
Abstract. Today most text is stored in electronic form at one point
or another in its life. It is then perhaps surprising that computers
have made relatively little impact on how it is stored and
retrieved, but such is the case. The Wide Area Information
Server project (WAIS) seeks to alleviate this problem by making
text databases widely accessible via a common user interface and
wide area networking. The ultimate success of the effort depends,
in part, on the availability of high-performance text search
engines. Such engines can be implemented on massively parallel
machines, using either signature file or inverted file database
structures. Inverted files are particularly appealing, and permit
databases as large as 8192 Gigabytes to be searched in under 15
seconds, using currently available hardware

I. INTRODUCTION

A large proportion of the American workforce is constantly
producing or consuming text in various forms — internal
memoranda, reports, correspondence, technical papers, elec-
tronic mail, etc. — which originates in electronic form. And
so it is perhaps surprising that computers have made relatively
little impact on how such information is filed and retrieved.
Just as they did a hundred years ago, people store their text in
hierarchical files, ask co-workers if they know where some
data might be found, and run to the librarian for help in
accessing external data. Two recent developments — parallel
information retrieval systems and wide-area information serv-
ers — have the potential to vastly improve on this situation,
making essentially all the information in the world instantly
available from a desktop computer.

II. CURRENT PRACTICE

The way in which electronic text is stored and organized
(or, in most cases, not organized) makes its effective use for
purposes other than generating hard-copy very difficult.

Personal data is generally stored in a hierarchical file sys-
tem, but otherwise unorganized. An individual, looking for an
old report or an old piece of electronic mail may have to look
through a large number of directories on several machines
before the wanted data is found. Information gets lost, and a
considerable amount of time is wasted trying to guess where
information might be located.

Most companies do not have an over-all structure for man-
aging electronic text. Some electronic mail will be archived.
Individuals may maintain their own on-line copies of corre-
spondence they have produced. Engineering projects will
have their own design files. Reports prepared by consultants
may be filed by the person who requested the report. Files
containing presentation graphics will reside on various desk-
top computers. If an individual wants to find a piece of text
which is stored on-line, he must figure out who to ask. On-line
systems are rarely if ever available.

Off-site electronic text is better organized but, in practice,
not much more accessible. Some databases are elaborately
indexed using a tightly controlled vocabulary. Other databases
are unindexed, relying on full-text searches. Every database
vendor has its own indexing method and its own query syntax.
In the majority of cases, the query syntax consists of a mixture
of boolean and proximity operators. At the very least, these
query interfaces are difficult for non-experts to use effec-
tively; one is always walking a thin line between getting no
documents and getting too many documents.These databases
are generally available only as dial-up services, and rarely
support anything except for teletype-style interfaces. In addi-
tion, they have traditionally charged their users by the con-
nect-minute, a practice which strongly discourages the use of
these systems for browsing and interactive exploration. As a
result of all these factors, end-users are discouraged from
signing onto a database and looking for information them-
selves; if they need on-line text search capability, they will be
referred to a librarian. There is a good chance that the librarian
will find the necessary information, but this may take several
days, and the expense of the process discourages users going
to an external information source for most inquiries.

III. WIDE AREA INFORMATION SERVERS

Various technologies exist which can solve these problems.
Individual and corporate documents can be made more acces-
sible by storing them in full text databases. Remote access can
be simplified by use of wide area networks. The varying query
languages of different external databases can be forced into
conformity by the establishment of standards. The difficulties
associated with using boolean query systems can be avoided
by using several non-boolean search methods developed in the
information retrieval community. The ease of using the sys-
tems can be improved by the development of graphic inter-
faces. The Wide Area Information Server (WAIS) project [1]
seeks to combine these technologies in order to make a wide

Massively Parallel Information Retrieval for Wide
Area Information Servers

Craig Stanfill
Thinking Machines Corporation

245 First Street
Cambridge MA 02154

Received 29 July 1991.
®Connection Machine is a registered trademark of Thinking Machines Corpo-
ration. CM, CM-2, and Datavault are trademarks of Thinking Machines Cor-
poration. ®Sun and ®Sun-4 are registered trademarks of Sun Microsystems,

variety of data available in a desktop environment. This sec-
tion will describe the major components of the current system
(Fig. 1).

