
IBM officially announces that AI/X will support NextStep -- see p. 42

Buzzings
February 1990 - Issue 3

BuzzNUG

Contents
Welcome...2

Editorial Stuff..3

Feedback from the Trenches...4

Distribution of Low-Cost Software...6

Copying PostScript in a Custom View...9

Build a Stereo Cable for your NeXT..14

Pull-Down Lists..14

Working through the NeXT Developer Camp Labs...16

Creating Simple, Elegant Icons..23

Interface Builder and Pre-Drawn Bitmaps..26

An Open Hypermedia System for the NeXT...28

An Objective-C Run-time Class Browser..30

AI/X and NextStep..41

Using Terminal Windows...46

Market View..48

User Groups..51

Scenes from the NeXT Issue..52

Buzz’s Hint Corner...53

The BuzzNUG General Council

Erica J. Liebman, Pres. erica@kong.gatech.edu

David Rosenbaum, V.P. daver@pyr.gatech.edu

David Samuel King, Tres/Sec dsking@pyr.gatech.edu

Phyllis A. Huster, Editorial Consultant, ccuseph@hydra.gatech.edu

Keith Edwards, keith@kong.gatech.edu, NeXT Campus Consultant

Tamora V. Sealey, Accounts tammy@cadnext2.gatech.edu

Contributers : Erica J. Liebman, Jiro Nakamura, Andrew C. Stone, Mike Gourlay, Ian Smith,

Alan Chung, Jonathan Schwartz, Dick Silbar, Carl Sutter, David "Deebers". Kay, Edward Jung,

John "Baker" Corey,James E. Burns, Phyllis A. Huster

All rights reserved. Copyright 1990 by BuzzNUG. Individual Articles Copyright 1990 by their
authors. Authors are free to resubmit articles for publication in other media. This issue of
Buzzings may be freely distributed and copied, but not altered. This issue of the BuzzNUG

Buzzings may not be sold for profit.

BuzzNUG Buzzings #3 February 1990

1

Question : Why did the NeXT Designer Cross the Road?

Answer : It was elegant.

Welcome
Erica J. Liebman

Welcome readers, new and old. This third issue of the Buzzings is the largest yet. An
offhand trend analysis indicates that if issue size increases keep pace, a single laser-
printer toner cartridge will be insufficient to print an issue by the end of the current year.
Realistically, I anticipate that the issue size will tend to level off in the thirty-to-fifty page
range over the next few months.

There have been changes. We’ve beefed up the Market View section, trying to
include as many current and potential third party developers as possible. Time didn’t
allow product confirmation w/ delivery dates, etc for this issue so you’ll have to wait a
month before we can include the initial results of a massive phoning onslaught. I’ve
included the User Group section again -- hope it helps. Two new contacts have been
added to the list respectively in the California and Texas areas. If you have a User Group
starting up, please let us know contact names, phone numbers, addresses, meeting times
and special events in plenty of time for advance printing. You may notice that the Object
Buzz-line is no longer included. Any tips or hints about building custom objects will be
covered in individual articles or the hint-corner.

The ID Cards have been designed and are awaiting the development of our
subscription database. If you haven’t sent in contact information (name, address, phone,
e-mail), please do so at your soonest convenience. The ID Cards are adorable and are
sure to soon become a fantastic status symbol among NeXTies. Send information to
erica@kong.gatech.edu or the editorial address below. Please always note NeXT-specific
mail in the subject line. Thank you. (Send SASE for USMail).

On another note, John Corey ("Baker", to friends) of NeXT was nice enough to slip us
some official information about the AI/X-NextStep connection with IBM. The news
included should be up to date and relevant. Baker, who pretty much led the effort for
NeXT , promises that next month he’ll write about the implications that this coalition will
bring about. A big thank you is owed to him for pushing to get this information to us at
the very last moment.

Finally, I decided that since this is a message from the editor, I’d like to editorialize.
If I may be permitted to ascend the soapbox for once, at least once officially, I’d like to
talk about the NeXT Dock. The dock is a lovely creature. It gives form and structure
where certain other machines (some beginning with the prefix "mac") have not. It also
remembers the home addresses of icons. The dock is clean. The dock is elegant. This is
not enough.

Let me pontificate. I have at this time, at least three modes of NeXT-interaction :
programming-, user- and demonstration-mode. In programming mode, I want access to
(in no particular order) : Interface Builder, Scene, Icon, Shell, Terminal, TextArt, Draw,
Edit, WriteNow, Digital Librarian, Mail, Preferences, Mixer, SoundPlayer and Printer.
You may count these. Note, that even moving the black hole to another side of the
Screen does not work. The dock is still limited to twelve berths. Mostly I compromise. I
leave out the sound stuff and either Mail or Printer. I also have to sacrifice "Eyecon".

BuzzNUG Buzzings #3 February 1990

2

Then there’s my normal user mode. That’s when I crave NX_VOID, NetHack, my
usual Shell, Term, Kermit, SoundPlayer (for Wagner in the background) etc. When I’m
not programming (which happens on occasion), I want to use applications. I can’t keep
changing my dock around, so I wearily launch Mach shells and run apps from there.

And don’t forget when Mom visits. Or when a friend sees the cube for the first time.
("Awesome! What can it do?) Then it’s demo time. It’s time for ScorePlayer & Billiards
& BreakApp. I have to tell a non-computer-person "Ok now, click on the word Next
Developer". After all, none of these end up being on the dock.

So what can be done?
Here’s my suggestion. First, allow dock space above the NeXT cube as well as below

it. This will provide twenty-four dock spaces. Next, allow the user to have a "carousel"
of dock choices. By control-alt-clicking on the NeXT cube, let me circle through the
dock modes. This solves my two major problems : too many icons for a single task and
too many tasks for a single dock.

I don’t want NeXT to compromise the elegance of their workspace management
system, but I do want it to stretch the functionality within these limits.

Editorial Stuff

Articles for Buzzings are accepted in various forms, NeXT mail enclosures and
Internet .wn.tar.Z forms are preferred but ascii text via the net, IBM and Mac Disks via
USMail and (yikes) written text via the same USMail are happily accepted. We can
guarantee no return of materials without SASEs, sorry. Our focus is how-to articles,
especially with sample code. All articles are subject to editorial review.

We also welcome copies of new (and old) software for review from third party
vendors. Again, we can not guarantee material return without SASE or guarantee
publication dates, if at all, although we try to be prompt.

"Feedback from the Trenches" is open for comments/letters of limited length from all
readers. Please write and tell us what you liked and what you disliked.

Mailed subscriptions should start with the April Issue, with any luck. Please write for
information.

Editorial matters to :
BuzzNUG c/o EJ Liebman
1150 Collier Rd/NW L-12

Atlanta, GA 30318.
1-404-352-5551.

There is always an answering machine, but please respect relatively normal hours. Long
distance phone calls may not be returned by the impoverished student at the other end.
Please send any deliveries of items that will not fit within a tiny mailbox care of the
Leasing Office. To contact me directly for subscription information, corrections,
requests, or just to say hi, write via internet : erica@kong.gatech.edu.

BuzzNUG Buzzings #3 February 1990

3

Feedback from the Trenches

• I was glad to see notes about some commercial software development going on for the
NeXT. I think this is an important thing to continue; many potential NeXT users are
waiting to see if there will be a good base of commercial software available. Are there
any juicy rumors about possible portings from the major software houses? (I’ve heard
that Gates says Microsoft will never support the NeXT). P.S. Erica: I loved the first
two issues. Keep up the good work.

Scott Coulter; scott@kong.gatech.edu

• As a sideline, I actually managed to get the read the latest issue of BuzzNUG this last
weekend, but I didn’t make it back into work until just today. For a newsletter that is
only in its second issue, you (the BuzzNUG staff and contributors) have managed to
include an interesting range of articles. The only suggestion that I could think of as I
was browsing through it was that the articles need to be better delineated. One article
ends and the next begins right after. This in itself is fine, but the beginning of the next
article needs to be made more prominent such that it would most likely be the first
thing spotted when flipping to a page. In addition, you might also consider putting a
cute (but not too cute) little icon at the end of an article to denotes its conclusion (a
little black box, er, cube, would be adequate).

Once I was done, I tried to think how I could best describe the newsletter and what I came
up with was that it had somewhat of a MacTutor-esque style to it. You had an article
about machine specifics replete with source code, in addition to another (somewhat
insightful) article on interface design. I applaud your efforts. One thing that you might
have considered, but I think would be a bad idea would be to include a rumor column
of some sort. Everyone wants to hear the latest in what’s soon to become the latest, but
I think that sort of thing is best left on Usenet, IMHO :)

Frank Guerra, guerra%cae.llnl.gov@lll-lcc.llnl.gov

• I have a suggestion for your newsletter. How about a complete step-by-step guide to
getting news and sendmail running on a NeXT?

Jeff Scott, atariman@bsu-cs.bsu.edu

•There is supposed to be a scanner and software. Sorry, I don’t remember the vendor’s
name -- I don’t have the 3rd party list, and people at my local Businessland can never
find their copy... If you can get a hold of it, I’d love to hear how it works. I’m
particularly interested in OCR software, especially if it’s trainable (to read Russian).

Thanks for your efforts!
Jacob Gore, Jacob@Gore.Com, boulder!gore!jacob

• Thanks a bunch! I distributed Buzzings to our software department as well as a few
other people. It got very favorable reviews. Keep up the good work Erica!

Morris Meyer, mmeyer@next.com

BuzzNUG Buzzings #3 February 1990

4

•Hello - I was just flipping through BuzzNUG 2 and wanted to tell you that you folks are
doing a really great job with it. It is impressive. If you need any help, I’d be willing.
[Yes, please! -- EJL] BuzzNUG 2 was really great. I enjoyed seeing my two programs,
reviewed by Gerrit..

Oh yeah, there was a bug on the last page in a letter by Andrew Stone. His first bit about
the typo in the docs was right, but his example was wrong. It should be

 [window setMiniwindowIcon: "myCoolIcon.tiff"]
But I managed to figure out what he was saying and because of it, Cassandra now has

miniwindow icons. Thanks! Keep up the good work!
 Jiro Nakamura, jiro@heights.cit.cornell.edu

• Erica, I have just seen issues 1 and 2 of BuzzNUG (ftp from purdue). Although I’ve
still not seen a NeXT in the UK, or had any replies of email/snailmail from enquiries to
NeXT (despite asking about the status of UK developers) it looks interesting enough to
keep up-to-date with. If possible, could you put something to the effect ‘How do we
get one of these NeXT boxes in the UK, as quickly and as cheaply as possible
(developer status)’. Thanks.

Andrew D. Nimmo, VLSI and Computer Graphics Research Group, EAPS II, University
of Sussex, Falmer,BRIGHTON, East Sussex, BN1 9QT, UK,
andrewn%uk.ac.sussex.syma@nsfnet-relay.ac.uk. Ph:+44 273 606755 x 2617

[NB : We’ve found quite a lot of interest in Common-Market distribution. We’ll try to
address this in the next issue or so. Phyllis Huster reports that in Austria last summer,
she met a software development consultant who claimed he could sell thirty NeXTs
before breakfast -- if he had the access.]

•I liked them [the first two issues] very much. I particularly like the code examples,
several of which have given me some ideas and insight. I’d [also] like to see a good
review of the new Terminal/Shell program people are chatting about in the group.
Communicae is it? I wonder if listing of docs available from Next might not be nice.

I know I sometimes feel behind in what is available and this would help.
Doug Brenner, Weeg Computing Center, The University of Iowa, Iowa City, IA

dbrenner@umaxc.weeg.uiowa.edu | dbrennpg@uiamvs.bitnet | 319-335-5444.at&t

• Erica - Perhaps in "Buzz’ Hints Corner," you could describe how to take a non
functioning NeXT and make it a lamp. Important points might be how to get power
from the monitor cable, how to avoid violating FCC regs, and creative ideas for what to
put into the OD slot. Sounds great! Remember, the article deadline is soon....

David Kay, dbk@esl.com

Fi
ni

s

Finis
Finis

Finis

Finis

BuzzNUG Buzzings #3 February 1990

5

The Distribution of Low-Cost Software:
What should we do?
Jiro Nakamura

Ever since its release two years ago, the NeXT personal workstation with its optical
drive (OD) has been both praised and criticized by market pundits. Supporters of the OD
call it the wave of the future, detractors say that it will effectively kill the low-cost
software market for the NeXT. I believe both sides have valid arguments.

The OD’s main advantages are simple: it can store tremendous amounts of data on a
relatively quickly accessible medium and very cost effectively for its size. The NeXT’s
floptical can hold approximately 230 megabytes (formatted) and it is sold for $50 on the
academic market and $100 retail, which is approximately 20 to 40 cents per megabyte.

