typbyval

char typtype

bool typisdefined

char typdelim

oid typrelid

oid typelem

regproc typinput

regproc typoutput

regproc typreceive

regproc typsend

text typdefault

pg_operator

charl6 oprname
oid oprowner
int2 oprprec
char oprkind
bool oprisleft
bool oprcanhash
oid oprleft

oid oprright

03/13/94

INTRODUCTION(SYSTEM CAALOGS)

/* oid of indexed heap class */
/* function to compute index key from
attribute(s) in heap
O=not a functional index */
[* attribute numbers of key
attribute(s) */
/* opclass of each key */
[* is the index clustered?
- u nused */
/* is the index archival?
- u nused */
/* query plan for partial index
predicate */

[* type name */

/* usesysid of owner */

/* length in internal form
-1=variable-length */

/* length in external form */

/* type passed by value? */

[* kind of type:
c=catalog (composite)
b=base */

/* defined or still a shell? */

[* delimiter for array external form */

[* class (if composite) */

/* type of each array element */

[* external-internal conversion
function */

[* internal-external conversion
function */

/* client-server conversion function */

[* server-client conversion function */

/* default value */

[* operator name */
/* usesysid of owner */
/* - deprecated */
/* kind of operator:
b=binary
[=left unary
r=right unary */
[* is operator left/right associative? */
[* is operator usable for hashjoin? */
/* left operand type */
/* right operand type */

162

oid
oid
oid
oid
oid

regproc
regproc

regproc

pg_opclass
charl6

pg_proc
charl6

oid
oid
bool
bool

bool

int2
bool

oid
oid8
int4

int4
int4
int4
text

bytea

pg_language
charl6
text

INTRODUCTION(SYSTEM CAALOGS)

oprresult
oprcom
oprnegate
oprlsortop
oprrsortop
oprcode
oprrest

oprjoin

opcname

proname
proowner
prolang
proisinh
proistrusted

proiscachable

pronargs
proretset

prorettype

proargtypes
probyte pct

properbyte_cpu

propercall_cpu

prooutin_ratio

prosrc
probin

lanname
lancompiler

03/13/94

INTRODUCTION(SYSTEM CAALOGS)

[* result type */

/* commutator operator */

/* negator operator */

/* sort operator for left operand */

[* sort operator for right operand */

/* function implementing this operator */

/* function to calculate operator
restriction selectivity */

/* function to calculate operator
join selectivity */

/* operator class name */

/* function name */

/* usesysid of owner */

/* function implementation language */

[* - deprecated */

/* run in server or untrusted function
process? */

/* can the function return values be
cached? */

/* # of arguments */

/* does the function return a set?

- u nused */

[* return type */

[* argument types */

/* % of argument size (in bytes) that
needs to be examined in order to
compute the function */

[* sensitivity of the function’s
running time to the size of its
inputs */

/* overhead of the function’s
invocation (regardless of input
size) */

/* size of the function’s output as a
percentage of the size of the input */

/* function definition (postquel only) */

/* path to object file (C only) */

/* language name */
/* - deprecated */

163

INTRODUCTION(SYSTEM CAALOGS)

ENTITIES

pg_database
charl6 datname
oid datdba
text datpath

pg_group
charl6 groname
int2 grosysid
int2 grolist[1]

pg_user
charl6 usename
int2 usesysid
bool usecreatedb
bool usetrace
bool usesuper
bool usecatupd

RULE SYSTEM CATALOGS

pg_listener
charl6 relname
int4 listenerpid
int4 notification
pg_prs2rule
charl6 prs2name
char prs2eventtype
oid prs2eventrel
int2 prs2eventattr
float8 necessary
float8 sufficient
text prs2text

pg_prs2plans
oid prs2ruleid

INTRODUCTION(SYSTEM CAALOGS)

/* database name */

/* usesysid of database administrator */

/* directory of database under
$SPGDATA */

[* group name */
/* group’s UNIX group id */
/* list of usesysids of group members */

/* user's name */

/* user’'s UNIX user id */

[* can user create databases? */

/* can user set trace flags? */

/* can user be POSTGRES superuser? */
[* can user update catalogs? */

/* class for which asynchronous
notification is desired */

/* process id of server corresponding
to a frontend program waiting for
asynchronous notification */

