
The POSTGRESUser Manual

Edited by thePOSTGRESGroup
Computer Science Div., Dept. of EECS

University of California at Berkeley

POSTGRESis copyright © 1989, 1994 by the Regents of the University of California. Permission to use, copy, modify, and dis-
tribute this software and its documentation for educational, research, and non-profit purposes and without fee is hereby granted, pro-
vided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of the University of California not be used in advertising or publicity pertaining to distribu-
tion of the software without specific, written prior permission.Permission to incorporate this software into commercial products can
be obtained from the Campus Software Office, 295 Evans Hall, University of California, Berkeley, Ca., 94720. The University of Cal-
ifornia makes no representations about the suitability of this software for any purpose. Itis provided “as is” without express or im-
plied warranty.

1

1. INTRODUCTION

This document is the user manual for thePOSTGRESdatabase management system devel-
oped at the University of California at Berkeley. This project, led by Professor Michael
Stonebraker, has been sponsored by the Defense Advanced Research Projects Agency
(DARPA), the Army Research Office (ARO), the National Science Foundation (NSF),
and ESL, Inc.

The first part of this manual goes over some basic system concepts and procedures for
starting thePOSTGRESsystem. We then turn to a tutorial overview of the POSTQUEL
data model and query language, introducing a few of its advanced features.Next, we
explain the POSTGRESapproach to extensibility and describe how users can extend
POSTGRESby adding user-defined types, operators, aggregates, and both query language
and programming language functions.After an extremely brief overview of the POST-
GRESrule system, the manual concludes with a detailed appendix that discusses some of
the more involved and operating system-specific procedures involved in extending the
system.

1.1. What is POSTGRES?
Traditional relational database management systems (DBMSs) support a data model con-
sisting of a collection of named relations, each attribute of which has a specific type.In
current commercial systems, possible types including floating point numbers, integers,
character strings, money, and dates.It is commonly recognized that this model is inade-
quate for future data processing applications.

The relational model succeeded in replacing previous models in part because of its sim-
plicity. Howev er, as mentioned, the “Spartan simplicity” of the relational model often
makes the implementation of certain applications very difficult. The POSTGRESdata
model offers substantial additional power by incorporating the following four additional
basic constructs:

classes
inheritance
types
functions

in such a way that users can easily extend the system. In addition,POSTGRESsupports a
powerful production rule system.

1.2. AShort History of the POSTGRESProject
Implementation of thePOSTGRESDBMS began in 1986. Theinitial concepts for the
system were presented in [STON86] and the definition of the initial data model appeared
in [ROWE87]. Thedesign of the rule system at that time was described in [STON87a].

2

The rationale and architecture of the storage manager were detailed in [STON87b].

POSTGREShas undergone several major releases since then. The first “demo-ware” sys-
tem became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference.
We released Version 1, described in [STON90a], to a few external users in June 1989.In
response to a critique of the first rule system [STON89], the rule system was redesigned
[STON90b] and Version 2 was released in June 1990 with the new rule system.Version 3
appeared in 1991 and added support for multiple storage managers, an improved query
executor and a rewritten rewrite rule system.For the most part, releases since then have
focused on portability and reliability.

POSTGREShas been used to implement many different research and production applica-
tions. Theseinclude: a financial data analysis system, a jet engine performance monitor-
ing package, an asteroid tracking database, a medical informatics database and several
geographic information systems.POSTGREShas also been used as an educational tool at
several universities. Finally, at least two companies (Multimedia Information Systems
and Montage Software) have picked up the prototype code and commercialized it.

POSTGRESbecame the primary data manager for the Sequoia 2000 scientific computing
project in late 1992. Furthermore, the size of the external user community nearly doubled
during 1993.It became increasingly obvious that maintenance of the prototype code and
support was taking up large amounts of time that should have been devoted to database
research. Inan effort to reduce this support burden, the project officially ended with Ver-
sion 4.2.

1.3. AboutThis Release
Version 4.2, the current version ofPOSTGRES, is about 200,000 lines of code in the C
programming language.POSTGRESis available free of charge, and (as of this writing)
has been installed by approximately 600 sites around the world.

This manual describes Version4.2 of POSTGRES. The POSTGRESgroup has compiled
and tested Version4.2on the following platforms:

architecture processor operating system

DECstation 3000 Alpha AXP OSF/1 1.3, 2.0
DECstation 3100 and 5000 MIPS ULTRIX 4.2A, 4.3A
Sun4 SPARC SunOS4.1.3, 4.1.3_U1; Solaris 2.3
H-P 9000/700 and 800 PA-RISC HP-UX9.00, 9.01, 9.03
IBM RS/6000 POWER AIX 3.2.5

Previous versions ofPOSTGRESran on Sun Microsystems Sun3 and Sequent Symmetry
machines.POSTGRESno longer runs on these systems.Outside users have ported previ-
ous releases ofPOSTGRESto many platforms, includingNeXTSTEP, IRIX 5.2, Intel Sys-
tem V Release 4, Linux, FreeBSD and NetBSD.

UNIX is a trademark of X/Open, Ltd. Sun4, SPARC, SunOS and Solaris are trademarks of Sun Microsystems, Inc. DEC, DEC-
station, Alpha AXP and ULTRIX are trademarks of Digital Equipment Corp.PA-RISC and HP-UX are trademarks of Hewlett-
Packard Co. RS/6000, POWER and AIX are trademarks of International Business Machines Corp. OSF/1 is a trademark of the Open
Systems Foundation. NeXTSTEPis a trademark of NeXT Computer, Inc. MIPSand IRIX are trademarks of Silicon Graphics, Inc.

3

Version 4.2 has been tuned modestly. On the Wisconsin benchmark, one should expect
performance about twice that of the public domain, University of California version of
INGRES, a relational prototype from the late 1970s.

4

2. WHAT YOU SHOULD READ

This manual is primarily intended to provide a broad overview of the system, as well as
to illustrate how C programmers can tie their own code into thePOSTGRESdatabase
server (commonly referred to as thebackend server, or simply “backend”).

In addition to this manual, there is another document, thePOSTGRESReference Manual.
The Reference Manual gives full descriptions of the syntax and options for each com-
mand in a format not unlike UNIX “man pages.” (In fact, the contents of the Reference
Manual should be available on-line as actual man pages.)However, the Reference Man-
ual is designed as a complete reference for the experiencedPOSTGRESuser and contains
few tutorial examples. ThisUser Manual does not attempt to provide all of the informa-
tion that the Reference Manual provides. Instead,it describes the majorconceptsof the
system, gives examplesof the use of the major constructs, and then providespointersto
the appropriate place in the Reference Manual in which you can find more information if
you so desire.

If you are new to POSTGRES, you should probably read this manual first, followed by the
parts of thePOSTGRESReference Manual necessary to build your application.In partic-
ular, you should read the Reference Manual section onLIBPQ if you intend to build a
client application aroundPOSTGRES, as that library is not discussed in this manual.

If you are not already familiar with relational databases, you should probably find a good
introductory text on the subject.This manual assumes that you already have some
knowledge of the relational model, and it doesn’t hurt to know a query language such as
QUEL or SQL.

5

3. POSTGRESARCHITECTURE CONCEPTS

Before we continue, you should understand the basicPOSTGRESsystem architecture.
Understanding how the parts ofPOSTGRESinteract will make the next chapter somewhat
clearer.

In database jargon, POSTGRESuses a simple “process-per-user” client/server model. A
POSTGRESsession consists of three cooperatingUNIX processes (programs):

• A supervisory daemon process (thepostmaster),
• the user’s frontend application (e.g., themonitor program), and

POSTMASTERAPPLICATION
LIBPQ

USER

APPLICATION
LIBPQ

USER
POSTMASTER

SERVER

APPLICATION
LIBPQ

USER

SERVER

POSTMASTER

(a) frontend sends request to
postmaster via well-known
network socket

(c) frontend connected
to backend server

server host

listening

TCP port

connection
initial

forks child

queries/
data

listening

(b) postmaster creates backend server

Figure 1. How a connection is established.

6

• the backend database server (thepostgres process itself).

A single postmaster manages a given collection ofdatabaseson a single host. Such a
collection of databases is called aninstallationor site. Frontend applications that wish to
access a given database within an installation make calls to theLIBPQ library. The
library forwards the user requests over the network to thepostmaster (Figure 1(a)),
which in turn starts a new backend server process (Figure 1(b)) and connects the frontend
process to its server (Figure 1(c)). From that point on, the frontend process and the back-
end server communicate without intervention by thepostmaster . Hence, thepost-
master is always running, waiting for requests, whereas the frontend and backend pro-
cesses come and go.

One implication of this architecture is that thepostmaster and the backend always run
on the same machine (the database server), while the frontend application may or may
not be running on a separate machine (e.g., a client workstation). You should keep this in
mind, because this means that the files that you can access on your machine may not be
accessible (or may only be accessed using a different filename) on the database server
machine.

You should also be aware that thepostmaster and thepostgres server run with the
user-id of thePOSTGRES“superuser.” Note that thePOSTGRESsuperuser does not have
to be a special user (e.g., a user named “postgres”). Furthermore, thePOSTGRESsupe-
ruser should definitely not be theUNIX superuser, “root”! In any case, all files relating to
a database should belong to thisPOSTGRESsuperuser.

7

4. GETTING STARTED WITH POSTGRES

Before you can start learning thePOSTQUELquery language, you need to have a working
POSTGRESsystem. Thissection discusses how to start POSTGRESand set up your own
environment so that you can use frontend applications.

Some of the steps listed in this section will apply to allPOSTGRESusers, and some will
apply primarily to the site database administrator. This site administrator is the person
who installed the software, created the database directories and started thepostmaster
process. Thisperson does not have to be the UNIX superuser, “root,” or the computer
system administrator.

In this section, items for end users are labelled “User” and items intended for the site
administrator are labelled “Admin.”

Throughout this manual, any examples that begin with the character ‘‘%’’ are commands
that should be typed at theUNIX shell prompt. Examples that begin with the character
‘‘ * ’’ are commands in thePOSTGRESquery language,POSTQUEL.

4.1. Admin: Installing POSTGRES

Detailed installation instructions can be found in thePOSTGRESsource code distribution.
The troff source is located in the filesrc/doc/postgres-setup.me and a for-
matted version is located at the top of the distribution directory tree.Those instructions
vary from release to release and will not be duplicated here.However, if you are
installing POSTGRESnow, you must read these instructions and carry them out before
going any further.

A reminder: don’t run the regression tests as the “postgres” user. Part of the test is a
check of thePOSTGRESsecurity mechanisms that turns off superuser permissions. If you
run the test as “postgres,” you may not be able to add users later.

4.2. Admin/User:Setting Up Your Environment
Figure 2 shows how the POSTGRESdistribution is laid out when installed in the default
way. The system can be installed such that the various top-level directories can be scat-
tered around your disks, but for the sake of simplifying this manual we will assume that
this is not the case. In the examples that follow, we will assume thatPOSTGREShas been
installed in the directory/usr/local/postgres . Therefore, wherever you see the
directory /usr/local/postgres you should substitute the name of the directory
wherePOSTGRESis actually installed.

All POSTGRES commands are installed in the directory
/usr/local/postgres/bin . Therefore, you should add this directory to your shell
command path. If you use a variant of the Berkeley C shell, such ascsh or tcsh , you
would put

8

[private classes]
pg_class

[shared classes]
pg_log

[private classes]
pg_class

files base

template1

data

[.bki files]

....

mydb

bin

monitor postgres postmaster....

EXECUTABLE
PROGRAMS

libpq.a

lib include

libpq.h

src doc

postgres

DATA
DEVELOPMENT
APPLICATION

ENVIRONMENT

Figure 2. POSTGRESfile layout.

% set path = (/usr/local/postgres/bin $path)

in the.login file in your home directory. If you use a variant of the Bourne shell, such
assh , ksh or bash , then you would put

% PATH=/usr/local/postgres/bin:$PATH
% export PATH

in the.profile file in your home directory.

From now on, we will assume that you have put thePOSTGRESbin directory in your
path. Inaddition, we will make frequent reference to “setting a shell variable” or “setting
an environment variable” throughout this document. If you did not fully understand the
last paragraph on modifying your search path, you should consult theUNIX manual pages
that describe your user shell before going any further.

4.3. Admin: Starting the Postmaster
It should be clear from the preceding discussion that nothing can happen to a database
unless thepostmaster process is running.As the site administrator, there are a num-
ber of things you should remember before starting thepostmaster . These are dis-
cussed in the section of this manual titled, “Administering POSTGRES.” Howev er, if
POSTGREShas been installed by following the installation instructions exactly as written,
the following simple command is all you should need to start thepostmaster :

% postmaster &

If the postmaster does not start, but instead prints a series of cryptic error messages,

9

you should consult the Reference Manual under the headingpostmaster. This manual
page contains troubleshooting tips.

The postmaster occasionally prints out messages to the shell that started it. This is
often helpful during troubleshooting. If you do not wish to see these messages, you can
type

% postmaster -S

and thepostmaster will be “S”ilent. Notice that there is no ampersand (“&”) at the
end of the last example.

4.4. Admin: Adding Users
The createuser command enables specific users to accessPOSTGRES. Please read
the descriptions of these commands in the Reference Manual for specific instructions on
their use.

4.5. User:Starting Applications
Assuming that your site administrator has properly started thepostmaster process and
authorized you to use the database, you (as a user) may begin to start up applications.As
previously mentioned, you should add/usr/local/postgres/bin to your shell

search path. In most cases, this is all you should have to do in terms of preparation.1

If you get the following error message from aPOSTGREScommand (such asmonitor
or createdb):

FATAL: StreamOpen: connect() failed: errno=61
FATAL: Failed to connect to postmaster (host=xxx, port=4321)

Is the postmaster running?

it is usually because (1) thepostmaster is not running, or (2) you are attempting to
connect to the wrong server host.

If you get the following error message:

FATAL 1:Feb 17 23:19:55:process userid (2360) !=
database owner (268)

it means that the site administrator started thepostmaster as the wrong user. Tell him
to restart it as thePOSTGRESsuperuser.

