
1

Mid-Willamette
NeXT Users Group�

O
ct

o
b

er
, 1

99
3�

Corvallis, Oregon�

MW-NUG Publishes First Newsletter
Welcome to our first newsletter. This endeavor is long overdue but has at last arrived. This newsletter exists to
inform and educated the members of MW-NUG about user group news, events, and activities. We hope the
newsletter will also be a source of information about NeXT related issues, news, and events. The user group is not
only a NeXT support group for OSU student, faculty and staff, it is also a support group for the Corvallis community
and the Mid-Willamette valley which stretches from Eugene to Portland, hence our name.

What type of articles will be you writting about? I’m glad you asked. First, we will be giving meeting minutes and
reports and secondly, NUG announcements of upcoming meeting and events. The newsletter will include any
important announcements from NeXT or third party vendors for special deals and deadlines, like the recent
NEXTSTEP pricing change deadline of Sept 30 for NS3.1 and the free upgrade to NS3.2. In addition to news, there
will be articles about programming, product reviews, tip & hints, system administration, and RUMORS! Bare with us
while we work each month to polish our newsletter. And of course, let us know when you have a great idea for an
article as we are always looking for authors.

Finally, as you all know, OSU is the site of one of the largest NeXT ftp archives. As our contribution to the NeXT
community and to our members, we will begin publishing in the newsletter each month the list of new submissions to
the CS.ORST.EDU archive, product reviews of software from the submission directory, and letters from the archive
administrator. The archive is so important. From the archive, a user can find demo software, shareware software,
public domain (PD) software, publications, source code, objects, and palettes. Some of it may be trival but the
majority of the software on the archive is good to excellent. Just this last month of September, there were 40
submissions to the archive. To make it easier to find software on the archive, we decided to publish the new entries
to the submission’s directory for each month with a brief description. To help you decide if the some software is right
for you, we will test selected submissions and write a product review about it. You can decide if the software is right
for you.

I hope everyone enjoys this newsletter and gives me some feedback about changes we can make or articles you
would like to see. Keep in mind, we do not want to duplicate NeXTWorld or other magazines. We do want to fill in
the gaps, such as archive news.

MW-NUG Meeting September 9th
The meeting talked about the newsletter, meeting times, meeting place, membership fees, and activities for future
NUG meetings. It was decided that the newsletter would be free with electronic distribution but should cost a minimal
fee for hardcopys until the group files its non-profit organization papers and begins to collect membership fees. The
papers should be filed before the first of the year and memberships collect at the beginning of the year. Because
there were so few members at the meeting, dicussion about the cost of membership would be taken up at another
meeting. It was decided that the current meeting place and time, as convenient for some, was not convenient for
future members. So a new time and place to meet was to be found.

How to Subscribe to MW-NUG Mailing-List for Late Breaking News and Discussions

Send mail to almanac@cs.orst.edu and say:

set address <theiraddress>

subscribe next-users

2

M W - N U G N E W S L E T T E R ��

Letter From CS.ORST.EDU NeXT FTP Site Administrator
Greetings, I’m Mike Miller, the new "Archive Administrator" for the /pub/next section of the cs.orst.edu archive. Since
taking over the archive, I am learning how to effectively arrange the archive to make it more user-friendly. A recent
addition is the linking the sources, binaries, and demos directories into each other so that once inside of a directory
like /binaries/util, you can jump into /sources/util by moving into /binaries/util/sources. New index files are also being
created that are up to date, and contain more useful information. My hope is to develop a index file that contains not
only the filename with creation date and size, but also a description of the file and a platform compatibility code.

There is one major problem with maintaining an archive like this one: a lack of feedback from people who use the
archive. If I am to make sure that the archive is easy to use, I need people to tell me what would make the archive
easier to use. If I am to keep the archive updated with working programs, I need people to tell me when they find
outdated, or corrupted files. I need all of you who use the archive to write me mail telling me what you like, dislike,
love, and hate about the archive. It doesn’t take long to drop me a quick line and I would greatly appreciate the input.

millerm@skie.ece.orst.edu

How to Submit Material to the Archive
by millerm@skie.ece.orst.edu (Mike Miller)

Submissions of new material to cs.orst.edu are encouraged, however, to make it easy for us to catalog the
information as well as place in the correct directories. We do ask that you do a couple of little things.