Unfortunately, it is only cost-effective if you use all 230 megabytes of space. You still
have to pay for all 230 megabytes even if the program you have bought on optical only
occupies 1 megabyte. And because the base medium costs $50~$100, that means that any
software will necessarily have to cost more than that. This doesn’t affect large software
packages, however it seriously damages the low-end of the NeXT software market,
packages that go from $10 to $100. There has been some rumors of inexpensive mini-
OD’s using the same size format as CD-singles, but these have remained rumors.

One reaction to the high cost of the media has been the “Refundable-OD” used by
some companies. They sell their software on OD, but allow the user to send back the OD
for a refund, typically $50~$70. Another related method is to allow the user to send in his
or her own OD to copy the software onto.

This method benefits both the publisher and the buyer and may become the main way
for commercial operations to distribute low-cost software on the NeXT. There are some
slight problems with it, such as the psychological barrier of buying a $90 package even
though you know you will be eventually refunded $70, not to mention the hassle of
shipping the OD back to the publisher.

Some organizations, especially lone-wolf programmers, do not have the facilities or
the finances to run such an operation. They need a cheaper and easier way to distribute
their software. One center of attention has been how to use the networks to distribute
software. Both bulletin-boards (BBS’s) and anonymous ftp sites seem like ideal transport
mediums. The inherent problem of such distribution methods are that they so easily
abusable for pirating. Some way of distributing software while at the same time be
properly reimbursed for its use has to be developed.

The concept of ShareWare is not new, but as things stand it may the only way for
small software developers to get their products out. For those not familiar with
ShareWare, ShareWare products are usually distributed in their entirety in some easily
accessible place like a BBS or ftp site with a notice somewhat like:

“This product is SHAREWARE. You are free to copy and distribute it as
much as you want, just as long as you distribute it in its entirety including this
ShareWare notice. If you use this product for more than a reasonable ‘testing
period,’ you are obliged to send the author $XYZ.’

The idea is to get the product in as many hands as possible and to rely on people’s
honesty. Most authors also provide support to the users that send in their ShareWare
payments. The problem with ShareWare is its inefficiency. Although this author has no

BuzzNUG Buzzings #3 February 1990

6

hard figures, saying that less than 10% of users who use ShareWare send in their
ShareWare payments would not be totally unfair. Sadly, human nature does not want to
pay for things that it thinks it can receive for free.

One thing that needs to be clarified by both the programmers and the users is exactly
what is being sold. When we buy software, do we buy a product or do we buy a service
contract? If software is a pure commodity, then ShareWare will naturally fail since it
solely relies on honesty. But if software also entails service, then there would be no
problem with ShareWare.

Because its inefficiency and uncertainty over what it means, many programmers shy
away from the pure ShareWare concept and adopt other variations on it. Many of the
variations do not have popular names so I have taken the liberty of naming them with
what I think is the most appropriate or most widely used terminology.

One of these variations of ShareWare is LockedWare (also known as ObnoxoWare).
The most widely known example of this is the FrameMaker program that comes on all
NeXT system disks. LockedWare has also spawned many different variations of itself,
mostly because the concept is simple and the code needed to implement it trivial. Also,
LockedWare truly sells a product, not a promise.

Programs distributed under LockedWare usually have one important feature disabled.
For example, FrameMaker has the ‘save’ function disabled and will not let you save your
work between sessions. The idea is to give the user a taste of the program but not give
him or her enough functionality to really use it. If the user really likes it, they can send
their money to the company and the company will release the password needed to unlock
the program’s full capabilities. Usually this password is linked to something machine
specific like its Ethernet address so that it can be used only on one machine.

A hybrid version of LockedWare is LimitedWare. This is what is used by the Sybase
database server on the NeXT. It is fully functional, except that it will not accept more
than five clients at a time. You must buy the ‘real’ Sybase package if you want more than
five clients on a single server.

Another variation of LockedWare is TimeBombWare. Programs under this usually
operate normally, but if the user has not registered the password by a set number of days
of uses, it self-destructs or destroys its datafiles. This is by far the most obnoxious form of
ObnoxoWare’s variations and many people including this author have strong feelings
against it.

Another one of LockedWare’s cousins is CrippledWare. This is most often found in
‘demo’ programs of commercial software. This is similar to LockedWare, but all the
important code has been yanked, not just simply disabled. If the user wants the software,
she or he must buy the whole package from the distributor. It is used more often by larger
companies and software packages than by smaller ones.

LockedWare is extremely simple to implement, the code needed to get the network
address is only a couple of lines long and all you need is a sufficiently complicated hash
routine to work it from there. LockedWare and most of its variations however, share the
same problem in that the unlocking password is necessarily linked to only one machine
and its network address. This becomes a problem in shared environments or instances
where the user will be using the software both at home and at the office, etc. It seems that
there is no easy solution to this problem. LockedWare seems the way to go right now,
unless the human conscious take a turn for the better and users become much more
honest.

 Another course of action is to believe what the Free Software Foundation (FSF) says
and consider software to be public domain material with everyone having the freedom to

BuzzNUG Buzzings #3 February 1990

7

copy and to share it. I wholly agree with the FSF’s belief that more software sharing will
benefit everyone.

The difficulty with Free Software lies in the fact that programmers need to live too. If
we all had jobs and could afford to program for fun and for mutual benefit, then there
would be no problems. However, many programmers program in order to support
themselves and their families. One FSF guru’s advice to me was to seek support from a
commercial company in developing Free Software.

Sun supports free software, a lot of new GNU software is done in-house by Sun’s
programmers. GNU apparently supports some development. NeXT also has its own in-
house Free Software effort. They are the ones who gave us the GNU Objective-C
compiler, Objective-C debugger (GDB), and front-end to the GNU chess program. I can
only hope that large corporations will start supporting smaller individual projects. It is
beneficial to the companies because the more software their platforms can run, the more
popular their machines will be.

Software really is for sharing, it is a commodity that should reach the greatest number
of people for the greatest benefit to all. However, the people who write software should
be properly reimbursed for their efforts too. My gut feeling is that there should be greater
corporate sponsorship for Free Software to small individual efforts. The market needs the
diversity that small programmers brings to it and it needs more low-cost software. And so
I call on programmers and NeXT alike to form larger channels of communication in an
effort to benefit everyone.

Jiro Nakamura
Independent Developer
jiro@vax1.cit.cornell.edu

Fi
ni

s

Finis
Finis

Finis
Finis

BuzzNUG Buzzings #3 February 1990

8

Copying Arbitrary PostScript in a Custom View
Andrew C. Stone

Abstract
The code to copy an arbitrary rectangle specified by the user is presented. This allows

users to simply click and drag out a rectangle to copy the enclosed PostScript to the
PasteBoard.

Introduction
Without too much work, you can add methods to copy just part of your custom view

to the pasteBoard. This code comes from a very user friendly version of popi, the digital
darkroom, that Joe Freeman and I are preparing for release into the public domain. We
have added some nice features: the entire language is specified by buttons [no typing
necessary], resizable windows, preferences to save set up, you can save images that you
generate to an "image manager" for reloading and mixing later, and of course, the ability
to copy any part of the image, with the following code. To use the following source code,
be sure to add "cross.tiff" to your IB project. It’s the cross cursor which is available in
/NextDevelopers/Examples/Draw.

In this example, we also have a method for copying everything in the view: -
copyPS:sender, so you can have a menu item to get the entire view. We include an -
acceptsFirstMouse method so that the first mousedown begins the process of repeatedly
drawing the enclosing rectangle.

BuzzNUG Buzzings #3 February 1990

9

Note we keep switching the gray of the instance drawing [the temporary drawing of
the rubberbanding rectangle to specify the source rectangle while in the mouse down
loop] from black to white, since we don’t know what color the drawing in the view is.
This could be set to a more appropriate gray level, depending on the contents of the view.
Since with popi, there is no telling what color the image is, we are content to keep
flipping from white to black, which guarantees that we will see it. Enjoy!

Your bud in Buzz,

HEADER DECLARATIONS:

- (BOOL) acceptsFirstMouse;

- copyPS:sender;

- gutsCopyPS:(const NXRect *)r;

- mouseDown:(NXEvent *)event;

IMPORT FILES:

#import <appkit/Cursor.h>

#import <appkit/Pasteboard.h>

#import <appkit/Window.h>

#import <dpsclient/wraps.h>

#import <math.h>

CLASS METHODS & 1 STATIC FUNCTION:

- (BOOL) acceptsFirstMouse

{

 return (YES); /// instant reaction

}

- copyPS:sender

{

return [self gutsCopyPS:&bounds];

}

BuzzNUG Buzzings #3 February 1990

10

- gutsCopyPS:(const NXRect *)r

{

 NXStream *s;

 NXStream *stream;

 NXTypedStream *ts;

 int length,maxlen;

 int i = 0;

 char *data;

 const char *types[2];

 id pb = [NXApp pasteboard];

 [NXWait push];

 types[i++] = NXPostScriptPboard; /// add other types here

 [pb declareTypes:types num:i owner:self];

 stream = NXOpenMemory(NULL, 0, NX_WRITEONLY);

 [self copyPSCodeInside:r to:stream];

 NXFlush(stream); // Bruce Wed Nov 1 09:00:36 MST 1989

 NXGetMemoryBuffer(stream, &data, &length, &maxlen);

 [pb writeType:NXPostScriptPboard data:data

 length:length];

 NXCloseMemory(stream,NX_FREEBUFFER);

 [NXWait pop];

 return self;

}

BuzzNUG Buzzings #3 February 1990

11

// Returns the rectangle which has p1 and p2 as its corners.

static void getRegion(NXRect *region, const NXPoint *p1, const

NXPoint *p2)

{

 region->size.width = p1->x - p2->x;

 region->size.height = p1->y - p2->y;

 if (region->size.width < 0.0) {

 region->origin.x = p2->x + region->size.width;

 region->size.width = abs(region->size.width);

 } else region->origin.x = p2->x;

 if (region->size.height < 0.0) {

 region->origin.y = p2->y + region->size.height;

 region->size.height = abs(region->size.height);

 } else region->origin.y = p2->y;

}

#define DRAG_MASK (NX_MOUSEUPMASK|NX_MOUSEDRAGGEDMASK)

- mouseDown:(NXEvent *)event

{

 NXPoint p, last, start;

 NXRect region, oldRegion,r;

 static const NXPoint hotChamama = {7.,7.};

 int oldMask;

 static id crossCursor = nil;

 float rectGray = NX_WHITE;

 BOOL doubleclick = (event->data.mouse.click == 2) ? YES : NO;

 // quick copy

 if (doubleclick) return [self copyPS:self];

 oldMask = [window

 addToEventMask:NX_MOUSEDRAGGEDMASK|NX_MOUSEUPMASK];

 if (!crossCursor) {

 crossCursor = [Cursor newFromMachO:"cross.tiff"];

 [crossCursor setHotSpot:&hotChamama];

 }

BuzzNUG Buzzings #3 February 1990

12

 [crossCursor push];

 p = start = event->location;

 [self convertPoint:&start fromView:nil];

 last = start;

 [self lockFocus];

 PSsetlinewidth(0.0);

 PSsetinstance(YES);

 event = [NXApp getNextEvent:DRAG_MASK];

 while (event->type != NX_MOUSEUP) {

 p = event->location;

 [self convertPoint:&p fromView:nil];

 PSnewinstance();

 if (p.x != last.x || p.y != last.y) {

 getRegion(®ion, &p, &start);

 NXInsetRect(&oldRegion, -1.0, -1.0);

 PSsetinstance(YES);

 PSsetgray(rectGray=1.-rectGray); /// alternate b&w

 PSrectstroke(region.origin.x, region.origin.y,

 region.size.width, region.size.height);

 PSsetinstance(NO);

 oldRegion = region;

 last = p;

 NXPing();

 }

 p = event->location;

 event = [NXApp getNextEvent:DRAG_MASK];

 }

 getRegion(&r,&start,&last); /// final rect

 PSnewinstance(); ///flushes offscreen buffer

 [self gutsCopyPS:&r]; /// send the rect to be copied

 [self unlockFocus]; /// the rest is clean up

 [window flushWindow];

 [window setEventMask:oldMask];

 [crossCursor pop];

 return self;

}

Fi
ni

s

Finis
Finis

Finis

Finis

BuzzNUG Buzzings #3 February 1990

13

Build a Stereo Cable for your NeXT
Mike Gourlay, Ian Smith

To build a cable connecting the NeXT to a stereo device, find two male 1/8" stereo
plugs and three pieces of wire. Cut these to the final desired cable length. Unscrew the
base, or shield, of the plugs. There will be three terminals -- places to solder wire. Two
are short, one long. The long one probably has a U-shaped end. This is for crimping
wires to relieve strain.