1 If your site administrator has not set things up in the default way, you may have some more work to do.For example, if the
database server machine is a remote machine, you will need to set thePGHOSTenvironment variable to the name of the database serv-
er machine. The environment variablePGPORTmay also have to be set. Thebottom line is this: if you try to start an application pro-
gram and it complains that it cannot connect to thepostmaster , you should immediately consult your site administrator to make
sure that your environment is properly set up.

10

4.6. User:Managing a Database
Now that POSTGRESis up and running we can make some databases with which to
experiment. Here,we describe the basic commands for managing a database.

4.6.1. Creating a Database
Let’s say you want to create a database namedfoo . You can do this with the following
command:

% createdb foo

POSTGRESallows you to create any number of databases at a given site and you automat-
ically become thedatabase administrator of the database just created. Database names
must have an alphabetic first character and are limited to 16 characters in length.

Not every user has authorization to become a database administrator. If POSTGRES
refuses to create databases for you, then the site administrator needs to grant you permis-
sion to create databases. Consult your site administrator if this occurs.

4.6.2. Accessinga Database
Once you have constructed a database, there are three ways to access it:

• You can run thePOSTGRESterminal monitor (themonitor program) which allows
you to interactively enter, edit, and execute commands in thePOSTQUELquery lan-
guage.

• You can interact withPOSTGRESfrom a C program by using theLIBPQ subroutine
library. This allows you to submitPOSTQUELcommands from C and get answers and
status messages back to your program.This interface is discussed further in the
LIBPQ section of the Reference Manual.

• You can use thefast pathfacility, which allows you to execute functions within the
server program itself. This facility is (minimally) described in the Reference Manual
under “Fast Path.”

This manual will only discuss access through the terminal monitor.

The terminal monitor can be activated for thefoo database by typing the command:

% monitor foo

You will be greeted with the following message:

Welcome to the POSTGRES terminal monitor

Go
*

This prompt indicates that the terminal monitor is listening to you and that you can type
POSTQUELqueries into a workspace maintained by the terminal monitor.

Themonitor program responds to escape codes that begin with the backslash character,
“\”. For example, youprint the current contents of the workspace by typing:

11

* \ p

Once you have finished entering your queries into the workspace, you can pass the con-
tents of the workspace to thePOSTGRESserver by typing:

* \ g

This tells the server togo. If you make a typing mistake, you can invoke thevi text edi-
tor by typing:

* \ e

The workspace will be passed to the editor, and once you exit vi , your edited query will
placed in the terminal monitor workspace. You can then submit the contents of the
workspace toPOSTGRESby using the\g command as described above.

To get out of the monitor and return toUNIX , type

* \ q

andmonitor will quit and return you to your command shell.

There are two other things thatmonitor understands that make it easier to write nice-
looking scripts. First, white space (i.e., spaces, tabs and newlines) may be used freely in
POSTQUELqueries. Second,comments that look like those used in the C programming
language, e.g.,

/* This is a comment. */

may also be used in your queries.Beware: you cannot comment out an escape code.In
other words, this doesn’t work as you might expect:

/* I don’t want to send this!\g */
retrieve (message = "but I want to send this!") \g

For a complete description of themonitor commands and its options, see the Reference
Manual under the headingmonitor .

4.6.3. Destroying a Database
If you are the database administrator for the databasefoo , you can destroy it using the
following UNIX command:

% destroydb foo

This action physically removes all of the UNIX files associated with the database and can-
not be undone, so this should only be done with a great deal of forethought.

12

5. THE POSTQUEL QUERY L ANGUAGE

POSTQUELis thePOSTGRESquery language.POSTQUELwas derived from theQUEL
language developed by the University of California INGRES project, but the two lan-
guages are different in many ways. Thissection provides an overview of how to use the
moreQUEL-like features ofPOSTQUELto perform simple operations.

In the examples that follow, we assume that you have created thefoo database as
described in the previous subsection and have started the terminal monitor.

Before you start reading, take a look at the directory
/usr/local/postgres/src/examples . This directory contains all of the
POSTQUELqueries listed in this manual (the ones that aren’t examples of things that
don’t work, that is) broken down by chapter. Instead of typing the queries below into the
monitor program, you can just cut and paste out of the appropriate file or use the\i
command at the terminal monitor.

5.1. Concepts
The fundamental notion inPOSTGRESis that of aclass,which is a named collection of
object instances. Each instance has the same collection of namedattributes, and each
attribute is of a specifictype. Furthermore, each instance has a permanentobject identi-
fier (OID) that is unique throughout the installation.

As previously discussed, classes are grouped into databases, and a collection of databases
managed by a singlepostmaster process constitutes an installation or site.

5.2. Creating a New Class
You can create a new class by specifying the class name, along with all attribute names
and their types:

* c reate EMP (name = text, salary = int4,
age = int4, dept = char16) \g

* c reate DEPT (dname = char16, floor = int4,
manager = text) \g

ThePOSTQUELbase types used above are a variable-length array of printable characters
(text), a 4-byte signed integer (int4), and a fixed-length array of 16 characters
(char16 .)

So far, thePOSTGREScreatecommand looks exactly like the command used to create a
table in a traditional relational system.This exact syntax was used inQUEL, the original
INGRESquery language.However, we will presently see that classes have properties that
are extensions of the relational model, so we use a different word to describe them.

13

5.3. Populating a Class with Instances
Theappendcommand is used to populate a class with instances:

* a ppend EMP (name = "Claire", salary = 2000,
age = 40, dept = "shoe") \g

* a ppend EMP (name = "Joe", salary = 1400,
age = 40, dept = "shoe") \g

* a ppend EMP (name = "Sam", salary = 1200,
age = 29, dept = "toy") \g

* a ppend EMP (name = "Bill", salary = 1600,
age = 36, dept = "candy") \g

* a ppend DEPT (dname = "shoe", floor = 5,
manager = "Claire") \g

* a ppend DEPT (dname = "toy", floor = 3,
manager = "Sam") \g

* a ppend DEPT (dname = "candy", floor = 4,
manager = "(None)") \g

This adds four instances to theEMPclass, one for eachappendcommand.

You can also use thecopy command to perform load large amounts of data from flat
(ASCII) files. See the Reference Manual undercopy for details.

5.4. Queryinga Class
The EMPclass can be queried with normal relational selection and projection queries.
ThePOSTQUELequivalent of theSQL selectstatement isretrieve. As in SQL, the state-
ment is divided into atarget list (the part that lists the attributes to be returned) and a
qualification(the part that specifies any restrictions). For example, to find the employees
under 35 years of age, type:

* r etrieve (EMP.name) where EMP.age < 35 \g

and the output should be:

name

Sam

Note that, unlikeSQL, parentheses are required around the target list,EMP.name.

POSTQUELallows you to return arbitrary computations in the target list as long as they
are given some kind of name:

* r etrieve (result = EMP.salary / EMP.age)
where EMP.name = "Bill" \g

14

result

44

In this case, we divided Bill’s salary by his age and called the resultresult . (Of

course, the answer is really 44
4

9
, but division of two integers produces another integer so

the fraction is lost.).

Arbitrary Boolean operatorsand, or and not) are allowed in the qualification of any
query. For example,

* r etrieve (EMP.all)
where EMP.age < 30

or not EMP.name = "Joe" \g

name salary age dept

Claire 2000 36 shoe

Sam 1200 29 toy

Bill 1600 36 candy

As a final note, you can specify that the results of aretrieve can be returned in a sorted
order or with duplicate instances removed. Seethe Reference Manual underretrieve for
more information.

5.5. Redirecting Retrieve Queries
Any retrievequery can be redirected to a new class in the database:

* r etrieve into temp (EMP.name)
where EMP.age < 35 and EMP.salary > 1000 \g

This executes an implicitcreatecommand, creating a new classtemp with the attribute
names and types specified in the target list of theretrieve into command. We can then,
of course, perform any operations on the resulting class that we can perform on other
classes.

* r etrieve (temp.all) \g

name

Sam

5.6. Joins Between Classes
Thus far, our queries have only accessed one class at a time. Queries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class
are being processed at the same time.A query that accesses multiple instances of the

15

same or different classes at one time is called ajoin query.

As an example, say we wish to find the names of employees which are the same age.In
effect, we need to compare theage attribute of eachEMPinstance to theage attribute of

all otherEMPinstances.2 We can do this with the following query:

* r etrieve (E1.name, E2.name)
from E1 in EMP, E2 in EMP
where E1.age = E2.age and E1.name != E2.name \g

name name

Bill Claire

Claire Bill

In this case, bothE1 andE2 aresurrogatesfor an instance of the classEMP, and both
range over all instances of the class. (In the terminology of most database systems,E1
and E2 are known as “range variables.”) A POSTQUELquery can contain an arbitrary

number of class names and surrogates.3

5.7. Updates
You can update existing instances using thereplacecommand:

* r eplace EMP (salary = E.salary)
from E in EMP
where EMP.name = "Joe" and E.name = "Sam" \g

This command replaces the salary of Joe by that of Sam.

Notice that this example is actually another join query. Here, we are using the actual
class name (‘‘EMP’’) as one range variable and a surrogate name forEMP(‘‘ E’’) as
another range variable.

5.8. Deletions
Deletions are performed using thedeletecommand:

* d elete EMP where EMP.salary > 0 \g

Since all employees have positive salaries, this command will leave theEMPclass empty.

2 This is only a conceptual model. The actual join may be performed in a more efficient manner, but this is invisible to the user.
3 The semantics of such a join are that the qualification is a truth expression defined for the Cartesian product of the classes in-

dicated in the query. For those instances in the Cartesian product for which the qualification is true,POSTGREScomputes and returns
the values specified in the target list.

POSTQUELdoes not assign any meaning to duplicate values in such expressions. Thismeans thatPOSTGRESsometimes recomputes
the same target list several times — this frequently happens when Boolean expressions are connected with anor. To remove such du-
plicates, you must use theretrieve unique statement. Seethe Reference Manual underretrieve for more details.

16

One should be wary of queries of the form

delete classname

Without a qualification, thedeletecommand will simply delete all instances of the given
class, leaving it empty. The systemwill not request confirmation before doing this.

Before going on, repopulate your EMP database using theappend commands listed
above.

5.9. UsingFunctions
POSTQUEL queries can contain function calls as well as operators. If we wanted to
express our very firstretrievequery as:

* r etrieve (EMP.name) where int4lt(EMP.age, 35) \g

name

Sam

we could do so.Obviously, if we need to compute some function of more than two argu-
ments, wemustuse the function syntax instead of the operator syntax.

5.10. UsingAggregate Functions
Like most other query languages,POSTGRESsupports aggregate functions.However, the
current implementation ofPOSTGRESaggregate functions is very limited.Specifically,
while there are aggregates to compute such functions as the count, sum, average, maxi-
mum and minimum over a set of instances, aggregates can only appear in the target list of
a query and not in the qualification (where clause). Asan example,

* r etrieve (how_many = count{EMP.name}) \g

how_many

4

counts all employees, and

* r etrieve (avg_salary =
int4ave{EMP.salary

where EMP.dept = "toy"}) \g

avg_salary

1200

computes the average salary of all employees in the toy department. However, the fol-
lowing query (to find out who makes more money than any of the toy department

17

employees) willnot work:

* r etrieve (EMP.name) where
EMP.salary > int4max{EMP.salary

where EMP.dept = "toy"} \g

WARN:Mar 3 00:40:54:parser: syntax error at or near "{"

because the aggregate is not in the target list. In addition, if the qualification of the aggre-
gate expression contains any join clauses (references to other classes), the aggregate may
or may not return the right result. (In other words, aggregates with join clauses are nei-
ther disallowed nor are they correctly supported.) See the Reference Manual under
postquelfor more details.

5.11. Help! WhatAr e the Valid Types, Operators and Functions?
So far, we hav e been rather cavalier in our use of types (such aschar16), operators
(such as<), and aggregate functions (such ascount). A large number of pre-defined
types, operators and aggregates are available by default inPOSTGRES, and these are
listed in the section of the Reference Manual labelledbuilt-in . This would be a good
time to go ahead and take a peek at that section.

In a later section of this manual, we will describe how to query the system to find out the
current list ofall valid types, operators, functions, etc. known to the system.

18

6. ADVANCED POSTQUEL FEATURES

Having covered the basics of usingPOSTQUELto access your data, we will now discuss
those features ofPOSTGRESthat distinguish it from conventional data managers.These
features include inheritance, time travel and non-atomic data values (array- and set-
valued attributes).

6.1. Inheritance
First, if you haven’t done so already, re-populate theEMPclass by repeating theappend
commands in section 5.3. Then, create a second classSTUD_EMP, and populate it as fol-
lows:

* c reate STUD_EMP (location = point) inherits (EMP) \g

* a ppend STUD_EMP (name = "Sunita", salary = 4000,
age = 23, dept = "electronics",
location = "(3, 5)") \g

In this case, an instance ofSTUD_EMPinheritsall data fields (name, salary , age , and
dept) from its parent,EMP. Furthermore, student employees have an extra field,loca-
tion , that shows their address as a coordinate pair. In POSTGRES, a class can inherit

from zero or more other classes,4 and a query can reference either all instances of a class
or all instances of a class plus all of its descendants.For example, the following query
finds the employees over 20:

* r etrieve (E.name) from E in EMP where E.age > 20 \g

name

Claire

Joe

Sam

Bill

On the other hand, to find the names of all employees, including student employees, over
age 20, the query is:

* r etrieve (E.name) from E in EMP* where E.age > 20 \g

4 I.e., the inheritance hierarchy is a directed acyclic graph.

19

which returns:

name

Claire

Joe

Sam

Bill

Sunita

Here the* after EMPindicates that the query should be run over EMPand all classes
below EMPin the inheritance hierarchy. Many of the commands that we have already
discussed —retrieve, replaceanddelete— support this* notation, as do others, such as
the rename andaddattr commands. Seethe Reference Manual entries for these com-
mands for additional details.

Note thatlocation in STUD_EMPis not a traditional relational data type.As we will
see later, POSTGREScan be customized with an arbitrary number of user-defined data
types.

6.2. Time Travel
POSTGRESsupports the notion oftime travel. This feature allows a user to run historical
queries. For example, to find Sam’s current salary, one would query:

* r etrieve (E.salary) from E in EMP["now"]
where E.name = "Sam" \g

salary

1200

POSTGRESwill automatically find the version of Sam’s record valid at the correct time
and get the appropriate salary.

