The POSTGRESUser Manual

Edited by theOSTGRESroup
Computer Science Div., Dept. of EECS
University of California at Berkeley

POSTGRESSs copyright © 1989, 1994 by the Regents of thevehsity of California. Permission to use, gopnodify, and dis-
tribute this softvare and its documentation for educational, research, and non-profit purposes and without fee is hereby granted, pro-
vided that the ab@ cpyright notice appear in all copies and that both thayiigt notice and this permission notice appear in sup-
porting documentation, and that the name of thevésity of California not be used in advertising or publicity pertaining to distrib
tion of the software without specific, written prior permissi®ermission to incorporate this software into commercial products can
be obtained from the Campus Software Office, 295 Evans Halletdity of California, Berkley, Ca., 94720. The Uwérsity of Cal-

ifornia makes no representations about the suitability of this software yfguapose. Itis provided “as is” without express or im-
plied warranty.

1. INTRODUCTION

This document is the user manual for H@STGRESIatabase management systewelle
oped at the Unersity of California at Ber&ley. This project, led by Professor Michael
Stonebrakerhas been sponsored by the Defense ahded Research Projects Aggnc
(DARPA), the Army Research Office (ARO), the National Scienoanéation (NSF),
and ESL, Inc.

The first part of this manual goesep some basic system concepts and procedures for
starting thePOSTGRESsystem. W& then turn to a tutorialv@rview of the POSTQUEL

data model and query language, introducingva ¢é its advanced featureNext, we

explain the POSTGRESapproach to extensibility and describewhasers can x@end
POSTGRESy adding usedefined types, operators, aggges, and both query language

and programming language function&fter an extremely brief werview of the POST-
GRESrule system, the manual concludes with a detailed appendix that discusses some of
the more imolved and operating system-specific procedurgslved in extending the
system.

1.1. Whatis POSTGRES?

Traditional relational database management systems (DBMSs) support a data model con-
sisting of a collection of named relations, each attribute of which has a specifidrtype.
current commercial systems, possible types including floating point numbegerénte
character strings, moypeand dates.It is commonly recognized that this model is inade-
guate for future data processing applications.

The relational model succeeded in replacing previous models in part because of its sim-
plicity. Howeve, as mentioned, the “Spartan simplicity” of the relational model often
makes the implementation of certain applications veryialit. The POSTGRESdata

model ofers substantial additional power by incorporating the following four additional
basic constructs:

classes
inheritance

types
functions

in such a way that users can easiiead the system. In additioROSTGRESsupports a
powerful production rule system.

1.2. AShort History of the POSTGRESProject

Implementation of theeOSTGRESDBMS beagan in 1986. Theinitial concepts for the
system were presented in [SWN86] and the definition of the initial data model appeared
in [ROWES87]. Thedesign of the rule system at that time was described i@BVa].

The rationale and architecture of the storage manager were detailed in [STON87b].

POSTGREShas undergone geral major releases since then. The first “demo-ware” sys-
tem became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference.
We released Version 1, described in [STON90a], tonaeedernal users in June 198t
response to a critique of the first rule system [STON89], the rule system was redesigned
[STON90b] and Version 2 as released in June 1990 with thevmele system.Version 3
appeared in 1991 and added support for multiple storage managers, aveihtoiery
executor and a rewritten rewrite rule systeffor the most part, releases since themeha
focused on portability and reliability.

POSTGREShas been used to implement malifferent research and production applica-
tions. Thesenclude: a financial data analysis system, a jet engine performance monitor
ing package, an asteroid tracking database, a medical informatics databasecad se
geographic information systemBOSTGRESas also been used as an educational tool at
several uniersities. Finally at least tvo companies (Multimedia Information Systems
and Montage Software) Y& dcked up the prototype code and commercialized it.

POSTGRESecame the primary data manager for the Sequoia 2000 scientific computing
project in late 1992. Furthermore, the size of tktemal user community nearly doubled
during 1993.1t became increasingly obvious that maintenance of the prototype code and
support was taking up large amounts of time that showd been deoted to database
research. Iran effort to reduce this support burden, the projdatially ended with ér-

sion 4.2.

1.3. AboutThis Release

Version 4.2, the current version dPOSTGRESIs &out 200,000 lines of code in the C
programming languagePOSTGRESS available free of chage, and (as of this writing)
has been installed by approximately 600 sites around the world.

This manual describese¥sion4.2 of POSTGRES The POSTGRESgroup has compiled
and tested Versioh2on the following platforms:

architecture processor operating system
DECstation 3000 Alpha AXP OSF/11.3,2.0
DECstation 3100 and 5000 MIPS ULTRIX 4.2A, 4.3A
Sun4 SRRC Sun0O$4.1.3, 4.1.3_U1; Solaris 2,3
H-P 9000/700 and 800 PA-RISC HP-UX9.00, 9.01, 9.03
IBM RS/6000 POVER AlX 3.2.5

Previous versions o0POSTGRESan on Sun Microsystems Sun3 and Sequent Symmetry
machines.POSTGRES0 longer runs on these systen@utside users e ported prei-

ous releases GfOSTGRES0 maury platforms, includingNeXTSTER IRIX 5.2, Intel Sys-

tem V Release 4, Linux, FreeBSD and NetBSD.

UNIX is a trademark of X/Open, Ltd. Sun4,/AFC, SunOS and Solaris are trademarks of Sun Microsystems, Inc. DEC, DEC-
station, Alpha AXP and ULTRIX are trademarks of Digital Equipment C&®pA:RISC and HP-UX are trademarks of wiett-
Packard Co. RS/6000, R@ER and AlX are trademarks of International Business Machines Corp. OSF/1 is a trademark of the Open
Systems Bundation. NeXTSTER a trademark of NeXT Computénc. MIPSand IRIX are trademarks of Silicon Graphics, Inc.

Version 4.2 has been tuned modestiPn the Wisconsin benchmark, one shouigbect
performance about twice that of the public domain,veisity of California version of
INGRES a relational prototype from the late 1970s.

2. WHAT YOU SHOULD READ

This manual is primarily intended to provide a broadndew of the system, as well as
to illustrate hav C programmers can tie their own code into #@STGRESdatabase
server (commonly referred to as thedkend serveror smply “backend”).

In addition to this manual, there is another documentP@®&TGREReference Manual.

The Reference Manual\gs full descriptions of the syntax and options for each com-
mand in a format not unlkUNIX “man pages. (In fact, the contents of the Reference
Manual should bewailable on-line as actual man pagesipwever, the Reference Man-

ual is designed as a complete reference forxpereencedOSTGRESuser and contains

few tutorial ekamples. ThidJser Manual does not attempt to provide all of the informa-
tion that the Reference Manual pides. Insteadit describes the majaronceptsf the
system, gies examplesof the use of the major constructs, and thewigdes pointersto

the appropriate place in the Reference Manual in which you can find more information if
you so desire.

If you are nev to POSTGRESYou should probably read this manual first, followed by the
parts of theeOSTGRESReference Manual necessary to build your applicatiorpartic-
ular, you should read the Reference Manual sectioiIBRQ if you intend to build a
client application arounBOSTGRESas hat library is not discussed in this manual.

If you are not already familiar with relational databases, you should probably find a good
introductory text on the subjectThis manual assumes that you alreadyehaome
knowledge of the relational model, and it doédnirt to knav a query language such as
QUEL or SQL.

3. POSTGRESARCHITECTURE CONCEPTS

Before we continue, you should understand the bRSIBTGRESsystem architecture.
Understanding he the parts oPOSTGRESnNteract will male the next chapter somhat
clearer.

In database jgon, POSTGRESuses a simple “process-per-user” client/semmodel. A
POSTGRESession consists of three cooperatidNJX processes (programs):

» A supervisory daemon process (ffestmaster),
* the uses frontend application (e.g., tmeonitor program), and

listenin

USER Tcp
port
APPLICATION | HBPQ F\\\e-b ****** iPOSTMASTER]

(a) frontend sends request to server host
postmaster via well-known

network socket

initial
connection

POSTMASTER]

forks child
SERVER

USER
APPLICATION

LIBPQ

(b) postmaster creates backend server

USER
APPLICATION | IBPQ — POSTMASTER J

SERVER

Figure 1 How a onnection is established.

(c) frontend connected
to backend server

* the backend database server {ibstgres process itself).

A single postmaster manages a gén collection ofdatabase®n a single host. Such a
collection of databases is callediastallationor site. Frontend applications that wish to
access a gen database within an installation meakalls to theLIBPQ library. The

library forwards the user requestgenthe network to thepostmaster (Figure 1(a)),

which in turn starts a mebackend server process (Figure 1(b)) and connects the frontend
process to its server (Figure 1(c)). From that point on, the frontend process and the back-
end serer communicate without intervention by thestmaster . Hence, theost-

master is aWways running, waiting for requests, whereas the frontend andbdqiro-
cesses come and go.

One implication of this architecture is that hastmaster and the backendwabys run

on the same machine (the databaseesgrwhile the frontend application may or may

not be running on a separate machine (e.g., a clierstation). Yu should keep this in

mind, because this means that the files that you can access on your machine may not be
accessible (or may only be accessed using a different filename) on the datal&se serv
machine.

You should also beaare that thgpostmaster and thepostgres sener run with the

userid of thePOSTGRES'superusef Note that the?eOSTGRESsuperuser does notve

to be a special user (e.g., a user named “postgres”). FurthermoR)INSRESsUpe-

ruser should definitely not be thNIX superuser‘root” In ary case, all files relating to
a database should belong to tRI®STGRESuperuser.

4. GETTING STARTED WITH POSTGRES

Before you can start learning tROSTQUELquery language, you need tovhaa working
POSTGRESsystem. Thisection discusses Wwao dart POSTGRESand set up yourven
environment so that you can use frontend applications.

Some of the steps listed in this section will apply tcP@lBTGREusers, and some will
apply primarily to the site database administratfinis site administator is the person
who installed the software, created the database directories and stapesthaster
process. Thigperson does not ki@ o be tie UNIX superuser‘root;” or the computer
system administrator.

In this section, items for end users are labelled “User” and items intended for the site
administrator are labelled “Admin.”

Throughout this manual, grexamples that bgin with the charactef% are commands
that should be typed at thuNIX shell prompt. Examples that begin with the character
“* " are commands in theOSTGRESjuery languageROSTQUEL

4.1. Admin: Installing POSTGRES

Detailed installation instructions can be found inRPSTGRESsource code distritiion.
Thetroff source is located in the filrc/doc/postgres-setup.me and a for
matted version is located at the top of the distribution directory hese instructions
vary from release to release and will not be duplicated hétewever, if you are
installing POSTGRESnow, you must read these instructions and carry them out before
going ary further.

A reminder: dort' run the regression tests as the “postgres”. uBart of the test is a
check of thePOSTGRESsecurity mechanisms that turng siiperuser permissions. If you
run the test as “postgrég,ou may not be able to add users later.

4.2. Admin/User: Setting Up Your Environment

Figure 2 shas hav the POSTGRESistribution is laid out when installed in the daft
way. The system can be installed such that the various v@epd&ectories can be scat-
tered around your disksubfor the sak of dmplifying this manual we will assume that
this is not the case. In the examples that fglle will assume thaPOSTGREShas been

installed in the directoryusr/local/postgres . Therefore, whenger you see the
directory /usr/local/postgres you should substitute the name of the directory
wherePOSTGRESs actually installed.

All POSTGRES commands are installed in the directory
/usr/local/postgres/bin . Therefore, you should add this directory to your shell
command pathIf you use a variant of the Baley C shell, such agsh ortcsh , you
would put

postgres

TN

data bin lib include src doc
B \ \
fles base pg_log . monitor postgres postmaster.... libpg.a libpg.h
/ ’w} classes]
.bki files templatel mydb
p Y/

g_class ... g_class ...
private classes] private classes]

DATA EXECUTABLE APPLICATION
PROGRAMS DEVELOPMENT
ENVIRONMENT

Figure 2 POSTGRESile layout.

% <t path = (/usr/local/postgres/bin $path)

in the.login file in your home directorylf you use a ariant of the Bourne shell, such
assh, ksh orbash, then you would put

% FATH=/usr/local/postgres/bin:$PATH
% eport PATH

in the.profile file in your home directory.

From nav on, we will assume that you V& put the POSTGREShin directory in your
path. Inaddition, we will mak frequent reference to “setting a shell variable” or “setting
an environment variable” throughout this document. If you did not fully understand the
last paragraph on modifying your search path, you should consulNtkemanual pages

that describe your user shell before going famther.

4.3. Admin: Starting the Postmaster

It should be clear from the preceding discussion that nothing can happen to a database
unless thepostmaster process is runningAs the site administratpthere are a num-

ber of things you should remember before startingptb&tmaster . These are dis-
cussed in the section of this manual titleddrhinistering POSTGRES Howeva, if
POSTGREShas been installed by following the installation instructiotacty as written,

the following simple command is all you should need to stapasemaster

% postmaster &

If the postmaster does not start, but instead prints a series of cryptic error messages,

you should consult the Reference Manual under the headistgnaster This manual
page contains troubleshooting tips.

The postmaster occasionally prints out messages to the shell that started it. This is
often helpful during troubleshooting. If you do not wish to see these messages, you can
type

% mstmaster -S

and thepostmaster will be “S”ilent. Notice that there is no ampersand (“&") at the
end of the last example.

4.4. Admin: Adding Users

The createuser command enables specific users to ace&3STGRES Please read
the descriptions of these commands in the Reference Manual for specific instructions on
their use.

4.5. User:Starting Applications

Assuming that your site administrator has properly starteddbgnaster process and
authorized you to use the database, you (as a user) miaytbatart up applicationsAs
previously mentioned, you should addsr/local/postgres/bin to your shell
search path. In most cases, this is all you should fado in &rms of preparatioh.

If you get the following error message froP@STGREScommand (such asonitor
orcreatedb):

FATAL: StreamOpen: connect() failed: errno=61
FATAL: Failed to connect to postmaster (host=xxx, port=4321)
Is the postmaster running?

it is usually because (1) thmstmaster is not running, or (2) you are attempting to
connect to the wrong server host.

If you get the following error message:

FATAL 1:Feb 17 23:19:55:process userid (2360) !=
database owner (268)

it means that the site administrator startedpib&tmaster as the wrong useiTell him
to restart it as theOSTGRESsuperuser.