/* whether an event notification for
this process id still pending */

/* rule name */
/* rule event type:
R=retrieve
U=update (replace)
A=append
D=delete */
/* class to which event applies */
[* attribute to which event applies */
/* - deprecated */
[* - deprecated */
/* text of original rule definition */

/* prs2rule instance for which this

164

INTRODUCTION(SYSTEM CAALOGS)

int2 prs2planno
text prs2code
pg_prs2stub
oid prs2relid
bool prs2islast
int4 prs2no
stub prs2stub
pg_rewrite
charl6 rulename
char ev_type
oid ev_class
int2 ev_attr
bool is_instead
text ev_qual
text action
LARGE OBJECT CATALOGS
pg_lobj
oid ourid
int4 objtype
bytea object_descripto/*
pg_naming
charl6 filename
oid ourid
oid parentid
pg_platter

INTRODUCTION(SYSTEM CAALOGS)

plan is used */

/* plan number (one rule may invoke
multiple plans) */

/* external representation of the plan */

/* class to which this rule applies */
[* is this the last stub fragment? */
/* stub fragment number */

[* stub fragment */

/* rule name */

[* event type:

RETRIEVE, REPLACE, APPEND, DELETE
codes are parser-dependent (1?) */

/* class to which this rule applies */

[* attribute to which this rule applies */

/* is this an "instead" rule? */

/* qualification with which to modify
(rewrite) the plan that triggered this
rule */

[* parse tree of action */

/* 'ourid’ from pg_naming that
identifies this object in the
Inversion file system namespace */

/* storage type code:

O=Inversion
1=Unix
2=External
3=Jaquith */

opaque object-handle structure */

[* filename component */

/* random oid used to identify this
instance in other instances (can't
use the actual oid for obscure
reasons */

/* pg_naming instance of parent
Inversion file system directory */

165

INTRODUCTION(SYSTEM CAALOGS)

charl6

int4
pg_pimap
oid
oid
oid
int4
int4

int4

plname
plstart

plid

pldbid

plrelid
plblkno
ploffset

plextentsz

03/13/94

INTRODUCTION(SYSTEM CAALOGS)

/* platter name */
/* the highest OCCUPIED extent */

[* platter (in pg_platter) on which
this extent (of blocks) resides */

[* database of the class to which this
extent (of blocks) belongs */

[* class to which this extend (of
blocks) belongs */

[* starting block number within the
class */

/* offset within the platter at which
this extent begins */

/* length of this extent */

166

INFORMATION(FILES) INFORMATION(FILES)

SECTION 8 — FILES

OVERVIEW
This section describes some of the important files us&®DBTGRES

NOTATION
“...I" at the front of file names represents the path to the postgres lm®e directory Anything in square
braclets (‘{” and “1”) is optional. Anything in braces {” and “}") can be repeated O or more times.
Paenthese¢ (" and“)”) are used to group boolean expressidris.the boolean operat@R.

BUGS
The descriptions of

.../data/PG_VERSION,
.../data/base/*/PG_VERSION,

the temporary sort files, and the database debugging trace files are absent.

01/23/93 167

BKI(FILES) BKI(FILES)

NAME
...Isrc/backend/obj/{local,dbdb}.bki — template scripts

DESCRIPTION
Backend Interfice (BKI) files are scripts that describe the contents of the ir@iaTGRESdatabase. This
database is constructed during system installation, bipitildd command. Initdb executes thePOSTGRES
backend with a special set of flags, that cause it to consume the BKI scripts and bootstrap a database.

These files are automatically generated from system header files during installagrare not intended
for use by humans, and you do not need to understand their contents in ordéfQSTGRES These files
are copied to

...[files/{globall,locall_XXX}.bki

during system installation.

All new user databases will be created byying the template database tidSTGRESconstructs from
the BKI files. Thus, a simple way to customize the template database is to ROET&GREnitialization
script create it for you, and then to run the terminal monitor tceertnekchanges you want.

The POSTGRESackend interprets BKI files as described lveloThis description will be easier to under
stand if the example in “.../files/globall.bki” is at hand.