A. Search Methods

The search method used in WAIS is based on several infor-
mation retrieval techniques developed in the 1970’s [2]. Que-
ries consist of short natural language phrases, such as
“Corazon Aquino and the Philippine Election.” Each phrase is
broken into primitive components such as “Corazon Aquino,”
and “Philippine Election,” and each component is assigned a
numerical weight with rare (i.e. more specific) terms assigned
higher value. Every document in the database is then scored
against this query by summing the weights of the query terms
it contains. The documents are then ranked from highest to
lowest, and the best matches presented to the user. All this is
hidden from the user, who knows only that he has asked a
question and gotten back some documents which are likely to
be relevant. The user may then browse the full text of these
documents.

In order to focus the search, the user may indicate to the
system that a given document is “relevant” to his search (this
is called “relevance feedback” [3]. The system will then
examine the full text of that document, break it into words,
and use the most important words in the document to con-
struct a new query. This query will be run against the data-
base, and the result presented to the user. In most cases, the
results of this search will contain a high proportion of docu-
ments on the same topic as the feedback document. Once
again, this process is hidden from the user, who only knows
that he has indicated to the system that a particular document

FIG. 1: WAIS ARCHITECTURE

Local Area Network

Local
Information

Wide Area Network

Server

Public
Information

Server

Local
Information

Server

Corporate
Information

Server

Corporate
Information

Server

Public
Information

Server

Corporation Boundary

User InterfaceUser Interface User Interface

was interesting, and that the system has presented him with
more documents on the same topic.

This sort of search system has several advantages. First and
foremost, because queries are expressed in natural language,
there is no need for the user to learn an artificial query lan-
guage. Second, the document ranking scheme, in which docu-
ments are presented to the user in order of likely interest,
eliminates some of the brittleness of boolean systems; the user
will always find something, without being overwhelmed by
the thousands of documents which may result from a poorly
crafted boolean query. Third, the use of relevance feedback
gives a convenient method for focusing a search, enabling the
user to be confident that he has found a majority of the docu-
ments on a given topic. Finally, the natural language/relevance
feedback interface style provides the designer of a query sys-
tem with a great deal of freedom in the choice of specific
information retrieval algorithms. As better methods are devel-
oped, they can be incorporated into the system without forcing
the users to learn a new query language.

B. Graphic Interfaces

The second major component of the WAIS system is a
graphic interface. This interface needs to support natural lan-
guage querying, relevance feedback, document display, and
database selection. Interaction is defined in terms of several
kinds of objects (represented by icons) plus actions such as
dragging and opening. For example, to initiate a search the
user will create a “question”, which will have slots for data
sources, relevant documents, and a natural language question.
Data sources and relevant documents are added to the ques-
tion by dragging their icons into the appropriate slots. The nat-
ural language query is created by typing into the query slot.
When the user clicks on a “search” button, the interface will
contact all selected data sources, send them a query, and wait
for a response. When the response comes, the headlines of the
relevant documents will appear in another frame, along with
icons standing for the documents. These icons can be opened
to examine the full text, or they can be dragged back into the
“relevant documents” slot to feed them back into the query. At
any time, the user can start a new query (without abandoning
the old one) by creating a second question object.

C. Networks

The third major component of the WAIS system is a wide
area network plus a protocol enabling clients and servers to
exchange information. If a reliable network already exists
(e.g. NSF-net), then little needs to be done except for assign-
ing a network address to the server. If a good network connec-
tion is not available, then the situation becomes much more
difficult. A 9600 Baud telephone connection is generally suffi-
cient if the transmission protocol includes error detection and
correction. Once a server has been set up on the network, it is
necessary for clients to be able to contact it. This has been
done by establishing a database called the directory of servers,
which is a WAIS database having descriptions and network
addresses for all publicly available WAIS servers, and which

all WAIS servers know how to contact. The final component
of the WAIS network architecture is the protocol between the
servers and the clients. The starting point for this was the Z
39.50 protocol, which was initially set up to allow the inter-
change of information between libraries. This protocol was
inadequate in several ways (it did not support relevance feed-
back, it did not provide adequate support for the transmission
of the full text of documents, etc.), but was fairly easy to
extend.

IV. PARALLEL TEXT SERVERS

For WAIS to succeed, it must be possible to build full text
retrieval systems which can deliver quick responses (1-2 sec-
onds is ideal) when searching databases having anywhere
from a few megabytes of text (e.g. a personal database) to
hundreds, thousands, or even tens of thousands of Gigabytes.
Some databases can be adequately served by serial machines
(e.g. personal or departmental databases having a few mega-
bytes to one gigabyte of data). Other databases — those which
are either extremely large (e.g. a corporate text repository) or
accessed very heavily (e.g. an external database service) —
will require levels of performance which cannot be attained on
serial machines. For these databases, parallel text servers are
an appropriate technology.