All you need to do is solder each wire to a similar post inside the plug. If there are
three lengthed terminal posts, and you have three wires, one wire goes from long to long,
one from medium to medium, the last from short to short. It is very simple.

To get a good connection, either buy shielded stereo cable to make this plug (it will
have three wires -- the ground is braided around the two signal wires to keep out radio
wave interference) or simply buy a cable pre-made to these specs. I’ve never seen such,
but then, I’ve not looked very hard.

 wires | terminal | plug |

 V posts V V

 _______ _______

/)-----c~~~~~~~~~~~~~~~~~~~~~~~~c-----(\

)---------c~~~~~~~~~~~~~~~~~c--------(====>

_______)---c~~~~~~~~~~~~~~~~~~~~~~~~~~~~c---(_______/

I hope this picture helps. It’s not difficult. By the way, you don’t have to solder if
you really don’t want to. You can find plugs which have screws rather than solder
locations. You can make the wire without having to solder, but you’ll probably lose the
surety of the better connections made through soldering.

Fi
ni

s

Finis
Finis

Finis

Finis

Pull-Down Lists: Discovering the Appkit’s Hidden Treasures
by Alan Chung and Jonathan Schwartz

Introduction
We’re all fans of the familiar pull-down menu. As brought to the masses by another large

California-based computer company, the pull-down menu features prominently in a variety of
graphical user interfaces. In fact, just the other day we were trying to work around a user
interface problem on our EE CAD tool when we found ourselves saying, “What we need is a
pull-down list.” Figuring NeXT would have predicted such an occasion, we set the Digital
Librarian rifling through the tech docs to find references to “pull-down list.” No luck, “0 found.”

BuzzNUG Buzzings #3 February 1990

14

So we tried “pull-down”—still no luck. In fact, the only reference we could find to pull-
down lists ended up in the user interface guideline section—nothing in the Appkit references. It
was a bit hard for us to believe that NeXT would have given us pop-up lists without pull-downs,
but after spending a considerable time looking through the 0.9 Reference Manual, we concluded
this was the case. Faced with adversity, however, development must go on.

So we started to write our own pull-down list. �Unfortunately, we were a few days into it
before Alan made the big discovery: pull-down lists have been in the Appkit all along—just
undocumented! We suspect this oversight could be attributable to a certain patent held on the
pull-down menu by another large California-based computer company, but that’s a debate for the
lawyers. In the meantime, we thought we’d pass on the solution to the absent pull-down list
problem, and hope to spare other hapless developers from our sleepless nights.

The Pull-Down List, Documented
The first step to creating your own pull-down list is to create a pop-up list object:

pullDownList = [PopUpList new];

After you’ve created the object, go ahead and insert items into the list, leaving out the list’s title.

[pullDownList addItem:"This"];

[pullDownList addItem:"is a"];

[pullDownList addItem:"test"];

And now we perform the magic. The default value of the boolean changeButtonTitle is
YES, which means the list will be regular pop-up. By setting changeButtonTitle to NO,
however, we get our pull-down list.

[pullDownList changeButtonTitle:NO];

The final step is to attach this pull-down list to a control object either by
NXAttachPopUpList() or by NXCreatePopUpListButton(). These procedures even give the
button the correct pull-down list icon. It’s that simple.

And remember, PopUpList is a subclass of Menu, so it’s not only possible to have
separate actions for each item in a pop-up/pull-down list, but to have keyboard equivalents as
well. Just replace the above addItem: message with addItem:action:keyEquivalent: and the
Appkit handles the rest.

[pullDownList addItem:"Deposit"

action:@selector(deposit:)

keyEquivalent:68];

BuzzNUG Buzzings #3 February 1990

15

As a final note, before you go ahead and use pull-down lists in your application, we’d
recommend familiarizing yourselves with the user interface guidelines to better understand their
role in the NeXT universe. The pull-down should be considered a last resort user interface
option, to be used only if all other methods, including regular menus, are deemed unsatisfactory.

The authors of this article, Alan Chung and Jonathan Schwartz, are partners in Lighthouse
Design, creators of electrical engineering CAD tools for the NextStep environment. They can be
reached by electronic mail at lighthouse@lighthouse.com or ...!uunet!lighthouse!lighthouse, by
physical mail at 6516 Western Avenue, Chevy Chase, MD 20815-3212, or by telephone at 301-
907-4621. This article is Copyright 1990 Lighthouse Design, Ltd. Permission is granted for
non-commercial use and reproduction.

Fi
ni

s

Finis
Finis

Finis

Finis

Working Through the NeXT Developer Camp Laboratories,
Or, How I Spent My Christmas Vacation
Dick Silbar, Los Alamos National Laboratory

In December at Los Alamos we are forced to take vacation between Christmas and
New Year’s Day. This is normally not a serious problem for me because, if there is snow,
my wife will take me skiing every day. This year, however, there was not enough snow
to ski at all, here in the Great Southwest.

On the other hand, that allowed me to catch up on my homework. In early December
some NeXT People came to Los Alamos to teach the first Developer’s Camp off the
grounds of NeXT. I participated and had a great deal of fun in the process. The
unfortunate part was that, at the time, I really only had a chance to touch on the Labs that
go with the course. Thus, with a snowless Christmas break looming ahead, I arranged to
detach "my" NeXT from the Laboratory Net and take it home for Christmas.

I really had in mind to get started on an application that I’ve planned for some time.
However, being a beginner (and you will see in just a minute just how much of one I am),
it occurred to me that I would be better off if I first finished working through the Camp
Labs in detail. The story that follows is somewhat reworked from a more stream-of-
conscious version that went off to our Camp Instructor, Bruce Blumberg, for purposes of
feedback on the content of the course and the associated Labs. In the process of writing
these experiences down, however, it finally dawned on me that what I had learned here
might be of interest to other people who are also starting out to program the NeXT.
Why and How Should You Do These Labs?

Why should you do these labs? To learn how to use your NeXT, of course. It is
possible to do this even in the absence of being able to go to Developer’s Camp. The
Labs themselves are available for downloading by anonymous FTP from, say, Gerritt
Huizenga’s NeXT archives at "j.cc.purdue.edu". There are four of them, one for each day
of the Camp: CalculatorLab, CompositeLab, TextLab, and one of undetermined form
(since it is a choose-it-yourself project). Basically, these Labs are partially-baked
applications that are broken in some places and incomplete in others. The Exercises are
to fix the broken places and complete the coding.

BuzzNUG Buzzings #3 February 1990

16

Before you begin on the Labs themselves, however, I would suggest first working
through the simple examples of how to use the Interface Builder (henceforth, "IB") given
in Chapter 8 of the (on-line) System Reference Manual. Follow this by printing out and
reading Chapters 6 and 7, which fill in on the philosophy of NeXT Program Structure and
Dynamics. After, or during the time that you then start in on the Labs themselves, you
may also want a printout of the Class Specifications given in Chapter 22.

The Author Really Is a Beginner!
That is to say, I don’t qualify as a trained-in-school Computer Scientist, as I assume

most of the readers of Buzzings are. I’m a practicing nuclear physicist, and have been for
some time. Recently, however, I have become interested in somewhat more modern
programming techniques than are exemplified by Fortran programs for solving singular
integral equations for scattering amplitudes.

I came to the NeXT machine last April with essentially no experience in UNIX or in C
programming, much less in Objective C. On the other hand, for somewhat peculiar
reasons, I already had fairly extensive recent experience programming in Common Lisp
and Scheme and I did know a fair bit about object-oriented programming in general.

By the time I got the to Development Camp course, I had used the NeXT machine in
my office for about seven months, and thus I knew basically how to get around in the file
system and get things done. I had also worked through the "Adobe Blue Book", the
PostScript Tutorial and Cookbook (and had written one PS program, which is mentioned
below). Moreover, I had read the first two-thirds of the book on Objective C by Brad
Cox, but I had never really tried writing any code in Objective C before the Camp.

Heading into Camp I had two things on my agenda. The first was, "How do I make an
Emacs Tool?" Something with a lot of mouseability like the Tool which comes with
SunView. (I also began using a Sun 4, for separate purposes, at about the same time the
NeXT arrived.) The second intended project was a more "traditional" situation for a
NeXT Application: to make a "LensLab" for designing optical systems, either of light or
charged-particle beams.

I was somewhat disappointed in not learning, in the Camp, just how to get a NeXT
application to talk to an existing non-NeXT application, such as the GNU Emacs that
comes bundled with the system. Evidently the answer has something to do with pipes or
Unix sockets or Mach ports, and none of this material was covered in the Camp. On the
other hand, this sort of material is -- I am told -- part and parcel of the regular baggage
carried by ordinary C programmers. I guess that means I still have to do some homework
before I can tackle my EmacsTool project!.
General Remarks on the Interface Builder

The Interface Builder itself is a remarkable Black Box, but one which deserves some
comment. Besides the general remarks given here, there are particular criticisms I will
make in the Lab discussions, in the context of the troubles I was having at the time.
Blumberg tells me that these kinds of comments are all "good", but that most of them had
already been made to the people at NeXT in charge of IB improvements. Perhaps some
of the things I am nagging about here will be cured in Version 2.0. One good reason for
mentioning these sorts of things here is that it might serve as a public reminder of Things
That Ought To Be Fixed in Version 2.0.

I don’t like the choice of words "parse" and "unparse", and I don’t even know what
the two words mean. (I suspect they were chosen by someone who was mostly concerned
with building compilers). More to the point, however, I am frankly still not sure what all

BuzzNUG Buzzings #3 February 1990

17

happens when these things are done in the IB. There seem to be some dangers here even
beyond the obvious one of over-writing all your previous programming efforts. For
example, will "parse" sometimes disconnect things? I can’t prove it, but I have the
impression that it might.

The documentation on "parse" and "unparse" is, to coin a phrase, sparse. There are
some words and warning on p. 8-31 and four not very informative paragraphs on p. 8-81
of the System Reference Manual. In particular, I also have the impression there have
been times when I needed to "parse" one of my classes -- as when I added outlets or
actions -- before things would work (allow me to make connections). There is nary a
word to that effect in the docs.

It would be helpful if the unparser put in the "#import <appkit/appkit.h>"
line automatically. I realize that might well include more than one actually uses, but it is
very easy to forget this line. At the beginning of a project, the programmer doesn’t often
know all of the appkit things that he is going to use. I suspect it only costs in compilation
time, but if each programmer makes about two mistakes by not having the proper ".h"
files imported, the recompilations will eat up all that economy.

It seems to me that if I make a change somewhere in the IB files for a project, the little
"X" in the northeast corners of all the IB windows should change into the broken "X"
icon, which indicates that the IB files have not been saved. Apparently the only such "X"
which changes is that on the "Files Window". However, many times that window (or the
NE corner thereof) is covered over by something else. I was stung many times this
Christmas by not saving the IB project before doing a make.

That last point requires some clarification, perhaps. It became my habit to do the
successive makes and loads from a standard Terminal window. One of my reasons for
that was that, if I tried using the Make item in the IB main menu, I got hung up with an
interactive input request I had stuck in my .login file. (From the UNIX prompt there is no
way for the Makefile to know whether the IB files had changed.) However, when I
remove the extraneous prompt from .login and choose the IB menu Make item, the IB
does ask if it should update its files first. [Me too. I always use the shell for Make--EJL]

On another topic, it seems to be very inconvenient to change the name of a project or a
class. (In contrast, it is no trouble at all to change the name of an outlet or action.) All
unparsed files, the IB.proj file, and the Makefile must be thrown away or laboriously
edited. Not fun at all.

As things now stand, there is a lot of iteration of the {fix-code, make, execute} cycle ,
and compilation of even my relatively small codes is pretty slow. (Blumberg has assured
me that improved compilation speed is a very high priority for Version 2.0.) It would be
nice to be able to see how a method behaves in the IB, i.e., to be able to interpret pieces of
code interactively. And then make the fixes on the fly. This is clearly possible, since the
LISP machine people have enjoyed such a development environment for some time. In
fact, I’ve heard rumor of such interactive tools for C++. Maybe there even is something
like this for Objective C.

Particular Remarks on the Labs Themselves
The following paragraphs may only be understandable if you’ve already looked at the

Labs and tried some of their exercises.
There were no particular problems, for me, in finishing the CalculatorLab (Lab 1),

but as a C-beginner I have a lot of trouble remembering to put the ";" at the ends of lines.
(I almost never seem to forget the "]", of course, but that’s a LISPishness learned some
time ago.)