Please try to come close to a standard naming convention. The most common is FilenameX.XX.[MAB].<extensions>
where X.XX is the revision number of the program. This allows us to keep the archive friendly because most all files
are upper-case while subdirectories are lower-case, the version number is easy to see as well as if it is 3.1 (Intel)
compliant as well as the necessary extractions tools needed.

Then FTP 2 files into /pub/next/submissions, one is the program in question (usually a tar.Z file, but just about
anything that NS recognizes is great) the second file should be a readme file entitled <filename>.README (i.e.
Water2.0.MAB.tar.gz would be sent with the readme file Water2.0.MAB.tar.gz.README).

After that if you are feeling friendly, write to next-ftp@cs.orst.edu and tell us where you would prefer the file to be
stored along with really short description. Mailing us is entirely optional, but it is a nice touch if you have the time. :-)

Advice for the Appkit-lorn
by mcgredo@proponent.com (Don McGregor)

The central relevation in most NeXT programmer’s lives is their first demonstration of Interface Builder. It tends to
stick with you, like that time in Junior High when you first slow danced with a person of the opposite sex. You had an
immediate vision of previously unimagined possibilities. A world that had been full of unfocused angst suddenly
seemed to be pretty livable after all.

Of course, shortly after that—usually later that night—the angst returned with a vengeance, along with a lot of other
unbecoming emotions. So it goes with NeXT programming. It beats the alternative, but there’s a lot of things you
have to learn before it becomes a pleasant experience. Even then it can be trying at times. But those sublime
experiences make it worth the effort.

So, Wally-to-Beaver-like, I’ll offer a few words of advice on NeXT programming for those new to the experience.
Some of it is going to be simple advice that most old hands take for granted. (“They probably don’t appreciate
noogies.”) Some of it is going to be a little more philosophical. (“Women.”) And some of it other people could take
issue with. After all, I’m playing the role of Wally Cleaver here, not Ward.

Displaying Lists of Data
It’s common to display a scrolling list of discrete data in your application. A panel might contain a scrolling list of all

3

M W - N U G N E W S L E T T E R ��

Figure 1. A window with scrolling text.

the people in a department, for example, and picking one person from the list would cause a photo, address, and
phone number to be displayed in other fields. Displaying data in the text fields is pretty simple. So how do you go
about implementing the scrolling list of data?

Let’s reduce what we’re looking at here to its essentials, so we don’t get bogged down in a lot of peripheral issues.
Let’s assume that you want to display a scrolling list of short pieces of
text. That’s it.

The text being shown here is just a list of who is logged onto the
computer the program is running on. It’s modeled closely on what the
Unix who command does. (In fact, it is the Unix who command, gussied
up with a GUI.) When the program is first run and whenever the user
hits the “Refresh” button the data in the display is updated. It’s not really
important what the data is; we’re just looking for something to display.

There are a few ways to do create the scrolling display. Among other
strategies, you could group a Matrix in a ScrollView, then fill the Matrix
with data. Or you could use a DBTableView--despite DBTableView’s
name and its residence in the DBKit classes, you can use it without a
database. I’ll do it yet another way, using the NXBrowser class. Not
because it’s better, but because it gives me a chance to demonstrate
the important (and very nifty) Objective-C concept of delegation.

A delegate is a stand-in for the “real” object. The delegate performs some operation on behalf of the original object.
To a newcomer to the concept, this probably seems like a weird idea. Why not just have the original object do it?
Trust me, there are good reasons. We’ll see some of them a little later, and explain some more about what
delegation is.

Writing the Program
First some details on setting up the infrastructure for what we want. The source files for this example is on the
Oregon State anonymous FTP server, cs.orst.edu, under the file name [...]. The example was written under
NeXTSTEP 3.1.

Create a new project and open up the .nib file. From the palettes window of IB, pick the far-right icon, then drag over
a browser object from the lower display. Then drag over a button, change the title, and drop a return-key icon onto it.
You’ve just completed the interface portion of the project.