Commands are composed of a command name followed by space sepaateshts. Aguments to a
command which begin with a “$” are treated specidlly $$” are the first tw characters, then the first “$”

is ignored and the argument is then processed norniatlye “$” is followed by space, then it is treated as
aNULL value. Otherwisethe characters following the “$” are interpreted as the name of a macro causing
the argument to be replaced with the macvalue. lItis an error for this macro to be undefined.

Macros are defined using

define macro macro_name = macro_value
and are undefined using

undefine macro macro_name

and redefined using the same syntax as define.
Lists of general commands and macro commandsaifollo

GENERAL COMMANDS
openclassname
Open the class callettassnamdor further manipulation.

close[classname]
Close the open class calleldssnamelt is an error ifclassnameés not already opened. If radass-
nameis given, then the currently open class is closed.

print
Print the currently open class.
insert [oid=0id_value](valuel value2 ..)
Insert a ne instance to the open class usiwauel value2 etc., for its attribute values and

oid_valuefor its OID. If oid_valueis not “0”, then this value will be used as the instasmcbject
identifier Otherwise, it is an error.

01/23/93 168

BKI(FILES) BKI(FILES)

insert (vauel value2 ..
As abwe, but the system generates a unique object identifier.

createclassnamé¢ namel = typel, name2 = type2)...
Create a class namethssnamaevith the attributes gien in parentheses.

open (namel = typel, name2 = type?),as classname
Open a class nameadassnamdor writing but do not record its existence in the system catalogs.
(This is primarily to aid in bootstrapping.)

destroy classname
Destrg the class namedassname

define indexindex-nameon class-namesingamname
(opclass attr | function({attr}))
Create an indenamedindex_namen the class namedassnameising theamnameaccess method.
The fields to inde are callednamel name2 etc., and the operator collections to useamiéection_1
collection_2 etc., respectigly.

MACR O COMMANDS
define functionmacro_namasrettype function_name (args)
Define a function prototype for a function nammdcro_namevhich has its value of typettype
computed from thexecutionfunction_namavith the agumentsargsdeclared in a C-li& manner.

define macromacro_namérom file filename
Define a macro namadacnamavhich has its value read from the file calfégname

EXAMPLE

The following set of commands will create the “pg_opclass” class containiniptthagps collection as
object421,print out the class, and then close it.

create pg_opclass (opcname=charl6)
open pg_opclass

insert 0id=421 (int_ops)

print

close pg_opclass

SEE ALSO
initdb(unix), createdb(unix), createdb(commands), template(files).

01/23/93 169

PAGE(FILES) RGE(FILES)

NAME
page structure -POSTGRESJatabase file default page format

DESCRIPTION
This section provides arverview of the page format used BBOSTGRESclasses. Useadefined access
methods need not use this page format.

In the following explanation, hyte is assumed to contain 8 bits. In addition, the téem refers to data
which is stored iPOSTGRES:lasses.

Diagram 1 shows o pages in both norm&@OSTGRES: lasses anBOSTGRESndex classes (e.g., a B-tree
index) are structured.

PageHeaderData ltemldData

-4 > - > - L

T T T

Unallocated Space

ItemContinuationData

T
|
|
|

itemPointerData filler itemData...

“ ltemData 2"

“ltemData 1”

Special Space

Diagram 1: Sample Page Layout

The first 8 bytes of each page consists of a page hd@alggH{eaderDatg. Within the headerthe first
three 2-byte integer fieldsower, upper, and special represent byte &fets to the start of unallocated
space, to the end of unallocated space, and to the start of “specidl §@aaal space is a region at the

end of the page which is allocated at page initialization time and which contains information specific to an

access method. The last 2 bytes of the page hezubue encode the page size and information on the
internal fragmentation of the pagPage size is stored in each page because frames inffiee pool may

be subdivided into equal sized pages on a frame by frame basis within a class. The internal fragmentation

information is used to aid in determining when pagegazation should occur.

Folowing the page header are item identifidtenfjldData). New item identifiers are allocated from the
first four bytes of unallocated space. Because an item identifievés meved until it is freed, its inde
may be used to indicate the location of an item on a phwgfact, every pointer to an iteml{emPointer)
created byPOSTGRESconsists of a frame number and an indé an item identifier An item identifier

contains a byte-&det to the start of an item, its length in bytes, and a set of attribute bits which affect its

interpretation.