One can also give a time range. For example to see all the salaries that Sam has ever
earned, one would query:

* r etrieve (E.salary)
from E in EMP["epoch", "now"]
where E.name = "Sam" \g

where “epoch” indicates the beginning of the system clock.5 If you have executed all of
the examples so far, then the above query returns:

5 On UNIX systems, this is always midnight, January 1, 1970 GMT.

20

salary

1200

1200

Notice that there are two salaries for Sam because he was deleted from and then re-
appended to theEMPclass.

The default beginning of a time range is the earliest time representable by the system and
the default end is the current time; thus, the above time range can be abbreviated as
‘‘ [,] .’’ See Section 3 of the Reference Manual,Built-Ins , and the introduction to Sec-
tion 4, POSTQUEL, for a full description of the time types (absolute time, relative time
and time ranges).

6.3. Non-AtomicValues
One of the tenets of the relational model is that the attributes of a relation areatomic.
POSTGRESdoes not have this restriction; attributes can themselves contain sub-values
that can be accessed from the query language.For example, you can create attributes that
arearraysof base types orsetsof any type.

6.3.1. Arrays
POSTGRESallows attributes of an instance to be defined as fixed-length or variable-
length multi-dimensional arrays. Arrays of any base type or user-defined type can be cre-
ated. To illustrate their use, we first create a class with arrays of base types.

* c reate SAL_EMP (name = text,
pay_by_quarter = int4[],
schedule = char16[][]) \g

The above query will create a class namedSAL_EMPwith a text string (name), a one-
dimensional array ofint4 (pay_by_quarter), which represents the employee’s
salary by quarter and a two-dimensional array ofchar16 (schedule), which repre-
sents the employee’s weekly schedule.Now we do some append s; note that when
appending to an array, we enclose the values within braces and separate them by commas.
If you know C, this is not unlike the syntax for initializing structures.

* a ppend SAL_EMP (name = "Bill",
pay_by_quarter[4] = "{10000, 10000, 10000, 10000}",
schedule[7][2] = "{{"meeting", "lunch"}, {}}") \g

* a ppend SAL_EMP (name = "Carol",
pay_by_quarter = "{20000, 25000, 25000, 25000}",
schedule[5][2] = "{{"talk", "consult"}, {"meeting"}}") \g

By default, POSTGRESuses the “one-based” numbering convention for arrays — that is,
an array ofn elements starts with array[1] and ends with array[n]. Notethat the elements
of an array do not have to be completely specified.For example, you may have noticed
that we did not initialize all of the elements of the attributeschedule above. The value
of an uninitialized element is undefined, but it can be updated later using thereplace

21

command.

Now, we can run some queries onSAL_EMP. First, we show how to access a single ele-
ment of an array at a time. This query retrieves the names of the employees whose pay
changed in the second quarter:

* r etrieve (SAL_EMP.name)
where SAL_EMP.pay_by_quarter[1] !=

SAL_EMP.pay_by_quarter[2] \g

name

Carol

This query retrieves the third quarter pay of all employees:

* r etrieve (SAL_EMP.pay_by_quarter[3]) \g

pay_by_quarter

10000

25000

We can also access arbitraryslicesof an array, or subarrays. This query retrieves the first
item on Bill’s schedule for the first three days of the week.ill .

* r etrieve (SAL_EMP.schedule[1:3][1:1])
where SAL_EMP.name = "Bill" \g

schedule

{{"meeting"},{""},{""}}

Similarly, the replace command can be used to update a single array element or an
arbitrary subarray. This query updates Carol’s schedule for the second and third day of
the week.

* r eplace SAL_EMP (schedule[2:3][1:2] =
"{{"debugging", "shopping"}, {"meeting", "present"}}")
where SAL_EMP.name = "Carol" \g

This query gives a $1000 raise in the first quarter to all members whose first item on
schedule for the first working day isdebugging :

* r eplace SAL_EMP (pay_by_quarter[1] =
SAL_EMP.pay_by_quarter[1] + 1000)

where SAL_EMP.schedule[1][1] = "debugging" \g

22

6.3.2. Sets
Class attributes can also besetsthat are defined in anintentional, or declarative, manner.
For example, let’s say that we want to create a new kind of department class.A depart-
ment consists of a department name as well as aquery that lists all members of the
department.

* c reate NEW_DEPT (deptname = char16,
members = setof EMP) \g

* a ppend NEW_DEPT (deptname = "shoe",
members = "retrieve (EMP.all)

where EMP.age >= 40") \g

* a ppend NEW_DEPT (deptname = "toy",
members = "retrieve (EMP.all)

where EMP.name = \\"Sam\\"") \g

* a ppend NEW_DEPT (deptname = "candy",
members = "retrieve (EMP.all)

where EMP.name != \\"Sam\\"
and EMP.age < 40") \g

These amount to our business rules: all people over 40 work in the shoe department, Sam
works alone in the toy department, and everyone else works in the candy department.

We can retrieve (but not update) individual attributes of each member of a set-valued
attribute. We do with thenested-dotnotation.

* r etrieve (NEW_DEPT.deptname,
NEW_DEPT.members.name) \g

deptname name

shoe Claire

shoe Joe

toy Sam

candy Bill

That is, we project attributes from our set-valued attribute, NEW_DEPT.members, by
adding the reference to theEMPattribute.name . There are two cav eats: the shorthand
.all doesn’t work for set-valued attributes, and retrieval of more than one attribute from
a set-valued attribute may produce unexpected results.

The main advantage of representing sets in a declarative way (instead of storing the actual
values, orEMPs, in this example) is that the set declarations automatically maintain their
consistency. If we hire someone new, they will be assigned to the properNEW_DEPT
whether we explicitly give them a department or not.

/* whoops, we forgot to put Ginger in a department... */

23

* a ppend EMP (name = "Ginger", salary = 2000,
age = 34) \g

/* ...but it’s ok */
* r etrieve (NEW_DEPT.deptname,

NEW_DEPT.members.name) \g

deptname name

shoe Claire

shoe Joe

toy Sam

candy Bill

candy Ginger

Notice thatPOSTGRESreturns several results for each of the departments that have more
than one employee. Thisis becausePOSTGRES“flattens” the result when a set attribute
contains multiple instances. In other words, an instance is returned for each of the set
elements and the contents of the other attributes (in this case,deptname) is just dupli-
cated in each of those instances.

24

7. EXTENDING POSTQUEL: AN OVERVIEW

In the sections that follow, we will discuss how you can extend thePOSTQUELquery lan-
guage by adding:

• functions
• types
• operators
• aggregates

We will then give some integrated examples of their use.

7.1. How Extensibility Works
POSTGRESis extensible because its operation iscatalog-driven. If you are familiar with
standard relational systems, you know that they store information about databases, tables,
columns, etc., in what are commonly known assystem catalogs. (Some systems call this
the data dictionary). The catalogs appear to the user as tables, like any other, but the
DBMS stores its internal bookkeeping in them. One key difference betweenPOSTGRES
and standard relational systems is thatPOSTGRESstores much more information in its
catalogs — not only information about tables and columns, but also information about its
types, functions, access methods, and so on.These tables can be modified by the user,
and sincePOSTGRESbases its internal operation on these tables, this means thatPOST-
GREScan be extended by users. By comparison, conventional database systems can only
be extended by changing hard-coded procedures within the DBMS or by loading modules
specially-written by the DBMS vendor.

POSTGRESis also unlike most other data managers in that the server can incorporate
user-written code into itself throughdynamic loading. That is, the user can specify an
object code file (e.g., a compiled.o file or shared library) that implements a new type or
function andPOSTGRESwill load it as required. Code written in thePOSTQUELquery
language are even more trivial to add to the server.

This ability to modify its operation “on the fly” makes POSTGRESuniquely suited for
rapid prototyping of new applications and storage structures.

7.2. ThePOSTGRESType System
ThePOSTGREStype system can be broken down in several ways.

Types are divided intobasetypes andcompositetypes. Basetypes are those, like int4 ,
that are implemented in a language such as C.They generally correspond to what are
often known as “abstract data types”;POSTGREScan only operate on such types through
methods provided by the user and only understands the behavior of such types to the
extent that the user describes them. Composite types are created whenever the user cre-
ates a class.EMPis an example of a composite type.POSTGRESstores these types in
only one way (within the file that stores all instances of the class) but the user can “look

25

inside” at the attributes of these types from the query language and optimize their
retrieval by (for example) defining indices on the attributes.

POSTGRESbase types are further divided into built-in types anduser-definedtypes.
Built-in types (like int4) are those that are compiled into the system.User-defined
types are those created by the user in the manner to be described below.

7.3. About the POSTGRESSystem Catalogs
Having introduced the basic extensibility concepts, we can now take a look at how the
catalogs are actually laid out.You can skip this section for now, but some later sections
will be incomprehensible without the information given here, so mark this page for later
reference.

All system catalogs have names that begin with pg_ . The following classes contain
information that may be useful to the end user. (There are many other system catalogs,
but there should rarely be a reason to query them directly.)

catalog name description

pg_database databases
pg_class classes
pg_attribute class attributes
pg_index secondary indices

pg_proc procedures (both C andPOSTQUEL)
pg_type types (both base and complex)
pg_operator operators
pg_aggregate aggregates and aggregate functions

pg_am access methods
pg_amop access method operators
pg_amproc access method support functions
pg_opclass access method operator classes

The Reference Manual gives a more detailed explanation of these catalogs and their
attributes. However, Figure 3 shows the major entities and their relationships in the sys-
tem catalogs.(Attributes that do not refer to other entities are not shown unless they are
part of a primary key.)

This diagram is more or less incomprehensible until you actually start looking at the con-
tents of the catalogs and see how they relate to each other. For now, the main things to
take away from this diagram are as follows:

(1) In several of the sections that follow, we will present various join queries on the
system catalogs that display information we need to extend the system.Looking
at this diagram should make some of these join queries (which are often three- or
four-way joins) more understandable, because you will be able to see that the
attributes used in the queries form foreign keys in other classes.

(2) Many different features (classes, attributes, functions, types, access methods, etc.)
are tightly integrated in this schema.A simple define command may modify

26

[8]

[8]

REFERS-TO

non-key

1

0:N

1

13:N

10:N

1

0:N

1 1 1

0:N

0:N

1 1

0:N

1

0:N

0:N

1

0:N

1

0:N

1

0:N

10:1

optional

mandatory

0:1

0:N

0:N

1

1

0:N
0:N

1

1

1

0:N

0:N

0:N

0:N

1

1

0:N

KEY:

atttypid

typrelid

typinput

typoutput

typreceive

typsend

indexrelid

amopselect

amopnpages

prolang

amproc

oprcom

oprnegate

oprlsortop

oprrsortop

oprcode

oprrest

oprjoin

amgettuple

aminsert

amdelete

amgetattr

ambeginscan

amrescan

amendscan

ammarkpos

amrestrpos

ambuild

DEPENDENT

INDEPENDENT

pg_attribute

pg_class

pg_index

pg_type

pg_am

pg_proc

pg_language

pg_amop

pg_opclass

pg_amproc

pg_operator

attrelid

attnum

relam

oid

indrelid

indkey

indproc

indpred

oid

oid

oid

oid

amopid

amopclaid

amopopr

oid

amid

amopclaid

amprocnumoid

primary key

foreign key

non-oid primary

key (if any)

oprname

oprleft

oprright

oprresult

proname

prorettype

proargtypes

indicates these key values are alternate primary keys

(i.e., this class is generally identified by oid but may be

identified by the non-oid primary key in other contexts).

Figure 3. The majorPOSTGRESsystem catalogs.

many of these catalogs.

(3) Types and procedures6 are central to the schema.Nearly every catalog contains
some reference to instances in one or both of these classes.For example,

6 We use the wordsprocedureandfunctionmore or less interchangably.

27

POSTGRESfrequently uses type signatures (e.g., of functions and operators) to
identify unique instances of other catalogs.

(4) Thereare many attributes and relationships that have obvious meanings, but there
are many (particularly those that have to do with access methods) that do not.
The relationships betweenpg_am, pg_amop, pg_amproc, pg_operator
and pg_opclass are particularly hard to understand and will be described in
depth (in the section on interfacing types and operators to indices) after we have
discussed basic extensions.

28

8. EXTENDING POSTQUEL: FUNCTIONS

As it turns out, part of defining a new type is the definition of functions that describe its
behavior. Consequently, while it is possible to define a new function without defining a
new type, the reverse is not true.We therefore describe how to add new functions to
POSTGRESbefore describing how to add new types.

POSTQUELprovides two types of functions:query language functions(functions written
in POSTQUEL) and programming language functions(functions written in a compiled
programming language such as C.)Either kind of function can take a base type, a com-
posite type or some combination as arguments (parameters). In addition, both kinds of
functions can return a base type or a composite type.It’s easier to definePOSTQUEL
functions, so we’ll start with those.

29

8.1. QueryLanguage (POSTQUEL) Functions

8.1.1. POSTQUEL Functions on Base Types
The simplest possiblePOSTQUELfunction has no arguments and simply returns a base
type, such asint4 :

* d efine function one
(language = "postquel", returntype = int4)
as "retrieve (one = 1)" \g

* r etrieve (answer = one()) \g

answer

1

Notice that we defined a target list for the function (with the nameone), but the target
list of the query that invoked the function overrode the function’s target list. Hence, the
result is labelledanswer instead ofone .

It’s almost as easy to definePOSTQUELfunctions that take base types as arguments. In
the example below, notice how we refer to the arguments within the function as$1 and
$2 and specify their types using thearg is clause.

* d efine function add_pq
(language = "postquel", returntype = int4)
arg is (int4, int4)
as "retrieve (sum = $1 + $2)" \g

* r etrieve (answer = add_pq(1, 2)) \g

answer

3

8.1.2. POSTQUEL Functions on Composite Types
When specifying functions with arguments of composite types (such asEMP), we must
not only specify which argument we want (as we did above with $1 and$2) but we must
also specify the attributes of that argument. For example, take the function dou-
ble_salary that computes what your salary would be if it were doubled.

30

* d efine function double_salary
(language = "postquel", returntype = int4)
arg is (EMP)
as "retrieve (salary = $1.salary * 2)" \g

* r etrieve (EMP.name, dream = double_salary(EMP))
where EMP.dept = "toy" \g

name dream

Sam 2400

This is pretty straightforward. Noticethe use of the syntax$1.salary .