L If your site administrator has not set things up in the defaayt you may hae ssme more work to doFor example, if the
database server machine is a remote machine, you will need to B&H@SErvironment variable to the name of the database serv-
er machine. The environmeranablePGPORTay also hee © be ®t. Thebottom line is this: if you try to start an application pro-
gram and it complains that it cannot connect tophgtmaster , you should immediately consult your site administrator toemak
sure that your environment is properly set up.

10

4.6. User:Managing a Database

4.6.1.

4.6.2.

Now that POSTGRESIis up and running we can nmakome databases with which to
experiment. Herewe describe the basic commands for managing a database.

Creating a Database

Let's say you vant to create a database narfea . You can do this with the folaing
command:

% aeatedb foo

POSTGRESllows you to create gmumber of databases at a@i dte and you automat-
ically become thelatabase adminisator of the database just created. Database names
must hae an dphabetic first character and are limited to 16 characters in length.

Not every user has authorization to become a database administtitBOSTGRES
refuses to create databases for you, then the site administrator needs to grant you permis-
sion to create databases. Consult your site administrator if this occurs.

Accessin@ Database
Once you hee onstructed a database, there are three ways to access it:

* You can run th€OSTGRESerminal monitor (thenonitor program) which allas
you to interactiely enter edit, and &ecute commands in theOSTQUELquery lan-
guage.

* You can interact witiPOSTGRESrom a C program by using thgBPQ subroutine
library. This allows you to submROSTQUELcommands from C and get answers and
status messages back to your prograrhis interface is discussed further in the
LIBPQ section of the Reference Manual.

* You can use thé&st pathfacility, which allows you to xecute functions within the
sener program itself. This facility is (minimally) described in the Reference Manual
under “Fast Path.”

This manual will only discuss access through the terminal monitor.
The terminal monitor can be adied for thefoo database by typing the command:

% rmnitor foo

You will be greeted with the following message:
Welcome to the POSTGRES terminal monitor

Go

*

This prompt indicates that the terminal monitor is listening to you and that you can type
POSTQUELqueries into a workspace maintained by the terminal monitor.

Themonitor program responds to escape codes thgihbeith the backslash charagter
“\". For example, yoprint the current contents of the workspace by typing:

11

4.6.3.

*\p

Once you hee finished entering your queries into therispace, you can pass the con-
tents of the workspace to tROSTGRESserver by typing:

*\g

This tells the server tgo. If you malke a fping mistake, you canvioke thevi textedi-
tor by typing:

*\e
The workspace will be passed to the edignd once yout vi , your edited query will

placed in the terminal monitor oskspace. ¥u can then submit the contents of the
workspace t®POSTGRESy using thdg command as described aleo

To get out of the monitor and returntNIX, type
* \ q

andmonitor will quit and return you to your command shell.

There are tw ather things thamonitor understands that makt easier to write nice-
looking scripts. First, white space (i.e., spaces, tabs amliheg) may be used freely in
POSTQUELqueries. Second:omments that look |k those used in the C programming
language, e.g.,

/* This is a comment. */

may also be used in your queridBeware: you cannot comment out an escape cdde.
other words, this doegniork as you might expect:

/* I don't want to send thisl\g */
retrieve (message = "but | want to send this!") \g

For a omplete description of thmonitor commands and its options, see the Reference
Manual under the headimgonitor.

Destoying a Database

If you are the database administrator for the datatmase you can destipit using the
following UNIX command:

% destroydb foo

This action physically renves dl of the UNIX files associated with the database and can-
not be undone, so this should only be done with a great deal of forethought.

12

5. THE POSTQUEL QUERY LANGUAGE

POSTQUELIs thePOSTGRESquery language POSTQUELwas derived from the QUEL
language decloped by the Uniersity of California INGRES project, but the tw lan-
guages are dirent in mag ways. Thissection provides anverview of how to use the
moreQUEL-like features oPOSTQUELto perform simple operations.

In the examples that follg we assume that you lra aeated thefoo database as
described in the previous subsection angergarted the terminal monitor.

Before you start reading, ek a bok at the directory
/usr/local/postgres/src/examples . This directory contains all of the
POSTQUELqueries listed in this manual (the ones that arexamples of things that
don't work, that is) broken down by chaptdnstead of typing the queries be&linto the
monitor program, you can just cut and paste out of the appropriate file or use the
command at the terminal monitor.

5.1. Concepts

The fundamental notion IROSTGRESS that of aclass,which is a named collection of
objectinstances Each instance has the same collection of naat&ibutes and each
attribute is of a specifitype Furthermore, each instance has a permaolejetct identi-
fier (OID) that is unique throughout the installation.

As previously discussed, classes are grouped into databases, and a collection of databases
managed by a singfgstmaster process constitutes an installation or site.

5.2. Creating a New Class

You can create a meclass by specifying the class name, along with all afteimames
and their types:

* ¢ reate EMP (name = text, salary = int4,
age = int4, dept = char16) \g

* ¢ reate DEPT (dname = charl6, floor = int4,
manager = text) \g

The POSTQUELbase types used alae a \ariable-length array of printable characters
(text), a 4-byte signed inger (nt4), and a fixed-length array of 16 characters
(charl6 .)

So far, the POSTGRESreate command looks exactly l&kthe command used to create a
table in a traditional relational systenfihis exact syntax was usedQuEL, the original
INGRESquery languageHowever, we will presently see that classes/Bgroperties that
are extensions of the relational model, so we use a different word to describe them.

13

5.3. Populating a Class with Instances
Theappendcommand is used to populate a class with instances:

* append EMP (name = "Claire", salary = 2000,
age = 40, dept = "shoe") \g

* a ppend EMP (hame = "Joe", salary = 1400,
age = 40, dept = "shoe") \g

* append EMP (name ="Sam", salary = 1200,
age = 29, dept = "toy") \g

* a ppend EMP (hame = "Bill", salary = 1600,
age = 36, dept = "candy") \g

* append DEPT (dname = "shoe", floor = 5,
manager = "Claire") \g

* append DEPT (dname = "toy", floor = 3,
manager = "Sam") \g

* append DEPT (dname = "candy", floor = 4,
manager = "(None)") \g

This adds four instances to tB&Pclass, one for eadppendcommand.

You can also use theopy command to perform load @& amounts of data from flat
(ASCI) files. See the Reference Manual undgpy for details.

5.4. Queryinga Class

The EMPclass can be queried with normal relational selection and projection queries.
The POSTQUELequiaent of theSQL selectstatement isetrieve. As in SQL, the state-

ment is dvided into atarget list (the part that lists the attributes to be returned) and a
qualification(the part that specifies ynestrictions). Br example, to find the emplees
under 35 years of age, type:

* r etrieve (EMP.name) where EMP.age < 35 \g

and the output should be:

name
Sam

Note that, unlikesQL, parentheses are required around the targeEIME.name.

POSTQUELallows you to return arbitrary computations in the target list as long gs the
are gven some kind of name:

* r etrieve (result = EMP.salary / EMP.age)
where EMP.name = "Bill" \g

14

result
44

In this case, we divided Bifi’ salary by his age and called the resdsult . (Of
4
course, the answer is really 64but division of two integers produces another integer so

the fraction is lost.).

Arbitrary Boolean operatorand, or and not) are allowed in the qualification of @n
query For example,

* 1 etrieve (EMP.all)
where EMP.age < 30
or not EMP.name ="Joe" \g

name salary age |dept
Claire 2000 36 |shoe
Sam 1200 29 toy

Bill 1600 36 candy

As a final note, you can specify that the results wdtiae ve can be returned in a sorted
order or with duplicate instances reved. Seethe Reference Manual undetrieve for
more information.

5.5. Redirecting Retrieve Queries
Any retrieve query can be redirected to amnelass in the database:

* r etrieve into temp (EMP.name)
where EMP.age < 35 and EMP.salary > 1000 \g

This executes an implicicreate command, creating a weclasstemp with the attrilute
names and types specified in the target list ofeélrée ve into command. W can then,
of course, perform anoperations on the resulting class that we can perform on other
classes.

* 1 etrieve (temp.all) \g

name
Sam

5.6. Dins Between Classes

Thus fr, our queries hee anly accessed one class at a time. Queries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class

are being processed at the same tirAequery that accesses multiple instances of the

15

same or different classes at one time is callgihaquery

As an éample, say we wish to find the names of employees which are the sanmia age.
effect, we need to compare thge attribute of eacrEMPinstance to thage attribute of

all otherEMPinstance$.We @n do this with the following query:

* r etrieve (E1.name, E2.name)
from E1 in EMP, E2 in EMP
where El.age = E2.age and El.name != E2.name \g

name name
Bill Claire
Claire Bill

In this case, botlel and E2 are surrogatesfor an instance of the clag&VP and both
range oer al instances of the class. (In the terminology of most database sy&éms,
and E2 are known as “rangeaviables) A POSTQUELquery can contain an arbitrary

number of class names and surrogates.

5.7. Updates
You can update existing instances usingréf@ace command:

* r eplace EMP (salary = E.salary)
from E in EMP
where EMP.name = "Joe" and E.name = "Sam" \g

This command replaces the salary of Joe by that of Sam.

Notice that this example is actually another join quéfigre, we are using the actual
class name ‘EMP) as me range variable and a suratg name folEMP(“E”) as
another range variable.

5.8. Deletions
Deletions are performed using ttieletecommand:

* d elete EMP where EMP.salary > 0 \g

Since all employees ha positive salaries, this command will lea the EMPclass empty

2 This is only a conceptual model. The actual join may be performed in a more efficient,rhanties is ivisible to the user

3 The semantics of such a join are that the qualification is a txptession defined for the Cartesian product of the classes in-
dicated in the queryFor those instances in the Cartesian product for which the qualification iP@8e8GRESTomputes and returns
the values specified in the target list.

POSTQUELdoes not assign gmmeaning to duplicate values in suctpeessions. Thisneans thaPOSTGRESsometimes recomputes

the same target list weral times — this frequently happens when Boolean expressions are connectedariti@amemore sich du-
plicates, you must use thetrie ve unique statement. Sethie Reference Manual undetrie ve for more details.

16

One should be wary of queries of the form
delete classname

Without a qualification, thdeletecommand will simply delete all instances of theegi
class, leaving it emptyThe systenwill not request confirmation before doing this.

Before going on, repopulate your EMP database usingapipend commands listed
above.

5.9. UsingFunctions

POSTQUEL queries can contain function calls as well as operators. If aged to
express our very firgetrieve query as:

* r etrieve (EMP.name) where int4lt(EMP.age, 35) \g

name
Sam

we could do so.Obviously if we need to compute some function of more thaa &rgu-
ments, wanustuse the function syntax instead of the operator syntax.

5.10. UsingAggregate Functions

Like most other query languagd=)STGRESsupports agggete functions. However, the
current implementation dFOSTGRESaggr@ae functions is very limited.Specifically,
while there are agggetes to compute such functions as the count, sustage, maxi-
mum and minimumyer a st of instances, agggdes can only appear in the target list of
a query and not in the qualificatiomkere clause). Asan example,

* r etrieve (how_many = count{EMP.name}) \g

how_many
4

counts all employees, and

* 1 etrieve (avg_salary =
int4ave{EMP.salary
where EMP.dept = "toy"}) \g

avg_salary
1200

computes thewarage salary of all employees in the twepartment. Haever, the fol-
lowing query (to find out who makes more mprtban ay of the to department

17

employees) wilhot work:

* r etrieve (EMP.name) where
EMP.salary > int4Amax{EMP.salary
where EMP.dept = "toy"} \g

WARN:Mar 3 00:40:54:parser: syntax error at or near "{"

because the aggae is not in the target list. In addition, if the qualification of the aggre-
gae expression containsyajoin clauses (references to other classes), the gajgmmay

or may not return the right result. (In otheonds, aggrgaes with join clauses are nei-
ther disallowed nor are thecorrectly supported.) See the Reference Manual under
postquelfor more details.

5.11. Help! WhatAr e the Valid Types, Operators and Functions?

So far, we have been rather aalier in our use of types (such abkarl6), operators
(such as<), and aggrgate functions (such asount). A large number of pre-defined
types, operators and aggaes are wailable by default inPOSTGRES and these are
listed in the section of the Reference Manual labdbeitt-in. This would be a good
time to go ahead and &l peek at that section.

In a later section of this manual, we will describ&/ho query the system to find out the
current list ofall valid types, operators, functions, etc. known to the system.

18

6. ADVANCED POSTQUEL FEATURES

Having covered the basics of usir@gOSTQUELto access your data, we willwaliscuss
those features ?*FOSTGREShat distinguish it from camentional data managerd hese
features include inheritance, time viehand non-atomic data values (array- and set-
valued attributes).

6.1. Inheritance
First, if you haen’t done so alreadye-populate th&MPclass by repeating treppend
commands in section 5.3. Then, create a second$T4D_EMPand populate it as fol-
lows:

* ¢ reate STUD_EMP (location = point) inherits (EMP) \g

* append STUD_EMP (name = "Sunita", salary = 4000,
age = 23, dept = "electronics",
location = "(3, 5)") \g

In this case, an instance 8TUD_EMPnheritsall data fieldsrjame, salary , age, and

dept) from its parentEMP Furthermore, student employees@an extra field,loca-

tion , that shows their address as a coordinate paiPOSTGRES a dass can inherit
from zero or more other classtand a query can reference either all instances of a class
or all instances of a class plus all of its descenddfds.example, the following query
finds the employeesver 20:

* r etrieve (E.name) from E in EMP where E.age > 20 \g

name
Claire
Joe
Sam
Bill

On the other hand, to find the names of all employees, including student emplogees, o
age 20, the query is:

* r etrieve (E.name) from E in EMP* where E.age > 20 \g

“1.e., the inheritance hierarglis a drected acyclic graph.

19

which returns:

name
Claire

Joe

Sam

Bill

Sunita

Here the* after EMPindicates that the query should be rueroEMPand all classes
below EMPin the inheritance hierargh Mary of the commands that we Ve dready
discussed —retrieve, replace anddelete— support this* notation, as do others, such as
the rename and addattr commands. Sethe Reference Manual entries for these com-
mands for additional details.

Note thatlocation in STUD_EMRs not a traditional relational data typAs we will
see laterPOSTGREScan be customized with an arbitrary number of user-defined data

types.

6.2. Time Travd

POSTGRESsupports the notion dime travel This feature allows a user to run historical
queries. Br example, to find Sasturrent salaryone would query:

* 1 etrieve (E.salary) from E in EMP["now"]
where E.name ="Sam" \g

salary
1200

POSTGRESWiIll automatically find the grsion of Sans record valid at the correct time
and get the appropriate salary.