About Browsers
Browsers (properly called NXBrowsers) are intended to display hierarchical data. File systems are a good example of
the sort of data that they’re good at displaying. You can have directories inside of directories until finally you get to
the “leaves,” the individual files. This is exactly what’s used for the browser mode view of the Workspace. A “real”
browser can display several layers of data, but we’ll keep it simple here and display just one. All our data will be leaf
nodes—there will be no branch nodes and only one column in the browser.

Now we need some code to drive the interface and fill the browser with our simple-minded data set. Create a
subclass of Object called TheDelegate. Add an instance variable, theBrowser. Parse it to make sure the instance
variable shows up in IB, then instantiate the object. Control-drag a connection between the newly instantiated object
and the NXBrowser object in the window, and make the connection to theBrowser.

Now the instance variable theBrowser of the object points to the real browser in the IB window. We want to make
one other connection—we want the browser to have its delegate to be our newly created object of the class
TheDelegate. Control-drag a connection from the browser object to the instantiated object, and hook up delegate so

4

M W - N U G N E W S L E T T E R ��

TheDelegate theBrowser

browser:fillMatrix:inColumn:

Data to fill the browser

loadColumnZero

Figure 2. Delegate action for NXBrowser object

that it points to the instantiated object.

The under 3.0 and later releases, the browser is automatically sent the message loadColumnZero when the nib is
loaded. (You need to send the message programatically under 2.x). This, in turn, causes other messages to be sent.
One of those is -browser:fillMatrix:inColumn:.

Here’s what the documentation supplied by NeXT has to say about this method:

browser:fillMatrix:inColumn:
- (int)browser:sender
fillMatrix:matrix
inColumn:(int)column

Invoked by the NXBrowser to query a normal or lazy browser for the contents of column. This method should create
NXBrowserCells by sending addRow or insertRowAt: messages to matrix. The NXBrowser will resize them to fit in the
Matrix—you can’t control the size of an NXBrowserCell. Returns the number of items in column.

A normal delegate should create each NXBrowserCell and send them the messages setLoaded: and setLeaf:, and
setEnabled: if necessary. A lazy delegate marks Cells as loaded only when they are about to be displayed; however, it may
create and partially fill in information (such as the title), saving only the time-consuming operations for an actual request to
load an individual Cell.

If you implement this method, don’t implement the delegate method browser:getNumRowsInColumn:.

See also: - browser:loadCell:atRow:inColumn: (delegate method)

This is typical of the documentation for the Appkit. It’s got a bunch of code words in it you probably don’t understand
right now, and you can analyze it for hours without understanding any more. (“She said she hates me but she likes
me, Wally. What does that mean?” “Gosh Beav, I guess it means she wants you to get lost. Or maybe not.”) Later
on, you learn to read between the lines and start to get the meaning of more of the code words. Things are clearer
then. Sort of.

The browser:fillMatrix:inColumn: method fills one of the columns in the browser with data. Since we have only one
column in this browser, that’s all we need to fill the browser with what we want to display. The arguments to the
method include what browser sent the message, the matrix that is going to be filled with data, and the column
number of the browser we’re working with.

Delegation
Now, back to delegation. The NXBrowser
object does not implement this method—the
NXBrowser object itself does not know how to
load the information it displays. It relies
instead on the delegate object, which can
actually put data into the browser. In our case,
the delegate is the object we created, an
instance of the class TheDelegate. The
NXBrowser instance realizes that it needs data
to display when it receives a loadColumnZero
message, and asks the delegate object to fill it
with data.

The object theBrowser receives a message, and in turn sends a delegate message to an instance of TheDelegate.

5

M W - N U G N E W S L E T T E R ��

documentOwner

Window
Instance

Browser
Instance

Figure 3. The browser and window have set their
delegate to the documentOwner object

That object in turn fills the browser with data.

Why do it this way instead of having the browser do it itself? In any large project, we’d have browsers used for maybe
dozens of different purposes, each requiring its data to be loaded in a particular way. One option is to subclass
NXBrowser for each use, with a new method implementation for each subclass. Soon we’d have dozens of
subclasses of NXBrowser, all just a little bit different. The source files would be cluttering up your directory when you
wanted to get to something. You’d have to come up with new names for every subclass (BrowserFileSystem,
BrowserDOSFileSystem, BrowserMacFileSystem, BrowserOS360FileSystem, etc.) By using delegation, we can
push the application implementation details out the the Browser object, and, we hope, make things a bit easier to
understand. It lets NeXT distribute one general class that other people reuse with ease.