The items, themselves, are stored in space allocated backwards from the end of unallocatéissathye.

01/23/93 170

PAGE(FILES) RGE(FILES)

the items are not interpretetHowever when the item is too long to be placed on a single page or when
fragmentation of the item is desired, the item isd#id and each piece is handled as distinct items in the
following manner The first through the mé to last piece are placed in an item continuation structure

(ItemContinuationDafa This structure containgemPointerDatawhich points to the next piece and the
piece itself. The last piece is handled normally.

FILES
.../data/...
Location of shared (global) database files.
.../data/base/...
Location of local database files.
BUGS

The page format may change in the future to provide more efficient access to large objects.

This section contains insufficient detail to be of assistance in writing a meaccess method.

01/23/93 171

TEMPLATE(FILES) TEMPLATE(FILES)

NAME
.../data/files/globall.bki — global database template
.../data/files/locall_XXX.bki — local database template
.../data/files/template1/* — default database template
DESCRIPTION
These files contain scripts which direct the construction of databases. Note that the “globall.bki” and
“templatel_local.bki” files are installed automatically whenRISTGRESsuperuser rungnitdb. These
files are copied from
...Isrc/backend/obj/{dbdb,local}.bki
The databases which are generated by the template scripts are normal databaseguentlyyou can
use the terminal monitor or some other frontend on a template database to simplify the customization task.
That is, there is no need trpeess eerything about your desired initial database state using a BKI template
script, because the database state can be tuned inedyacti
The system catalogs consist of classes of tiypes: global and localThere is one copof each global
class that is shared among all databases at d_sital classes, on the other hand, are not accessitdpte
from their own database.
The file
.../data/files/globall.bki
specifies the process used in the creation of global (shared) clagseatbgb Smilarly, the
.. [files/locall_XXX.bki
files specify the process used in the creation of local (unshared) catalog classes for the “XXX” template
database. “XXX"may be aw string of 16 or fewer printable character$.no template is specified in a
createdbcommand, then the template in
...[files/locall_templatel.bki
is used.
The .bki files are generated from C source code by an inscrutable set of AWK scripts.
BUGS
POSTGRESV/ersion 4.2 does not permit users todaparate template databases.
SEE ALSO

bki(files), initdb(unix), createdb(unix).

01/23/93 172

REFERENCES(MANWL) REFERENCES(MANLAL)

REFERENCES

The following technical reports are referred to in this docume&nt.information on ordering technical
reports, see the installation notes that accomfiaPOSTGRESistribution.

[ONG90] Ong,L. and Goh, J.,A Unified Framevork for Version Modeling Using Production
Rules in a Database Systétsl|ectronics Research Laboratplyniversity of California,
Berkele/, ERL Memo M90/33, April 1990.

[ROWES87] Rave, L. and Stonebrak M., “The POSTGRES Data ModeRroc. 1987 VLDB Con-
ference, Brighton, England, Sept. 1987.

[SHAP86] Shapirol., “Join Processing in Database Systems with Large Main Meniohi€s\l-
TODS, Sept. 1986.

[STONS87] Stonebradr, M., “The POSTGRES Storage Systémroc. 1987 VLDB Conference,
Brighton, England, Sept. 1987.

[STON9O] Stonebradr, M. et. al., “On Rules, Procedures, Caching anéwg in Database Sys-

tems; Proc. 1990 ACM-SIGMOD Conference on Management of Data, Atlantic City
N.J., June 1990.

[WONG76] Wbng, E., “Decomposition: A Strategy for Query Processi@GM-TODS, Sept. 1976.

03/10/94 173

REFERENCES(MANWL) REFERENCES(MANLAL)

03/10/94

CONTENTS(MANUAL) CONTENTS(MANUAL)