One can also gé a tme range For example to see all the salaries that Sam hes e
earned, one would query:

* r etrieve (E.salary)
from E in EMP["epoch”, "now"]
where E.name = "Sam" \g

where “epoch” indicates the beginning of the system cldElou have exeuted all of
the examples so fahen the abee query returns:

5 OnUNIX systems, this is aiays midnight, January 1, 1970 GMT.

20

salary
1200
1200

Notice that there are twsalaries for Sam because hasvdeleted from and then re-
appended to thEMPclass.

The default bginning of a time range is the earliest time representable by the system and
the default end is the current time; thus, thevabione range can be abbreviated as
“[] . See Section 3 of the Reference Mantljlt-Ins, and the introduction to Sec-

tion 4, POSTQUEL, for a full description of the time types (absolute time, nedatime

and time ranges).

6.3. Non-AtomicValues

6.3.1.

One of the tenets of the relational model is that the at&ibof a relation aratomic
POSTGRESdoes not hee tis restriction; attributes can themssdvcontain subalues
that can be accessed from the query langukgeexample, you can create attributes that
arearraysof base types aetsof ary type.

Arrays

POSTGRESallows attributes of an instance to be defined as fixed-lengtlrartabie-
length multi-dimensional arrays. Arrays ofydpase type or user-defined type can be cre-
ated. D illustrate their use, we first create a class with arrays of base types.

* ¢ reate SAL_EMP (name = text,
pay_by quarter = int4]],
schedule = charl6[][]) \g

The abee query will create a class nam&aAL_EMPwith atext string fjame), a one-
dimensional array ofnt4 (pay_by_quarter), which represents the empée’s
salary by quarter and a two-dimensional arraglwrlé (schedule), which repre-
sents the empiees weekly schedule.Now we do ®me append s; note that when
appending to an arraye enclose the values within braces and separate them by commas.
If you know C, this is not unlile the syntax for initializing structures.

* append SAL_EMP (hame = "Bill",
pay_by_quarter[4] = {10000, 10000, 10000, 10000}",
schedule[7][2] = "{{"meeting", "lunch"}, {}}") \g

* append SAL_EMP (name = "Carol",
pay_by quarter = "{20000, 25000, 25000, 25000}",
schedule[5][2] = "{{"talk", "consult"}, {"meeting"}}") \g

By default, POSTGRESuses the “one-based” numbering wention for arrays — that is,
an array o elements starts with array[1] and ends with amhyNotethat the elements
of an array do not wa be @mpletely specified For example, you may he roticed
that we did not initialize all of the elements of the attiéschedule above. The \alue
of an uninitialized element is undefined, but it can be updated later usirgpthee

21

command.

Now, we can run some queries @AL_EMP First, we sha how to access a single ele-
ment of an array at a time. This query retegethe names of the employees whose pay
changed in the second quarter:

* r etrieve (SAL_EMP.name)
where SAL_EMP.pay_by_quarter[1] !=
SAL_EMP.pay_by_quarter[2] \g

name
Carol

This query retriges the third quarter pay of all employees:

* r etrieve (SAL_EMP.pay_by_quarter[3]) \g

pay_by quarter
10000
25000

We @an also access arbitrasijcesof an arrayor subarrays This query retriees the first
item on Bill's shedule for the first three days of the wegk. .

* r etrieve (SAL_EMP.schedule[1:3][1:1])
where SAL_EMP.name ="Bill" \g

schedule

{T'meeting ("}

Similarly, thereplace command can be used to update a single array element or an
arbitrary subarray This query updates Carslkhedule for the second and third day of
the week.

* r eplace SAL_EMP (schedule[2:3][1:2] =
"{{"debugging", "shopping"}, {"meeting", "present"}}")
where SAL_EMP.name = "Carol" \g

This query gres a $000 raise in the first quarter to all members whose first item on
schedule for the first working daydebugging

* r eplace SAL_EMP (pay_by_quarter[1] =

SAL_EMP.pay by quarter[1] + 1000)
where SAL_EMP.schedule[1][1] = "debugging” \g

22

6.3.2. Sets

Class attrilmtes can also bsetsthat are defined in antentional or declaratve, manner.
For example, lets sy that we want to create a mekind of department classA depart-
ment consists of a department name as well gaeay that lists all members of the
department.

* ¢ reate NEW_DEPT (deptname = charl6,
members = setof EMP) \g

* append NEW_DEPT (deptname = "shoe",
members = "retrieve (EMP.all)
where EMP.age >=40") \g

* append NEW_DEPT (deptname = "toy",
members = "retrieve (EMP.all)
where EMP.name = \\"Sam\\"") \g

* append NEW_DEPT (deptname = "candy",
members = "retrieve (EMP.all)
where EMP.name != \\"Sam\\"
and EMP.age < 40") \g

These amount to our business rules: all peopte 40 work in the shoe department, Sam
works alone in the gpdepartment, andveryone else works in the candy department.

We @n retrize (but not update) indiidual attributes of each member of a salzed
attribute. We do with thenested-dohotation.

* r etrieve (NEW_DEPT.deptname,
NEW_DEPT.members.name) \g

deptname |name
shoe Claire
shoe Joe
toy Sam
candy Bill

That is, we project attributes from our set-valued atte INEW DEPT.members by
adding the reference to tleMPattribute.name . There are tw caveats: the shorthand
.all - doesnt work for set-valued attributes, and retakeof more than one attribute from
a st-valued attribute may produce unexpected results.

The main advantage of representing sets in a devkansly (instead of storing the actual
vaues, orEMB, in this @ample) is that the set declarations automatically maintain their
consisteng. If we hire someone e they will be assigned to the prop®&EW_DEPT
whether we explicitly gie them a department or not.

[* whoops, we forgot to put Ginger in a department... */

23

* append EMP (hame = "Ginger", salary = 2000,
age =34)\g

[* ..butit's ok */
* r etrieve (NEW_DEPT.deptname,
NEW_DEPT.members.name) \g

deptname |name
shoe Claire
shoe Joe
toy Sam
candy Bill
candy Ginger

Notice thatPOSTGRESeturns seeral results for each of the departments thatheaore
than one emplee. Thisis becaus®OSTGRESflattens” the result when a set attrib
contains multiple instances. In othepmds, an instance is returned for each of the set
elements and the contents of the other aite (in this casaleptname) is just dupli-
cated in each of those instances.

24

/. EXTENDING POSTQUEL: AN OVERVIEW

In the sections that follm we will discuss hav you can extend theOSTQUELquery lan-
guage by adding:

 functions

* types

 operators

» aggregaes
We will then give ome integrated examples of their use.

7.1. How Extensibility Works

POSTGRESSs extensible because its operatioicasalog-driven If you are familiar with
standard relational systems, you Wrihat the store information about databases, tables,
columns, etc., in what are commonly knowrsgstem catalgs (Some systems call this

the data dictionary. The catalogs appear to the user as tables, dity aher, but the
DBMS stores its internal bookkping in them. Oneéy dfference betweeROSTGRES

and standard relational systems is th@STGRESstores much more information in its
catalogs — not only information about tables and columns, but also information about its
types, functions, access methods, and soTdrese tables can be modified by the user
and sincePOSTGREShases its internal operation on these tables, this meansabat
GREScan be extended by users. By comparisonyetional database systems can only

be extended by changing hard-coded procedures within the DBMS or by loading modules
specially-written by the DBMS vendor.

POSTGRESIs also unlile nost other data managers in that the server can incorporate
userwritten code into itself througbdynamic loading That is, the user can specify an
object code file (e.g., a compiled file or shared library) that implements awigpe or
function andPOSTGRESwill load it as required. Code written in tlR®OSTQUELquery
language areven more trivial to add to the server.

This ability to modify its operation “on the fly” makPOSTGRESuniquely suited for
rapid prototyping of n& applications and storage structures.

7.2. ThePOSTGRESType System
The POSTGRESype system can be broken down imesal ways.

Types are divided intbasetypes anccompositaypes. Baséypes are those, &int4

that are implemented in a language such askxy generally correspond to what are
often knavn as “abstract data type$?OSTGRES:an only operate on such types through
methods preided by the user and only understands the behavior of such types to the
extent that the user describes them. Composite types are createdeviieaaiser cre-

ates a classeMPis an example of a composite typeOSTGRESstores these types in
only one vay (within the file that stores all instances of the class) but the user can “look

25

inside” at the attriotes of these types from the query language and optimize their
retrieval by (for example) defining indices on the attributes.

POSTGRESbase types are furthervitied into built-in types anduser-definedtypes.
Built-in types (like int4) are those that are compiled into the systedser-defined
types are those created by the user in the manner to be descrilved belo

7.3. Aboutthe POSTGRESSystem Catalogs

Having introduced the basic extensibility concepts, we cam tage a bok at hev the
catalogs are actually laid ou¥ou can skip this section for mg but some later sections
will be incomprehensible without the informatiorvei here, so mark this page for later
reference.

All system catalogs wva rames that gin with pg_. The following classes contain
information that may be useful to the end ugg@ihere are manother system catalogs,
but there should rarely be a reason to query them directly.)

catalog name description
pg_database databases
pg_class classes
pg_attribute class attributes
pg_index secondary indices
pg_proc procedures (both C arRDSTQUEL
pg_type types (both base and complex)
pg_operator operators

pg_aggregate aggr@aes and aggogte functions

pg_am access methods

pg_amop access method operators
pg_amproc access method support functions
pg_opclass access method operator classes

The Reference Manual\gis a nore detailed explanation of these catalogs and their
attributes. Havever, Figure 3 shows the major entities and their relationships in the sys-
tem catalogs.(Attributes that do not refer to other entities are not shown unlessrthe
part of a primary &y.)

This diagram is more or less incomprehensible until you actually start looking at the con-
tents of the catalogs and seentibiey relate to each othefor now, the main things to
take avay from this diagram are as follows:

(1) Inseveral of the sections that follg we will present various join queries on the
system catalogs that display information we need to extend the sylstaking
at this diagram should malsome of these join queries (which are often three- or
four-way joins) more understandable, because you will be able to see that the
attributes used in the queries form foreigrykin aher classes.

(2) Mary different features (classes, attribs, functions, types, access methods, etc.)
are tightly integrated in this schem& simple define command may modify

26

ON findreli ON o mopid
.) O:N
indkey[8] amopclaid
O:N|. O:N 0:
indproc A------5 pg_languag —ramopopr
. | ; 1
0 indpred | oid amopselect
tindexrelid ! O:N amopnpages
i 0:1
1 pg_type 1
oid - ‘ pg_opclass 1
—ttyprelid 0:1 L 1| Pg_proc 1 oid 1
typinput oot 1 oid
. 1 T 1
ypoutput ! proname 1
typreceive -4 | 0.Wfprorettype
typsend - 7OJN - 6N -|-proargtype48]
prolang ToN
pg_class 11 1
1 oid
relam ON ON amid .
pg_am 1 1 pg_operator 1 amopclaid ON
1% oid oid i amprocnum '
amgettuple oprname ! ON
aminsert oprleft | ’
amdelete oprright \‘
amgetattr oprresult |
KEY: ambeginscan oprcom - 4:
amrescan oprnegate -5
DEPENDENT amendscan oprlsortop -
foreign key ammarkpos oprrsortop 70J'N
amrestrpos oprcode - 1O:N
REFERS-TO ambuild ON oprrest -
' oprjoin SR
INDEPENDENT
primary key
non-oid primary | _____ optional
key (if any) ____ mandatory
non-key

O indicates these key values are alternate primary keys
(i.e., this class is generally identified by oid but may be
identified by the non-oid primary key in other contexts).

Figure 3 The majorPOSTGRESystem catalogs.

mary of these catalogs.

(3)

Types and procedurare central to the schemalearly every catalog contains

some reference to instances in one or both of these claBsesxample,

5 We wse the wordgrocedureandfunctionmore or less interchangably.

27

(4)

POSTGRESfrequently uses type signatures (e.g., of functions and operators) to
identify unique instances of other catalogs.

Thereare maw attributes and relationships thatgadovious meanings, but there
are maw (particularly those that ka o do with access methods) that do not.
The relationships betwegug_am, pg_amop, pg_amproc, pg_operator
andpg_opclass are particularly hard to understand and will be described in
depth (in the section on intading types and operators to indices) after wes ha
discussed basic extensions.

28

8. EXTENDING POSTQUEL: FUNCTIONS

As it turns out, part of defining aweype is the definition of functions that describe its
behavior Consequentlywhile it is possible to define aweunction without defining a
new type, the reerse is not true.We terefore describe hoto add nev functions to
POSTGRESefore describing woto add nev types.

POSTQUELprovides two types of functionsquery languge inctions(functions written

in POSTQUELD and programming languge itnctions(functions written in a compiled
programming language such as &ither kind of function can t&ka kase type, a com-
posite type or some combination as arguments (parameters). In addition, both kinds of
functions can return a base type or a composite ty{pe.easier to defineeOSTQUEL
functions, so we’ll start with those.

29

8.1. QueryLanguage POSTQUEL) Functions

8.1.1. POSTQUEL Functions on Base Types

The simplest possiblBOSTQUELfunction has no guments and simply returns a base
type, such ast4

* d efine function one

(language = "postquel”, returntype = int4)
as "retrieve (one = 1)" \g

* r etrieve (answer = one()) \g

answer
1

Notice that we defined a target list for the function (with the nang), but the taget

list of the query that woked the function @errode the functiors taget list. Hence, the
result is labelle@nswer instead obne.

It's dmost as easy to defir®@STQUELfunctions that taé base types as guments. In
the example belg, notice hav we refer to the arguments within the function$is and
$2 and specify their types using theg is clause.

* d efine function add_pq
(language = "postquel”, returntype = int4)
arg is (int4, int4)
as "retrieve (sum = $1 + $2)" \g

* r etrieve (answer = add_pq(1, 2)) \g

answer
3

8.1.2. POSTQUEL Functions on Composite Types

When specifying functions with arguments of composite types (suéivV@s we must
not only specify which argument we want (as we didvehgth $1 and$2) but we must
also specify the attributes of thatgament. Br example, tak the function dou-
ble_salary that computes what your salary would be if it were doubled.