A. Parallel Signature Files

Initial work on parallel text servers represented the data-
base as an overlap encoded signature file [4][5]. In this repre-
sentation, each document is broken into segments containing
(for example) 30 words. A signature file is then created by
applying the following procedure to each such segment in the
database:

1. A region of memory is allocated and initialized to 0. This
will become the signature of the text segment.

2. Several hash functions are applied to each word in the seg-
ment. The bits of the signature addressed by these func-
tions are set to 1.

3. A group of consecutive signatures are assigned to each
processor.

4. To probe a signature for the presence of a word, the same
set of hash functions are applied to it and the correspond-
ing bits of the signature are ANDed together. If the result is
1, then the word is assumed to be present in the segment,
even though there is a small possibility that the 1 is a result
of coincidence.

Signature files have a number of advantages, namely: 1) the
probe operation is very fast, particularly on SIMD machines
constructed from bit-serial processors (e.g. the Connection
Machine models CM-1 and CM-2 [6], the Goodyear MPP [7]
and the DAP [8]; and 2) the signature file is much smaller than
the full text.The degree of compression depends on the
acceptable error rate in the probe step, with 30% being possi-
ble for systems having error rates on the order of .
The disadvantages of this scheme are 1) that the system can
only represent the presence or absence of a word; other infor-

1.2 10 6−×

mation, such as its position and the number of times it
occurred will necessarily be lost [9][10]; and 2) that there is
no effective strategy for searching databases which are too
large to fit in main memory [11].

Nevertheless, such systems are capable of delivering high
performance for databases as large as 25 Gigabytes. Main
memory systems of this sort are a good choice for heavily
accessed databases where the high performance translates into
a high throughput.

B. Parallel Inverted Files

For databases which are too large for available memory or
for which the number of inquiries per second is not large
enough to justify the expense of a large primary memory, sec-
ondary storage must be employed. As noted above, this rules
out the use of the signature algorithm. The best solution in this
case is to adapt the inverted file structure generally used in
serial systems. In this sort of system, each document is
indexed to produce a set of postings. Each posting contains a
word, an identifier for the document it was contained in, and
additional information (e.g. a numerical weight indicating
how many times it occurred) which may be required by the
search strategy being used. These postings are sorted by word,
the words are stripped from the postings, and the results writ-
ten to disk. At the same time, an index is built which permits
the postings for a given word to be found on disk. The advan-
tage of this file structure is that a relatively small amount of
data needs to be accessed in answering a query. The primary
disadvantage of this file structure is that it is fairly complex to
build and maintain and, in particular, real-time modifications
to the database are difficult to support.

As noted above, WAIS text servers need to evaluate queries
consisting of words plus weights indicating the importance of
those words. The basic computation is to 1) create a score
accumulator (called a mailbox) for each document and zero it;
2) read the postings for each term in the query; and 3) incre-
ment the mailboxes for the documents referenced by these
postings.

In the simplest parallel inverted file structure, the postings
are distributed arbitrarily across the processors and, at query
time, sent to the processor containing the appropriate mailbox
[12]. In a more complex file structure, called a partitioned
posting file, the postings are stored on disk in such a way that
they will, when read into the machine’s memory, be in the
same processor as their mailbox [13]. The later file structure is
somewhat faster than the former, as it involves no interproces-
sor communication, but building this file structure is more dif-
ficult.

Benchmarks reveal that, using the partitioned algorithm and
an 8192 processor CM-2, it should be possible to evaluate a
10-term query against a 100 Gigabyte database in 1.8 seconds
(compute only), vs. 45 seconds for a fast serial machine (a
Sun 4/330).

The second major issue in parallel inverted file design is I/
O. The Connection Machine supports a disk array called the

DataVault. Each DataVault can store up to 60 Gigabytes of
data, which would be sufficient to hold the inverted file for a
database as large as 180 Gigabytes. The DataVault has a trans-
fer rate of 25 Megabytes per second. It may be used in two
modes: striped mode and independent disk mode. In striped
mode, all the disks in the DataVault operate synchronously,
yielding a very high transfer rate. The disadvantage of this
mode is that it has a latency of 200 milliseconds, so that no
more than 5 I/O’s per second may be supported. In indepen-
dent disk mode, each disk may be given a different seek
address. In this access mode, the DataVault’s latency is 225
milliseconds per 32 I/O’s.