Table of Contents

S T=Tox i o] ARl [11 0o L8 X 1o o VSRR
Section 2 —UNIX COMMEANASWNIX) ..veiiiiiiiiiiee ittt et e e e sb e e e e st b e e e e e sabb e e e e e anbbeeeesesabbeeeeennnes
(1= a1 = [0 1 ¢ F=1 1 o] o PPt
LY=o U] U PEERRRRN 3.
CrEAEAD ... e e a e e e e e e e aeaeaeteeeeetrr——— i ————————— ...
(01 £oT= 1T 1= S 9.
D= 1 (0 Yo | o SR 11.
TSV] T PP 13..
[ol0] o VOO PPPTPTPPPPPTPTPRN
71 7o | o PSRRI 17..
ToToTo L= o P PRSP PR 18...
ThePOSTGRESTEMMINGl MONITOT......coiiiiiiiiiiiii e e e e e e e e e e eaaaaaaees
NS o PRSPPI 22..
= o [<To [o o R PR 23
o | PSPPSRt 24...
oo SRR 25..
PIS e e eeeeeeeeeeeeeeaeaeeeeetete—————————— e aaaaaaaaaaaases 26..
10120 T SR RPPPPPP PPN 27...
Y PRSP 28...
ThePOSTGREBACKENU SEIBTccceiiiiiiiiiiiieiit e e e e e e s e s ettt eeeeeeee s e s s s s steeareereeaeeesesaaansssaanneneeaaaeeeseaanas 29
THEPOSTGRESPOSIMASIELeeiiiiiieiiieee ettt et e e e e e e e ettt e et e e ae e e e s s aa e bbbe et e e eaaeeeeesaaannnbeeeeeeeaaaaens 31
010 PRSP 34...
0 35...
1 2T LT SRR PP PTPPPRPRS 36..
REINAAD ... et e e e e e bbbt e e e e e e e e e e s eaab b e b e eeeeas 31..
I 0110157 . T [T oS TP EEP SRR 39...
Section 3 — What comes WIFOSTGRESBUILT-INS)ccooiiiiiiiiiiiiie e 41
BUIlt-in @and SYStEMYPEScooiiiiiiiiiiieeeeeerrs s e e e e e e e e e aeeeeeeeeeeeersssssrnrnnnnnnnnn s e s nsennenenanaene s D
IS o il o0 1 T 0] 1= SRS
Syntax of date and tIME TYPES.....cceii it e e e e e
Built-in operators and fUNCHIONS.u ittt e e e e e e e e e e e s e e snebnbeeeeees
2T =T 0] 01T =Y (0] £ P
(O] 0T Ty YA o T o= = 1o] £ TP PP PP PP TPTPP
BUIlt-iN ggr@ae fUNCHIONSiiiieiiiiei ettt e e e e e s e e e e e e e e e e e st bbb e reeeaaaeeaeas
Section 4 —POSTQUELCOoMMANAS (COMMANDS)......cciiiiiiiiiiiieiieeie e e e e e s s s e e e e e e e e s e s eeeeeeeeeees
General INTOrMEALION..........ooii et e e e e e e e e e e ettt et e e et e e et et e e e e seseaaaaaaaaaeaaeeseseeesereeees
000 5121 o £ T PP P PP PP TP PP PPPPPPTPTRRRR 50...
FIelds @and ALHIITESoeveiie ettt e ettt e e s st bt e e e s bt e e e e e s anbb e e e e e abbeeeeeaane 52
L0 0T 1= 1 (0] £SO PO TP PP PPPPRPPPPRN 53...
o] (211 (o] o 1 PP TP T TR PPPPPPTR 53...
1070] 111 T T a0 £ TP PRSI h8...
Y 0T] o S PP PR PP PP PPTPPPPPUIRY 88.
F Yo [0 F= 11 SO UPT PP RPPPPPP 59.
Y o] 1= o PRSP 60..
AHACNAS ... oo e e e e e ettt e aeaaaaeaaaaaaaaeaeeereararar————_ 63..
[o || PP PP TP PTORPPP 64.
(O g T o 1= 0 PSRRI 65
(01 [0 11U PP PPPUPUPOPUPUPPRS 67..
(041151 1<) SO UU PP PPPPPPTT 68..
(0] o Y PRSPPI
(O =T 1 PSPPI 71..
(=T 1 (=T | o T TP PR PP P PRT O RPPPPPP 73..
(1T I = o] o PP 4.
DEfINE AQUIEIAEoiiiiiieiei ettt e et e e e s bt e e e bt e e s e nb b e e e e e e e e e anees 75
DEIINE FUNCLION. ...ceeitiee ettt e e e e ettt e e e e e e e e e s e b b et b et e e et e e e e e e s e s annnbbbbeeeaaaaaans
D= (] o= oo L PSR PRT
DS (L @] o 1T £ (o] A PO OPP PRI
DEIINE RUIB. ...ttt e oo oottt et e e e e e e e e s e bbb beeeeeeaaaeeesaaannneebeees
D= 1T Y/ o1 SRR or.