Before launching into the subject of functions that return composite types, we must first
introduce thefunctionnotation for projecting attributes. Thesimple way to explain this is
that we can usually use the notationattribute(class) andclass.attribute
interchangably.

/*
* t his is the same as:
* r etrieve (youngster = EMP.name))
* where EMP.age < 30
*/

* r etrieve (youngster = name(EMP))
where age(EMP) < 30 \g

youngster

Sam

As we shall see, however, this is not always the case.

This function notation is important when we want to use a function that returns a single
instance. We do this by assembling the entire instance within the function, attribute by
attribute. Thisis an example of a function that returns a singleEMPinstance:

* d efine function new_emp
(language = "postquel", returntype = EMP)
as "retrieve (name = \\"None\\"::text,

salary = 1000,
age = 25,
dept = \\"none\\"::char16)"

In this case we have specified each of the attributes with a constant value, but any compu-
tation or expression could have been substituted for these constants.

Defining a function like this can be tricky. Some of the more important caveats are as fol-
lows:

31

• The target list order must beexactly the same as that in which the fields appear in the
createstatement (or when you execute a.all query).

• You must be careful to typecast the fields (using::) very carefully or you will see the
following error:

WARN:Mar 3 03:06:18:function declared to return type EMP
does not retrieve (EMP.all)

See the Reference Manual underpostquelfor a discussion of typecasting.

• When calling a function that returns an instance, we cannot retrieve the entire
instance. We must either project an attribute out of the instance or pass the entire
instance into another function.

* r etrieve (nobody = name(new_emp())) \g

nobody

None

• The reason why, in general, we must use the function syntax for projecting attributes
of function return values is that the parser just doesn’t understand the other (dot) syn-
tax for projection when combined with function calls.

* r etrieve (nobody = new_emp().name) \g
WARN:Mar 3 03:09:28:parser: syntax error at or near "."

Any collection of commands in thePOSTQUELquery language can be packaged together
and defined as a function.The commands can include updates (i.e.,append, replaceand
delete) as well asretrieve queries. However, the final command must be aretrieve that
returns whatever is specified as the function’sreturntype .

* d efine function clean_EMP (language = "postquel",
returntype = int4)

as "delete EMP where EMP.salary <= 0
retrieve (ignore_this = 1)" \g

* r etrieve (x = clean_EMP()) \g

x

1

8.1.3. POSTQUEL Functions on Sets
Unfortunately,POSTGRESdoes not really distinguish between functions that return single
instances and those that return sets of instances.In all cases, instances are returned one-
by-one. Similarly, functions can only take single instances as their arguments and cannot

32

have sets as an argument. For example, the following functionhigh_pay returns the set
of all employees in classEMPwhose salaries exceed 1500:

* d efine function high_pay
(language = "postquel", returntype = setof EMP)
as "retrieve (EMP.all) where EMP.salary > 1500" \g

* r etrieve (overpaid = name(high_pay())) \g

overpaid

Claire

Bill

Ginger

However, this function could be defined with

returntype = EMP

with exactly the same results.

33

8.2. Programming Language Functions

We now turn to the more difficult task of defining programming language functions.Be
warned: this section of the manual will not make you a programmer. You must have a
good understanding of C (including the use of pointers and themalloc memory man-
ager) before trying to write C functions for use withPOSTGRES.

While it may be possible to load functions written in languages other than C intoPOST-
GRES, this is often difficult (when it is possible at all) because other languages, such as
FORTRAN and Pascal often do not follow the same “calling convention” as C. That is,
other languages do not pass argument and return values between functions in the same
way. For this reason, we will assume that your programming language functions are writ-
ten in C.

The basic rules for building C functions are as follows:

(1) Most of the header (include) files forPOSTGRESshould already be installed in
/usr/local/postgres/include (see Figure 2). You should always
include

-I/usr/local/postgres/include

on yourcc command lines. Sometimes, you may find that you require header
files that are in the server source itself (i.e., you need a file we neglected to install
in include). In those cases you may need to add one or more of

-I/usr/local/postgres/src/backend
-I/usr/local/postgres/src/backend/port/<PORTNAME>
-I/usr/local/postgres/src/backend/obj

(where<PORTNAME>is the name of the port, e.g.,alpha or sparc).

(2) When allocating memory, use thePOSTGRESroutines palloc and pfree
instead of the corresponding C library routinesmalloc andfree . The memory
allocated bypalloc will be freed automatically at the end of each transaction,
preventing memory leaks.

(3) Always zero the bytes of your structures usingmemset or bzero . Sev eral rou-
tines (such as the hash access method, hash join and the sort algorithm) compute
functions of the raw bits contained in your structure.Even if you initialize all
fields of your structure, there may be several bytes of alignment padding (holes in
the structure) that may contain garbage values.

(4) Most of the internal POSTGRES types are declared intmp/c.h and
tmp/postgres.h , so it’s usually a good idea to include those files as well.

(5) Compilingand loading your object code so that it can be dynamically loaded into
POSTGRESalways requires special flags.See Appendix A for a detailed explana-
tion of how to do it for your particular operating system.

34

8.2.1. Programming Language Functions on Base Types
Internally,POSTGRESregards a base type as a “blob of memory.” The user-defined func-
tions that you define over a type in turn define the way thatPOSTGREScan operate on it.
That is,POSTGRESwill only store and retrieve the data from disk and use your user-
defined functions to input, process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length
• pass by reference, fixed-length
• pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (even if your computer supports by-
value types of other sizes).POSTGRESitself only passes integer types by value. You
should be careful to define your types such that they will be the same size (in bytes) on all
architectures. For example, thelong type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereasint type is 4 bytes on mostUNIX machines
(though not on most personal computers).A reasonable implementation of theint4
type onUNIX machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of any size may be passed by-reference.For exam-
ple, here is a sample implementation of thePOSTGRESchar16 type:

/* 16-byte structure, passed by reference */
typedef struct {

char data[16];
} c har16;

Only pointers to such types can be used when passing them in and out ofPOSTGRES
functions.

Finally, all variable-length types must also be passed by reference. All variable-length
types must begin with a length field of exactly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that length field.The
length field is the total length of the structure (i.e., it includes the size of the length field
itself). We can define thetext type as follows:

typedef struct {
int4 length;
char data[1];

} t ext;

Obviously, thedata field is not long enough to hold all possible strings — it’s impossi-
ble to declare such a structure in C. When manipulating variable-length types, we must
be careful to allocate the correct amount of memory and initialize the length field.For
example, if we wanted to store 40 bytes in atext structure, we might use a code frag-
ment like this:

#include "tmp/c.h"

35

#include "tmp/postgres.h"
#include "utils/palloc.h"

...

void *buffer; /* our source data */

...

text *destination = (text *) palloc(sizeof(int4) + 40);
destination->length = sizeof(int4) + 40;
bcopy(buffer, destination->data, 40);

...

Now that we’ve gone over all of the possible structures for base types, we can show some
examples of real functions.

#include <string.h>

#include "tmp/c.h"
#include "tmp/postgres.h" /* for char16, etc. */
#include "utils/palloc.h" /* for palloc */

int
add_one(arg)

int arg;
{

return(arg + 1);
}

char16 *
concat16(arg1, arg2)

char16 *arg1, *arg2;
{

char16 *new_c16 = (char16 *) palloc(sizeof(char16));

memset((void *) new_c16, 0, sizeof(char16));
(void) strncpy(new_c16, arg1, 16);
return(strncat(new_c16, arg2, 16));

}

text *
copytext(t)

text *t;
{

/*
* V ARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t));

36

bzero((char *) new_t, VARSIZE(t));

/*
* V ARDATA is a pointer to the data region of the struct.
* V ARLEN is the size of VARDATA in bytes (so it’s always
* V ARSIZE - sizeof(int4)).
*/

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARLEN(t)); /* how many bytes */

return(new_t);
}

On ULTRIX we would type:

* d efine function add_one
(language = "C", returntype = int4)
arg is (int4)
as "/usr/local/postgres/src/examples/chapter8.o" \g

* d efine function concat16
(language = "C", returntype = char16)
arg is (char16, char16)
as "/usr/local/postgres/src/examples/chapter8.o" \g

* d efine function copytext
(language = "C", returntype = text)
arg is (text)
as "/usr/local/postgres/src/examples/chapter8.o" \g

On other systems, we might have to make the filename end in.so or .sl (to indicate
that it’s a shared library).

8.2.2. Programming Language Functions on Composite Types
Composite types do not have a fixed layout like C structures. Instancesof a composite
type may contain null fields.In addition, composite types that are part of an inheritance
hierarchy may have different fields than other members of the same inheritance hierarchy.
Therefore,POSTGRESprovides a procedural interface for accessing fields of composite
types from C.

As POSTGRESprocesses a set of instances, each instance will be passed into your func-
tion as an opaque structure of type TUPLE.

Suppose we want to write a function to answer the query

* r etrieve (EMP.all) where c_overpaid(EMP) \g

In the query above, we can definec_overpaid as:

#include <tmp/c.h>
#include <tmp/postgres.h>
#include <tmp/libpq-fe.h> /* for TUPLE */

37

bool
c_overpaid(t, limit)

TUPLE t; /* the current instance of EMP */
int4 limit;

{
bool isnull = false;
int4 salary;

salary = (int4) GetAttributeByName(t, "salary", &isnull);

if (isnull == true)
return((bool) false);

return((bool) (salary > limit));
}

GetAttributeByName is thePOSTGRESsystem function that returns attributes out of
the current instance.It has three arguments: the argument of type TUPLE passed into the
function, the name of the desired attribute, and a return parameter that describes whether
the attribute is null.GetAttributeByName will align data properly so you can cast
its return value to the desired type.For example, if you have an attributename which is
of thePOSTQUELtypechar16 , theGetAttributeByName call would look like:

char *str;
...
str = (char *) GetAttributeByName(t, "name", &isnull)

The following query letsPOSTGRESknow about thec_overpaid function:

* d efine function c_overpaid
(language = "c", returntype = bool)
arg is (EMP, int4)
as "/usr/local/postgres/src/examples/overpaid.o" \g

While there are ways to construct new instances or modify existing instances from within
a C function, these are far too complex to discuss in this manual. See the document

/usr/local/postgres/src/doc/implementation/am.me

for details.

8.2.3. Programming Language Functions on Sets
No interface has been defined for passing a set of instances into a function as an argument
to a C function, nor is there such an interface for returning a set of instances from a C
function.

38

9. EXTENDING POSTQUEL: TYPES

As previously mentioned, there are two kinds of types inPOSTGRES: basetypes (defined
in a programming language) andcompositetypes (instances).

39

9.1. User-Defined Types

9.1.1. FunctionsNeeded for a User-Defined Type
A user-defined type must always have input andoutputfunctions. Thesefunctions deter-
mine how the type appears in strings (for input by the user and output to the user) and
how the type is organized in memory. The input function takes a null-delimited character
string as its input and returns the internal representation of the type. The output function
takes the internal representation of the type and returns a null-delimited character string.

These functions are usually not hard to write, especially the output function.However,
there are a number of points to remember.

(1) When defining your external (string) representation, remember that you must
ev entually write a complete and robust parser for that representation as your input
function! This is easy in some cases, or if we are lazy. For example, an input
function forint4 can be as simple as:

int4
int4_input(s)

char *s;
{

return(atoi(s));
}

if we cheat and use the C library functionatoi (and don’t do any checks for
such errors as out-of-range integers). Theoutput function can be almost as sim-
ple:

char *
int4_output(i)

int4 i;
{

/* the largest 32-bit number is 10 digits long */
char *buf = palloc(11);

(void) sprintf(buf, "%d", i);
return(buf);

}

(2) You should try to make the input and output functions inverses of each other. If
you do not, you will have sev ere problems when you need to dump your data into
a file and then read it back in (say, into someone else’s database on another com-
puter). Thisis a particularly common problem when floating-point numbers are
involved.

As discussed earlier, POSTGRESfully supports arrays of base types.Additionally, POST-
GRESsupports arrays of user-defined types as well. When you define a type,POSTGRES

40

automatically provides support for arrays of that type.For historical reasons, the array
type has the same name as the user-defined type with the underscore character_
prepended.

Composite types do not need any function defined on them, since the system already
understands what they look like inside.

9.1.2. Large Objects
The types discussed to this point are all “small” objects — that is, they are smaller than

8KB7 in size. If you require a larger type for something like a document retrieval system
or for storing bitmaps, you will need to use thePOSTGRESlarge object interface. The
interface to large objects is quite similar to theUNIX file system interface. Theparticu-
lars are detailed in Section 7 of thePOSTGRESReference Manual.

7 8 * 1024 == 8192 bytes. In fact, the type must be considerably smaller than 8192 bytes, since thePOSTGREStuple and page
overhead must also fit into this 8KB limitation. The actual value that fits depends on the machine architecture.

41

9.2. CompositeTypes

Instances of a composite type are just instances of a class. Here, we discuss how to create
attributes of one class that are composed of one or more instances of a composite type
(another class).We can do this usingset-valued attributesor by using functions to create
virtual attributes.

We hav ealready discussed how to define a set-valued attribute using thesetof keyword
in the create command. Thisproduces an attribute whose value is procedurally
defined using a query.

SincePOSTQUELfunctions return instances or sets of instances, they can also be used to
create “attributes” of composite types.For example, consider extending theEMPclass
with a manager field. Thatis, for each instance ofEMP, we want to associate another
instance ofEMPcorresponding to the manager of the first instance.Specifically, we will
define aPOSTQUELfunctionmanager :

* d efine function manager
(language = "postquel", returntype = EMP)
arg is (EMP)
as "retrieve (E.all) from E in EMP

where E.name = DEPT.manager
and DEPT.dname = $1.dept" \g

When a function takes a single composite type argument,POSTQUELallows us to use the
samenested-dotnotation we used for sets to refer into an instance returned by the func-
tion. Here,the functionmanager takes anEMPinstance as its only argument, we can
write the query

* r etrieve (EMP.name)
where name(manager(EMP)) = "Claire" \g

as

* r etrieve (EMP.name)
where EMP.manager.name = "Claire" \g

In either case, we get

name

Claire

Joe

We hav eessentially added an attribute to theEMPclass which is of typeEMP, i.e., it has a
value which is an instance of the classEMP. The limitations discussed for set-valued

42

attributes generally apply to virtual attributes as well.For example, one cannot do direct
updates to such columns. That is,

* a ppend EMP (manager.name = "Smith") \g
WARN:Mar 10 22:48:42:manager: no such class

won’t work. Non-projectedretrieves don’t work either. For example, queries that
attempt to retrieve the entiremanager attribute, such as

* r etrieve (EMP.manager) \g

don’t return anything useful.