BuzzNUG Buzzings #3 February 1990

18

The CompositeLab (Lab 2) was somewhat more trouble. First, in my fumbling
around, I somehow ended up defining Subclass1 (of Object) and Subclass2 (of Subclass1)
before I realized that the custom CompositeView class was really a subclass of View. In
the meantime, I evidently parsed and unparsed and instantiated some of these things at
various odd times (I don’t remember it all). In any case, when I decided it was time to
delete these extraneous classes, I could not do so: "Subclass2 is being used". (If it
weren’t, the appropriate procedure is to highlight it in the Classes Browser and then hit
the <delete> key.) There needs to be a way so that one can find out, in the IB, where a
class is being used, to be able to delete it. For that matter, I could find nothing in the
System Reference Manual on deleting a class, but that is surely something a general IB
user will want to do sometimes.

I cured this particular problem of not being able to delete one class by scratching all
my previous work on this Lab and starting over. Clearly that is not something you want
to do if you are deep into a big application.

My second adventure in Lab 2 was in learning how to set the sliders in the proper
initial positions at load-time. The easy solution (which I presume is what was intended,
since there is no reference to this in the Solution) is to set the initial values for each slider
in the Attributes Window of the Inspector. However, in class Bruce discussed a way to
do so programmatically, by setting up outlets from the CompositeView instance to each
slider:
 a) put "id sourceAlphaSlider" and "–setSourceAlphaSlider" into the .h file.
 b) put "-setSourceAlphaSliderPosition:sender" into .h.
 c) put "[sourceAlphaSlider setSourceAlphaSliderPosition:self];" into +newframe.
 d) define methods as follows:
 e) make sure everything is parsed and saved.

 -setSourceAlphaSliderPosition:sender
{

 [sourceAlphaSlider setFloatValue:sourceAlpha];

return self;

}

 -setSourceAlphaSlider:aSlider {

sourceAlphaSlider = aSlider;

 return self;

 }

Alas, this never worked for me (at Christmas time). I now think that, perhaps, I forgot
to actually define and connect the outlets here! So, someday soon I may go back and try
this again. I can see where this programmatic technique could be very useful in other
contexts.

My next adventure had to do with learning how to use "pswrap"for drawing a
PostScript picture. Unfortunately, pswrap is very poorly documented; it badly needs a
more complete example about how to use it in the IB and with ObjC. All I could find was
a skimpy "man" entry and a small section "Using pswrap" in Ch. 4 of the System
Reference Manual (pp. 49-50). (There is more information, I am told, on "pswrap" in
Vol. 3 of the Tech Docs, but those are not presently on-line and searchable with
Librarian.)

BuzzNUG Buzzings #3 February 1990

19

What I was trying to do was to replace the FLOWER option with a piece of PS code
that I had developed earlier, a Zia Sun symbol with crossed squash racquets (the logo of
the New Mexico Squash Racquets Association). Eventually (after a lot of hacking) I
found that the simplest way to make it work (that I could find) was:
 a) to put the PS code in a separate file, "drawNMSRA.psw" (note extension), with

 the "defineps drawNMSRA()" and "endps" around my code.
 b) have a "void drawNMSRA();" at the top of the -drawSource body.
 c) define an internal method in .m (and note it in .h):

-drawNMSRA

{

void drawNMSRA();

drawNMSRA();

return self;

}

 d) call the method in drawSource with:
 case NMSRA:

[self drawNMSRA];

 break;

 e) be sure the Project includes "drawNMSRA.psw" in the .psw files.

This works. But there may be a better way.

The TextLab, Lab 3, is a lot harder than the earlier two, particularly for those who
don’t know much about pointers and declarations in C (like me). I had to cheat a bit, by
looking at the solution file, to get Exercise 1, which is to add scrolling capability to the
Text Window, to come out right. (During the class my lab partner and I were able to get
it right without cheating, but I had forgotten how in the intervening two weeks.)

Going on, I then got very much hung up on Exercise 2, which is really a very simple
thing, once you know where things are. My problem was not being able to find the
instantiation for the application’s main menu. Double-clicking on the menu icon in the
Files Window does not bring the menu up onto the screen!

I eventually found the main menu under the IB menu. Where it evidently is always
put, whenever a new application is loaded into the IB. I consider this a bad feature. The
IB would be much more understandable to a beginner if the menu for the application
under construction were visible from the start, e.g., just under the IB menu. (Perhaps
greyed?). At the very least, double-clicking on the MainMenu icon in the Files Window
ought to bring it up to the surface, somewhere, even if only temporarily.

BuzzNUG Buzzings #3 February 1990

20

For Exercise 4a I had to cheat quite a lot to understand what to do. In fact, I really
don’t understand the declaration

 const char *const tlType[2] = {"tl",NULL};

at all. The books on C that I had at home during the Christmas break are not very
highbrow, but neither of them says anything about "const" or "*const". That, I now
know, is because the above declaration is something "new", namely ANSI-C. OK, I am
exhibiting my ignorance of the base language here, but I suspect that getting to the above
declaration from what’s in the Spec Sheets on "runModalForDirectory:file:" is a tough
problem even for moderately good C programmers.

I might have gotten to the above declaration by myself if the statement of the problem
had given a hint to look at the openRequest method. (I confess to not having read
over the code very carefully before trying the exercises.) Even so, I still wouldn’t have
understood the declaration.

When I finally got TextLab to work, I was a little surprised not to see the "X" become
the "broken X" after something is written to the text-window. I am still curious how one
does that. Also, the File Name displayed in the textfield of the Save Panel is the entire
pathname, not just the name as it appears in the directory. It would be nice to know how
to truncate this to something a bit more readable.

Beyond the Cookbook Labs
For my Lab 4 -- a project of one’s own from scratch -- I decided to build an interface

to set up and display changes to a beam phase-space ellipse. (A phase-space ellipse is a
first-order optics description of a non-point-source beam.) On New Year’s morning I
succeeded in getting it (sort of) right:

Apart from my problems with the spelling of "emittance", there were other problems
along the way (that are of general interest).

BuzzNUG Buzzings #3 February 1990

21

Most scientists and engineers need to use an occasional Greek symbol. I wanted to
have coordinates x and θ = dx/dz (instead of x’) for my phase space. There is the Symbols
Font available to me, but within a Matrix of Form Cells everything must be either all
Roman or all Greek. Damned inconvenient.

Then I had the question of how one sets the texts in a Matrix of TextFields. I was
expecting a method like "setFloatValue:at:" In this regard, I must confess to being a bit
confused; I couldn’t see at first, from the documentation, that "setFloatValue:" would
work on a TextField. Even though I knew that we did just that in "displayValue" for the
field "viewer" in the CalculatorLab. I now know that "setFloatValue:" is, through
TextFieldCell, inherited from Cell. Thus, another question is, how can one learn of all
the methods available in a class? The write-ups in Ch. 22 only give those methods
defined in that subclass -- one has to also look at the write-ups of all the ancestors?

The situation that gave rise to the Matrix of TextFields questions was eventually
finessed by going instead to a Matrix of Forms. Since then, however, I have found that
what I wanted to do could have been done in steps using something like
[[myTextFieldMatrix cellAt:3 :0] setFloatValue:thetamax] .

Another problem I had arose, once again, from my lack of C experience. One has to
be sure to import everything one needs into a class definition. I was getting an innocuous
warning "method not found" when messaging my EllipseView instance inside a
BeamEllipse class method. But since that flashed by and the make otherwise compiled, I
didn’t pay all that much attention. On loading and executing, however, the instance
variables in EllipseView were not actually being set. Thus I was then getting all sorts of
strange errors, all of which looked like PostScript problems that made no sense at all (in
view of the PS code I had written). These all miraculously disappeared when I finally
realized I had to add ‘#import "EllipseView.h"’ to BeamEllipse.m.

I also had mysterious problems in drawing my (tilted) ellipses in my CustomView,
which came out filled and looking like PacMan, even though there was no fill and I
completed my arc from 0 to 360 degrees. At first I thought this was a bugginess of the PS
C-functions, but on trying it also with regular PS code in the Yap App, it eventually
became clear that it was me who messed up, not them. I was drawing my ellipses with
very thick linewidths.

Another PostScript Surprise was to find that my labeling of axes (with PSshow) at
first had the characters upside down (rotated about the x-axis). I couldn’t see where, in
the documentation, this is discussed as the normal DPS behavior. However, it is curable
by using "1 -1 scale" (or its PSscale(...) equivalent) to get Post Script to print out strings
upright.

And a final surprise: on loading of my application, the first drawing (during
initialization) in the CustomView comes in greyed, not with full black lines. In
particular, the NXFrameRect() at the beginning of my drawSelf method didn’t show up
black the first time around, unless I specifically require it so with a PSsetgray(0).
And Conclusions

Well, the major conclusion here is that I did have some fun over the Christmas break
and in fact got a good start on learning more about how this beautiful black machine on
my table actually works. It might have been better, however, if there had been a little
snow this year.

silbar@whistler.lanl.gov (505)-667-5253

Fi
ni

s

Finis
Finis

Finis

Finis

BuzzNUG Buzzings #3 February 1990

22

Creating Simple, Elegant Icons - A Brief Introduction
Erica J. Liebman

Abstract
Simple, elegant, professional icons can be created using the "icon" drawing program

included on the NeXT Distribution disk. Stone Design’s TextArt adds flashy titles to
these icons. Additionally ray-tracing icons is considered. Examples are included from
Quality/Liebsoft’s public domain disk documentation program for Lighthouse Designs..

Introduction
In late January, I needed to create icons for a ReadMe program that Quality Corp (the

family company) prepared for Lighthouse Designs. This called for a large variety of
distinctive icons in a relatively short period of time. I turned to the Icon program from
the standard NeXT Distribution and, to my delight, also found the true purpose for which
Text Art was designed. Now, Andy Stone may disagree with me as to Text Art’s "true
purpose", but he won’t be put off by sales figures when people see what a great little
programming tool it is. Text Art was made for creating icons.

Three Steps to Icon Creation
It took only three "manufacturing steps" to produce my icons for ReadMe. Gaining

familiarity with Icon and Text Art does require some time, but is well worth the
investment. After the first two or three icons, I found I really started to achieve mind-
bending creation speed. To begin make sure you have both programs running and a fresh
"new" worksheet to play with in Icon.

Before starting the first icon, try to become familiar with how the "detail" window
works. This small window is exactly the size of a standard NeXT icon. All your artwork
must fit within this window. Moving the detail tool on the worksheet changes the
contents of the detail window. Follow these steps to create the icons.
� 1. Create a Nice Background . Use the rectangle or paintbrush tool to create a
background larger than the finished icon. The Shades palette has a variety of regular
patterns. You may also paste in some pre-existing artwork from the Shapes menu.
Bored with this trivia? Adventurous and creative? Create your own "brush" and use the
Effects palette for picking up and pasting down. If you do this, make sure to set the
composite option in the Tools palette to Sover or a similar compositing function. Can’t
remember what that compositing function is? There’s a handy reference to compositing
in the Shapes palette. Open a fresh window and drag down the shape from the lower right
hand corner.

2. Create and Place Your Title. Click on the TextArt mini-window to bring the
application to the forefront. Use 12 or 14 point text, and shape as desired. Copy the
graphic and move back to Icon. Open the detail window, and move the detail icon to an
interesting part of your background. Click on the detail window and paste in your artful
text. Move to where it looks nice and use the Effects palette to paste down the title. Be
sure you’re in Sover mode on the Tools pallet or else you’ll end up with a lot of white-
space you didn’t intend.

BuzzNUG Buzzings #3 February 1990

23

Icons Panel created for ReadMe

BuzzNUG Buzzings #3 February 1990

24

3. Add Borders, Touch-up and Save Make any finishing touchups. You may want to
add a border to demark a textured background. Just beware that you are using alpha
values in your creation of icons. For example, if making corrections by "painting in" with
white, you’ll have white spots on your finished icon. Click on the detail window and
Select-All. Save the selection by choosing "Save-As" from the Window menu. Be sure
the selections are set to Tiff, Save-Selection and With Alpha (versus EPS, Save-
Document and No Alpha) before changing the name and clicking OK.

Using "White-Out" doesn’t work with Alpha-Values

Adding Icons to Interface Builder
Icons can be added to interface builder by dragging the TIFF Icon from the directory

browser onto a project window. The appropriate suitcase will automatically open. To
add an icon to a button, just drag it from the icons window onto the button. When the
button gets a border, let go. The button will automatically resize.

The exception to this method is the Application icon. In the Project Inspector, (for
"Attributes" not "Files"), you have to add the application icon separately by choosing the
set button and selecting the tiff file. If the file isn’t in your current directory, you will be
offered the option to make a copy.