According to one model of the retrieval process, an average
term from an average query will occur 3000 times per
Gigabyte of full text. Each term posting requires approxi-
mately four bytes of data. Evaluating a 10-term query against
a 100 Gigabyte database will thus require the transfer of 12
Megabytes of data, which should take slightly under 0.5 sec-
onds. A full discussion of the performance characteristics of
parallel database servers is beyond the scope of this paper; the
interested reader is referred to [13]. Table 1, taken from the
referenced paper, summarizes the performance characteristics
of various systems having between 1.5 and 8192 Gigabytes of
data.

TABLE 1
PERFORMANCE OF CM-2 FOR VARIOUS DATABASE SIZES.

TIMES IN SECONDS, 10-TERM QUERIES.

Size Processors DataVaults Time Storage Method

1.5 GB 4K 0 0.055 Main Memory
3 GB 8K 0 0.055 Main Memory
6 GB 16K 0 0.055 Main Memory

12 GB 32K 0 0.055 Main Memory
24 GB 64K 0 0.055 Main Memory
64 GB 8K 1 1.7 Independent Disk

128 GB 8K 1 2.8 Independent Disk
256 GB 16K 2 3.6 Striped Disk
512 GB 32K 4 3.6 Striped Disk

1024 GB 64K 8 3.6 Striped Disk
2048 GB 64K 16 5.1 Striped Disk
4096 GB 64K 32 8.2 Striped Disk
8192 GB 64K 64 12.4 Striped Disk

V. CONCLUSIONS

This paper has argued 1) that current methods for accessing
on-line text are inadequate; 2) that Wide Area Information
Servers represent a possible solution to this problem; and 3)
that parallel text servers can be built to support any size data-
base likely to be needed in the next decade.

This process is, of course, in its infancy. At this point, it is
probably most important that people use and experiment with
Wide Area Information Servers. This is currently being done
on a research basis at a variety of sites on the Internet. Those
who wish to obtain the software described in this paper may
do so by contacting Brewster Kahle via e-mail (brewster@-
think.com).

REFERENCES

[1] Kahle, B. & Medlar, A. (1991). An information system for corporate
users: Wide Area Information Servers. Technical report TMC-199.
Cambridge MA: Thinking Machines Corporation.

[2] Salton, G. (Ed.). (1971). The Smart System --- Experiments in automatic
document processing. Englewood Cliffs, NJ: Prentice-Hall.

[3] Rocchio, J.J., Jr. (1971). Relevance feedback in information retrieval. In
G. Salton (Ed.), The Smart System --- Experiments in automatic docu-
ment processing. Englewood Cliffs, NJ: Prentice-Hall.

[4] Stanfill, C. & Kahle, B. (1986). Parallel free-text search on the Connec-
tion Machine system. Communications of the ACM, 29(12), 1229-1239.

[5] Pogue, C. & Willet, P. (1987). Use of text signatures for document
retrieval in a highly parallel environment. Parallel Computing, 4, 259-
268.

[6] Hillis, D. (1985). The Connection Machine. Cambridge, MA: MIT
Press.

[7] Batcher, K.E. (1980). Design of a massively parallel processor. IEEE
Transactions on Computing, C-29(9), 836-840.

[8] Flanders, P.M., Hunt, D.J., Reddaway, S.F., & Parkinson, D. (1977).
Efficient high speed computing with the distributed array processor. In
D.JU. Kuck, D.H. Lawrie, & A.H. Sameh (Eds.), High speed computing
and algorithm organization (pp. 113-127). New York: Academic Press.

[9] Croft, B. (1988). Implementing ranking strategies using text signatures.
ACM Transactions on Office Information Systems 6(1), 42-62.

[10] Salton, G. & Buckley, C. (1987). Parallel text search methods. Commu-
nications of the ACM, 31(2), 202-215.

[11] Stone, H. (1987). Parallel querying of large databases: A case study.
Computer, 20(10), 11-21.

[12] Stanfill, C., Thau, R., & Waltz, D. (1989, June). A parallel indexed algo-
rithm for information retrieval. Paper presented at the International
Conference on Research and Development in Information Retrieval.
Cambridge, MA.

[13] Stanfill, C., & Thau, R. (1991). Information retrieval on the Connection
Machine: 1 to 8192 gigabytes. Information Processing and Manage-
ment 27(4), 285-310.