30

* d efine function double_salary
(language = "postquel”, returntype = int4)
arg is (EMP)
as "retrieve (salary = $1.salary * 2)" \g

* r etrieve (EMP.name, dream = double_salary(EMP))
where EMP.dept = "toy" \g

name | dream
Sam 2400

This is pretty straightforard. Noticethe use of the syntail.salary

Before launching into the subject of functions that return composite types, we must first
introduce thdunctionnotation for projecting attrites. Thesimple way to explain this is

that we can usually use the notatittribute(class) and class.attribute
interchangably.

/*
* t his is the same as:
* r etrieve (youngster = EMP.name))
* where EMP.age < 30
*/
* r etrieve (youngster = name(EMP))
where age(EMP) < 30 \g

youngster
Sam

As we shall see, hower, this is not alvays the case.

This function notation is important when went to use a function that returns a single
instance. W do his by assembling the entire instance within the function, attribute by
attribute. Thisis an example of a function that returns a sigPinstance:

* d efine function new_emp
(language = "postquel”, returntype = EMP)
as "retrieve (name = \\"None\\"::text,
salary = 1000,
age = 25,
dept = \\"none\\"::char16)"

In this case we ha gecified each of the attributes with a constant value, ljut@npu-
tation or expression could V& bkeen substituted for these constants.

Defining a function like this can be trick Some of the more importantweats are as fol-
lows:

31

» The target list order must lexactly the same as that in which the fields appear in the
createstatement (or when yoxeeute a.all query).

» You must be careful to typecast the fields (usinyvery carefully or you will see the
following error:

WARN:Mar 3 03:06:18:function declared to return type EMP
does not retrieve (EMP.all)

See the Reference Manual ungdestquelfor a discussion of typecasting.

 When calling a function that returns an instance, we cannotveetti® entire
instance. W nust either project an attre out of the instance or pass the entire
instance into another function.

* r etrieve (nobody = name(new_emp())) \g

nobody
None

» The reason wy) in general, we must use the function syntax for projecting ata#
of function return values is that the parser just daesmerstand the other (dot) syn-
tax for projection when combined with function calls.

* r etrieve (nobody = new_emp().name) \g
WARN:Mar 3 03:09:28:parser: syntax error at or near "."

Any collection of commands in tHeOSTQUELquery language can be packaged together
and defined as a functiomhe commands can include updates (append, replaceand
deletd as well asretrieve queries. Hwever, the final command must beretrie ve that
returns whateer is gecified as the functionieturntype

* d efine function clean_EMP (language = "postquel",
returntype = int4)
as "delete EMP where EMP.salary <=0
retrieve (ignore_this = 1)" \g

* r etrieve (X = clean_EMP()) \g

8.1.3. POSTQUEL Functions on Sets

UnfortunatelyPOSTGRESIoes not really distinguish between functions that return single
instances and those that return sets of instaricesll cases, instances are returned one-
by-one. Similarlyfunctions can only taksngle instances as their arguments and cannot

32

have ®ts as an gument. Br example, the follwing functionhigh_pay returns the set
of all employees in clagsMPwhose salaries exceed 1500:

* d efine function high_pay
(language = "postquel”, returntype = setof EMP)
as "retrieve (EMP.all) where EMP.salary > 1500" \g

* r etrieve (overpaid = name(high_pay())) \g

overpaid
Claire
Bill
Ginger

However, this function could be defined with
returntype = EMP

with exactly the same results.

33

8.2. Programming Language Functions

We row turn to the more diicult task of defining programming language functioB&
warned: this section of the manual will not neajou a programmerYou must hae a
good understanding of C (including the use of pointers anth#dil®ec memory man-
ager) before trying to write C functions for use WAthSTGRES

While it may be possible to load functions written in languages other than €00
GRES this is often dificult (when it is possible at all) because other languages, such as
FORTRAN and Pascal often do not follothe same “calling caention” as C. That is,
other languages do not pass argument and realues between functions in the same
way. For this reason, we will assume that your programming language functions are writ-
tenin C.

The basic rules for building C functions are as follows:

(1) Mostof the header (include) files fROSTGRESshould already be installed in
/usr/local/postgres/include (see Figure 2).You should alvays
include

-l/usr/local/postgres/include

on yourcc command lines. Sometimes, you may find that you require header
files that are in the sesw source itself (i.e., you need a file we neglected to install
ininclude). Inthose cases you may need to add one or more of

-l/usr/local/postgres/src/backend
-l/usr/local/postgres/src/backend/port/<PORTNAME>
-l/usr/local/postgres/src/backend/obj

(where<PORTNAMET#s the name of the port, e.glpha or sparc).

(2) Whenallocating memoryuse the POSTGRESroutines palloc and pfree
instead of the corresponding C library routinesloc andfree . The memory
allocated bypalloc will be freed automatically at the end of each transaction,
preventing memory leaks.

(3) Always zero the bytes of your structures usimgmset or bzero . Seveal rou-
tines (such as the hash access method, hash join and the sort algorithm) compute
functions of the na bits contained in your structureEven if you initialize all
fields of your structure, there may beeal bytes of alignment padding (holes in
the structure) that may contain garbage values.

(4) Most of the internal POSTGRES types are declared irtmp/c.h and
tmp/postgres.h , SO t's usually a good idea to include those files as well.

(5) Compilingand loading your object code so that it can be dynamically loaded into
POSTGRESalways requires special flag&ee Appendix A for a detailed@ana-
tion of haw to do it for your particular operating system.

34

8.2.1. Pogramming Language Functions on Base Types

Internally, POSTGRESegads a base type as a “blob of membrihe user-defined func-
tions that you definever a type in turn define the way thRDSTGRESan operate on it.
That is,POSTGRESwiIll only store and retriee the data from disk and use your user
defined functions to input, process, and output the data.

Base types can fia e of three internal formats:

* pass by value, fixed-length
* pass by reference, fixed-length
* pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in lengtlen(é your computer supports by-
vaue types of other sizesPOSTGRESIitself only passes integer types bglue. You
should be careful to define your types such that wik be the same size (in bytes) on all
architectures. & example, thdong type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, wheigts type is 4 bytes on mo&tNIX machines
(though not on most personal computer8)reasonable implementation of tirg4

type onUNIX machines might be:

[* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of aize may be passed by-referenéar exam-
ple, here is a sample implementation of IESTGRESharl6 type:

[* 16-byte structure, passed by reference */
typedef struct {

char data[16];
} ¢ harlé;

Only pointers to such types can be used when passing them in and RDSTERES
functions.

Finally, dl variable-length types must also be passed by reference.afdble-length
types must begin with a length field ofaetly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that length fldid.
length field is the total length of the structure (i.e., it includes the size of the length field
itself). We can define théext type as follows:

typedef struct {
int4 length;
char data[1];
1t ext

Obviously thedata field is not long enough to hold all possible strings -s-iftipossi-

ble to declare such a structure in C. When manipulating variable-length types, we must
be careful to allocate the correct amount of memory and initialize the length Fiarld.
example, if we wanted to store 40 bytes iteat structure, we might use a code frag-
ment like this:

#include "tmp/c.h"

35

#include "tmp/postgres.h"
#include "utils/palloc.h”

void *buffer; /* our source data */

text *destination = (text *) palloc(sizeof(int4) + 40);
destination->length = sizeof(int4) + 40;
bcopy(buffer, destination->data, 40);

Now that weve gpne wer al of the possible structures for base types, we caw shme
examples of real functions.

#include <string.h>

#include "tmp/c.h"
#include "tmp/postgres.h” /* for char16, etc. */
#include "utils/palloc.h" /* for palloc */

int
add_one(arg)
int arg;

{
}

charl6 *
concatl6(argl, arg2)
charl6 *argl, *arg2;

return(arg + 1);

{
charl6 *new_c16 = (charl6 *) palloc(sizeof(charl6));
memset((void *) new_c16, 0, sizeof(charl6));
(void) strncpy(new_c16, argl, 16);
return(strncat(new_c16, arg2, 16));
}
text *
copytext(t)
text *t;
{
/*
* V ARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t));

36

8.2.2.

bzero((char *) new_t, VARSIZE(t));

/*
* VARDATA is a pointer to the data region of the struct.
* VARLEN is the size of VARDATA in bytes (so it's always
* VARSIZE - sizeof(int4)).

*
memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(Y), /* source */
VARLEN(t)); [* how many bytes */

return(new _t);

}
OnULTRIX we would type:

* d efine function add_one
(language = "C", returntype = int4)
arg is (int4)
as "/usr/local/postgres/src/examples/chapter8.0" \g

* d efine function concat16
(language = "C", returntype = char16)
arg is (charl6, charl6)
as "/usr/local/postgres/src/examples/chapter8.0" \g

* d efine function copytext
(language = "C", returntype = text)
arg is (text)
as "/usr/local/postgres/src/examples/chapter8.0" \g

On other systems, we mightvegat make the filename end irso or .sl (to indicate
that it's a hared library).

Pogramming Language Functions on Composite Types

Composite types do not V@ a fked layout like C structures. Instancesf a composite
type may contain null fieldsln addition, composite types that are part of an inheritance
hierarcly may hare dfferent fields than other members of the same inheritance higrarch
Therefore POSTGRESpravides a procedural interface for accessing fields of composite
types from C.

As POSTGREprocesses a set of instances, each instance will be passed into your func-
tion as an opaque structure of type TUPLE.

Suppose we want to write a function to answer the query
* r etrieve (EMP.all) where c_overpaid(EMP) \g

In the query abee, we an definec_overpaid as:
#include <tmp/c.h>

#include <tmp/postgres.h>
#include <tmp/libpg-fe.h> /* for TUPLE */

37

8.2.3.

bool

c_overpaid(t, limit)
TUPLE t; /* the current instance of EMP */
int4 limit;

bool isnull = false;
int4 salary;

salary = (int4) GetAttributeByName(t, "salary”, &isnull);

if (isnull == true)
return((bool) false);
return((bool) (salary > limit));

}

GetAttributeByName is thePOSTGRESsystem function that returns attributes out of
the current instancdt has three arguments: the argument of type TUPLE passed into the
function, the name of the desired attitidy, and a return parameter that describes whether
the attribute is null.GetAttributeByName will align data properly so you can cast

its return value to the desired typEor example, if you hee an atribute name which is

of thePOSTQUELtypecharl6 , the GetAttributeByName call would look like:

char *str;

str = (char *) GetAttributeByName(t, "name”, &isnull)

The following query letPOSTGREXnow about thec_overpaid function:

* d efine function c_overpaid
(language = "c", returntype = bool)
arg is (EMP, int4)
as "/usr/local/postgres/src/examples/overpaid.o” \g

While there are ways to constructnmstances or modify existing instances from within
a C function, these are far too comple discuss in this manual. See the document

lusr/local/postgres/src/doc/implementation/am.me
for details.

Pogramming Language Functions on Sets

No interface has been defined for passing a set of instances into a function @saenar
to a C function, nor is there such an interface for returning a set of instances from a C
function.

38

9. EXTENDING POSTQUEL: TYPES

As previously mentioned, there areotkinds of types irPOSTGRESbasetypes (defined
in a programming language) andmpositdypes (instances).

39

9.1. UserDefined Types

9.1.1. FunctionsNeeded for a User-Defined Type

A userdefined type mustabys have input andoutputfunctions. Theséunctions deter

mine hav the type appears in strings (for input by the user and output to the user) and
how the type is aganized in memory The input function takes a null-delimited character
string as its input and returns the internal representation of the type. The output function
takes the internal representation of the type and returns a null-delimited character string.

These functions are usually not hard to write, especially the output funé¢iimmever,
there are a number of points to remember.

(1) Whendefining your external (string) representation, remember that you must
eventually write a complete and robust parser for that representation as your input
function! Thisis easy in some cases, or if we are laggr example, an input
function forint4 can be as simple as:

int4
int4_input(s)
char *s;

{
}

return(atoi(s));

if we cheat and use the C library functiatoi (and dont do any checks for
such errors as out-of-range igégs). Theoutput function can be almost as sim-

ple:

char *

int4_output(i)
int4 i;

{
[* the largest 32-bit number is 10 digits long */
char *buf = palloc(11);

(void) sprintf(buf, "%d", i);
return(buf);

(2) You should try to makthe input and output functionsvierses of each othellf
you do not, you will hee svae problems when you need to dump your data into
a file and then read it back in (s@gto someone elsetatabase on another com-
puter). Thisis a particularly common problem when floating-point numbers are
involved.

As discussed earligPOSTGRESully supports arrays of base type&dditionally, POST-
GRESsupports arrays of user-defined types as well. When you define #QPEGRES

40

9.1.2.

automatically preides support for arrays of that typ€or historical reasons, the array
type has the same name as the user-defined type with the underscore character
prepended.

Composite types do not needyaiunction defined on them, since the system already
understands what thd¢ook like inside.

Large Objects

The types discussed to this point are all “small” objects — that ig,atkesmaller than

8KB' in size. If you require a lger type for something léka document retrieal system
or for storing bitmaps, you will need to use P@STGREdarge djectinterface. The
interface to large objects is quite similar to thieIX file system intedce. Theparticu-
lars are detailed in Section 7 of tP@STGREReference Manual.

78 * 1024 == 8192 bytes. In fact, the type must be considerably smaller than 8192 bytes, sh@sTthRESuple and page
overhead must also fit into this 8KB limitation. The actual value that fits depends on the machine architecture.

41

9.2. CompositeTypes

Instances of a composite type are just instances of a class. Here, we disctiserbate
attributes of one class that are composed of one or more instances of a composite type
(another class)We @an do this usinget-valued attribtesor by using functions to create
virtual attributes

We havealready discussed o define a set-&lued attribute using theetof keyword
in the create command. Thisproduces an attribute whose value is procedurally
defined using a query.

SincePOSTQUELfunctions return instances or sets of instancey, ¢he also be used to
create “attributes” of composite typeBor example, consider extending tlieMPclass
with amanager field. Thatis, for each instance &MPR we want to associate another
instance oEMPcorresponding to the manager of the first instar@mecifically we will
define @POSTQUELfunctionmanager :

* d efine function manager
(language = "postquel”, returntype = EMP)
arg is (EMP)
as "retrieve (E.all) from E in EMP
where E.name = DEPT.manager
and DEPT.dname = $1.dept" \g

When a function takes a single composite typeiaent,POSTQUELallows us to use the
samenested-donotation we used for sets to refer into an instance returned by the func-
tion. Here,the functionmanager takes anEMPinstance as its only argument, we can
write the query

* r etrieve (EMP.name)
where name(manager(EMP)) = "Claire" \g

as

* r etrieve (EMP.name)
where EMP.manager.name = "Claire" \g

In either case, we get

name
Claire
Joe

We haveessentially added an attribute to #ePclass which is of typEMRi.e., it has a
value which is an instance of the claSMP The limitations discussed for setiued

42

attributes generally apply to virtual attributes as wéltr example, one cannot do direct
updates to such columns. That is,

* append EMP (manager.name = "Smith") \g
WARN:Mar 10 22:48:42:manager: no such class

won’'t work. Non-projectedretrieves don’'t work either For example, queries that
attempt to retriee the entiremanager attribute, such as

* r etrieve (EMP.manager) \g

don't return anything useful.