What Makes a Good Icon?
Icons differ from pictures in that they have implied functionality. Good icons should

reflect information. The instructions above will create only workable, even professional
icons, but it’s important to understand the techniques of good icon design. Icons come in
three basic types . Picture icons directly reflect their purpose, such as a pencil for
drawing. These are easily recognized, retained and designed. These often are direct
pictures of tools they emulate. Symbol icons are metaphors. These too are easily taught
and retained, but harder to design. An example is a picture of a train labeled "+" dragging
two cars with numbers behind it, indicating that this icon is used for adding two
quantities. Sign icons are arbitrary. An example of a Sign Icon is the radiation symbol.
This symbol was designed and has no relation to the reality of radiation. The advantage
of Sign icons are their long lifetimes once they enter into popular use, but they have no
direct associations and are harder to learn.

BuzzNUG Buzzings #3 February 1990

25

To Trace or not to Trace?
Probably the best way to design picture icons, outside of digitizing a snapshot, is to

use Ray-Tracing or similar drawing methods to create a realistic icon with shading,
shadows, etc. Ray-tracing works by following a single light-ray from an "eye-point" and
determining the ray’s source. When a traced-ray hits an object, it will reflect, refract, or
simply indicate the degree & absorption of "photons" coming from various light-sources
hitting this surface. Ray-traced icons, face it, are cool. Ray tracing can be used by those
of us without any artistic talent whatsoever. Until a cheap package comes along though,
this method of icon creation is beyond most of our reach. C’mon NeXT, tell us how you
really created that floating screwdriver for Interface Builder’s icon.

Conclusions
With just two programs, you can create some spiffy looking icons. Icon is available

in the NeXT distribution package under /NextDeveloper/Demos. Text Art is available
from Stone Designs. Together, they reduce icon building to a few simple steps.

Fi
ni

s

Finis
Finis

Finis

Finis

Using the Interface Builder to include pre-drawn bitmaps in a program:
Carl Sutter

There are several ways to include bitmaps in an application through the Interface
Builder. Each method has its quirks, but the process ends up being quite simple once you
know what to look for.

The first step is to make a bitmap (perhaps with the Icon application). Save it as a
TIFF file like Monkey.tiff. There are two ways to load it:

1) Drag the TIFF file into the icon suitcase. If the bitmap is used on a button, it will
be included as a named bitmap in your final application. You can then load the bitmap
with the findBitmapFor: method of the Bitmap class.
 Bitmap *bmpMonkey;

 bmpMonkey = [Bitmap findBitmapFor:"Monkey"];

Note that findBitmapFor: will also work with the system bitmaps listed in the
Bitmap class documentation. You can put these system bitmaps on a button by typing the
name in the button inspector icon field. (Note that a bug in IB 1.0 forces you to first drop
any icon on the button before typing the system bitmap name). In your program, you can
access the Application Icon with the name "app". Any document icons can be found
under those file’s extensions set in the IB like "txt" or "wn". Note that the bitmap must be
used on a button for the findBitmapFor method to work! If it is not used, it will not be
loaded from the .nib file and subsequently not added as a named bitmap.

2) Add the TIFF file to the Project Inspector .tiff Files section. You can then load the
bitmap with the newFromMachO: method of the Bitmap class. This method has the
advantage that the bitmap isn’t used on a button.
 Bitmap *bmpMonkey;
 bmpMonkey = [Bitmap newFromMachO:"Monkey.tiff"];

BuzzNUG Buzzings #3 February 1990

26

Using Bitmaps for Fast Drawing
The basic technique on the NeXT machine is to create an offscreen bitmap, draw into

it, and then composite (bit-blt) it on the screen when you need to see it. The NeXT
machine can composite extremely fast, and you can have transparent parts in a bitmap.
You can also use all the powerful compositing modes when drawing. (see the docs for
details)

First, declare a pointer to a Bitmap instance in the interface file:

 Bitmap *bmpMonkey;

Don’t forget to #import <appkit/Bitmap.h>

The rest of the code goes into the implementation file. Next, make a new instance of
the Bitmap object: (maybe in the new, or newFrame method)
 {
 NXSize nxsMonkey;

// size of desired bitmap

 nxsMonkey.width = 50.0;

 nxsMonkey.Height = 100.0;

 bmpDemo = [Bitmap newSize:&nxsMonkey

 type:NX_UNIQUEBITMAP];

 }

To draw in the bitmap:
 {

 [bmpMonkey lockFocus];

 PSsetgray(NX_BLACK);

 /* whatever PS drawing code you want */

 PSmoveto(10.0, 10.0);

 /* this just draws a short line segment */

 PSlineto(30.0, 30.0);

 PSstroke();

 [bmpMonkey unlockFocus];

}

BuzzNUG Buzzings #3 February 1990

27

The creation and drawing could be combined by loading an existing bitmap with the
newFromMachO or by a similar method. To draw the bitmap on the screen: (maybe in
the drawSelf method, so the focus is already set, otherwise lock the focus on the receiving
view first)

 NXPoint nxpLocation;

 nxpLocation.x = 50.0

 nxpLocation.y = 100.0

 [bmpMonkey composite:NX_COPY toPoint:&nxpLocation];

Carl F. Sutter
Academic Software Development Consultant
University of Southern California
University Computing Services
(213) 743-3826 sutter@ozone.usc.edu (NeXT mail)

Fi
ni

s

Finis
Finis

Finis

Finis

An Open Hypermedia System for the NeXT
David Kay, ESL

ESL’s new non-commercial hypermedia system provides "integration by reference"
between NeXT applications. Hyperworld, allows application builders to add hypermedia
functionality to products while conforming to NeXT interface guidelines. Hyperworld is
intended to make creating and traversing inter- or intra-application links as accessible to
the user as cutting, copying, and pasting. Like cut, copy, and paste, the user need not
know the mechanics of the process or the differences among data types; hypermedia
functionality is there when needed and otherwise unobtrusive.

What It Is
Hyperworld furnishes various hypermedia functionality. It provides:

• Transparent link management with Sybase
• A powerful application programmers interface
• An open architecture for all-media integration
• An efficient annotation capability
• A complete linking facility, with user-definable link types
• The HyperBrowser, a sophisticated tool for link navigation.

Additional tools already included are HyperWrite, a Hyperworld text editor, and
DataDisplay, a Hyperworld signal viewing application. A Hyperworld image editor, map
editor, and graphical signal processing language are currently under development.

About Hypermedia
Hypermedia allows data in applications to be linked with other data in the system. This
linking accomplishes integration by reference; applications can be launched transparently

BuzzNUG Buzzings #3 February 1990

28

by other applications by following links. For example, a picture of a person might be
linked to biographical text about him, and these might be linked to by a mention of his
name in another document. NeXT Applications integrated through hypermedia allow
users to create chains of reasoning, complex presentations, and institutional memories in a
way that no single tool alone could support.

How You Add It To Your Application
The Hyperworld class library should allow the application developer to add hypermedia
functionality to a new or existing application with minimal effort. (Our experience
indicates that integration takes an experienced NeXT developer about one week per
application). Each Hyperworld application must be able to refer to blocks in its data;
these blocks are the starting or ending points of Hyperworld links. For example, a word
processor could use a range of characters as a block; a spreadsheet could use a range of
cells, and a graphics display could use minimum and maximum x and y values. Once the
application can represent its chosen block style, Hyperworld takes over. The Hyperworld
BlockManager class handles block representation, links, link types, and the Hyperworld
class implements the Sybase interface.

What This All Means
Unlike previous hypermedia solutions, Hyperworld is not a single closed application, but
part of the application infrastructure. Any NeXT application can support linking and link
navigation with minimal development. Just like cut, copy, and paste, hypermedia
functions can become a user-expected feature of NeXT applications. And because
Hyperworld takes advantage of the Sybase data server that comes with every NeXT
computer sold, link data is quickly, efficiently, and securely stored.

How To Get More Information
Please note, Hyperworld is not a commercial product. For more information about
Hyperworld technology, contact ESL’s Workstation Products Manager at (408) 752-
2525.

Fi
ni

s

Finis
Finis

Finis

Finis

BuzzNUG Buzzings #3 February 1990

29

An Objective-C Run-time Class Browser
Edward Jung, DTG

Abstract
NeXT1 has chosen Objective-C as their system-wide programming language.

Objective-C is an object-oriented language standard developed by Stepstone Corporation
(formerly Productivity Products International), and implemented by NeXT as extensions
to the Free Software Foundation GNU C compiler “gcc”.

Introduction
The NeXT Objective-C compiler is one of many object-oriented language systems

available today. Objective-C differs from most other hybrid object-oriented languages,
however, in its flexibility at run-time; this flexibility is exploited by tools such as
Interface Builder.

The run-time flexibility is available because the NeXT compiler produces “meta-data”
for every object and class – data stored about the object system that is accessible at run-
time. I will present the meta-data stored for objects, and how the run-time system uses
this data. In the course of the presentation, I will demonstrate how to access the run-time
system by developing an application that can browse all the Objective-C classes that are
linked into a run-time image. Note that the documentation shipped with the NeXT
system is unclear and in some places incorrect.

The reader is expected to be somewhat familiar with the fundamentals of object
oriented languages in general, and Objective-C. I will be using the Smalltalk term “class”
in place of the term “factory” used in Stepstone documentation.

NeXT Objective-C is not Objective-C
Objective-C is a message-typed, hybrid, compiled, object oriented language, more

closely related in philosophy to Smalltalk than to C++ or Object Pascal but lacking
garbage collection. Its object model is a single inheritance, class based, late-bound,
message passing, message (non-strict) typed, compiled language. Importantly, this model
is expressed through a run-time support system rather than being wired into the language,
and therefore is amenable to use in other languages, such as Fortran or Common Lisp’s
foreign language interface. The NeXT Application Kit and Interface Builder

components of NeXTStep are strongly dependent upon the use of the run-time system
of the Objective-C object model.

1 Objective-C and Software IC are registered trademarks, and ICpak is a trademark of Stepstone

Corporation. NeXT and Interface Builder are registered trademarks of NeXT Incorporated.

BuzzNUG Buzzings #3 February 1990

30

The NeXT Objective-C implementation differs from the Stepstone standard in many
subtle ways. Firstly, the NeXT Objective-C compiler is integrated into the normal
(ANSI) C compiler rather than being a separate front-end compiler (sometimes called a
translator) emitting C source code. This results in faster compilation, better shell-level
semantics, and more friendly source-level debugging. As a consequence, some
debugging features of the Stepstone system are no longer necessary and are deleted.

Secondly, NeXT has introduced the concept of class categories, which may promote
modularity and flexibility of class interface and implementation, potentially at the
expense of class maintenance in programming-in-the-large (by introducing project
context sensitivity to class declarations).

Thirdly, NeXT’s run-time system uses delayed or lazy initialization of classes; this
decreases start up time, but has the unfortunate side-effect of altering the semantics of
class posing (a powerful albeit seldom-used feature). NeXT’s current Objective-C
compiler does not support stack-allocated objects, nor the ability to statically bind classes
(an option usually used to reduce message passing overhead when the classes have been
frozen). NeXT maintains internal data structures in the run-time image that facilitate run-
time object behavior modification; these structures are different than those of Stepstone.

One resulting side-effect is that class objects are no longer considered rvalues (more
on this later). NeXT uses a vastly different archiving mechanism than Stepstone, and thus
cannot use much of the Stepstone ICpak “Software IC” libraries without modification. In
general, however, NeXT’s compiler is mostly source-level compatible with that of
Stepstone, and is certainly identical in philosophy.

An Aside: a Brief Comparison to C++
Inevitably comparisons between Objective-C and C++ 2.0 (the emergent object-

oriented “standard”) will be made. The languages are both hybrids of C and an object
model, but they are quite different in syntax and semantics. For purposes of this article,
C++ will refer to the AT&T CFront 2 standard released mid-1989. Since this topic is
sufficiently complex to warrant an article of its own, I will make some simplifications in
this comparison.

C++ has features such as distinction between private, protected and public members,
which is both important and useful for software engineering purposes. The explicit
declaration of virtual methods may result in improved performance. Multiple inheritance
may prove to be useful, although the semantics may prove to be unwieldy in the
maintenance of large evolutionary projects. C++ allows stack-allocated and reference
objects, however careful understanding of the allocation of these objects is important in
order to avoid severe performance penalties.

BuzzNUG Buzzings #3 February 1990

31

The validity of message passing in C++, like Object Pascal, is controlled by
subtyping. It has been shown that subtyping is not sufficient for encapsulated behavior,
and subtyping interferes with tools such as Interface Builder which are purely message-
based. The subtyping model makes the inheritance matrix of classes extremely
important; it becomes the most important issue in class design. In summary, C++ is a
large, powerful language that can be difficult to master.