Newcomers to object oriented programming often assume that subclassing objects is the way to implement new
behavior. ’Taint always true. Sometimes the it’s better to use aggregation and cooperation among objects. This is
probably one of those cases.

Objective-C uses run-time binding—the actual method called is not determined until the object actually asks for it
during execution. This has some nice implications. One of them is that delegation is a lot easier to do. The
NXBrowser object doesn’t have to know what type of object its delegate is—it just sends the message, and the
receiving object, whatever it is, looks up the right function to call. Run-time binding is one of the subtle things that
makes NeXTSTEP what it is. Its use deeply influences the programming style and architecture of the Appkit. It’s
easier to build objects that cooperate with each other. In a C++ system, you’d probably have to use multiple
inheritance to implement the NXBrowser features we described here. In effect, you’d have had to substitute lines of
code for the lack of delegation and run-time binding.

I’d rather not write code I didn’t have to.

Delegation is used in a lot of other places in the appkit. The Window classes have delegates. Whenever a window is
closed a message can be forwarded to the delegate so cleanup operations can be performed, an alert box can be put
up warning that user that the document hasn’t been saved, and so on. The Application object has a delegate as
well. Most programmers should not need to subclass Application at all; the necessary features can be entirely
handled by the delegate object.

Often the delegate object will be the “owner” of the nib file. Think of a new document that is created from an
application. A new nib file for the document is loaded, and the nib file is owned by an instance of a Document class.
The Document object has instance variables that point to a browser in the document, the window created to hold the
document, and so on. Both browsers and windows
can have delegates, so the logical thing to do would
be to make them point to the Document class
instance. The Document instance would implement
the delegate methods for loading the browser,
checking to make sure the user has saved the
document before closing, and other functions.

The document owner would implement the
browser:fillMatrix:inColumn: and windowWillClose:
methods.

Finishing the Program
But back to the problem at hand. We want to fill the
browser with data, so we’ll implement a method in
the delegate object to do that. Here it is:

6

M W - N U G N E W S L E T T E R ��

- (int)browser // RETURN: the number of cells loaded into the browser

:sender // INPUT: the browser that sent us the message

 fillMatrix:matrix // INPUT: the matrix being added to

 inColumn:(int)column; // INPUT: which column of the browser is being loaded

{

/*---

The main method that loads the data. This is the delegate method; When the

browser is asked to load itself, it calls the browser:fillMatrix:inColumn:

method in the delegate object, namely us. We fill the matrix in the browser

by adding rows, then return a count of the number of rows returned.

---*/

Storage *names; // another ptr to the ivar storage object

int i; // generic counter

NXBrowserCell *aCell; // A cell we’re adding

// get a pointer to the storage object that holds the names. this is

// really just an alias to the ivar in the header file.

 names = [self getNames];

// Loop through all the names, adding them to the matrix.

for(i = 0; i < [names count]; i++)

{

 [matrix addRow]; // Create a new default cell

 aCell = [matrix cellAt:i :0]; // get a pointer to it

 [aCell setStringValue:(char*)[names elementAt:i]]; // set the text string

 [aCell setLeaf:YES]; // Needed to avoid the messy-looking icon on

the right

}

 return [names count]; // How many did we add?

}

That’s it. We just add rows to the matrix, and set the text values of the cells inside the matrix. We’ll want one other
method, the action to be taken when the user clicks on the refresh button. This is really easy:

- refreshHit:sender;

{

 [theBrowser loadColumnZero];

 return self;

}

This just sends a message to the browser asking it to fill itself with data. The browser in turn queries the delegate
object and fills itself.

From here, we can simply save the .h and .m files, parse the object, and connect up the button action by
control-dragging a connection.

What We Learned

No Leave it to Beaver episode would be complete without a short moral before the credits roll.

7

M W - N U G N E W S L E T T E R ��

Delegation is your friend. It is remarkably easy to make objects cooperate with each other in Objective-C due to
run-time binding. You should be thinking in terms of Software ICs, in Brad Cox’s term, reusable objects that
cooperate with each other to get a job done. We also had a short tour of NXBrowsers—implementing a simple
browser is very easy, and several other options to get the same result exist.