Note thatmanager is defined as returning a single instanc&BIP We can also write a
POSTQUELfunction that returns sets of instancé&sr example, consider the function

* d efine function same_dept
(language = "postquel”, returntype = setof EMP)
arg is (EMP)
as "retrieve (E.all) from E in EMP
where $1.dept = E.dept" \g

The same_dept function is defined as returning a set of instances, rather than a single
instance. Gien the query:

* r etrieve (EMP.name, EMP.same_dept.name) \g

name name
Claire Claire
Claire Jpe
Joe Claire
Joe Joe
Sam Sam
Bill Bill
Ginger (null)

the query in the body of theame_dept function returns maninstances and the
retrieve query will return all of them in a “flattened” form.

43

10. EXTENDING POSTQUEL: OPERATORS

POSTQUELsupports left unaryight unary and binary operator@perators can bever-

loaded or re-used with different numbers and types gfuanents. Ifthere is an ambigu-

ous situation and the system cannot determine the correct operator to use, it will return an
error and you may la o typecast the left and/or right operands to help it understand
which operator you meant to uséror a discussion of typecasting, see the Reference
Manual undepostque).

In this example, we will use some functions that are already ihto POSTGRESt0
define a set of operators that alVaahe same namé#. First, we define left unary oper
ators on bottint4 andint2 that hae vey different meaningsTo do this, we will use
some mathemetical functions that already happen tailigrtio POSTGRES int4fac
int2um/int4um and int4pl are functions that calculate iger factorial, unary
minus and addition, respeddiy.

[* n! (factorial) for int4 */
* d efine operator ## (arg2 = int4,
associativity = right,
procedure = int4fac)
\g

[* -n (negation) for int2 */
* d efine operator ## (arg2 = int2,
associativity = right,
procedure = int2um)
\g

Next, we define a right unary operator:

[* -n (negation) for int4 */
* d efine operator ## (argl = int4,
associativity = left,
procedure = int4um)
\g

Finally, we cefine a binary operator:

[* a+b (addition) for int4 */
* d efine operator ## (argl = int4,
arg2 = int4,
procedure = int4pl,
commutator = ##)
\g

44

If we give the system enough type information, it can automatically figure out which
operators to useln this case, we can takadvantage of the fact that plain “numbers”
default to thent4 type to get the following behavior:

* r etrieve (four_factorial = ## 4,
minus_five = ## 5::int2,
minus_four = 4 ##,
four_plus_four = 4 ## 4)

\g

four_factorial minus_five minus_four four_plus_four
24 -5 -4 8

45

11.

EXTENDING POSTQUEL: AGGREGATES

Creation of user-defined aggates is explained in the Reference Manual urdidine
aggregate The key dsenation to be made, m@ver, is that ary aggregae can be
expressed in terms aftate transition functionsThat is, an aggggte can be defined in
terms ofstatethat is modified whener an instance is processed. Some state functions
look at a particular value in the instance when computing thestade 6funclin the
define aggegatesyntax) while others onlydep track of their own internal statfync2.

If we define an agggete that uses onlgfuncl , we define an agggete that computes a
running function of the attribute values from each instance. “Sum” is an example of this
kind of aggrgate. “Sum”starts at zero andvadys adds the current instang®alue to its
running total. We will use theint4pl that is built intoPOSTGRESo0 perform this addi-

tion.

* d efine aggregate my_sum (sfuncl = int4pl, /* addition */
basetype = int4,
stypel = int4,
initcondl1 ="0") \g

* r etrieve (salary_sum = my_sum{EMP.salary}) \g

salary_sum
8200

If we define onlysfunc2 , we ae specifying an agggete that computes a running func-
tion that is independent of the attribute values from each instd@oeint” is the most
common example of this kind of aggeee. “Count” starts at zero and adds one to its
running total for each instance, ignoring the instareeer Herewe use the talt-in
intdinc routine to do the wrk for us. This routine increments (adds one to) isiar
ment.

* d efine aggregate my_count (sfunc2 = intdinc, /* add one */
stype2 = int4,
initcond2 = "0") \g

* r etrieve (emp_count = my_count{EMP.oid}) \g

46

emp_count
5

“Average” is an example of an aggge that requires both a function to compute the run-
ning sum and a function to compute the running coliihen all of the instances V&
been processed, the final answer for the agtgds the running sum\dded by the run-
ning count. We wse theint4pl andintdinc routines we used before as well as the
POSTGRESnNteger division routineint4ddiv , to compute the division of the sum by the
count.

* d efine aggregate my_average (sfuncl = int4pl, /* sum */
basetype = int4,
stypel = int4,
sfunc2 = intdinc, /* count */
stype2 = int4,
finalfunc = int4div, /* division */
initcondl = "0",
initcond2 = "0") \g

* r etrieve (emp_average = my_average{EMP.salary}) \g

emp_average
1640

47

12. EXTENDING POSTQUEL: AN EXAMPLE

In this discussion, we will be definingcarcle type, using functions written in the C
programming language.

For additional examples of Woto create ne types, functions and operators, you should
look in the directories

lusr/local/postgres/src/regress/demo
lusr/local/postgres/src/regress/regress
lusr/local/postgres/src/regress/video

These directories containveeal C andPOSTQUELfiles that should he to perform \ari-
ous extensions to the system, and the routines we use ingresgien tests should
always work.

12.1. CData Structures

Before we do anything, we Y& decide on what a circle looks &k both in string for
mat and internally in memanyCircles hae a enter and a radius, so a reasonable string
representation of a circle would be an ordered triple:

(center_x, center, yadius)
where each element is a real number with arbitrary units, e.g.:
(5.0, 10.3, 3)

This is what the input to the circle input function look®Jiknd what the output from the
circle output function looks like.

Now we haveto come up with an internal representation for a circle in mening fol-
lowing declarations aredel and reasonable gén the format we chose aba

typedef struct {
double x, y;
} POINT;

typedef struct {
POINT center;
doubler;

} CIRCLE;

Memory containing values of tyg@RCLE will be written to disk and read from disk, so
CIRCLE must be botlcompleteand contiguous that is, it cannot contain grpointers.

48

The type definition

typedef struct {
POINT *center [* NO! */
doubler;

} CIRCLE;

will NOT work, because the virtual memoagdressstored incenter would be written

to disk instead of the contents of tROINT structure to whictcenter presumably
points. POSTGREScannot detect this kind of coding error; you must guard against it
yourself.

12.2. Definingthe Input and Output Functions

Suppose in defining our type “circleye havea C surce file callectircle.c , and a
corresponding object code file
lusr/local/postgres/src/examples/circle.o . (All functions related to

ourcircle type must be in the same object filé&dr the purposes of this discussion,
suppose our platform is a MIPS DECstation, wisizeof(double) is 8 bytes.This
assumption will be important later.

We will create source fileircle.c , containing C source code for the functions that
support ouCIRCLE type. circle.c contains three functions:

* circle_in , Which is the input function for circles. It takes a C string as go-ar
ment and returns a pointer t@C8RCLE.

» circle_out , which is the output function for circles. It is takes a pointer to a
CIRCLE as input and returns a C stringhe return value ofircle_in must be a
legd argument tocircle_out , and vice versa.

* eQ_area_circle , Which is the equality function for circledzor the purposes of
this discussion, circles are equal if their areas are equal.

The contents ofircle.c are:

#include <math.h>
#include <stdio.h>
#include <string.h>

#include "tmp/c.h" [* (always) */
#include "utils/geo-decls.h" /* for POINT declaration */

#include "utils/palloc.h” /* for palloc() declaration */

typedef struct {

POINT center;
double radius;
} CIRCLE;

#define LDELIM '(’
#define RDELIM ')’
#define NARGS 3

CIRCLE *
circle_in(str)

49

}

char *str;

char *p, *coord[NARGS];
int i;
CIRCLE *result;

if (str == (char *) NULL)
return((CIRCLE *) NULL);

for (i=0, p = str;
*p && i < NARGS && *p != RDELIM;
pt++)
if *p ==","|| (*p == LDELIM && i)
coord[i++] = p + 1;

}

if (i < NARGS - 1)
return((CIRCLE *) NULL);

result = (CIRCLE *) palloc(sizeof(CIRCLE));
result->center.x = atof(coord[0]);
result->center.y = atof(coord[1]);

result->radius = atof(coord[2]);

return(result);

char *
circle_out(circle)

{

}

int

CIRCLE *circle;
char ‘*result;

if (circle == (CIRCLE *) NULL)
return((char *) NULL);

result = (char *) palloc(60);
sprintf(result, "(%g, %g, %Qg)",
circle->center.x, circle->center.y,

circle->radius);

return(result);

eq_area_circle(circlel, circle2)

{

CIRCLE *circlel, *circle2;

if (circlel == (CIRCLE *) NULL)

50

return(circle2 == (CIRCLE *) NULL);
if (circle2 == (CIRCLE *) NULL)

return(0);
return(circlel->radius == circle2->radius);

Now that we hae written these functions and compiled the source file, we lmlet
POSTGRESnow that thg exist. First,we run the following queries to define the input
and output functionsThese functions must be definleeforewe define the typePOST-
GRESwill notify you that return type circle is not defined yet, but this is Qldtice that

we use the é&yword any to indicate that the input and/or output of the function is not a
POSTGRESype (e.g., a simple C string).

* d efine function circle_in
(language = "c", returntype = circle)
arg is (any)
as "/usr/local/postgres/src/examples/circle.o" \g

* d efine function circle_out
(language = "c", returntype = any)
arg is (any)
as "/usr/local/postgres/src/examples/circle.o" \g

Note that the full pathname of the object code file must be specified, soowd w
changédustr/local/postgres to whatever is gppropriate for your installation.

Now we can define theircle type:

* d efine type circle
(internallength = 24,
input = circle_in, output = circle_out) \g

whereinternallength is the size of th€IRCLE structure in bytesFor circles, the

type members are threuble s, which on most platforms are 8 bytes each, with no
additional alignment constraintdlowever, when defining your own types, you should

not make sssumptions about structure sizes, but instead write a test program that does
something like

printf("size is %d\n", sizeof(MYTYPE));

on your type.

If internallength is defined incorrectlyyou will encounter strange errors and may
crash the serveif this were to happen with o@MRCLE type, we would hée do a

* r emove type circle \g

and then redefine tharcle type correctly Note that we wuld not have 1o redefine
our functions, since their behavior would novdahanged.

51

12.2.1.1. DefiningOperators

Now that we hae finished defining theircle type, we carcreate classes with circles
in them, append records to them with circles defined, ardrieve the values of the
entire list of records However, we can't do anything terribly useful with them until we
have ©me operators and/or function¥o do this, we mak use of the concept afpera-
tor overloading and in this case we will set tHreROSTGRESequality operator'=” to
work for circles. First we ha o tell POSTGREShat our circle equality function exists:

* d efine function eq_area_circle
(language = "c", returntype = bool)

arg is (circle, circle)
as "lusr/local/postgres/src/examples/circle.o" \g

We will now bind this function to the equality symbol with the following query:
* d efine operator =

(argl = circle, arg2 = circle,
procedure = eq_area_circle) \g

12.2.1.2. Usinga New Type

Let's aeate a clastutorial that contains &ircle attribute, and run some queries
against it:

* c reate tutorial (a = circle) \g

* a ppend tutorial (a ="(1.0, 1.0, 10.0)":circle) \g
* append tutorial (a = "(2.0, 2.0, 5.0)":circle) \g
* append tutorial (a = "(0.0, 1.8, 10.0)"::circle) \g

* r etrieve (tutorial.all)
where tutorial.a = "(0.0, 0.0, 10.0)"::circle \g

which returns:

a
(1.0, 1.0, 10.0)
(0.0, 1.8, 10.0)

Recall that we defined circles as being equal if their areas were equal.

Other operators (less than, greater than, etc.) can be defined in a skyilddate that
the = symbol will still work for other types — it has merely had avrigpe added to the
list of types it works on.

52

13.

INTERFACING EXTENSIONS TO INDICES

The procedures described thus far let you definevatype, nev functions and ne oper-
ators. Havever, we cannot yet define a secondary iRdeuch as a B-tree, R-tree or hash
access method)er a new type or its operators.

Look back at Figure 3. The right half st®the catalogs that we must modify in order to
tell POSTGREShow to use a user-defined type and/or wdefined operators with an
index (i.e., pg_am, pg_amop, pg_amproc andpg_opclass). Unfortunately there

is no simple command to do thi§Ve will demonstrate he to modify these catalogs
through a running example: ameperator class for the B-tree access method that sorts
integers in ascending absolute value order.

The pg_am class contains one instance faery user-defined access methd8upport
for the heap access method is built iIPOSTGRES but every other access method is
described here. The schema is

amname name of the access method

amowner object id of the owneg’instance in pg_user

amkind not used at present, but set to '0’ as a place holder

amstrategies number of strategies for this access method (see below)

amsupport number of support routines for this access method (see bglow)

amgettuple procedure identifiers for interface routines to the access

aminsert method. IBr example,regproc ids for opening, closing,
and getting instances from the access method appear here.

The object ID of the instance pg_am is used as a foreigrel in lots of other classes.
You don’t need to add a meinstance to this class; all you're interested in is the object ID
of the access method instance you want to extend:

* r etrieve (pg_am.oid) where pg_am.amname = "btree" \g

oid
403

The amstrategies attribute exists to standardize comparisons across data tipes.
example, B-trees impose a strict ordering @ysk lesser to greatefSince POSTGRES
allows the user to define operatoP)STGREScannot look at th@ame of an operator
(eg,> or <) and tell what kind of comparison it is. In fact, some access methods don’
impose awy ordering at all. For example, R-trees express a rectangle-containment

53

relationship, whereas a hashed data structure expresses only bitwise similarity based on
the value of a hash functio®OSTGRESeeds some consistent way of taking a qualifica-

tion in your querylooking at the operator and then deciding if a usableiaxists. This

implies thattOSTGRESeeds to knw, for example, that the= and> operators partition

a B-tree. POSTGRESuses strategies txgress these relationships between operators and
the way thg can be used to scan indices.