Objective-C is purely message-based, which means that the validity of message
passing is controlled only by the message, and has little to do with the inheritance matrix
(subtyping). This allows instances to delegate behavior, or respond to any message
regardless of where it is declared in the inheritance matrix. This model permits the
passing run-time computed selectors as messages, and has other features lending
exceptional run-time flexibility. Although good for prototyping, incremental class
definition, and tools such as Interface Builder, this model can be detrimental to correct
implementation of projects and management of complexity. The compiler, however, is
able to perform subtype-based static checking (and emit appropriate warnings), which
may be defeated using casts or ignored entirely. Many errors, however, still cannot be
caught until run-time. This seems to be a comfortable compromise, although its
scalability remains unproven.

The bottom-line is that C++ will almost always out-perform Objective-C in speed, at
the expense of run-time flexibility. There are, however, many "features" of Objective-C
that can be used to maximize performance at the expense of readability and generality.
Objective-C is also a very open object system. Both suffer from being hybrid languages.
A Brief Review of Syntax

Objective-C adds few syntactic constructs to ANSI-standard C. First is the message
passing syntax:

return_value = [receiver_object selector];

The bracketed expression passes the message selector “selector” to the object
“receiver_object”. The return value of the method invoked by this message becomes the
value of the expression. This is closely patterned after the Smalltalk syntax. Message
selectors can be unary selectors that do not pass arguments, or keyword selectors that do
pass arguments. Keyword selectors have colons embedded into their names; every colon
represents an argument. Thus the selector “setIntValue:” takes one argument, while
“setValue:andUpdate:” takes two. These arguments are passed embedded into the
keyword selector as follows:

return_value = [an_object setValue:10 andUpdate:YES];

A special case is worthy of note: the receiver “nil” is the universal receiver. Any
messages sent to “nil” always return “nil” without error. This can be used to reduce the
amount of checking in code for valid receivers, or for terminating cascaded messages, so
in the following example:

BuzzNUG Buzzings #3 February 1990

32

[[anObject findLastObject] doThis];

the “doThis” message will only have effect if the method invoked by the
“findLastObject” message returns a non-nil value.

The next syntax extension is in the declaration and implementation of classes. By
convention, a class declaration appears in “ClassName.h”, while the corresponding
implementation appears in “ClassName.m”.

A class is declared using the following syntax:

@interface ClassName:SuperclassName

{

// instance variables

}

// class and instance method declarations

@end

Method declarations are of the forms:

+ (return_type) selector;

+ (return_type) selector:(arg_type)arg...; // class method

- (return_type) selector;

- (return_type) selector:(arg_type)arg...; // instance method

Unlike ordinary C where the implied type is “int”, an integer, Objective-C
declarations have the implied type of “id”, which is an object reference2. As a
convention, all method return some value. If the method cannot return an otherwise
useful value, it should return a reference to the receiver.

Implementations use another syntax extension:

@implementation ClassName:SuperclassName

// method implementations

@end

The appearance of the superclass name is optional. Method implementations use
forms similar to method declarations, for example:

+ classMethodDeclaration

{

// C code

}

2 Technically the type id is a pointer to a structure describing an object – the exact definition appears in

/usr/include/objc/objc*.h.

BuzzNUG Buzzings #3 February 1990

33

Within a method, three special symbols may appear: “self”, which is a reference to the
receiver, “super”, which is a reference to the receiver’s superclass, and less frequently
(almost never, actually), “_cmd”, which is the method message selector.

Categories are a NeXT extension to Objective-C. Given a class that has already been
declared using the aforementioned syntax, a category or extension to the class may be
declared at some other point in the source:

@interface ClassName(CategoryName)

// category class and/or instance method declarations

@end

Note that there is no provision for declaring additional instance variables. Likewise,
implementations use a similar syntax:

@implementation ClassName(CategoryName)

// category class and/or instance method implementations

@end

This allows the methods of a class to be distributed across different source files for
purposes of modularity or incremental compilation. No methods may be duplicated
across ordinary or category declarations or implementations, however there are no rules
governing where the implementations may appear. A method declared in the interface
category X in class Y can be implemented in the ordinary implementation of class Y; the
implementation category X may not exist at all (although this probably would not be
wise). Categories therefore allow adding methods to an existing class, but do not allow
redefinition of an existing method.

There are no conventions in place governing the naming of files in which categories
appear, although I would guess that categories would most often be used to create
functional packages. Notice that there is a bug in the implementation of categories that
prohibits any class name and any category name from being the same in any application.

In the following sections, I will introduce the internal structures that the compiler and
run-time system utilize to implement Objective-C.

Message Passing
The chief duty of the compiler is to translate the Objective-C message passing and

class definition/implementation syntax into a form that the run-time system expects. So
we will first delve into the run-time system:

The run-time object system is actually fairly simple. A message dispatch expression
is divided into two categories: those messages sent to “super”, and all others. A message
sent to “super” translates into a call to objc_msgSendSuper, while a message sent to any
other receiver translates into a call to objc_msgSend. All message sends therefore
dispatch through those two functions. The essential difference is that messages sent to
“super” begin searching for a method implementation in the superclass of the calling
object, whereas all other messages begin their search for a method implementation in the
class of the receiver.

BuzzNUG Buzzings #3 February 1990

34

Development Process
Here at DTG, we have a development system that we affectionately call ROMPER

that handles much of the “scut work” involved in the software life-cycle, library
maintenance, and class reuse. I generally start with a software requirements specification
(SRS).

In brief, the SRS involves:
1. general descriptions,
2. functional and operational interface requirements,
3. a specification of functional requirements that are transformed into a

project work suite,
4. a specification of operational criteria that are transformed into a formal

or informal test suite, and
5. a user interface prototype expressed as a set of Interface Builder .nib

files.
Although a report can be generated from an SRS, it tends to be quite long. For this

application, the SRS is quite simple: the project is single-tiered, there are no unexpected
functional nor operational interface requirements, the work suite is standard and therefore
substantially encapsulated in the design specification, all test suites are informal, and the
prototype is enclosed.

After the SRS, the software design specification (SDS) is created. The SDS ranges
from an overview of the design issues, to functional decomposition to low-level pseudo-
code. Again, this application was very simple, so a very high-level design was
immediately coded (I do not believe that tools used to enforce an engineering
methodology should be so cumbersome as to interfere with “hacking” an application
together; the tools, however, should sufficiently empower the implementer such that
resultant applications employ sufficient formality to permit maintenance and reuse).

The actual implementation has an associated software information record (SIR),
which is used with repositories and other tools for maintenance and auditing purposes.
Sufficiently mature modules are deposited into a globally-accessible hierarchy of
software components. Note that all repositories contain active modules rather than
passive code. Modules are preserved in and out of context, and have references to clients,
servers and humans for code, debugging, testing, maintenance and support. Repositories
may be accessed at specification time or run-time, and are generally late-bound to their
contents.

I generally customize my environment to divide the specification, design and
implementation phases into three components: foundation, interface, and glue. Each has
its own section in the SRS and SDS.
Foundation Modules

Since this project is concerned with certain data structures that may change, a primary
order of development was to create the foundation classes representing these structures.
These classes would serve to insulate clients from the details of the data structures, and
would also serve as foundation classes for other applications. This is an example of a
functional class design influenced somewhat by implementation details.

BuzzNUG Buzzings #3 February 1990

35

The fundamental structures of interest are:
1. a collection of all classes in the current image;
2. class information;
3. instance variable information;
4. class variable information;
5. instance method information; and
6. class method information.

A natural question that arose concerns the manner of ordering the collection of all
classes. The run-time system does not care about any global ordering: the only
requirement is that each class know its superclass. It would seem useful, however, to
present a hierarchical ordering to the collection, since such a collection is fundamental to
the programming model. Moreover, a multiple inheritance model is more general.
Looking at the library of available classes, I found a class Graph that maintains directed
graphs, which is ideal since both single and multiple inheritance can be embedded in
directed graphs. I therefore create a subclass of this class, ClassGraph. When an
instance of ClassGraph is created, it immediately initializes itself as a directed graph
comprising the entire run-time class hierarchy.

The application will assume that instance and class variables are substantially the
same, except for their property of belonging to an instance or class. I therefore create a
IVarRef class (instance variable reference), a property of which is whether it is an
instance variable or a class variable3. Likewise I can get away with creating only a
single method reference class, MethodRef, which has a property that encodes whether
the object is an instance or class method. Note that this is probably a poor assumption; if
in the future method and class information become substantially different, I will wish that
I had kept them in separate classes. With that caveat suitably ignored...

Interface Classes
I steered toward a window that displayed a class hierarchy in a manner much like the

NeXT file browser uses in the Open and Save panels. Class names would appear in the
browser wells. A class with subclasses would have the small arrow icon denoting a non-
leaf node. Clicking on a class would select it; if it were non-leaf, the subclasses would
appear. Double-clicking on a class would “open” the class.

Opening the class would cause a browser to appear. The browser would have a toggle
button that would switch its view between that of variables and methods. Another toggle
button would switch between class and instance inspection. The net effect is similar to
that of the Smalltalk-80 class browser.

I expect that one utility for a run-time browser would be to gain information
concerning undocumented classes. Thus an feature that produces an Objective-C header
file from the run-time information would be useful. A window containing a scrolling text

3 Actually the property is whether the instance variable belongs to a class or a metaclass (a class variable

is actually an instance variable of a metaclass). A metaclass is the class of a class.

BuzzNUG Buzzings #3 February 1990

36

area is therefore created; the header file is output to the text area from where it may be
copied to the pasteboard.

In order to support this interface specification, I needed a browser class. As it
happens, NeXT has a class, Browser, that is used by the Workspace Manager file
browser, as well as the system Open and Save panels. It is undocumented, but I used an
early version of this run-time browser project to generate a header file for Browser. I then
used the header file to subclass Browser twice: HashTableBrowser can browse instances
of HashTable; NodeBrowser can browse the instances of Node in an instance of Graph
(or in this case, ClassGraph) in a hierarchical manner.

All the other interface pieces were available from the standard AppKit “parts bin”; I
employed Interface Builder for interface layout.

Glue Classes
In order to tie the interface and foundation classes together, I created a class and a

non-class module. First I made the RTBController class to control the direct interaction
between user-interface pieces and foundation class manipulations.

Then I made the TypeParser module. Note that the run-time system stores typing
information in ASCII filer strings, and method selectors as single strings with embedded
colons. This module contains utility routines that convert the ASCII filer strings and split
the selector strings into a string suitable for inclusion in an Objective-C class interface
declaration. TypeParser was put in a separate module (instead of being integrated with
the Ref classes) because I felt it likely that people would want to change the format of the
output at this level, and that as handling of the ASCII filer strings matured, a single point
of reference would be easier to maintain.

Putting It Together
Integrating the modules was a “snap”. It’s really a simple application; it took about a

day to put it together. Unfortunately, it took four days to remove all the dependencies of
the source code upon our special development system (for example, our code
maintenance system does not store nor present code as linear files -- the system is also
beta and had not been used to export code to the world outside of ROMPER).

You should have no problem using the NeXT-standard compilers and libraries with
the enclosed source code. If you do, please submit a bug report to the address given at the
end of this article.

Some caveats:
1. the Browser subclasses are based upon a correct but undocumented

specification. It is within the full rights of NeXT to change this
specification without notice. This may break these interface classes.

2. the TypeParser module has many short-comings. It does not handle all
types. It is not re-entrant. It should be rewritten.

3. the internals are neither space nor time efficient.
I sincerely hope that the application is useful both as an example and as an

exploratory utility.

BuzzNUG Buzzings #3 February 1990

37

Closing Comments
As a development tool, a static class browser/editor (or inspector) would be more

useful than the run-time browser presented herein. Rather than operating on a running
image, however, such a browser would have to either parse through class source files
(probably in conjunction with the pre-processor), or read the Mach-O format object (.o)
files produced by the compiler. The former has the disadvantage of requiring a syntax-
directed parser with its attendant maintenance headaches (i.e. keep up with the evolving
Objective-C definition from NeXT). The latter has the disadvantage of only parsing class
information after successful compilation, and not being as generically applicable to
editing the information.

Note that due to the dynamic nature of Objective-C and the potential distribution of
class information among many source files (due to NeXT’s categories), a static browser
may not accurately reflect the run-time image. Categories, moreover, may complicate the
ordinarily hierarchical view of class information, possibly requiring a separate functional
module view.

The author is perfecting a static inspector and other related tools, and would welcome
any suggestions from the readership, especially in the area of user interface and feature
set.

About the Author
Edward Jung has nearly completed his third (and final) year as Director of Research at

the Deep Thought Group, Limited Partnership, a Pacific-Northwest research and
development organization working on the application of physiological neural network
theory to analog and digital parallel distributed computation (among other things).
Previously he “did time” as an academic researcher in biophysics, where he published and
did other equally amazing academic things.