Note thatmanager is defined as returning a single instance ofEMP. We can also write a
POSTQUELfunction that returns sets of instances.For example, consider the function

* d efine function same_dept
(language = "postquel", returntype = setof EMP)
arg is (EMP)
as "retrieve (E.all) from E in EMP

where $1.dept = E.dept" \g

The same_dept function is defined as returning a set of instances, rather than a single
instance. Given the query:

* r etrieve (EMP.name, EMP.same_dept.name) \g

name name

Claire Claire

Claire Joe

Joe Claire

Joe Joe

Sam Sam

Bill Bill

Ginger (null)

the query in the body of thesame_dept function returns many instances and the
retrievequery will return all of them in a “flattened” form.

43

10. EXTENDING POSTQUEL: OPERATORS

POSTQUELsupports left unary, right unary and binary operators.Operators can beover-
loaded, or re-used with different numbers and types of arguments. Ifthere is an ambigu-
ous situation and the system cannot determine the correct operator to use, it will return an
error and you may have to typecast the left and/or right operands to help it understand
which operator you meant to use.(For a discussion of typecasting, see the Reference
Manual underpostquel).

In this example, we will use some functions that are already built into POSTGRESto
define a set of operators that all have the same name,## . First, we define left unary oper-
ators on bothint4 andint2 that have very different meanings.To do this, we will use
some mathemetical functions that already happen to be built into POSTGRES. int4fac ,
int2um/int4um and int4pl are functions that calculate integer factorial, unary
minus and addition, respectively.

/* n! (factorial) for int4 */
* d efine operator ## (arg2 = int4,

associativity = right,
procedure = int4fac)

\g

/* -n (negation) for int2 */
* d efine operator ## (arg2 = int2,

associativity = right,
procedure = int2um)

\g

Next, we define a right unary operator:

/* -n (negation) for int4 */
* d efine operator ## (arg1 = int4,

associativity = left,
procedure = int4um)

\g

Finally, we define a binary operator:

/* a+b (addition) for int4 */
* d efine operator ## (arg1 = int4,

arg2 = int4,
procedure = int4pl,
commutator = ##)

\g

44

If we give the system enough type information, it can automatically figure out which
operators to use.In this case, we can take advantage of the fact that plain “numbers”
default to theint4 type to get the following behavior:

* r etrieve (four_factorial = ## 4,
minus_five = ## 5::int2,
minus_four = 4 ##,
four_plus_four = 4 ## 4)

\g

four_factorial minus_five minus_four four_plus_four

24 -5 -4 8

45

11. EXTENDING POSTQUEL: AGGREGATES

Creation of user-defined aggregates is explained in the Reference Manual underdefine
aggregate. The key observation to be made, however, is that any aggregate can be
expressed in terms ofstate transition functions. That is, an aggregate can be defined in
terms ofstatethat is modified whenever an instance is processed. Some state functions
look at a particular value in the instance when computing the new state (sfunc1in the
define aggregatesyntax) while others only keep track of their own internal state (sfunc2).

If we define an aggregate that uses onlysfunc1 , we define an aggregate that computes a
running function of the attribute values from each instance. “Sum” is an example of this
kind of aggregate. “Sum”starts at zero and always adds the current instance’s value to its
running total.We will use theint4pl that is built intoPOSTGRESto perform this addi-
tion.

* d efine aggregate my_sum (sfunc1 = int4pl, /* addition */
basetype = int4,
stype1 = int4,
initcond1 = "0") \g

* r etrieve (salary_sum = my_sum{EMP.salary}) \g

salary_sum

8200

If we define onlysfunc2 , we are specifying an aggregate that computes a running func-
tion that is independent of the attribute values from each instance.“Count” is the most
common example of this kind of aggregate. “Count” starts at zero and adds one to its
running total for each instance, ignoring the instance value. Here,we use the built-in
int4inc routine to do the work for us. This routine increments (adds one to) its argu-
ment.

* d efine aggregate my_count (sfunc2 = int4inc, /* add one */
stype2 = int4,
initcond2 = "0") \g

* r etrieve (emp_count = my_count{EMP.oid}) \g

46

emp_count

5

“A verage” is an example of an aggregate that requires both a function to compute the run-
ning sum and a function to compute the running count.When all of the instances have
been processed, the final answer for the aggregate is the running sum divided by the run-
ning count. We use theint4pl and int4inc routines we used before as well as the
POSTGRESinteger division routine,int4div , to compute the division of the sum by the
count.

* d efine aggregate my_average (sfunc1 = int4pl, /* sum */
basetype = int4,
stype1 = int4,
sfunc2 = int4inc, /* count */
stype2 = int4,
finalfunc = int4div, /* division */
initcond1 = "0",
initcond2 = "0") \g

* r etrieve (emp_average = my_average{EMP.salary}) \g

emp_average

1640

47

12. EXTENDING POSTQUEL: AN EXAMPLE

In this discussion, we will be defining acircle type, using functions written in the C
programming language.

For additional examples of how to create new types, functions and operators, you should
look in the directories

/usr/local/postgres/src/regress/demo
/usr/local/postgres/src/regress/regress
/usr/local/postgres/src/regress/video

These directories contain several C andPOSTQUELfiles that should how to perform vari-
ous extensions to the system, and the routines we use in our regression tests should
always work.

12.1. CData Structures
Before we do anything, we have to decide on what a circle looks like, both in string for-
mat and internally in memory. Circles have a center and a radius, so a reasonable string
representation of a circle would be an ordered triple:

(center_x, center_y, radius)

where each element is a real number with arbitrary units, e.g.:

(5.0, 10.3, 3)

This is what the input to the circle input function looks like, and what the output from the
circle output function looks like.

Now we hav eto come up with an internal representation for a circle in memory. The fol-
lowing declarations are legal and reasonable given the format we chose above:

typedef struct {
double x, y;

} P OINT;

typedef struct {
POINT center;
double r;

} C IRCLE;

Memory containing values of typeCIRCLE will be written to disk and read from disk, so
CIRCLE must be bothcompleteandcontiguous; that is, it cannot contain any pointers.

48

The type definition

typedef struct {
POINT *center /* NO! */
double r;

} C IRCLE;

will NOTwork, because the virtual memoryaddressstored incenter would be written
to disk instead of the contents of thePOINT structure to whichcenter presumably
points. POSTGREScannot detect this kind of coding error; you must guard against it
yourself.

12.2. Definingthe Input and Output Functions
Suppose in defining our type “circle,” we hav ea C source file calledcircle.c , and a
corresponding object code file
/usr/local/postgres/src/examples/circle.o . (All functions related to
our circle type must be in the same object file.)For the purposes of this discussion,
suppose our platform is a MIPS DECstation, wheresizeof(double) is 8 bytes.This
assumption will be important later.

We will create source filecircle.c , containing C source code for the functions that
support ourCIRCLE type. circle.c contains three functions:

• circle_in , which is the input function for circles. It takes a C string as an argu-
ment and returns a pointer to aCIRCLE.

• circle_out , which is the output function for circles. It is takes a pointer to a
CIRCLE as input and returns a C string.The return value ofcircle_in must be a
legal argument tocircle_out , and vice versa.

• eq_area_circle , which is the equality function for circles.For the purposes of
this discussion, circles are equal if their areas are equal.

The contents ofcircle.c are:

#include <math.h>
#include <stdio.h>
#include <string.h>

#include "tmp/c.h" /* (always) */
#include "utils/geo-decls.h" /* for POINT declaration */
#include "utils/palloc.h" /* for palloc() declaration */

typedef struct {
POINT center;
double radius;

} C IRCLE;

#define LDELIM ’(’
#define RDELIM ’)’
#define NARGS 3

CIRCLE *
circle_in(str)

49

char *str;
{

char *p, *coord[NARGS];
int i;
CIRCLE *result;

if (str == (char *) NULL)
return((CIRCLE *) NULL);

for (i = 0, p = str;
*p && i < NARGS && *p != RDELIM;
p++)

{
if (*p == ’,’ || (*p == LDELIM && !i))

coord[i++] = p + 1;
}

if (i < NARGS - 1)
return((CIRCLE *) NULL);

result = (CIRCLE *) palloc(sizeof(CIRCLE));

result->center.x = atof(coord[0]);
result->center.y = atof(coord[1]);
result->radius = atof(coord[2]);

return(result);
}

char *
circle_out(circle)

CIRCLE *circle;
{

char *result;

if (circle == (CIRCLE *) NULL)
return((char *) NULL);

result = (char *) palloc(60);

sprintf(result, "(%g, %g, %g)",
circle->center.x, circle->center.y,
circle->radius);

return(result);
}

int
eq_area_circle(circle1, circle2)

CIRCLE *circle1, *circle2;
{

if (circle1 == (CIRCLE *) NULL)

50

return(circle2 == (CIRCLE *) NULL);
if (circle2 == (CIRCLE *) NULL)

return(0);
return(circle1->radius == circle2->radius);

}

Now that we have written these functions and compiled the source file, we have to let
POSTGRESknow that they exist. First,we run the following queries to define the input
and output functions.These functions must be definedbeforewe define the type.POST-
GRESwill notify you that return type circle is not defined yet, but this is OK.Notice that
we use the keyword any to indicate that the input and/or output of the function is not a
POSTGREStype (e.g., a simple C string).

* d efine function circle_in
(language = "c", returntype = circle)
arg is (any)
as "/usr/local/postgres/src/examples/circle.o" \g

* d efine function circle_out
(language = "c", returntype = any)
arg is (any)
as "/usr/local/postgres/src/examples/circle.o" \g

Note that the full pathname of the object code file must be specified, so you would
change/usr/local/postgres to whatever is appropriate for your installation.

Now we can define thecircle type:

* d efine type circle
(internallength = 24,

input = circle_in, output = circle_out) \g

whereinternallength is the size of theCIRCLE structure in bytes.For circles, the
type members are threedouble s, which on most platforms are 8 bytes each, with no
additional alignment constraints.However, when defining your own types, you should
not make assumptions about structure sizes, but instead write a test program that does
something like

printf("size is %d\n", sizeof(MYTYPE));

on your type.

If internallength is defined incorrectly, you will encounter strange errors and may
crash the server. If this were to happen with ourCIRCLE type, we would have to do a

* r emove type circle \g

and then redefine thecircle type correctly. Note that we would not have to redefine
our functions, since their behavior would not have changed.

51

12.2.1.1. DefiningOperators
Now that we have finished defining thecircle type, we cancreateclasses with circles
in them, append records to them with circles defined, andretrieve the values of the
entire list of records.However, we can’t do anything terribly useful with them until we
have some operators and/or functions.To do this, we make use of the concept ofopera-
tor overloading, and in this case we will set thePOSTGRESequality operator ‘‘=’’ t o
work for circles. First we have to tell POSTGRESthat our circle equality function exists:

* d efine function eq_area_circle
(language = "c", returntype = bool)
arg is (circle, circle)
as "/usr/local/postgres/src/examples/circle.o" \g

We will now bind this function to the equality symbol with the following query:

* d efine operator =
(arg1 = circle, arg2 = circle,

procedure = eq_area_circle) \g

12.2.1.2. Usinga New Type
Let’s create a classtutorial that contains acircle attribute, and run some queries
against it:

* c reate tutorial (a = circle) \g

* a ppend tutorial (a = "(1.0, 1.0, 10.0)"::circle) \g

* a ppend tutorial (a = "(2.0, 2.0, 5.0)"::circle) \g

* a ppend tutorial (a = "(0.0, 1.8, 10.0)"::circle) \g

* r etrieve (tutorial.all)
where tutorial.a = "(0.0, 0.0, 10.0)"::circle \g

which returns:

a

(1.0, 1.0, 10.0)

(0.0, 1.8, 10.0)

Recall that we defined circles as being equal if their areas were equal.

Other operators (less than, greater than, etc.) can be defined in a similar way. Note that
the= symbol will still work for other types — it has merely had a new type added to the
list of types it works on.

52

13. INTERFACING EXTENSIONS TO INDICES

The procedures described thus far let you define a new type, new functions and new oper-
ators. However, we cannot yet define a secondary index (such as a B-tree, R-tree or hash
access method) over a new type or its operators.

Look back at Figure 3. The right half shows the catalogs that we must modify in order to
tell POSTGREShow to use a user-defined type and/or user-defined operators with an
index (i.e., pg_am, pg_amop, pg_amproc andpg_opclass). Unfortunately, there
is no simple command to do this.We will demonstrate how to modify these catalogs
through a running example: a new operator class for the B-tree access method that sorts
integers in ascending absolute value order.

The pg_am class contains one instance for every user-defined access method.Support
for the heap access method is built intoPOSTGRES, but every other access method is
described here. The schema is

amname name of the access method
amowner object id of the owner’s instance in pg_user
amkind not used at present, but set to ’o’ as a place holder
amstrategies number of strategies for this access method (see below)
amsupport number of support routines for this access method (see below)
amgettuple
aminsert
...

procedure identifiers for interface routines to the access
method. For example, regproc ids for opening, closing,
and getting instances from the access method appear here.

The object ID of the instance inpg_am is used as a foreign key in lots of other classes.
You don’t need to add a new instance to this class; all you’re interested in is the object ID
of the access method instance you want to extend:

* r etrieve (pg_am.oid) where pg_am.amname = "btree" \g

oid

403

The amstrategies attribute exists to standardize comparisons across data types.For
example, B-trees impose a strict ordering on keys, lesser to greater. Since POSTGRES
allows the user to define operators,POSTGREScannot look at thename of an operator
(eg, > or <) and tell what kind of comparison it is. In fact, some access methods don’t
impose any ordering at all. For example, R-trees express a rectangle-containment

53

relationship, whereas a hashed data structure expresses only bitwise similarity based on
the value of a hash function.POSTGRESneeds some consistent way of taking a qualifica-
tion in your query, looking at the operator and then deciding if a usable index exists. This
implies thatPOSTGRESneeds to know, for example, that the<= and> operators partition
a B-tree. POSTGRESuses strategies to express these relationships between operators and
the way they can be used to scan indices.

Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain
how B-tree strategies work because you’ll need to know that to add a new operator class.
In thepg_am class, theamstrategies attribute is the number of strategies defined for
this access method.For B-trees, this number is 5. These strategies correspond to

less than 1
less than or equal 2
equal 3
greater than or equal 4
greater than 5

The idea is that you’ll need to add procedures corresponding to the comparisons above to
thepg_amop relation (see below). Theaccess method code can use these strategy num-
bers, regardless of data type, to figure out how to partition the B-tree, compute selectivity,
and so on.Don’t worry about the details of adding procedures yet; just understand that
there must be a set of these procedures forint2 , int4 , oid , and every other data type
on which a B-tree can operate.

Sometimes, strategies aren’t enough information for the system to figure out how to use
an index. Someaccess methods require other support routines in order to work. For
example, the B-tree access method must be able to compare two keys and determine
whether one is greater than, equal to, or less than the other. Similarly, the R-tree access
method must be able to compute intersections, unions, and sizes of rectangles.These
operations do not correspond to user qualifications inPOSTQUEL queries; they are
administrative routines used by the access methods, internally.

In order to manage diverse support routines consistently across allPOSTGRESaccess
methods,pg_am includes a field calledamsupport . This field records the number of
support routines used by an access method.For B-trees, this number is one — the routine
to take two keys and return−1, 0, or+1, depending on whether the first key is less than,

equal to, or greater than the second.8

The amstrategies entry in pg_am is just thenumberof strategies defined for the
access method in question. The procedures for less than, less equal, and so on don’t
appear inpg_am. Similarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest ispg_opclass. This class exists only to associate a name
with an oid . In pg_amop, every B-tree operator class has a set of procedures, one
through five, above. Some existing opclasses areint2_ops , int4_ops , and

8 Strictly speaking, this routine can return a negative number (< 0), 0, or a non-zero positive number (> 0).

54

oid_ops . You need to add an instance with your opclass name (for example,
int4_abs_ops) to pg_opclass . The oid of this instance is a foreign key in other
classes.

* a ppend pg_opclass (opcname = "int4_abs_ops") \g

* r etrieve (cl.oid, cl.opcname) from cl in pg_opclass
where cl.opcname = "int4_abs_ops" \g

oid opcname

17314 int4_abs_ops

Note that theoid for yourpg_opclass instancewill be differ ent! You should substi-
tute your value for 17314 wherever it appears in this discussion.

So now we hav ean access method and an operator class.We still need a set of operators;
the procedure for defining operators was discussed earlier in this manual.For the
int4_abs_ops operator class on B-trees, the operators we require are:

absolute value less-than
absolute value less-than-or-equal
absolute value equal
absolute value greater-than-or-equal
absolute value greater-than

Suppose the code that implements the functions defined is stored in the file

/usr/local/postgres/src/examples/int4_abs.c

The code is

/*
* i nt4_abs.c -- absolute value comparison functions
* f or int4 data
*/

#include "tmp/c.h"

#define ABS(a) ((a < 0) ? -a : a)

/* routines to implement operators */

bool int4_abs_lt(a, b) int32 a, b;
{ r eturn(ABS(a) < ABS(b)); }

bool int4_abs_le(a, b) int32 a, b;
{ r eturn(ABS(a) <= ABS(b)); }

bool int4_abs_eq(a, b) int32 a, b;

55

{ r eturn(ABS(a) == ABS(b)); }

bool int4_abs_ge(a, b) int32 a, b;
{ r eturn(ABS(a) >= ABS(b)); }

bool int4_abs_gt(a, b) int32 a, b;
{ r eturn(ABS(a) > ABS(b)); }

/* support (signed comparison) routine */

int int4_abs_cmp(a, b) int32 a, b;
{ r eturn(ABS(a) - ABS(b)); }

There are a couple of important things that are happening below.

First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal,
and greater-than for int4 are being defined. All of these operators are already defined
for int4 under the names<, <=, =, >=, and >. The new operators behave differently, of
course. Inorder to guarantee thatPOSTGRESuses these new operators rather than the old
ones, they need to be named differently from the old ones. This is a key point: you can
overload operators inPOSTGRES, but only if the operator isn’t already defined for the
argument types. That is, if you have < defined for (int4 , int4), you can’t define it
again. POSTGRESdoes not checkthis when you define your operator, so be careful. To
avoid this problem, odd names will be used for the operators.If you get this wrong, the
access methods are likely to crash when you try to do scans.

The other important point is that all the operator functions returnBooleanvalues. The
access methods rely on this fact. (Onthe other hand, the support function returns what-
ev er the particular access method expects — in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when we discussed the
amsupport attribute of thepg_am class. We will use this later on.For now, ignore it.

* d efine function int4_abs_lt
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

* d efine function int4_abs_le
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

* d efine function int4_abs_eq
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

* d efine function int4_abs_ge
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

56

* d efine function int4_abs_gt
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

Now define the operators that use them. As noted, the operator names must be unique
among all operators that take two int4 operands. Inorder to see if the operator names
listed below are taken, we can do a query onpg_operator :

/*
* t his query uses the regular expression operator (˜)
* to f ind three-character operator names that end in
* t he character &
*/

* r etrieve (o.all)
from o in pg_operator
where o.oprname ˜ "ˆ..&$"::text \g

to see if your name is taken for the types you want. Theimportant things here are the
procedure (which are the C functions defined above) and the restriction and join selectiv-
ity functions. You should just use the ones used below—note that there are different such
functions for the less-than, equal, and greater-than cases.Thesemustbe supplied, or the
access method will crash when it tries to use the operator. You should copy the names for
restrict andjoin , but use the procedure names you defined in the last step.

* d efine operator <<&
(arg1 = int4, arg2 = int4, procedure=int4_abs_lt,

associativity = left, restrict = intltsel,
join = intltjoinsel) \g

* d efine operator <=&
(arg1 = int4, arg2 = int4, procedure = int4_abs_le,

associativity = left, restrict = intltsel,
join = intltjoinsel) \g

* d efine operator ==&
(arg1 = int4, arg2 = int4, procedure = int4_abs_eq,

associativity = left, restrict = eqsel,
join = eqjoinsel) \g

* d efine operator >=&
(arg1 = int4, arg2 = int4, procedure = int4_abs_ge,

associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g

* d efine operator >>&
(arg1 = int4, arg2 = int4, procedure = int4_abs_gt,

associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g

Notice that five operators corresponding to less, less equal, equal, greater, and greater

57

equal are defined.

We’re just about finished. the last thing we need to do is to update thepg_amop relation.
To do this, we need the following attributes:

amopid the oid of the pg_am instance
for B-tree (== 403, see above)

amopclaid the oid of the pg_opclass
instance for int4_abs_ops
(== whatever you got instead of
17314, see above)

amopopr theoid s of the operators for the
opclass (which we’ll get in just
a minute)
cost functions.amopselect,

amopnpages

The cost functions are used by the query optimizer to decide whether or not to use a given
index in a scan. Fortunately, these already exist. The two functions we’ll use are
btreesel, which estimates the selectivity of the B-tree, andbtreenpage, which
estimates the number of pages a search will touch in the tree.

So we need theoid s of the operators we just defined.We’l l look up the names of all the
operators that take two int4 s, and pick ours out:

* r etrieve (o.oid, o.oprname)
from o in pg_operator, t in pg_type
where o.oprleft = t.oid and o.oprright = t.oid

and t.typname = "int4" \g

which returns:

58

oid oprname

96 \=

97 <

514 *

518 !=

521 >

523 <=

525 >=

528 /

530 %

551 +

555 -

17321 <<&

17322 <=&

17323 ==&

17324 >=&

17325 >>&

(Again, some of youroid numbers will almost certainly be different.) Theoperators we
are interested in are those withoid s 17321 through 17325.The values you get will
probably be different, and you should substitute them for the values below. We can look
at the operator names and pick out the ones we just added.

Now we’re ready to updatepg_amop with our new operator class. The most important
thing in this entire discussion is that the operators are ordered, from less equal through
greater equal, inpg_amop. Recall that the B-tree instance’s oid is 403 and
int4_abs_ops is oid 17314. Thenwe add the instances we need:

* a ppend pg_amop
(amopid = "403"::oid, /* btree oid */

amopclaid = "17314"::oid, /* pg_opclass tuple */
amopopr = "17321"::oid, /* <<& tup oid */
amopstrategy = "1"::int2, /* 1 is <<& */
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

* a ppend pg_amop (amopid = "403"::oid,
amopclaid = "17314"::oid,
amopopr = "17322"::oid,
amopstrategy = "2"::int2,
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

* a ppend pg_amop (amopid = "403"::oid,
amopclaid = "17314"::oid,
amopopr = "17323"::oid,
amopstrategy = "3"::int2,
amopselect = "btreesel"::regproc,

59

amopnpages = "btreenpage"::regproc) \g

* a ppend pg_amop (amopid = "403"::oid,
amopclaid = "17314"::oid,
amopopr = "17324"::oid,
amopstrategy = "4"::int2,
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

* a ppend pg_amop (amopid = "403"::oid,
amopclaid = "17314"::oid,
amopopr = "17325"::oid,
amopstrategy = "5"::int2,
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

Note the order: “less than” is 1, “less than or equal” is 2, “equal” is 3, “greater than or
equal” is 4, and “greater than” is 5.

In the file

/usr/local/postgres/src/examples/chapter13

we show the POSTQUEL that performs the four-way join between pg_amop,
pg_opclass , pg_operator and pg_type . Doing the join obviates the need to
write down anyoid s but the query is considerably more complicated-looking.

The last step (finally!) is registration of the “support routine” previously described in our
discussion ofpg_am. The oid of this support routine is stored in thepg_amproc
class, keyed by the access methodoid and the operator classoid . First, we need to reg-
ister the function inPOSTGRES(recall that we put the C code that implements this rou-
tine in the bottom of the file in which we implemented the operator routines):

* d efine function int4_abs_cmp
(language = "c", returntype = int4)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

* r etrieve (p.oid, p.proname)
from p in pg_proc
where p.proname = "int4_abs_cmp" \g

oid proname

17328 int4_abs_cmp

(Again, youroid number will probably be different and you should substitute the value
you see for the value below.) Recalling that the B-tree instance’s oid is 403 and that of
int4_abs_ops is 17314, we can add the new instance as follows:

60

* a ppend pg_amproc
(amid = "403"::oid, /* btree oid */

amopclaid = "17314"::oid, /* pg_opclass tuple */
amproc = "17328"::oid, /* new pg_proc oid */
amprocnum = "1"::int2) \g

Okay, now it’s time to test the new operator class. First we’ll create and populate a

class9:

* c reate pairs (name = char16, number = int4) \g

* a ppend pairs (name = "mike", number = -10000) \g

* a ppend pairs (name = "greg", number = 3000) \g

* a ppend pairs (name = "lay peng", number = 5000) \g

* a ppend pairs (name = "jeff", number = -2000) \g

* a ppend pairs (name = "mao", number = 7000) \g

* a ppend pairs (name = "cimarron", number = -3000) \g

* r etrieve (pairs.all) \g

name number

mike -10000

greg 3000

lay peng 5000

jeff -2000

mao 7000

cimarron -3000

Okay, looks pretty random. Define an index using the new opclass:

* d efine index pairsind on pairs
using btree (number int4_abs_ops) \g

Now run a query that doesn’t use one of our new operators. Whatwe’re trying to do here
is to run a query thatwon’t use our index, so that we can tell the difference when we see a
query thatdoesuse the index. This query won’t use the index because the operator we
use in the qualification isn’t one that appears in the list of strategies for our index.

9 In this example, we append only a few instances into the class. In fact,POSTGRESuses a “cost-based” query optimizer that
makes the decision whether or not to use an index based on how much data is touched. Since this example creates a very small
amount of data, the example will likely not work as advertised — one would have to insert a fair amount of data before using an index
would actually be cheaper than just scanning the underlying heap data structure.“A f air amount” typically means on the order of sev-
eral kilobytes.

61

* r etrieve (pairs.all) where pairs.number < 9000 \g

name number

mike -10000

greg 3000

lay peng 5000

jeff -2000

mao 7000

cimarron -3000

Yup, just as random; that didn’t use the index. Okay, let’s run a query thatdoesuse the
index:

* r etrieve (pairs.all) where pairs.number <<& 9000 \g

name number

jeff -2000

cimarron -3000

greg 3000

lay peng 5000

mao 7000

Note that thenumber values are in order of increasing absolute value (as they should be,
since the index was used for this scan) and that we got the right answer — the instance
for mike doesn’t appear, because−10000>=& 9000.

62

14. THE POSTGRES RULE SYSTEM

Production rule systems are conceptually simple, but there are many subtle points
involved in actually using them.Consequently, we will not attempt to explain the actual
syntax and operation of thePOSTGRESrule system here. Instead, you should read
[STON90b] to understand some of these points and the theoretical foundations of the
POSTGRESrule system before trying to use rules.The discussion in this section is
intended to provide an overview of thePOSTGRESrule system and point the user at help-
ful references and examples.

The main point you should understand is thatPOSTGRESactually has two rule systems,
the instance-levelrule system and thequery rewrite rule system, and that there are trade-
offs in the employment of each.

The instance-levelrule system uses markers placed in each instance in a class to “trigger”
rules. Examplesof the instance-level rule system are explained and illustrated in
/usr/local/postgres/src/regress/demo , which is included with thePOST-
GRESdistribution. Additionaldiscussion of the instance-level rule system can be found
in the Reference Manual underdefine rule.

The “query rewrite” rule system modifies queries to take rules into consideration, and
then passes the modified query to the query optimizer for execution. It is very powerful,
and can be used for many things such as query language procedures, views, and versions.
Examples can be found in/usr/local/postgres/src/regress/video , and
further discussion is in the Reference Manual underdefine rule. The power of this rule
system is discussed in [ONG90] as well as [STON90b].

Since each rule system is implemented quite differently, they work best in different situa-
tions. Thequery rewrite system is best when rules affect mostof the instances in a class,
while the instance-level system is best when a rule affects only afew instances.