Defining a ner set of strategies is beyond the scope of this discussitrnwdésll explain
how B-tree strategies work because you'll need toktitat to add a v operator class.

In thepg_am class, theamstrategies attribute is the number of strategies defined for
this access methodzor B-trees, this number is 5. These strategies correspond to

less than 1
less than or equal P
equal 3
greater than or equal 4
greater than 5

The idea is that yoli'need to add procedures corresponding to the comparisons |abo
thepg_amop relation (see belw). Theaccess method code can use these gyramiem-

bers, rgadless of data type, to figure outvihto partition the B-tree, compute selegty,

and so on.Don’t worry about the details of adding procedures yet; just understand that
there must be a set of these proceduremfdr , int4 |, oid , and every other data type

on which a B-tree can operate.

Sometimes, strategies areafhough information for the system to figure outvhio use
an inde. Someaccess methods require other support routines in ordeotto. viFor
example, the B-tree access method must be able to comparkeyw and determine
whether one is greater than, equal to, or less than the @inatarly, the R-tree access
method must be able to compute intersections, unions, and sizes of rectdingiss.
operations do not correspond to user gqualification®@STQUEL queries; the are
administratve routines used by the access methods, internally.

In order to manage \dirse support routines consistently acrossPaAISTGRESaccess
methodspg_am includes a field calledmsupport . This field records the number of
support routines used by an access metliad B-trees, this number is one — the routine
to take two keys and returr-1, 0, or+1, depending on whether the firgykis less than,

equal to, or greater than the sec8nd.

The amstrategies entry in pg_am is just thenumberof strategies defined for the
access method in question. The procedures for less than, less equal, and sd on don’
appear inpg_am. Smilarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest jig)_opclass. This class exists only to associate a hame
with anoid . In pg_amop, every B-tree operator class has a set of procedures, one
through five, abee. Some existing opclasses aiat2 ops , int4 ops , and

8 Strictly speaking, this routine can return gaive rumber (< 0), 0, or a non-zero pogitirumber (> 0).

54

oid_ops . You need to add an instance with your opclass name gamme,
int4_abs_ops)topg_opclass . Theoid of this instance is a foreigrek in other
classes.

* append pg_opclass (opcname = "int4_abs_ops") \g

* r etrieve (cl.oid, cl.opcname) from cl in pg_opclass
where cl.opcname = "int4_abs_ops"\g

oid opcname
17314 |int4_abs_ops

Note that theoid for yourpg_opclass instancewill be different! You should substi-
tute your value for 17314 wheser it appears in this discussion.

So nav we havean access method and an operator cle¢es gill need a set of operators;
the procedure for defining operators was discussed earlier in this mdfarathe
int4_abs ops operator class on B-trees, the operators we require are:

absolute value less-than

absolute value less-than-or-equal
absolute value equal

absolute value greater-than-or-equal
absolute value greater-than

Suppose the code that implements the functions defined is stored in the file
lusr/local/postgres/src/examples/int4_abs.c
The code is
/*
* | nt4_abs.c -- absolute value comparison functions
* f orint4 data
*/
#include "tmp/c.h"
#define ABS(a) (a<0)?-a:a)

[* routines to implement operators */

bool int4_abs_lt(a, b) int32 a, b;
{ r eturn(ABS(a) < ABS(b)); }

bool int4_abs_le(a, b) int32 a, b;
{ r eturn(ABS(a) <= ABS(b)); }

bool int4_abs_eq(a, b) int32 a, b;

55

{ r eturn(ABS(a) == ABS(b)); }

bool int4_abs_ge(a, b) int32 a, b;
{ r eturn(ABS(a) >= ABS(b)); }

bool int4_abs_gt(a, b) int32 a, b;
{ r eturn(ABS(a) > ABS(b)); }

[* support (signed comparison) routine */

intint4_abs_cmp(a, b) int32 a, b;
{ r eturn(ABS(a) - ABS(b)); }

There are a couple of important things that are happening.belo

First, note that operators for less-than, less-than-or-equal, equal, -tineater-equal,
and greatethan forint4 are being defined. All of these operators are already defined
forintd under the names, <=, =, >=, and>. The nev operators behae dfferently, of
course. lrorder to guarantee thRDSTGRESUses these meoperators rather than the old
ones, thg need to be named differently from the old ones. This isyapkint: you can
overload operators ilPOSTGRES but only if the operator ist'aready defined for the
argument types. That is, if you W®&a< defined for int4 , int4), you cant define it
again. POSTGRES]oes not checkhis when you define your operateo be areful. 1o

avadd this problem, odd names will be used for the operatibrngou get this wrong, the
access methods are likely to crash when you try to do scans.

The other important point is that all the operator functions réBagieanvalues. The
access methods rely on that. (Onthe other hand, the support function returns what-
eve the particular access method expects — in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when we discussed the
amsupport attribute of thgpg_am class. Vé will use this later onFor now, ignore it.

* d efine function int4_abs_lt
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/intd_abs.o0" \g

* d efine function int4_abs_le
(language ="c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

* d efine function int4_abs_eq
(language ="c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4d_abs.o0" \g

* d efine function int4_abs_ge
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4d_abs.o0" \g

56

* d efine function int4_abs_gt
(language = "c", returntype = bool)
arg is (int4, int4)

as "/usr/local/postgres/src/examples/intd_abs.o0" \g

Now define the operators that use them. As noted, the operator names must be unique
among all operators that ®lwo int4 operands. Irorder to see if the operator names
listed belav are taken, we can do a query jpg_operator

/*
* t his query uses the regular expression operator (7)
* to f ind three-character operator names that end in
* t he character &
*
* r etrieve (o.all)
from o in pg_operator
where o.oprname ~ ""..&3$":;text \g

to see if your name is tak for the types you ant. Theimportant things here are the
procedure (which are the C functions definedvapand the restriction and join selegti
ity functions. You should just use the ones used belenote that there are different such
functions for the less-than, equal, and gretitan casesThesemustbe supplied, or the
access method will crash when it tries to use the operdbor should copthe names for
restrict andjoin , but use the procedure names you defined in the last step.

* d efine operator <<&
(argl = int4, arg2 = int4, procedure=int4_abs_t,
associativity = left, restrict = intltsel,
join = intltjoinsel) \g

*

d efine operator <=&
(argl =int4, arg2 = int4, procedure = int4_abs_le,
associativity = left, restrict = intltsel,
join = intltjoinsel) \g

* d efine operator ==
(argl = int4, arg2 = int4, procedure = int4_abs_eq,
associativity = left, restrict = eqgsel,
join = eqjoinsel) \g

* d efine operator >=&
(argl =int4, arg2 = int4, procedure = int4_abs_ge,
associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g
* d efine operator >>&
(argl = int4, arg2 = int4, procedure = int4_abs_gt,
associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g

Notice that fie gperators corresponding to less, less equal, equal, graadegreater

57

equal are defined.

We'r e just about finished. the last thing we need to do is to updape tleenop relation.
To do this, we need the following attributes:

amopid the oid of the pg_am instance
for B-tree (== 403, see abe)
amopclaid the oid of the pg_opclass

instance for int4_abs_ops
== whatever you got instead of
17314, see abe)

amopopr theoid s of the operators for the
opclass (which we'll get in just
a minute)

amopselect, cost functions.

amopnpages

The cost functions are used by the query optimizer to decide whether or not touese a gi
index in a <an. rtunately these already xést. The two functions we’ll use are
btreesel, which estimates the selectivity of the B-tree, &mctenpage, which
estimates the number of pages a search will touch in the tree.

So we need theid s of the operators we just definewve'll ook up the names of all the
operators that takiwo int4 s, and pick ours out:

* r etrieve (0.0id, 0.oprname)
from o in pg_operator, t in pg_type
where o.oprleft = t.oid and o.oprright = t.oid
and t.typname = "int4" \g

which returns:

58

oid oprname
96 \=
97 <
514 *
518 I=
521 >
523 <=
525 >=
528 /
530 %
551 +
555 -
17321 |<<&
17322 |<=&
17323 |==
17324 |>=&
17325 [>>&

(Again, some of youoid numbers will almost certainly be tfent.) Theoperators we
are interested in are those wibid s 17321 through 17325The values you get will
probably be different, and you should substitute them for ahees bela. We can look

at the operator names and pick out the ones we just added.

Now we're ready to updatpg_amop with our nav operator class. The most important
thing in this entire discussion is that the operators are ordered, from less equal through
is 403 and

greater equal, inpg_amop. Recall that the B-tree instaneebid
isoid 17314. Themwe add the instances we need:

int4_abs_ops

* append pg_amop

(amopid ="403"::0id, /* btree oid */
amopclaid = "17314"::0id, /* pg_opclass tuple */
amopopr ="17321"::0id, [* <<& tup oid */
amopstrategy = "1"::int2, /*1lis <<& */

amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

* append pg_amop (amopid = "403"::0id,

amopclaid = "17314"::0id,

amopopr = "17322"::0id,

amopstrategy = "2"::int2,

amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

* a ppend pg_amop (amopid = "403"::0id,

amopclaid = "17314"::0id,
amopopr = "17323":;0id,
amopstrategy = "3"::int2,
amopselect = "btreesel"::regproc,

59

amopnpages = "btreenpage"::regproc) \g

* append pg_amop (amopid = "403"::0id,
amopclaid = "17314"::0id,
amopopr = "17324"::0id,
amopstrategy = "4"::int2,
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

* append pg_amop (amopid = "403"::0id,
amopclaid = "17314"::0id,
amopopr = "17325":;0id,
amopstrategy = "5"::int2,
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

Note the order: “less than” is 1, “less than or equal” is 2, “equal” is 3, “greater than or
equal’ is 4, and “greater than” is 5.

In the file
lusr/local/postgres/src/examples/chapterl3

we shav the POSTQUEL that performs the fowwvay join betweenpg_amop,
pg_opclass , pg_operator and pg_type . Doing the join obiates the need to
write down anyoid s kut the query is considerably more complicated-looking.

The last step (finally!) is gistration of the “support routine” previously described in our
discussion ofpg_am. The oid of this support routine is stored in tipg_amproc
class, keyed by the access methoitl and the operator claséd . First, we need to g
ister the function iIPOSTGRESrecall that we put the C code that implements this rou-
tine in the bottom of the file in which we implemented the operator routines):

* d efine function int4_abs_cmp
(language = "c", returntype = int4)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4d_abs.o0" \g

* r etrieve (p.oid, p.proname)
from p in pg_proc
where p.proname = "int4_abs _cmp" \g

oid proname
17328 |int4_abs _cmp

(Again, youroid number will probably be different and you should substitute #hgev
you see for the value b&lg Recalling that the B-tree instans@id is 403 and that of
int4_abs_ops is 17314, we can add theménstance as follows:

60

* append pg_amproc
(amid ="403"::0id, /* btree oid */
amopclaid = "17314":.0id, /* pg_opclass tuple */
amproc = "17328"::0id, /* new pg_proc oid */
amprocnum = "1"::int2) \g

Okay, now it's ime to test the e operator class. First we'll create and populate a
class:

* ¢ reate pairs (name = charl6, number = int4) \g

* append pairs (name = "mike", number = -10000) \g

* append pairs (name = "greg", number = 3000) \g

* a ppend pairs (hame = "lay peng", number = 5000) \g
* append pairs (name = "jeff", number = -2000) \g

* append pairs (hame = "maao", number = 7000) \g

* a ppend pairs (hame = "cimarron”, number = -3000) \g

* r etrieve (pairs.all) \g

name number
mike -10000
greg 3000

lay peng 5000

jeff -2000
mao 7000
cimarron -3000

Okay, looks pretty random. Define an indesing the ne/ opclass:

* d efine index pairsind on pairs
using btree (number int4_abs_ops) \g

Now run a query that doegnise one of our e operators. Whatve're trying to do here

is to run a query thavon't use our index, so that we can tell the difference when we see a
guery thatdoesuse the inde This query won't use the inde because the operator we
use in the qualification ishone that appears in the list of strategies for our index.

° In this example, we append only avfnstances into the class. lact, POSTGRESuses a “cost-based” query optimizer that
males the decision whether or not to use anrishsed on he much data is touched. Since this example creates a very small
amount of data, the example will likely not work as advertised — one wouddihansert a &ir amount of data before using an inde
would actually be cheaper than just scanning the underlying heap data strifstime. amount” typically means on the order ofse
eral kilobytes.

61

* r etrieve (pairs.all) where pairs.number < 9000 \g

name number
mike -10000
greg 3000

lay peng 5000

jeff -2000
mao 7000
cimarron -3000

Yup, just as random; that didrise the inde. Okay let’s un a query thatloesuse the
index:

* r etrieve (pairs.all) where pairs.number <<& 9000 \g

name number
jeff -2000
cimarron -3000
greg 3000

lay peng %000
mao 7000

Note that themumber values are in order of increasing absoluadue (as thg should be,
since the indewas used for this scan) and that we got the right answer — the instance
for mike doesnt appear because-10000>=& 9000.

62

14.

THE POSTGRES RULE SYSTEM

Production rule systems are conceptually simple, but there arg snltle points
involved in actually using themConsequentlywe will not attempt to explain the actual
syntax and operation of theOSTGRESrule system here. Instead, you should read
[STON9Ob] to understand some of these points and the theoretical foundations of the
POSTGRESrule system before trying to use rulesShe discussion in this section is
intended to provide arverview of the POSTGRESule system and point the user at help-

ful references and examples.

The main point you should understand is tP@STGRESactually has tw rule systems,
theinstance-levetule system and thguery ewrite rule system, and that there are trade-
offs in the employment of each.

Theinstance-levetule system uses markers placed in each instance in a class to “trigger”
rules. Examplesof the instance-lel rule system are explained and illustrated in
{/usr/local/postgres/src/regress/demo , Which is included with thé¢OST-
GRESdistribution. Additionaldiscussion of the instancevkd rule system can be found

in the Reference Manual undizfine rule.

The “query ravrite” rule system modifies queries to ¢akiles into consideration, and
then passes the modified query to the query optimizexémugon. Itis very paverful,
and can be used for mathings such as query language procedures, views,&BibRs.
Examples can be found itusr/local/postgres/src/regress/video , and
further discussion is in the Reference Manual umigdine rule. The power of this rule
system is discussed in [ONG90] as well as [STON9O0D].