Edward is also co-moderator of the NeXT computer conference on the BYTE
Information Exchange (BIX). He enjoys stimulating electronic correspondence and may
be reached using regular or NeXT-format mail at:

Internet ed@dtg.com
UUCP ...uunet!dtgcube!ed

BIX ejung

Fi
ni

s

Finis
Finis

Finis

Finis

AI/X and NextStep
John "Baker" Corey, NeXT Systems Engineer

As the NeXT Program Manager for the NeXT/IBM joint project, I am rather pleased that
IBM Corp. has made public their plans for NextStep. I have asked Erica to include the press
kit information which NeXT sent out in this issue of Buzzings. I think it will make clear what
the announcement was all about. In the March issue, I will provide an inside view of the
AI/X NextStep port (which means that all the announcements will be complete so the details
will be better).

BuzzNUG Buzzings #3 February 1990

38

On a related note, I will be writing a short piece which describes the R&D project
undertaken by NeXT and IBM to port the NextStep software to the various IBM platforms.

One last comment given the confusion on the net. IBM will ship NextStep with
Objective-C. They did not use C++ as was reported from Uniform.

For other questions, etc., please contact Allison Thomas Associates [NeXT’s PR firm].
Ask for Allison Thomas or Emily Brower. Their phone number is 818-981-1520.

IBM Release:
Immediate Release, February 5, 1990

IBM TO OFFER NEXTSTEP ON AIX WORKSTATIONS
NEW YORK, February 5, 1990 . . . IBM and NeXT, Inc. today announced that IBM

plans to offer NextStep on AIX. IBM’s NextStep offering will provide AIX users with a
major new application environment for enhanced business and professional productivity.

NextStep is an application software development and user interface environment, created
by NeXT and licensed to IBM in 1988. IBM will support the same applications
programming interfaces (APIs) as NextStep, providing compatibility and consistency so that
developers can offer applications on both machines, resulting in a larger market for their
efforts.

NextStep will join OSF/Motif as graphical user interface offerings planned for the IBM
PS/2 and RISC computers running AIX, IBM’s open-standard UNIX operating system based
on AT&T System V and BSD 4.3. Specific product offerings and availability will be made at
a future date.

"The innovative NextStep application environment will offer outstanding ease-of-use and
development productivity," said Nick Donofrio, president of IBM’s Advanced Workstation
Division. "We’re especially excited about the benefits of the NextStep Interface Builder and
Application Kit, which bring significant value to our customers."

The UNIX operating system offers sophisticated features such as powerful networking
and multitasking, but it may been considered, by some users, to be too complicated for those
who are not UNIX experts. NextStep, which hides the complexity of the UNIX operating
system under an object-oriented environment, will allow users to take advantage of the
benefits of UNIX.

"We believe IBM’s support of NextStep will have profound implications over time," said
Steven P. Jobs. "UNIX is destined to be a crucial operating system this decade. NextStep
tames UNIX so business users can tap its power. NextStep offerings from both IBM and
NeXT will be a dynamic combination."

Quotes from NeXT developers about developing with NextStep:

 Adamation, Stephen Adams, president, (415) 452-5252

"We enthusiastically support IBM’s decision to license NextStep for their AIX

platforms. The strategic alliance between IBM and NeXT will be a boon to both software

developers and end users alike. Developers will gain the advantage of two markets for the

BuzzNUG Buzzings #3 February 1990

39

price of one and end users will benefit from the ability to choose software solutions that are

not tied to one platform. Products such as Who’s Calling? , a fully automated client

management system built for the NeXT Computer, will be marketed on two different

hardware platforms that share the same user environment."

Adobe,John Warnock, chairman of the board and chief executive officer, contact Pat Marriot

(415) 961-4400

"IBM’s endorsement of NextStep for its AIX platforms has an enormous impact on the

UNIX market. NextStep, which incorporates the Display PostScript system as the

underlying imaging model, provides a powerful and innovative development environment.

Software vendors now have not only state-of-the-art tools, but and expanding base of

platforms and customers for their applications. We intend to port our application programs to

the AIX NextStep environment to take advantage of this expanding market."

Ashton-Tate,William Lyons, vice president and general manager, applications group

(408)927-5300 or (408) 927-5538

"We are very excited about the user capabilities of NextStep and we are confident the

putting NextStep on IBM’s AIX platforms will broaden the market and increase customer

acceptance for NextStep applications."

Conextions, Inc.,Fred Hammond, vice president, sales and marketing,(603) 888-5525

"Support for IBM’s version of NextStep is strategically important to Conextions, Inc.

Products that have been or will be developed for the NeXT Computer will also be offered on

IBM’s AIX platforms. Our IBM terminal emulator (to be released later this month) will be

Conextions’ first NextStep product available for both NeXT and IBM/AIX computers."

Frame Technology,Steve Klann, vice president, sales and marketing,(408) 433-3311

"Frame Technology has been a strong supporter of NeXT and NextStep because early on

we realized the benefits to programmers and end users provided by the NextStep

environment. The joint IBM/NeXT announcement sends a clear message to companies who

have been taking a wait and see attitude: NextStep is a standard for the 90’s. We’re excited

by this announcement because IBM computers have such a broad market and product appeal

which opens up tremendous opportunities for developers like Frame."

BuzzNUG Buzzings #3 February 1990

40

Informix, Jeffrey Bork, vice president of marketing, (415) 926-6300

"The NextStep development environment on IBM AIX platforms provides an exceptional

foundation for Informix’s Wingz graphic spreadsheet. With its new DataLink capabilities,

Wingz becomes an easy-to-use graphical interface to Informix SQL databases. This

technology can integrate AIX platforms into a corporate-wide graphical information

management system."

Lotus Development Corporation, Ed Belove, vice president of corporate research and

development, contact Susan Earabino (617-225-1281

"The decision by IBM to offer NextStep on their AIX systems for business users further

enhances the market potential for NeXT technologies."

Media Logic Inc., G. Hank Weghorst, contact Rob Batchelder (213) 453-7744

"We believe NextStep will make desktop UNIX a reality in the personal workstation

market. NextSTep makes UNIX a superior environment for general business users as well as

technical professionals. For software developers like ourselves, NextStep has enabled us to

create an innovative application like TopDraw and bring it to market sooner than would be

possible in any other environment. We are pleased that IBM has shared NeXT’s vision and

look forward to supporting their future products. Discussions are currently underway with

IBM to begin doing so."

WordPerfect Coporation, Alan Ashton, president, contact Tom Mallory (801) 222-2350

"We are pleased with IBM’s decision to adopt NextStep for their AIX platforms. Our

plans are to port our NextStep software to IBM’s AIX platforms under

NextStep."

Legal Stuff:

NextStep is a registered trademark of NeXT, Inc.All other names marked by and are trademarks or tradenames of their respective software

manufacturers.

Background: The Difficulty with Easy-To-Use User Interfaces

NeXT, Inc. created NextStep to solve two major problems. Applications without good

user interfaces are difficult to use, and applications with good user interfaces are difficult to

develop.

Before NextStep, many users admired the powerful attributes of UNIX systems--

multitasking, high-speed networking, robust operation--but were overwhelmed by the rigors

of learning the arcane commands necessary to use the machines. In fact, even many personal

computers were daunting for this same reason.

BuzzNUG Buzzings #3 February 1990

41

As personal computers with graphical user interfaces appeared, life for users improved.

Unfortunately, however, application developers paid the price because these new user

interfaces were very difficult to program. Easy-to-use programs required software developers

to spend as much as 90 percent of their time programming the user interface, which typically

represents only 10 percent of the total program. In practice, this imbalance prevented

developers from allocating the time necessary to create graphical interfaces.

The NextStep Solution

NextStep simplifies the creation of complex, multitasking applications that have graphical

user interfaces. It provides software developers with a set of interactive ‘‘objects’’--e.g.

buttons, scroll bars, windows--which they can arrange on the screen with the mouse, without

any programming, to create their application’s user interface. They can also use the mouse to

graphically connect these user-interface objects to the objects in the guts of their application.

This process removes a major obstacle in the development of an application. Freed from

the burden of time-consuming and difficult user-interface programming, developers can

concentrate on the features and capabilities specific to their applications.

Users benefit, too. In NextStep, once the user has mastered one application, other

applications are easy to learn. Because all applications are built from the same basic set of

objects, the user is guaranteed a consistent, high-quality user interface. Also, the shortened

development time allows developers to produce a broader range of more sophisticated

applications, thus expanding users’ options.

The Power of NextStep

In addition to the basic set of objects provided in NextStep, software developers can

create their own user-interface objects and use objects created by others. For example, NeXT

has already introduced special object ‘‘kits’’ for incorporating sound or music into

applications. It is expected that entire object families will be developed to serve specific

vertical applications, ranging from finance to construction to computer-aided design.

NextStep also includes mechanisms for applications to communicate and cooperate with each

other more easily. Combined with the UNIX operating system’s

multitasking capability, this inter-application communication heightens the collective power

of the user’s application set.

BuzzNUG Buzzings #3 February 1990

42

Applications

NeXT Hardware

NextStep
Window Server

Mach

Appliation Kit

Interface Builder

Workspace

PostScript

NextStep’s Four Components

The Window Server

The Window Server routes signals from the keyboard and mouse to applications,

processes drawing commands from applications and manages overlapping windows.

At the heart of the Window Server lies the Display PostScript system. All drawing of text

and images in NextStep is done through the PostScript language, whether that drawing is to

appear on the computer screen or on a printer. Because of this unified imaging model, users

can see their work on the screen exactly as it will appear when printed. Additionally,

application developers do not need to add any special code to their program to support

printing.

In NextStep’s multitasking environment--in which the user can literally do

more than one task on the computer at the same time--the Window Server performs two other

vital functions: sending the user’s keyboard and mouse actions to the appropriate application

and providing the multiple windows on the screen within which applications’ PostScript

drawing is displayed.

The Workspace Manager

The workspace is what appears on the computer screen when the user starts working. It is

controlled by the Workspace Manager, which displays document and application icons,

launches applications, allows the user to copy files, and manages the computer’s file system.

BuzzNUG Buzzings #3 February 1990

43

It includes a ‘‘docking’’ feature, whereby users can place up to 12 application icons in a

convenient location, at the right hand side of the computer screen, for easy access.

The Application Kit

The Application Kit contains the set of predefined ‘‘objects”--e.g., a button, a menu, a

scrolling bar--that developers combine to create their user interfaces. Developing a user

interface is greatly simplified because developers work with a few self-contained, fully

functional objects instead of a library containing hundreds of subroutines. This object-

oriented approach gives programmers a more powerful set of building blocks than with

traditional approaches, allowing them to think at a higher level about what they want their

applications to do.

In addition to user-interface objects, the Application Kit contains objects that support

such vital functions as copying and pasting between applications, making requests of other

applications and communicating with the Window Server. These objects help make

NextStep independent of the hardware on which it runs, while isolating the software

developer from some of the more arcane aspects of the UNIX operating system.

Interface Builder

Interface Builder is a tool for the rapid construction of a graphical user interface for any

type of application. It takes application programming to a new level by drastically cutting the

time needed to create user interfaces. In addition, because its graphical mode of operation

requires minimal programming expertise, Interface Builder makes application development

accessible to people who may be experienced at using computers, but not at programming

them. For example, people can use Interface Builder to create customized applications for

their own offices, departments or companies.

Interface Builder provides a palette of software objects, such as those supplied in the

Application Kit. Using the mouse, users can simply drag objects from these palettes and

graphically create user interfaces for

applications. Users can also edit the objects’ attributes, using the mouse to determine how

objects will look and function.

Users can also graphically connect these objects to each other and to objects they creates

themselves, thus specifying how objects will communicate and

function together. These connections form the basic structure of the application and

determine what happens within the program as the user manipulates the user interface.

BuzzNUG Buzzings #3 February 1990

44

NeXT Hardware

Mach

PostScript

NextStep

Applications

NeXT Hardware

Mach

PostScript

NextStep

Applications

NextStep and IBM

When NeXT introduced its NeXT Computer in October 1988, the company also

announced that IBM had licensed NextStep. IBM has now announced that it is offering

NextStep on AIX to provide its customers with a major new application environment for

business and professional productivity.

AIX is IBM’s UNIX operating system. NextStep will join OSF/Motif as IBM’s graphical

user interface offerings for its PS/2 and RISC computers running AIX.

IBM supports the same application programming interfaces (APIs) as NextStep, which

provides compatibility and consistency to help users learn new NextStep applications

quickly. Also, NextStep application software written for either the NeXT or the IBM PS/2

platform can be ported to the other platform with simple recompilation, which should create a

much larger installed base of NextStep users. As a result, developers can justify devoting

greater energies to creating a wider range of software programs under NextStep.