03/11/94 i

19

77
86
90
94

CONTENTS(MANUAL) CONTENTS(MANUAL)
DLy T TSI/ L= L PR 100
D11 (=] (TR 101..
DL ES] (o PPPPUUPPPPRPR 102
DT 14 /o | o ST PP 103
=Y (o [T 104..
=T To I T I S 105
(021 o4 o 106..
(1Y (=] o T 107.
10 = Yo [, 108..
LT (o T PP PTPPPPPTPPPPIN 109.
1Y/ (017 T 110
NN o) 11 SRR 111
U T PP PP PP PP 112.
REMO/E AQOIEIAEevieiiiiiieee ittt ettt e e e e e e e s s e e et e e e e e s s e s rt et e e e e e e 113
REMO/E FUNCLION vttt e e e ettt s e e e s e et e e e e e e aab e e s s esabbaesesssnsbanaeeaees 114
REMOIE INABX ..ottt et e et e e et e e e e e e ettt eeea et e e et e e e ea e e eeeaereeeraeeenaans 115
REMO/E OPEIALONviiiiiiiiiiei ettt e e e e e s e et e e e e e e e e s s e e et reaeeeeae s 116
REMOIE RUIE ..t e et e e e e e et e e e s e et s e e e s eebba s e e e e s eabbaneeas 117
ST 010 I 1Y/ 0T PP 118
REMOIE MIBW ..ottt e et e et e e et e et e e e e sa e e et e e e et s e s saaeesaaesentass 119
R LT =1 11PN 12Q..
=] o] =Tt PR 121..
R L 1<V 123
7= (o2 U 5 o PN 127.
Y= o3 10T T TRl 1] o o o PSSR 128
(0da] g1r (o] IF=1aTo T T E=1 (4= 110 o DO 128
ENVIFONMENT MMADIESeiiieiieee et e e et e e e e e et e e e e e s aaae e e ebaaes 128
LY g T= VY 2T =1 o] [T 128
QUETY EXECULION FUNCHIONS.eiiiieiiieiite ettt ettt ettt e s e e e s bt e e e et e e e e e annbe e e e e e nnees 129
(oo e 1IN L [o 1 N 131
Asynchronous Portals and NOtfICAtION...........ceuiiieiiiiiiiiee e e e e e 134
Y T oL=] | F= T =T YU Eogl U (o1 0] 1T 135
Functions Associated with the COPY Command..........cocuuiiiiiiiiiiii e 135
(] 2] @ = Vo T o T o3 1 o] o =PRSS 136
User AUthENTICATION FUNCHIONS.uuiiiei ittt e et e e e e e e e e e et eeea e e s eaeeeraaas 137
SAMPIE PrOGIAIMS. ...ttt e e e e e e oo ot b bbb ettt et e e e e e e s s e s s abbeb e e et e aeaeeeesaaannbbesneeeeaaaeeeaaaanns 138
YT o] I TRl = 1= - ¢ o 145.
SECHON 7 — LAGE ODJECIS ueiiiie ittt e ettt e e e et e e e ekt e e e e s ab e e e e e ek be e e e e e aabe e e e e e annreas 146
532 103 LT [0 B T (] < (o] 141.
] ST O N [0] (=] =Tl T 151.
Sample Large ODJECT PrOgraMIS......oo.uuiiieiiiiiee ettt et e e et e e e s s b e e e e e e enees 153
SECHON 8 — SYSIEM CALAIOGS. ...t tteeieiiiieei ittt ettt et e e e e e e e s s s bbbt e ettt et e e e e e e s e s aaanbbbbaeeeeeaaaeeeeaaannne 158
STSTe 0T R TRl 1 1S 167
(1T o Tt k= I L1 (0] 40 T=1 1 T0] o TR 167
SF= 10 Gl [0 BT L (S =T oT S = < 168
e o [{11 o L = 170
L= 10] 1= L= PP TU PP RPPPP 172..
(R (ST (=T (o1 173....

03/11/94 i