Since each rule system is implemented quitiedintly, they work best in different situa-
tions. Thequery rewrite system is best when rulde@fmostof the instances in a class,
while the instance-l&l system is best when a rule affects onfgainstances.

63

15. ADMINISTERING POSTGRES

In this section, we will discuss aspectsRIISTGRESthat are of interest to those who
make extensive ulse ofPOSTGRESOr who are the site administrator for a groupPafST-
GRESusers.

64

15.1. Frequent Tasks

Here we will briefly discuss some procedures that you shouldrbiidr with in manag-
ing anyPOSTGRESnstallation.

15.1.1. Startingthe Postmaster

If you did not installPOSTGRES=xactly as described in the installation instructions, you
may hae perform some additional steps before startingotb&tmaster process.

» Even if you were not the person who installRdSTGRESYyou should understand the
installation instructions.The installation instructions explain some important issues
with respect to whereOSTGRESlaces some important files, proper settings fei-en
ronment variables, etc. that may vary from one versic®tOSTGRES0 another.

* You should look at the Reference Manual under the hegdisignasterif you wish
to use non-default options (e.g., increased security options, a hon-standard installation
directory €tc.).

* You muststart thepostmaster process with the uséd that owns the installed
database filesIn most cases, if you ka followed the installation instructions, this
will be the user “postgres”. If you do not start ffestmaster with the right user
id, the backend seevs that are started by tpestmaster will not be able to read
the data.

» Make are that/usr/local/postgres/bin is in your shell command path,
because thpostmaster will use yourPATHto locatePOSTGRESommands.

* Remember to set the dronment \ariablePGDATAo the directory where theOST-
GRESdatabases are installed. (This variable is more fully explained iPGBEGRES
installation instructions and the Reference Manual.)

 If you do start th@ostmaster using non-standard options, such as gedht TCP
port numberremember to tell all users so thatytlvan set theiPGPOREnNvironment
variable correctly.

15.1.2. ShuttingDown the Postmaster

If you need to halt thpostmaster process, you can use tballX kill (1) command.
Some people habitually use tie or -KILL option; this should ner be recessary and
we do not recommend that you do this, aspgbstmaster will be unable to free its
various shared resources, its child processes will be unable to exit gra@ully

15.1.3. Addingand Removing Users

The createuser anddestroyuser commands enable and disable acces3(8T-
GRESby specific users on the host system. Please read the descriptions of these com-
mands in the Reference Manual for specific instructions on their use.

65

15.1.4. Rriodic Upkeep

Thevacuum command should be run on each database periodiddiilg command pro-

cesses deleted instant®and, more importantjypdates the systestatisticsconcerning

the size of each clas$f these statistics are permitted to become out-of-date and inaccu-
rate, thePOSTGRESjuery optimizer may makextremely poor decisions with respect to
guery @aluation stratgies. Thereforewe recommend runningacuum evey night or

so (perhaps in a script that iseeuted by theJNIX cron (1) orat (1) commands).

Do frequent backups That is, you should either back up your database directories using
the POSTGREScopy command and/or theNIX dump(1) or tar (1) commands.You

may think, “Why am | backing up my database®hat about crash reeery?” Oneside

effect of thePOSTGRES'no overwrite” storage manager is that it is also a “no log”-stor
age managerThat is, the database log stores only abort/commit data, and this is not
enough information to rewer the database if the storage medium (disk) or the database
files are corrupted! In other words, if a disk block goes badG8TGREShappens to
corrupt a database filgou cannot recover that file. This can be disastrous if the file is
one of the shared catalogs, suclpgsdatabase

15.1.5. Tning

Once your users start to load a significant amount of data, you will typically run into per
formance problemsPOSTGRESS not the &stest DBMS in the world, but maiof the
worst problems encountered by users are due to their lack of experienceyiiBéES.
Some general tips include:

(1) Defineindices wer attributes that are commonly used for qualificatiofr
example, if you oftenxecute queries of the form

retrieve (EMP.all) where EMP.salary < 5000

then a B-tree indeon the salary column will probably be usefullf scans
involving equality are more common, as in

retrieve (EMP.all) where EMP.salary = 5000

then you should consider defining a hash xnde salary . You can define
both, though it will use more disk space and maw slown updates a bit.Scans
using indices arenuch faster than sequential scans of the entire class.

(2) Runthevacuum command a lot. This command updates the statistics that the
query optimizer uses to makntelligent decisions; if the statistics are inaccurate,
the system will ma& inordinately stupid decisions with respect to tteg\it joins
and scans classes.

(3) Whenspecifying query qualfications (i.e., théhere part of the query), try to
ensure that a clausevolving a constant can be turned into one of the form

% This may mean different things depending onarehive modewith which each class has been created. See the Reference
Manual under the headirgeate for more details.However, the current implementation of ttvacuum command doesot perform
ary compaction or clustering of data. Therefore, théX files which store eacROSTGRESclass neer shrink and the space “re-
claimed” byvacuum is never actually reused.

66

(4)

(5)

range_variable operator constardg.,
EMP.salary = 5000

The POSTGRESjuery optimizer will only use an ingavith a constant qualifica-
tion of this form. It doesm’hurt to write the clause as

5000 = EMP.salary

if the operator (in this case) has acommutatoroperator defined so theDST-
GREScan revrite the query into the desired forrrowever, if such an operator
does not exisPOSTGRESwiIll never consider the use of an index.

Whenjoining several classes together in one query to write the join clauses in
a “chained” form, e.g.,

where A .a=B.band B.b=C.cand ...

Notice that relatiely few clauses refer to a ggn dass and attribute; the clauses
form a linear sequence connecting the attributes, liikks in a chain. This is
preferable to a query written in a “star” form, such as

where A.a=B.band A.a=C.cand ...

Here, mag clauses refer to the same class and attribute (in this fase,
When presented with a query of this form, B@STGRESquery optimizer will
tend to consider far more choices than it should and may run out of memory.

If you are really desperate to see what query plans look like, you can run the
postmaster with the-d option and then rumonitor with the-t option.

The format in which query plans will be printed is hard to rasd/bu should be

able to tell whether anindex scans are being performed. See the Reference
Manual undepostgresandpostmaster.

67

15.2. Infrequent Tasks

At some time or anothgevery POSTGRESsite administrator has to perform all of the fol-
lowing actions.

15.2.1. CleaningJp After Crashes

Thepostgres sener and thgostmaster run as tw different processesThey may
crash separately or togethefhe housekeeping procedures required to fix one kind of
crash are different from those required to fix the other.

The message you will usually see when the backend server crashes is:
FATAL: no response from backend: detected in ...

This generally means one ofdvthings: there is a bug in tH®OSTGRESserver or there

is a hug in some user code that has been dynamically loadeBQ8BGRES You should

be able to restart your application and resume processing, but there are some considera-
tions:

(1) POSTGRESusually dumps a core file (a snapshot of process memory used for
debugging) in the database directory

lusr/local/postgres/data/base/<database>/core

on the server machine. If you dowant to try to debug the problem or produce
a dack trace to report the bug to someone else, you can delete this file (which is
probably around 10MB).

(2) Whenone backend crashes in an uncontrolley \ii.e., without calling its ualt-
in cleanup routines), theostmaster will detect this situation, kill all running
seners and reinitialize the state shared among all backends (e.g., the shared
buffer pool and locks). If your sesv crashed, you will get the “no response”
message shown ab® If your server was killed because someone ®lsaver
crashed, you will see the following message:

| h ave been signalled by the postmaster.

Some backend process has died unexpectedly and possibly
corrupted shared memory. The current transaction was
aborted, and | am going to exit. Please resend the

last query. -- The postgres backend

(3) Sometimeshared state is not completely cleaned up. Frontend applications may
see errors of the form:

WARN:Mar 11 14:41:29: cannot write block 34 of myclass [mydb] blind

68

In this case, you should kill th@stmaster —and restart it.

(4) Whenthe system crashes while updating the system catalogs (e.g., when you are
creating a class, defining an index, reting into a table, etc.) the B-tree indices
defined on the catalogs are sometimes corrupiée general (and non-unique)
symptom is thaall queries stop awrking. If you have tried all of the abee deps
and nothing else seems to work, try usingriedexdb command. Ifrein-
dexdb succeedst things still dort work, you hae another problem; if itdils,
the system catalogs themselves were almost certainly corrupted and yowsvill ha
to go back to your backups.

Thepostmaster does not usually crash (it doelsdb very much except start sens)
but it does happen on occasioim addition, there are aviecases where it encounters
problems during the reinitialization of shared resour&secifically there are race con-
ditions where the operating system lets ihetmaster free shared resources but then
will not permit it to reallocate the same amount of shared resoun@svien there is
no contention).

You will typically have o run theipcclean command if system errors cause the
postmaster to crash. If this happens, you may find (using WX ipcs (1) com-
mand) that the “postgres” user has shared memory and/or semaphores alloeated e
though nopostmaster process is running. In this case, you shouldipgolean as

the “postgres” user in order to deallocate these resoumBeswarned thawll such
resources owned by the “postgres” user will be deallocated. If yeurhaltiple post-

master processes running on the same machine, you should kill all of them before run-
ningipcclean (otherwise, the will crash on their wn when their shared resources are
suddenly deallocated).

15.2.2. Mwing Database Directories
By default, all POSTGRES databases are stored in separate subdirectories under

/usr/local/postgres/data/base 11 At some point, you may find that you wish
to move e or more databases to another location (e.g., to a filesystem with more free
space).

If you wish to mae all of your databases to theméocation, you can simply:

* Kill the postmaster
» Copy the entiredata directory to the n& location (making sure that thewnéles are
owned by user “postgres”).

% cp -rp /usr/local/postgres/data /new/place/data

» Reset youPGDATAervironment variable (as described earlier in this manual and in
the installation instructions).

using csh or tcsh...
% setenv PGDATA /new/place/data

11 Data for certain classes may storedwlsere if a non-standard storage manager was specified wiyewete created Use
of non-standard storage managers is an experimental feature that is not supported outside pf Berkele

69

using sh, ksh or bash...
% FGDATA=/new/place/data; export PGDATA

» Restart thgpostmaster
% mstmaster &

» After you run some queries and are sure that thdyrmoved database works, you
can remwge the olddata directory.

% rm -rf /usr/local/postgres/data

To install asingledatabase in an alternate directory while leaving all other databases in
place, do the following:

 Create the database (if it doesdready exist) using thereatedb command. Irthe
following steps we will assume the database is ndoed
* Kill the postmaster
» Copy the directory/usr/local/postgres/data/base/foo and its contents
to its ultimate destination. It should still be owned by the “postgres” user.
% cp -rp /usr/local/postgres/data/base/foo /new/place/foo
* Remove the directorylusr/local/postgres/data/base/foo

% rm -rf /usr/local/postgres/data/base/foo

» Make a symbolic link from /usr/local/postgres/data/base to the nev
directory:

% In -s / new/place/foo /usr/local/postgres/data/base/foo

Restart thepostmaster

15.2.3. UpdatingDatabases

POSTGRESSs a research system. In geneRDSTGRESMay not retain the same binary
format for the storage of databases from release to release. Therefore, when you update
your POSTGRESsoftware, you will probably hae to modify your databases as wellhis

is a common occurrence with commercial database systems as well; unforfundéikely
commercial system®0OSTGRESIoes not come with user-friendly utilities to reajour

life easier when these updates occur.

In general, you must do the folling to update your databases to & seftware release:

» Extensiongsuch as user-defined types, functions, aggies, etc.) must be reloaded
by re-eecuting thePOSTQUELdefine commands. Notic¢hat as of Version 4.2, the
method by which you generate object code for user-defined functions has changed, so
you may hee to modify your old.o files. SeeAppendix A for more details.

» Data must be dumped from the old classes into ASCII files (usingP@®&TQUEL
copy command), the me classes created in thewelatabase (using theOSTQUEL

70

createcommand), and the data reloaded from the ASCII files.
» Rulesandviewsmust also be reloaded by reeeuting the ariousPOSTQUELdefine
commands.

You should give any mw release a “trial period”; in particulado rot delete the old
database until you are satisfied that there are no compatibility problems withmthe ne
software. r example, you do not want to disepothat a bug in a typg™input” (con-
version from ASCII) and “output” (carersion to ASCII) routines prents you from
reloading your data after you\eadestrayed your old databases! (This should be stan-
dard procedure when updatingyasoftware package,ut some people try to economize
on disk space without applying enough foresight.)

71

15.3. Databasé&ecurity

Most sites that usBOSTGRESare educational or research institutions and do not pay
much attention to security in thehOSTGRESInstallations. Ifdesired, one can install
POSTGRESwith additional security featuredNaturally, such features come with addi-
tional administratie ovehead that must be dealt with.

15.3.1. Kerberos

POSTGREScan be configured to use the MITetberos network authentication system.
This prevents outside users from connecting to your databagsstoee netvork without
the correct authentication informatiof-or more information on Kerberos, see the file
src/doc/kerberos.faq and theUNIX section of the Reference Manual.

15.3.2. Acces€ontrol

Access control listéACLs) can be defined on a per-class basis. These work rather lik
more flexible version of theNIX chmod(1) command.See the Reference Manual under
the headinghange acffor more details.

72

15.4. Queryingthe System Catalogs

As an administrator (or sometimes as a plain user), yant @ find out whatx@éensions

have been added to a\gn database. Thqueries listed bel are “canned” queries that
you can run on andatabase to get simple answers. Befometing aly of the queries

below, be aure to &ecute thePOSTGRES7acuum command. (Thegueries will run much

more quickly that way Also, note that these queries are also listed in

lusr/local/postgres/src/examples/chapterl5

so use cut-and-paste (or e command) instead of doing a lot of typing.

This query prints the names of all database adminstrators and the name of their
database(s).

* r etrieve (user_name = u.usename,
database = d.dathame)
from u in pg_user,
d in p g_database
where u.usesysid = int2in(int4out(d.datdba))
sort by user_name, database
\g

This query lists all user-defined classes in the database.

* r etrieve (class_name = c.relname)
from c in pg_class
where c.relkind ='r’ /* no indices */
and c.relname " ""pg_" /* no catalogs */
sort by class_name

\g

This query lists all simple indices (i.e., those that are not defiadadunction of se-
eral attributes).