63

15. ADMINISTERING POSTGRES

In this section, we will discuss aspects ofPOSTGRESthat are of interest to those who
make extensive use ofPOSTGRES, or who are the site administrator for a group ofPOST-
GRESusers.

64

15.1. Frequent Tasks

Here we will briefly discuss some procedures that you should be familiar with in manag-
ing anyPOSTGRESinstallation.

15.1.1. Startingthe Postmaster
If you did not installPOSTGRESexactly as described in the installation instructions, you
may have to perform some additional steps before starting thepostmaster process.

• Even if you were not the person who installedPOSTGRES, you should understand the
installation instructions.The installation instructions explain some important issues
with respect to wherePOSTGRESplaces some important files, proper settings for envi-
ronment variables, etc. that may vary from one version ofPOSTGRESto another.

• You should look at the Reference Manual under the headingpostmaster if you wish
to use non-default options (e.g., increased security options, a non-standard installation
directory, etc.).

• You must start thepostmaster process with the user-id that owns the installed
database files.In most cases, if you have followed the installation instructions, this
will be the user “postgres”. If you do not start thepostmaster with the right user-
id, the backend servers that are started by thepostmaster will not be able to read
the data.

• Make sure that /usr/local/postgres/bin is in your shell command path,
because thepostmaster will use yourPATHto locatePOSTGREScommands.

• Remember to set the environment variablePGDATAto the directory where thePOST-
GRESdatabases are installed. (This variable is more fully explained in thePOSTGRES
installation instructions and the Reference Manual.)

• If you do start thepostmaster using non-standard options, such as a different TCP
port number, remember to tell all users so that they can set theirPGPORTenvironment
variable correctly.

15.1.2. ShuttingDown the Postmaster
If you need to halt thepostmaster process, you can use theUNIX kill (1) command.
Some people habitually use the-9 or -KILL option; this should never be necessary and
we do not recommend that you do this, as thepostmaster will be unable to free its
various shared resources, its child processes will be unable to exit gracefully, etc.

15.1.3. Addingand Removing Users
The createuser anddestroyuser commands enable and disable access toPOST-
GRESby specific users on the host system. Please read the descriptions of these com-
mands in the Reference Manual for specific instructions on their use.

65

15.1.4. Periodic Upkeep
Thevacuum command should be run on each database periodically. This command pro-

cesses deleted instances10 and, more importantly, updates the systemstatisticsconcerning
the size of each class.If these statistics are permitted to become out-of-date and inaccu-
rate, thePOSTGRESquery optimizer may make extremely poor decisions with respect to
query evaluation strategies. Therefore,we recommend runningvacuum ev ery night or
so (perhaps in a script that is executed by theUNIX cron (1) orat (1) commands).

Do frequent backups. That is, you should either back up your database directories using
the POSTGREScopy command and/or theUNIX dump(1) or tar (1) commands.You
may think, “Why am I backing up my database?What about crash recovery?” Oneside
effect of thePOSTGRES“no overwrite” storage manager is that it is also a “no log” stor-
age manager. That is, the database log stores only abort/commit data, and this is not
enough information to recover the database if the storage medium (disk) or the database
files are corrupted! In other words, if a disk block goes bad orPOSTGREShappens to
corrupt a database file,you cannot recover t hat file. This can be disastrous if the file is
one of the shared catalogs, such aspg_database .

15.1.5. Tuning
Once your users start to load a significant amount of data, you will typically run into per-
formance problems.POSTGRESis not the fastest DBMS in the world, but many of the
worst problems encountered by users are due to their lack of experience with any DBMS.
Some general tips include:

(1) Define indices over attributes that are commonly used for qualifications.For
example, if you often execute queries of the form

retrieve (EMP.all) where EMP.salary < 5000

then a B-tree index on the salary column will probably be useful.If scans
involving equality are more common, as in

retrieve (EMP.all) where EMP.salary = 5000

then you should consider defining a hash index on salary . You can define
both, though it will use more disk space and may slow down updates a bit.Scans
using indices aremuch faster than sequential scans of the entire class.

(2) Runthe vacuum command a lot. This command updates the statistics that the
query optimizer uses to make intelligent decisions; if the statistics are inaccurate,
the system will make inordinately stupid decisions with respect to the way it joins
and scans classes.

(3) Whenspecifying query qualfications (i.e., thewhere part of the query), try to
ensure that a clause involving a constant can be turned into one of the form

10 This may mean different things depending on thearchive modewith which each class has been created. See the Reference
Manual under the headingcreate for more details.However, the current implementation of thevacuum command doesnot perform
any compaction or clustering of data. Therefore, theUNIX files which store eachPOSTGRESclass never shrink and the space “re-
claimed” byvacuum is never actually reused.

66

range_variable operator constant, e.g.,

EMP.salary = 5000

ThePOSTGRESquery optimizer will only use an index with a constant qualifica-
tion of this form. It doesn’t hurt to write the clause as

5000 = EMP.salary

if the operator (in this case,=) has acommutatoroperator defined so thatPOST-
GREScan rewrite the query into the desired form.However, if such an operator
does not exist,POSTGRESwill never consider the use of an index.

(4) Whenjoining several classes together in one query, try to write the join clauses in
a “chained” form, e.g.,

where A.a = B.b and B.b = C.c and ...

Notice that relatively few clauses refer to a given class and attribute; the clauses
form a linear sequence connecting the attributes, like links in a chain. This is
preferable to a query written in a “star” form, such as

where A.a = B.b and A.a = C.c and ...

Here, many clauses refer to the same class and attribute (in this case,A.a).
When presented with a query of this form, thePOSTGRESquery optimizer will
tend to consider far more choices than it should and may run out of memory.

(5) If you are really desperate to see what query plans look like, you can run the
postmaster with the -d option and then runmonitor with the -t option.
The format in which query plans will be printed is hard to read but you should be
able to tell whether any index scans are being performed. See the Reference
Manual underpostgresandpostmaster.

67

15.2. Infrequent Tasks

At some time or another, every POSTGRESsite administrator has to perform all of the fol-
lowing actions.

15.2.1. CleaningUp After Crashes
Thepostgres server and thepostmaster run as two different processes.They may
crash separately or together. The housekeeping procedures required to fix one kind of
crash are different from those required to fix the other.

The message you will usually see when the backend server crashes is:

FATAL: no response from backend: detected in ...

This generally means one of two things: there is a bug in thePOSTGRESserver, or there
is a bug in some user code that has been dynamically loaded intoPOSTGRES. You should
be able to restart your application and resume processing, but there are some considera-
tions:

(1) POSTGRESusually dumps a core file (a snapshot of process memory used for
debugging) in the database directory

/usr/local/postgres/data/base/<database>/core

on the server machine. If you don’t want to try to debug the problem or produce
a stack trace to report the bug to someone else, you can delete this file (which is
probably around 10MB).

(2) Whenone backend crashes in an uncontrolled way (i.e., without calling its built-
in cleanup routines), thepostmaster will detect this situation, kill all running
servers and reinitialize the state shared among all backends (e.g., the shared
buffer pool and locks). If your server crashed, you will get the “no response”
message shown above. If your server was killed because someone else’s server
crashed, you will see the following message:

I h ave been signalled by the postmaster.
Some backend process has died unexpectedly and possibly
corrupted shared memory. The current transaction was
aborted, and I am going to exit. Please resend the
last query. -- The postgres backend

(3) Sometimesshared state is not completely cleaned up. Frontend applications may
see errors of the form:

WARN:Mar 11 14:41:29: cannot write block 34 of myclass [mydb] blind

68

In this case, you should kill thepostmaster and restart it.

(4) Whenthe system crashes while updating the system catalogs (e.g., when you are
creating a class, defining an index, retrieving into a table, etc.) the B-tree indices
defined on the catalogs are sometimes corrupted.The general (and non-unique)
symptom is thatall queries stop working. If you have tried all of the above steps
and nothing else seems to work, try using thereindexdb command. Ifrein-
dexdb succeeds but things still don’t work, you have another problem; if it fails,
the system catalogs themselves were almost certainly corrupted and you will have
to go back to your backups.

The postmaster does not usually crash (it doesn’t do very much except start servers)
but it does happen on occasion.In addition, there are a few cases where it encounters
problems during the reinitialization of shared resources.Specifically, there are race con-
ditions where the operating system lets thepostmaster free shared resources but then
will not permit it to reallocate the same amount of shared resources (even when there is
no contention).

You will typically have to run the ipcclean command if system errors cause the
postmaster to crash. If this happens, you may find (using theUNIX ipcs (1) com-
mand) that the “postgres” user has shared memory and/or semaphores allocated even
though nopostmaster process is running. In this case, you should runipcclean as
the “postgres” user in order to deallocate these resources.Be warned thatall such
resources owned by the “postgres” user will be deallocated. If you have multiple post-
master processes running on the same machine, you should kill all of them before run-
ning ipcclean (otherwise, they will crash on their own when their shared resources are
suddenly deallocated).

15.2.2. Moving Database Directories
By default, all POSTGRES databases are stored in separate subdirectories under

/usr/local/postgres/data/base .11 At some point, you may find that you wish
to move one or more databases to another location (e.g., to a filesystem with more free
space).

If you wish to moveall of your databases to the new location, you can simply:

• Kill the postmaster .
• Copy the entiredata directory to the new location (making sure that the new files are

owned by user “postgres”).

% cp -rp /usr/local/postgres/data /new/place/data

• Reset yourPGDATAenvironment variable (as described earlier in this manual and in
the installation instructions).

using csh or tcsh...
% setenv PGDATA /new/place/data

11 Data for certain classes may stored elsewhere if a non-standard storage manager was specified when they were created.Use
of non-standard storage managers is an experimental feature that is not supported outside of Berkeley.

69

using sh, ksh or bash...
% PGDATA=/new/place/data; export PGDATA

• Restart thepostmaster .

% postmaster &

• After you run some queries and are sure that the newly-moved database works, you
can remove the olddata directory.

% rm -rf /usr/local/postgres/data

To install asingledatabase in an alternate directory while leaving all other databases in
place, do the following:

• Create the database (if it doesn’t already exist) using thecreatedb command. Inthe
following steps we will assume the database is namedfoo .

• Kill the postmaster .
• Copy the directory/usr/local/postgres/data/base/foo and its contents

to its ultimate destination. It should still be owned by the “postgres” user.

% cp -rp /usr/local/postgres/data/base/foo /new/place/foo

• Remove the directory/usr/local/postgres/data/base/foo :

% rm -rf /usr/local/postgres/data/base/foo

• Make a symbolic link from /usr/local/postgres/data/base to the new
directory:

% ln -s / new/place/foo /usr/local/postgres/data/base/foo

• Restart thepostmaster .

15.2.3. UpdatingDatabases
POSTGRESis a research system. In general,POSTGRESmay not retain the same binary
format for the storage of databases from release to release. Therefore, when you update
your POSTGRESsoftware, you will probably have to modify your databases as well.This
is a common occurrence with commercial database systems as well; unfortunately, unlike
commercial systems,POSTGRESdoes not come with user-friendly utilities to make your
life easier when these updates occur.

In general, you must do the following to update your databases to a new software release:

• Extensions(such as user-defined types, functions, aggregates, etc.) must be reloaded
by re-executing thePOSTQUELdefine commands. Noticethat as of Version 4.2, the
method by which you generate object code for user-defined functions has changed, so
you may have to modify your old.o files. SeeAppendix A for more details.

• Data must be dumped from the old classes into ASCII files (using thePOSTQUEL
copy command), the new classes created in the new database (using thePOSTQUEL

70

createcommand), and the data reloaded from the ASCII files.
• Rulesandviewsmust also be reloaded by re-executing the variousPOSTQUELdefine

commands.

You should give any new release a “trial period”; in particular, do not delete the old
database until you are satisfied that there are no compatibility problems with the new
software. For example, you do not want to discover that a bug in a type’s “input” (con-
version from ASCII) and “output” (conversion to ASCII) routines prevents you from
reloading your data after you have destroyed your old databases! (This should be stan-
dard procedure when updating any software package, but some people try to economize
on disk space without applying enough foresight.)

71

15.3. DatabaseSecurity

Most sites that usePOSTGRESare educational or research institutions and do not pay
much attention to security in theirPOSTGRESinstallations. Ifdesired, one can install
POSTGRESwith additional security features.Naturally, such features come with addi-
tional administrative overhead that must be dealt with.

15.3.1. Kerberos
POSTGREScan be configured to use the MIT Kerberos network authentication system.
This prevents outside users from connecting to your databases over the network without
the correct authentication information.For more information on Kerberos, see the file
src/doc/kerberos.faq and theUNIX section of the Reference Manual.

15.3.2. AccessControl
Access control lists(ACLs) can be defined on a per-class basis. These work rather like a
more flexible version of theUNIX chmod(1) command.See the Reference Manual under
the headingchange aclfor more details.

72

15.4. Queryingthe System Catalogs

As an administrator (or sometimes as a plain user), you want to find out what extensions
have been added to a given database. Thequeries listed below are “canned” queries that
you can run on any database to get simple answers. Before executing any of the queries
below, be sure to execute thePOSTGRESvacuum command. (Thequeries will run much
more quickly that way.) Also,note that these queries are also listed in

/usr/local/postgres/src/examples/chapter15

so use cut-and-paste (or the\i command) instead of doing a lot of typing.

This query prints the names of all database adminstrators and the name of their
database(s).

* r etrieve (user_name = u.usename,
database = d.datname)

from u in pg_user,
d in p g_database

where u.usesysid = int2in(int4out(d.datdba))
sort by user_name, database

\g

This query lists all user-defined classes in the database.

* r etrieve (class_name = c.relname)
from c in pg_class
where c.relkind = ’r’ /* no indices */

and c.relname !˜ "ˆpg_" /* no catalogs */
sort by class_name

\g

This query lists all simple indices (i.e., those that are not defined over a function of sev-
eral attributes).

* r etrieve (class_name = bc.relname,
index_name = ic.relname,
attr_name = a.attname)

from bc in pg_class, /* base class */
ic in pg_class, /* index class */
i in p g_index,
a in p g_attribute /* att in base */

where i.indrelid = bc.oid
and i.indexrelid = ic.oid
and i.indkey[0] = a.attnum
and a.attrelid = bc.oid
and i.indproc = "0"::oid /* no functional indices */

73

sort by class_name, index_name,
attr_name

This query prints a report of the user-defined attributes and their types for all user-defined
classes in the database.