And maybe, just maybe, the beginners out there experienced the equivalent of a peck on the cheek from the
experience that is NeXTSTEP. Source code is available on cs.orst.edu ft site in /pub/next/submissions.

About the Author
Don McGregor is a recovering OSU graduate student now living in Marin. There are a bunch of BMWs there, but he
still misses the Bean and shuffling his feet through freshly fallen oak leaves on campus and watching the fog filter
through the fir boughs after a long night of programming.

No Product Reviews this Month
No products reviews were done this month but I promise some next month. I feel this will be a great service and
maybe find some rising stars in the NeXT world posting material to our archive.

CS.ORST.EDU Submissions for September
Here are the submissions to the archive for the month of September. They are in alphbetical order. These are
missing a short description. It’ll be added to the postscript file submitted to the CS.ORST.EDU ftp site.

Babble.README
Babble.tar.gz

BackSpaceDuo.README
BackSpaceDuo.tar.Z

CRSolver-4.0.0.README
CRSolver-4.0.0.tar.Z

Cassandra15d.src.README
Cassandra15d.src.tar.z

CirclarSlider2.0.README
CirclarSlider2.0.tar.gz

DBPassword.README
DBPassword.compressed

LiftOff.README
LiftOff.app.tar.Z

MailHelper_1.3.README
MailHelper_1.3.source.compressed
MailHelper_1.3_MAB_stripped.compressed
MailHelper_1.3_stripped.compressed

MonsterShelf.README

MonsterShelf_3.0.tar.Z
MonsterShelf_FAT.tar.z
MonsterShelf_Source.tar.z

Morph_1.0_MAB.README
Morph_1.0_MAB.tar.z

NIST_Synchronicity_v2.2.tar.Z_README
NIST_Synchronicity_v2.2.tar.Z

NewsBase302.FAT.README
NewsBase302.FAT.compressed

ODE.tar.Z.README
ODE.tar.Z

ObjectMathDemo1.11.tar.gz.README
ObjectMathDemo1.11.tar.gz

ObjectMathService1.02.tar.gz.README
ObjectMathService1.02.tar.gz

PC_Root_Directory_Icons.compressed

PhoneSlip.README
PhoneSlip_3.1_source.compressed
PhoneSlip.compressed

8

M W - N U G N E W S L E T T E R ��

PhoneSlip_MAB.compressed

Pyramid.README
Pyramid.compressed

QuaelMail.intel.app.README
QuaelMail.intel.app.compressed

SciPlot.3.6.README
SciPlot.3.6.tar

Sentinel-1.31-MAB.tar.Z
Sentinel-1.31-Source.tar.Z

SkyView-1.0.README
SkyView-1.0.compressed

Solitaire-1.01-MAB.tar.Z
Solitaire-1.01-Source.tar.Z

StarShipView-FAT.BackModule.tar.Z
StarShipView.BackModule.tar.Z

StarShipView.README
StarShipView.tar.Z

Tesseract-0.95a.README
Tesseract-0.95a.pkg.tar

ThreadKit-0.92.README
ThreadKit-0.92.tar

TimeZonePatch.README
TimeZonePatch.compressed

TipTop_0.9.README
TipTop_0.9.compressed

Toon-Beavus&Buthead-HuhHehHuhHeh.snd

UofO_SLIP_configuration.README
UofO_SLIP_configuration.compressed

Vi.README
Vi.tar.Z

Vox-M-Groovy.snd

Water_2.0.intel.app.README
Water_2.0.intel.app.compressed

XMon1.02.README

XMon1.02.tar.Z

ephem-NeXT.README
ephem-NeXT.tar.gz

improv-archive.README
improv-archive.tar.gz

libFPSP_p2.tar.gz

ppp-0.3.README
ppp-0.3.tar.gz

usat-NeXT.README
usat-NeXT.tar.gz

Credits and Disclaimers
Thanks for reading our first newsletter and we hope
you’ve enjoyed it. Currently, we accept credit for
anything good and disclaim responsibility for anything
bad.