* r etrieve (class_name = bc.relname,
index_name = ic.relname,
attr_name = a.attname)

from bc in pg_class, /* base class */
icin pg_class, /* index class */
i in p g_index,
a in p g_attribute /* att in base */

where i.indrelid = bc.oid
and i.indexrelid = ic.oid
and i.indkey[0] = a.atthum
and a.attrelid = bc.oid
and i.indproc ="0":0id /* no functional indices */

73

sort by class_name, index_name,
attr_name

This query prints a report of the user-defined attributes and their types for alefised
classes in the database.

* r etrieve (class_name = c.relname,
attr_name = a.attname,
attr_type = t.typname)

from c in pg_class,
a in p g_attribute,

tin p g_type
where c.relkind ='r’ /* no indices */
and c.relname !I" ""pg_" /* no catalogs */
and a.atthum > 0 /* no system att’s */

and a.attrelid = c.oid
and a.atttypid = t.oid
sort by class_name, attr_name

\g
This query lists all user-defined base types (not including array types).

* r etrieve (owner_name = u.usename,
type_name = t.typname)
from tin pg_type,
u in p g_user
where u.usesysid = int2in(int4out(t.typowner))
and t.typrelid ="0"::0id /* no complex types */
and t.typelem ="0"::0id [* no arrays */
and u.usename != "postgres"
sort by owner_name, type_name

\g
This query lists all left-associaé (post-fix) operators.

* r etrieve (left_unary = o.oprname,
operand = right.typname,
return_type = result.typname)
from o in pg_operator,
right in pg_type,
result in pg_type
where o.oprkind =T’ * left unary */
and o.oprright = right.oid
and o.oprresult = result.oid
sort by operand

\g
This query lists all right-associadi (pre-fix) operators.

* r etrieve (right_unary = 0.oprname,
operand = left.typname,

74

return_type = result.typname)
from o in pg_operator,
left in pg_type,
result in pg_type
where o.oprkind ='r’ /* right unary */
and o.oprleft = left.oid
and o.oprresult = result.oid
sort by operand

\g
This query lists all binary operators.

* r etrieve (binary_op = o.oprname,
left_opr = left.typname,
right_opr = right.typname,
return_type = result.typname)
from o in pg_operator,
left in pg_type,
right in pg_type,
result in pg_type
where o.oprkind ='b’ /* binary */
and o.oprleft = left.oid
and o.oprright = right.oid
and o.oprresult = result.oid
sort by left_opr, right_opr
\g

This query returns the name, number ajuanents (parameters) and return type of all
userdefined C functions. The same query can be used to findiiroC functions if
you change the “C” to “internal”, or aROSTQUELfunctions if you change the “C” to
“postquel”.

* r etrieve (p.proname,
arguments = p.pronargs,
returntype = t.typname)
from p in pg_proc,
| in p g_language,
tin p g_type
where p.prolang = l.oid
and p.prorettype = t.oid
and |.lanname ="C"
sort by proname

\g

This query lists all of the aggyae functions that hee been installed and the types to
which theg can be applied.count is not included because it can ¢any type as its
argument.

* 1 etrieve (aggregate_name = a.aggname,

type_name = t.typname)
from a in pg_aggregate,

75

tin p g_type
where a.aggbasetype = t.oid
sort by aggregate_name, type_name

\g

This query lists all of the operator classes that can be used with each access method as
well as the operators that can be used with the regpeptrator classes.

* r etrieve (access_method = am.amname,
operator_class = opc.opcname,
operator_name = opr.oprname)

from am in pg_am,
amop in pg_amop,
opc in pg_opclass,
opr in pg_operator
where amop.amopid = am.oid
and amop.amopclaid = opc.oid
and amop.amopopr = opr.oid
sort by access_method, operator_class,
operator_name

\g

76

16. REFERENCES

[ONG90] Ong,L. and Goh, J.,'A Unified Framwork for Version Modeling Using
Production Rules in a Database System," Electronics Research Lahoratory
University of California, ERL €chnical Memorandum M90/33, Beilky,
CA, April 1990.

[ROWE8B7] Rawe, L. and Stonebrak M., “The POSTGRES Data Modé&lProc.
1987 VLDB Conference, Brighton, England, Sept. 1987.

[STON86] Stonebradr, M. and Rowe, L., “The Design of POSTGRE®,roc. 1986
ACM-SIGMOD Conference on Management of Dataasington, DC,
May 1986.

[STON87a] Stonebrad, M., Hanson, E. and Hong, C.-H., “The Design of the POST
GRES Rules SysteimProc. 1987 IEEE Conference on Data Engineering,
Los Angeles, CA, Feld987.

[STON87b] Stonebrad, M., “The POSTGRES Storage SystéRroc. 1987 VLDB
Conference, Brighton, England, Sept. 1987.

[STON89] Stonebradr, M., Hearst, M., and Potamianos, S, Commentary on the
POSTGRES Rules SystengIGMOD Recordl18(3), Sept. 1989.

[STON90a] Stonebrad, M., Rowe, L. A., and Hirohama, M:The Implementation of
POSTGRES, | EEE Transactions on Knowledge and Data Engineering
2(1), March 1990.

[STON9Ob] Stonebradr, M. et d., “On Rules, Procedures, Caching antkews in
Database Systemid?roc. 1990 ALM-SIGMOD Conference on Manage-
ment of Data, Atlantic CityN.J., June 1990.

77

Appendix A: Linking Dynamically-Loaded Functions

After you hae aeated and registered a user-defined function, your work is essentially
done. POSTGREShoweve, must load thevbject codde.qg., ao file, or a shared library)

that implements your function. As previously mentioredSTGREdoads your code at
run-time, as required. In order to alloyour code to be dynamically loaded, you may
have b compile and link-edit it in a specialay. This section briefly describeswdo
perform the compilation and link-editing required before you can load youwdafired
functions into a runnin@OSTGRESserver Note thatthis process hashanged as of ¥r-

sion 4.2*2 You should epect to read (and reread, and re-reread) the manual pages for the
C compiler,cc (1), and the link editotd (1), if you hae ecific questions. In addition,

the r@ression test suites in the directdugr/local/postgres/src/regress

contain seeral working examples of this process. If you gowhat these tests do, you
should not hee any poblems.

The following terminology will be used below:

Dynamic loading
is whatPOSTGRESJoes to an object file. The object file is copied into the running
POSTGRESsener and the functions an@nables within the file are madeadable
to the functions within theeOSTGRESprocess. POSTGRESdoes this using the
dynamic loading mechanism provided by the operating system.

Loading and link editing
is what you do to an object file in order to produce another kind of object file (e.g.,
an ecutable program or a shared libraryou perform this using the link editing
program/|d (1).
The following general restrictions and notes also apply to the discussion belo
» Paths gven to the define function command must be absolute paths (i.e., start with
“/") that refer to directories visible on the machine on whichRDSTGRESsener is
running®®
» The POSTGRESuser must be able to tase the path gén to the define function

command and be able to read the object file. This is becausf®O8BGRESserver
runs as thePOSTGRESuser not as the user who starts up the frontend process.

2 The oldPOSTGRESdynamic loading mechanism required in-depth knowledge in termeecfitable format, placement and
alignment of gecutable instructions within memarstc. on the part of the person writing the dynamic loa&ech loaders tended to
be slav and tuggy As of Version 4.2, theeOSTGRESdynamic loading mechanism has been rewritten to use the dynamic loading
mechanism provided by the operating system. This approach is genastdlyrore reliable and more portable than ourvres
dynamic loading mechanism. The reason for this is that nearly all modern versimix afse a dynamic loading mechanism to im-
plement shared libraries and must therefore provide a fast and reliable mechanism. On the other hand, the object file must be post-
processed a bit before it can be loaded ROSTGRES We hope that the large increase in speed and reliability willemgkbr the
slight decrease in coenience.

13 Relative paths do in fact wrk, but are relatie o the directory where the database resides (which is generally invisible to the
frontend application) Obviously it makes no sense to makhe path relatie © the directory in which the user started the frontend ap-
plication, since the server could be running on a completely different machine!

78

(Making the file or a highdevel directory unreadable and/or weeutable by the
“postgres” user is aatremelycommon mistake.)

» Symbol names defined within object files must not conflict with each other or with
symbols defined iPFOSTGRES

» The GNU C compiler usually does not provide the special options that are required to
use the operating systesntynamic loader intedce. Insuch cases, the C compiler
that comes with the operating system must be used.

ULTRIX

It is very easy to tild dynamically-loaded object files under TRIX. ULTRIX does not
have any kared-library mechanism and hence does not plagerestrictions on the
dynamic loader intedfce. Orthe other hand, we had to (re)write a non-portable dynamic
loader ourselves and could not use true shared libraries.

Under ULTRIX, the only restriction is that you must produce each object file with the
option-G 0 . (Notice that thas the numeral 0” and not the letter O’). For example,

simple ULTRIX example
% cc -G 0 -c f oo.c

produces an object file callddo.o that can then be dynamically loaded ifOST-
GRES No additional loading or link-editing must be performed.

DEC OSF/1
Under DEC OSF/1, you can &leny dmple object file and produce a shared object file
by running thdd command wer it with the correct options. The commands to do this
look like:

simple DEC OSF/1 example
% cc -c f oo.c
% Id - shared -expect_unresolved *' -o f00.s0 f00.0

The resulting shared object file can then be loadedP@®TGRES When specifying the
object file name to theefine functioncommand, one must\g it the name of the shared

object file (ending inso) rather than the simple object fit&.

SunOS 4.x, Solaris 2.x and HP-UX

Under both SunOS 4.x, Solaris 2.x and HP-UX, the simple object file must be created by
compiling the source file with special compiler flagsl a shared library must be pro-
duced.

14 Actually, POSTGRESdoes not care what you name the file as long as it is a shared objetftyfde. prefer to name your
shared object files with thextension.o , this is fine withPOSTGRESs0 long as you makaure that the correct file name iv@i to the
define functioncommand. Imother words, you must simply be consisteidbwever, from a pragmatic point of we we dscourage
this practice because you will undoubtedly confuse yourself wifirde to which files hae been made into shared object files and
which hare rot. For example, its very hard to writeMakefile s to do he link-editing automatically if both the object file and the
shared object file end io !

79

The necessary steps with HP-UX are as wadlo The+z flag to the HP-UX C compiler
produces so-called “Position Independent Code” (PIC) and-th#ag remaes osme
alignment restrictions that the PA-RISC architecture normally enfortls. object file
must be turned into a shared library using the HP-UX link editor withktheption.
This sounds complicated but is actualgry simple, since the commands to do it are just:

simple HP-UX example
% cc +z +u ¢ f oo.c
% Id -b -0 f o00.slfoo.0

As with the.so files mentioned in the last subsection, tedine function command
must be told which file is the correct file to load (i.e., you mus tjithe location of the
shared libraryor .sl file).

Under SunOS 4.x, the commands look like:

simple SunOS 4.x example
% cc -PIC -c foo.c
% Id - dc -dp -Bdynamic -o foo.so foo.0

and the eqwilent lines under Solaris 2.x are:

simple Solaris 2.x example
% cc -K PIC -cfoo.c
or
% gc -fPIC -c foo.c
% Id -G - Bdynamic -o foo.so foo.o

When linking shared libraries, you mayhao specify some additional shared libraries
(typically system libraries, such as the C and math libraries) onlggoaommand line.

AIX

AlX, like unOS, OSF/1 and HP-UX, requires users to build shared object files in order
to use its built-in dynamic loading mechanisio special compiler options must be
given to huild the simple object fileHowever, AlX provides a very general, flexible and
complicated interface for producing shared object files. As a result, it isW@slpdiffi-

cult to produce dynamically-loaded object fil&ear in mind that this only means that it

is difficult when compared to the mechanisms just discussededly not that hard to

do.

AIX allows the user to tell it which program symbols (e.g., function and glabé&ble
names) should be visible to other pieces of code. This can engamt in certain cases.
Unfortunately AIX also requiresthe user to tell it which symbols should be visible (i.e.,
the default behavior is to disaNosharing). AIX controls this behaor by usingexport
filesandimport files

A symbol may beexportedfrom the shared object file to the program into which the
shared object file is being loadeth other words, the export file specifies which
symbols defined within the shared object file can be accesse@PYGRES We
usually want all symbols to be visibleROSTGRES

80

A symbol may bemportedby the shared object file from the program into which
the shared object file is being loaded. In other words, the import file specifies
which symbols defined with tfrROSTGRESsener can be called by routines defined
within the shared object fileAgain, we usually w&nt allPOSTGRESsymbols to be
visible to the user code.

Hence, in order to load a shared object file, one mu& &mexport file for the shared
object file as well as an import file for tROSTGRESaclend serer. This turns out to
be easy to do, sincegort and import files ha the same basic format and may be pro-
duced from the simple object file(s) by running thiddexport command that comes
with POSTGRES The following three steps should work for most cases:

simple AlX example, using Bourne shell

% cc -c f oo.c

% rkldexport foo.o ‘pwd‘ > foo.exp

% Id - H512 -T512 -0 foo.so -e _nostart \
-bl:/usr/local/postgres/lib/postgres.exp \
-bE:foo.exp f00.0 -Im -lc 2>/dev/null

The values gien for the-H, -T and-e flags told should simply be taken a®adoo.
The file specified by theébl: flag is produced when tHEOSTGRESsener is compiled
and installed. (The library directorfusr/local/postgres/lib given in the
example may dfer if you hare installedPOSTGRESN a different place, of courselhe
file specified by thebE: flag must be produced by hand (usingrilddexport com-

mand, as shown) before tte shared object file can be produd¢@dou ae probably
asking, “If it's so esy why not do it all for me?!” In fact, the magic command lines
given above d work in most cases and so could be embedded WAthBTGRESand hid-

den from the userHowevae, there are circumstances in which it wallf In these cases,

the user must be able to control the loader flags with which the shared object file is con-
structed. Inaddition, since the file systelocationsof the various object files are hard-
coded into the export/import files (and hence into the shared object file)adhishbuld

also be visible to the useFinally, by putting the export/import files under user control,

the user can do as the designers of AIX intended and actually edit the files (i.e., control
link-editing) as desired.

If you want an actual understanding ofwhthe AIX loader actually works, you should
take a bok at the tutorials written by Gary Hook at the IBM AlIX Systems Cerlibese
tutorials are located in

{usr/local/postgres/src/doc/useful/aix-linking.ps
lusr/local/postgres/src/doc/useful/aix-advlink.ps

151f you wish to create a shared object file for use with untrusted functions (see the Reference Manual under thiefieading
function, you must use thpg_ufp.exp exports file instead of thpostgres.exp exports file.

81