* r etrieve (class_name = c.relname,
attr_name = a.attname,
attr_type = t.typname)

from c in pg_class,
a in p g_attribute,
t in p g_type

where c.relkind = ’r’ /* no indices */
and c.relname !˜ "ˆpg_" /* no catalogs */
and a.attnum > 0 /* no system att’s */
and a.attrelid = c.oid
and a.atttypid = t.oid

sort by class_name, attr_name
\g

This query lists all user-defined base types (not including array types).

* r etrieve (owner_name = u.usename,
type_name = t.typname)

from t in pg_type,
u in p g_user

where u.usesysid = int2in(int4out(t.typowner))
and t.typrelid = "0"::oid /* no complex types */
and t.typelem = "0"::oid /* no arrays */
and u.usename != "postgres"

sort by owner_name, type_name
\g

This query lists all left-associative (post-fix) operators.

* r etrieve (left_unary = o.oprname,
operand = right.typname,
return_type = result.typname)

from o in pg_operator,
right in pg_type,
result in pg_type

where o.oprkind = ’l’ /* left unary */
and o.oprright = right.oid
and o.oprresult = result.oid

sort by operand
\g

This query lists all right-associative (pre-fix) operators.

* r etrieve (right_unary = o.oprname,
operand = left.typname,

74

return_type = result.typname)
from o in pg_operator,

left in pg_type,
result in pg_type

where o.oprkind = ’r’ /* right unary */
and o.oprleft = left.oid
and o.oprresult = result.oid

sort by operand
\g

This query lists all binary operators.

* r etrieve (binary_op = o.oprname,
left_opr = left.typname,
right_opr = right.typname,
return_type = result.typname)

from o in pg_operator,
left in pg_type,
right in pg_type,
result in pg_type

where o.oprkind = ’b’ /* binary */
and o.oprleft = left.oid
and o.oprright = right.oid
and o.oprresult = result.oid

sort by left_opr, right_opr
\g

This query returns the name, number of arguments (parameters) and return type of all
user-defined C functions. The same query can be used to find all built-in C functions if
you change the “C” to “internal”, or allPOSTQUELfunctions if you change the “C” to
“postquel”.

* r etrieve (p.proname,
arguments = p.pronargs,
returntype = t.typname)

from p in pg_proc,
l in p g_language,
t in p g_type

where p.prolang = l.oid
and p.prorettype = t.oid
and l.lanname = "C"

sort by proname
\g

This query lists all of the aggregate functions that have been installed and the types to
which they can be applied.count is not included because it can take any type as its
argument.

* r etrieve (aggregate_name = a.aggname,
type_name = t.typname)

from a in pg_aggregate,

75

t in p g_type
where a.aggbasetype = t.oid
sort by aggregate_name, type_name

\g

This query lists all of the operator classes that can be used with each access method as
well as the operators that can be used with the respective operator classes.

* r etrieve (access_method = am.amname,
operator_class = opc.opcname,
operator_name = opr.oprname)

from am in pg_am,
amop in pg_amop,
opc in pg_opclass,
opr in pg_operator

where amop.amopid = am.oid
and amop.amopclaid = opc.oid
and amop.amopopr = opr.oid

sort by access_method, operator_class,
operator_name

\g

76

16. REFERENCES

[ONG90] Ong,L. and Goh, J., ‘‘A Unified Framework for Version Modeling Using
Production Rules in a Database System," Electronics Research Laboratory,
University of California, ERL Technical Memorandum M90/33, Berkeley,
CA, April 1990.

[ROWE87] Rowe, L. and Stonebraker, M., ‘‘The POSTGRES Data Model,’’ Proc.
1987 VLDB Conference, Brighton, England, Sept. 1987.

[STON86] Stonebraker, M. and Rowe, L., ‘‘The Design of POSTGRES,’’ Proc. 1986
ACM-SIGMOD Conference on Management of Data, Washington, DC,
May 1986.

[STON87a] Stonebraker, M., Hanson, E. and Hong, C.-H., ‘‘The Design of the POST-
GRES Rules System,’’ Proc. 1987 IEEE Conference on Data Engineering,
Los Angeles, CA, Feb. 1987.

[STON87b] Stonebraker, M., ‘‘The POSTGRES Storage System,’’ Proc. 1987 VLDB
Conference, Brighton, England, Sept. 1987.

[STON89] Stonebraker, M., Hearst, M., and Potamianos, S., ‘‘A Commentary on the
POSTGRES Rules System,’’ SIGMOD Record18(3), Sept. 1989.

[STON90a] Stonebraker, M., Rowe, L. A., and Hirohama, M., ‘‘The Implementation of
POSTGRES,’’ I EEE Transactions on Knowledge and Data Engineering
2(1), March 1990.

[STON90b] Stonebraker, M. et al., ‘‘On Rules, Procedures, Caching and Views in
Database Systems,’’ Proc. 1990 ACM-SIGMOD Conference on Manage-
ment of Data, Atlantic City, N.J., June 1990.

77

Appendix A: Linking Dynamically-Loaded Functions

After you have created and registered a user-defined function, your work is essentially
done. POSTGRES, howev er, must load theobject code(e.g., a.o file, or a shared library)
that implements your function. As previously mentioned,POSTGRESloads your code at
run-time, as required. In order to allow your code to be dynamically loaded, you may
have to compile and link-edit it in a special way. This section briefly describes how to
perform the compilation and link-editing required before you can load your user-defined
functions into a runningPOSTGRESserver. Note thatthis process has changed as of Ver-

sion 4.2.12 You should expect to read (and reread, and re-reread) the manual pages for the
C compiler,cc (1), and the link editor, ld (1), if you have specific questions. In addition,
the regression test suites in the directory/usr/local/postgres/src/regress
contain several working examples of this process. If you copy what these tests do, you
should not have any problems.

The following terminology will be used below:

Dynamic loading
is whatPOSTGRESdoes to an object file. The object file is copied into the running
POSTGRESserver and the functions and variables within the file are made available
to the functions within thePOSTGRESprocess. POSTGRESdoes this using the
dynamic loading mechanism provided by the operating system.

Loading and link editing
is what you do to an object file in order to produce another kind of object file (e.g.,
an executable program or a shared library).You perform this using the link editing
program,ld (1).

The following general restrictions and notes also apply to the discussion below.

• Paths given to the define function command must be absolute paths (i.e., start with
“/”) that refer to directories visible on the machine on which thePOSTGRESserver is

running.13

• The POSTGRESuser must be able to traverse the path given to the define function
command and be able to read the object file. This is because thePOSTGRESserver
runs as thePOSTGRESuser, not as the user who starts up the frontend process.

12 The oldPOSTGRESdynamic loading mechanism required in-depth knowledge in terms of executable format, placement and
alignment of executable instructions within memory, etc. on the part of the person writing the dynamic loader. Such loaders tended to
be slow and buggy. As of Version 4.2, thePOSTGRESdynamic loading mechanism has been rewritten to use the dynamic loading
mechanism provided by the operating system. This approach is generally faster, more reliable and more portable than our previous
dynamic loading mechanism. The reason for this is that nearly all modern versions ofUNIX use a dynamic loading mechanism to im-
plement shared libraries and must therefore provide a fast and reliable mechanism. On the other hand, the object file must be post-
processed a bit before it can be loaded intoPOSTGRES. We hope that the large increase in speed and reliability will make up for the
slight decrease in convenience.

13 Relative paths do in fact work, but are relative to the directory where the database resides (which is generally invisible to the
frontend application).Obviously, it makes no sense to make the path relative to the directory in which the user started the frontend ap-
plication, since the server could be running on a completely different machine!

78

(Making the file or a higher-level directory unreadable and/or unexecutable by the
“postgres” user is anextremelycommon mistake.)

• Symbol names defined within object files must not conflict with each other or with
symbols defined inPOSTGRES.

• The GNU C compiler usually does not provide the special options that are required to
use the operating system’s dynamic loader interface. Insuch cases, the C compiler
that comes with the operating system must be used.

ULTRIX
It is very easy to build dynamically-loaded object files under ULTRIX. ULTRIX does not
have any shared-library mechanism and hence does not place any restrictions on the
dynamic loader interface. Onthe other hand, we had to (re)write a non-portable dynamic
loader ourselves and could not use true shared libraries.

Under ULTRIX, the only restriction is that you must produce each object file with the
option-G 0 . (Notice that that’s the numeral ‘‘0’’ and not the letter ‘‘O’’). For example,

s imple ULTRIX example
% cc -G 0 -c f oo.c

produces an object file calledfoo.o that can then be dynamically loaded intoPOST-
GRES. No additional loading or link-editing must be performed.

DEC OSF/1
Under DEC OSF/1, you can take any simple object file and produce a shared object file
by running theld command over it with the correct options. The commands to do this
look like:

s imple DEC OSF/1 example
% cc -c f oo.c
% ld - shared -expect_unresolved ’*’ -o foo.so foo.o

The resulting shared object file can then be loaded intoPOSTGRES. When specifying the
object file name to thedefine functioncommand, one must give it the name of the shared

object file (ending in.so) rather than the simple object file.14

SunOS 4.x, Solaris 2.x and HP-UX
Under both SunOS 4.x, Solaris 2.x and HP-UX, the simple object file must be created by
compiling the source file with special compiler flagsand a shared library must be pro-
duced.

14 Actually, POSTGRESdoes not care what you name the file as long as it is a shared object file.If you prefer to name your
shared object files with the extension.o , this is fine withPOSTGRESso long as you make sure that the correct file name is given to the
define function command. Inother words, you must simply be consistent.However, from a pragmatic point of view, we discourage
this practice because you will undoubtedly confuse yourself with regards to which files have been made into shared object files and
which have not. For example, it’s very hard to writeMakefile s to do the link-editing automatically if both the object file and the
shared object file end in.o !

79

The necessary steps with HP-UX are as follows. The+z flag to the HP-UX C compiler
produces so-called “Position Independent Code” (PIC) and the+u flag removes some
alignment restrictions that the PA-RISC architecture normally enforces.The object file
must be turned into a shared library using the HP-UX link editor with the-b option.
This sounds complicated but is actually very simple, since the commands to do it are just:

s imple HP-UX example
% cc +z +u -c f oo.c
% ld -b -o f oo.sl foo.o

As with the .so files mentioned in the last subsection, thedefine function command
must be told which file is the correct file to load (i.e., you must give it the location of the
shared library, or .sl file).

Under SunOS 4.x, the commands look like:

s imple SunOS 4.x example
% cc - PIC -c foo.c
% ld - dc -dp -Bdynamic -o foo.so foo.o

and the equivalent lines under Solaris 2.x are:

s imple Solaris 2.x example
% cc -K PIC -c foo.c

or
% gcc -fPIC -c foo.c
% ld -G - Bdynamic -o foo.so foo.o

When linking shared libraries, you may have to specify some additional shared libraries
(typically system libraries, such as the C and math libraries) on yourld command line.

AIX
AIX, lik e SunOS, OSF/1 and HP-UX, requires users to build shared object files in order
to use its built-in dynamic loading mechanism.No special compiler options must be
given to build the simple object file.However, AIX provides a very general, flexible and
complicated interface for producing shared object files. As a result, it is (relatively) diffi-
cult to produce dynamically-loaded object files.Bear in mind that this only means that it
is difficult when compared to the mechanisms just discussed; it’s really not that hard to
do.

AIX allows the user to tell it which program symbols (e.g., function and global variable
names) should be visible to other pieces of code. This can be convenient in certain cases.
Unfortunately, AIX also requiresthe user to tell it which symbols should be visible (i.e.,
the default behavior is to disallow sharing). AIX controls this behavior by usingexport
filesandimport files.

A symbol may beexportedfrom the shared object file to the program into which the
shared object file is being loaded.In other words, the export file specifies which
symbols defined within the shared object file can be accessed byPOSTGRES. We
usually want all symbols to be visible toPOSTGRES.

80

A symbol may beimportedby the shared object file from the program into which
the shared object file is being loaded. In other words, the import file specifies
which symbols defined with thePOSTGRESserver can be called by routines defined
within the shared object file.Again, we usually want allPOSTGRESsymbols to be
visible to the user code.

Hence, in order to load a shared object file, one must have an export file for the shared
object file as well as an import file for thePOSTGRESbackend server. This turns out to
be easy to do, since export and import files have the same basic format and may be pro-
duced from the simple object file(s) by running themkldexport command that comes
with POSTGRES. The following three steps should work for most cases:

s imple AIX example, using Bourne shell
% cc -c f oo.c
% mkldexport foo.o ‘pwd‘ > foo.exp
% ld - H512 -T512 -o foo.so -e _nostart \

-bI:/usr/local/postgres/lib/postgres.exp \
-bE:foo.exp foo.o -lm -lc 2>/dev/null

The values given for the-H , -T and -e flags told should simply be taken as voodoo.
The file specified by the-bI: flag is produced when thePOSTGRESserver is compiled
and installed. (The library directory/usr/local/postgres/lib given in the
example may differ if you have installedPOSTGRESin a different place, of course.)The
file specified by the-bE: flag must be produced by hand (using themkldexport com-

mand, as shown) before the.so shared object file can be produced.15 You are probably
asking, “If it’s so easy, why not do it all for me?!” In fact, the magic command lines
given above do work in most cases and so could be embedded withinPOSTGRESand hid-
den from the user. Howev er, there are circumstances in which it will fail. In these cases,
the user must be able to control the loader flags with which the shared object file is con-
structed. Inaddition, since the file systemlocationsof the various object files are hard-
coded into the export/import files (and hence into the shared object file), this fact should
also be visible to the user. Finally, by putting the export/import files under user control,
the user can do as the designers of AIX intended and actually edit the files (i.e., control
link-editing) as desired.

If you want an actual understanding of how the AIX loader actually works, you should
take a look at the tutorials written by Gary Hook at the IBM AIX Systems Center. These
tutorials are located in

/usr/local/postgres/src/doc/useful/aix-linking.ps
/usr/local/postgres/src/doc/useful/aix-advlink.ps

15 If you wish to create a shared object file for use with untrusted functions (see the Reference Manual under the headingdefine
function, you must use thepg_ufp.exp exports file instead of thepostgres.exp exports file.

81