BuzzNUG Buzzings #3 February 1990

45

 The partnership between NeXT and IBM over NextStep is expected to benefit both

parties. They hope that the combination of IBM’s broad market strength and NeXT’s

innovation will help NextStep become a world standard.

[It may have been vendor biased propaganda -- but, hey, at least it was COOL vendor biased

propaganda! Thanks Baker.--EJL]

More Legal Stuff

NeXT, Application Kit, Interface Builder and Workspace Manager are trademarks of NeXT, Inc. NextStep is a registered trademark of

NeXT, Inc. Display PostScript and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a registered trademark of

AT&T. AIX is a trademark and PS/2 is a registered trademark of the IBM Corporation. OSF/Motif is a trademark of the Open Software

Foundation. Objective-C is a registered trademark of The Stepstone Corporation.

Fi
ni

s

Finis
Finis

Finis

Finis

Notes on using Terminal windows
James E. Burns (burns@gatech.edu)

If you use a lot of different Terminal windows, you may find the following somewhat
useful (although there is little here that you can’t find in pages 18-6 and 18-7 of the System
Reference Manual).

Terminal has a lot of attributes which can be set to your preferences. The default
values are saved using dwrite: dwrite Terminal <attribute> <value> (You can check
your current defaults with ’dread -o Terminal’.) The most useful defaults to set are given
below (see the on-line documentation for the others):

dwrite Terminal NXFixedPitchFont

dwrite Terminal NXFixedPitchFontSize <point size>

dwrite Terminal Lines <number of lines>

dwrite Terminal Columns <number of columns>

The only values currently available for are Ohlfs (default) and Courier.
You can create a new terminal window from a shell or terminal

window by typing Terminal & (the ’&’ lets Terminal run asynchronously so you can
continue using your current shell). Any of the default Terminal attributes can be
reset for an individual call. For example:

Terminal -Lines 24 -Column 60 -NXFixedPitchFontSize 24 &

The standard placement for a new Terminal window is 24 points down and 24 points
to the right of the ’last moved’ Terminal window. A Terminal window is ’moved’ when it is
created or moved about the screen (but not resized!). If you want to put a Terminal window
in a specific location, you can do so with the WinLocX and WinLocY attributes. For
example, the following Terminal will appear in the leftmost upper corner of the screen:

Terminal -WinLocX 0 -WinLocY 0 &

BuzzNUG Buzzings #3 February 1990

46

What I am most frequently using multiple window for is to rlog to other machines.
The convenient way to do this is use the ’Shell’ attribute, e.g.,

Terminal -Lines 24 -NXFixedPitchFontSize 18 -Shell "rlogin foobar" &

will set up a 24 line window with 18 point font which logs onto machine ’foobar’. If you
have set up .rhosts properly on foobar, you won’t even have to give a password to start using
it. When you exit from rlog, the window quits.

OK, this is lot’s of fun, but it also requires a lot of typing. What I have done is
created a set of executable scripts (I keep this in a directory on my path called scripts.local)
so that I can easily start up whatever remote sessions I need. By appropriate
use of WinLocX & WinLocY, I can make sure my remotes to each machine always appear
where I expect them. An example file, lfoobar, looks like this:

#!/bin/csh

#

#Shell script to open an rlog window to foobar

#

Terminal -Columns 80 -Lines 33 -WinLocX 1 -WinLocY 80 -Shell "rlogin foobar" &

Now when I type ’lfoobar’ a window is opened & a session started on foobar. I also have a
set of similar scripts to create terminals of different size fonts. For example,

#!/bin/csh

#

Create a full size 10 point terminal window

#

Terminal -NXFixedPitchFontSize 10 -Lines 71 -Columns 80 &

I chose 71 lines since this is essentially fills the screen at 10
points. Corresponding choices for other font sizes:

FontSize Lines
 12 58
 14 54
 16 48
 18 42
 20 39

Fi
ni

s

Finis
Finis

Finis

Finis

BuzzNUG Buzzings #3 February 1990

47

Market View
I’ve received literature from NeXT or Third Party Developers on the following products.
No warranty, express or implied, is given. The quotes are mostly the developers’ and may
not reflect reality.

Communicae - Active Systems 1-617-576-2000 "high performance communications
package. VT240 emulation"

Wingz Informix Software, Inc. 1-913-599-7100 "graphic spreadsheet featuring advanced
charting, desktop presentation capabilities, and HyperScript"

Scan 300/GS Abaton 1-415-683-2226 "300 dpi flatbed scanner with TIFF compatility"

DM-N Digital Microphone Ariel Corporation 1-201-249-2900 "software-selectable
sample rates from 88.2 kHz to 5.5 kHz per channel"

DaynaFILE Dayna Communications, Inc. 1-801-531-0600 "external, SCSI floppy disk
drive to write to standard UNIX-formatted diskettes, as well as MS-DOS formats"

Smart Art Emerald City Software, Inc. 1-800-223-0417 "50 text and graphics effects and
easily customized in any NeXT word processor, desktop presentation, or page layout
program"

FrameMaker 2.0 Frame Technology Corporation 1-408-433-3311 "powerful, cost-
effective workstation publishing software"

Artisan Media Logic Incorporated 1-213-453-7744 "high-resolution paint and image
processing system"

TopDraw Media Logic Incorporated 1-213-453-7744 "complete and advanced page-
based graphics software"

TextArt Stone Design Corporation 1-505-345-4800 "array of tools that allow immediate
creation of outstanding PostScript images"

Encapsulated PostScript ClickArt T/Maker Company 1-415-962-0195 "combines
ClickArt EPS portfolios into a collection of high-quality Encapsulated PostScript (EPS)
artwork"

Public Domain Disk #1 - Lighthouse Design 1-800-FOOBAR9 "Public Domain
Software & More" (I’m in on this one. Buy it. Please!)

Scematic Entry - Lighthouse Design 1-800-FOOBAR9 "CAD Tool for designing
electrical circuit schematics"

Media Station - Imagine Inc 1-313-434-1970 "archival, retrieval and processing of
multi-media information"

BuzzNUG Buzzings #3 February 1990

48

Fortran 77 -- Absoft 1-313-853-0050 "Objective Fortran-77"

DisplayTalk - Emerald City Software - 1-800-223-0417 "Complete development
environment for Display PostScript programming" (I gave them a call in January. It
looks like we may have a review of this for the April Issue.)

Video Monitor and Projector Interfaces Extron Electronics 1-800-633-9876 "offers
three video monitor and projector interfaces"

Digital Ears Metaresearch, Inc. 1-503-238-5728 ""allows entering and recording
compact disc-quality sounds"

Digtal Eye Metaresearch, Incorporated 1-503-238-5728 "allows entering and recording
NTSC video images"

NVT High Density Video Drive New Vision Technologies, Inc. 1-415-285-8744 ""video
playback device for interactive multi-media applications"

JETSTREAM Tape Backup System Personal Computer Peripherals Corporation 1-
813-884-3092 "high performance tape backup system"

A/D64x Analog/Digital Interface Singular Solutions 1-818-792-9567 "a low-cost
platform for sound recording, experimentation, and analysis"

Who’s Calling Adamation, Inc. 1-415-452-5252 "lets sales & business professionals
keep track of phone calls and other client information"

GEMS (Generalized Equilibrium Modeling System) Data Transforms, Inc. 1-303-832-
1501 "a flexible way to model economic systems"

InDia (Influence Diagram Processor) Data Transforms, Inc. 1-303-832-1501 "graphical
application for representing complex decision-making"

Knowledge Retrieval System (KRS) KnowledgeSet, Corporation 1-415-968-9888
"rapidly searches and retrieves information from large databases of text and graphics"

OMEN III Microstat Development Corporation 1-604-228-1612 "stock quotation and
financial system"

TACTICIAN Plus SouthWind Software, Inc. 1-316-636-5100 "multi-user spreadsheet
that supports high-level functions and adds built-in presentation graphics"

Adobe Illustrator Adobe Systems Incorporated 1-415-961-4400 "graphic design and
illustration program for generating high-quality artwork"

Adobe Type Library Adobe Systems Incorporated 1-415-961-4400 "offers more than
500 different typefaces"

BuzzNUG Buzzings #3 February 1990

49

Flash Graphics Flash Graphics 1-415-331-7700 "extensive charting, illustration, and
text functions in a graphics package for screen, slide and paper presentations"

InterFax 24/96N Abaton 1-415-683-2226 "combines a 9600 bps Group 3 fax modem
with a 2400 bps MNP 5, Hayes-compatible data modem"

GatorBox Cayman Systems, Inc. 1-617-494-1999 "LocalTalk to Ethernet gateway that
translates the Network File System (NFS) protocol into Apple Filing Protocol (AFP)"

MacLinkPlus/PC DataViz Inc. 1-203-268-0030 "kit for transferring and translating files
between NeXT and Macintosh environments"

Ethernet PhoneNET, Sound and Interpersonal Communications Farallon
Computing, Inc. 1-415-849-2331 "used to build LANs over standard telephone cables"

Etherport NL Kinetics 1-415-947-0998 "allows the NeXT computer to connect directly
to standard twisted-pair Ethernet networks"

INFORMIX-TURBO Informix Software, Inc. 1-415-926-6300 "database engine for on-
line transaction processing (OLTP)"

INGRES Relational Database Management System Relational Technology, Inc. 1-
800-4-INGRES "SQL database engine provides on-line transaction processing (OLTP) in
single- or multi- CPU and distributed environments"

DAN - The Data Analyzer Triakis Inc 1-505-672-3180 "data analysis package for
reducing data and generating presentation-quality plots"

Math++ - Triakis Inc 1-505-672-3180 "C-language math library. Approx 100 math
functions"

Dreams - Innovated Data Design 1-415-680-6818 "Frm the makers of MacDraft,
drawing and drafting tools"

Cross Assember/Simulator Programs - Motorola 1-512-891-2030 "for the 56000 and
96000"

Fortran, C and Pascal Compilers - OASYS 1-617-890-7889

BuzzNUG Buzzings #3 February 1990

50

User Groups
Here are some pointers to Users Groups that may be in your area.

Maryland/Northern Virginia/DC
•Washington Apple Pi, Hugh O’Neill (301)-328-9510
•Ed Klein, the NeXT Consultant of UMD says he’s started a user group : NUTS. Contact
him at eklein@umd5.umd.edu.

Georgia
•BuzzNUG is sponsoring local demos and talks. Contact Erica Liebman at
erica@kong.gatech.edu.

Massachusetts
•The Boston Computer Society (BCS) has a NeXT special interest group. Contact Dan Lavin
at 1-617-969-6555, or Jan McPeek at 1-617-926-4027

California
• Robert D. Nielson 1-408-995-5775 and Jeff Wishnie 1-415-324-9567/1-415-780-2753
(voice mail) have started BANG! out of San Jose, loosely associated with Stanford. Jeff is
apparently the Stanford NeXT Consultant. These guys are clearly in the best location
possible for a NeXT user group and I was drooling at their speaker list. Definitely contact
them if you live within fifty miles of San Jose. Or are willing to drive further. Or have your
own ’copter. Robert has promised me Vietnamese Food if I make it to the Valley some day.
No similar promises of food are made to any potential members. Sorry.
• Paul Lowe (714)787-3883 at the University of California at Riverside is interested in seeing
what others are doing with their NeXT Cubes to distribute to the other NeXT Users (six so
far) on campus. write to : plowe@ucrac1.ucr.edu

Texas (yee-hah!)
• The report goes that there "is some massive new NeXT user group down there". Says Jerry
Goode : "Hi there! Just wanted to get back to you with some info about the NeXT user’s
group down here in Dallas, Texas...

First, we’ve had a grand total of 1 meeting with about 35 people in attendance.
Metaresearch came down to speak and demo Digital Eye & Digital Ears. Pretty excellent
stuff if you haven’t seen it lately! Second, here is the name of the fellow who is heading up
the group down here: Dirk Hardy/Hofbauer Information Systems/5080 Spectrum Drive/Suite
912W (Lock Box 21)/Dallas, Texas 75248/Phone: 214-385-2991

Hofbauer is a NeXT registered developer doing courseware authoring tools, and Dirk
is working in conjunction with Dr. Ali from North Texas State U. to get the group going. I
encourage you to get in touch with him - he’s got a lot of creative ideas! Hope to have an
email address for him soon.....

Finally, we plan to meet the third Thursday of every month at 7 pm, somewhere! The
logistics are still a bit up in the air as we try to figure out how much this thing will grow. If
the response after our first meeting is any indication, we could settle in at around 50 people.

By the way, I have had Buzzings forwarded to me and it’s GREAT. Dirk has copies
of both issues so far and was really impressed. You may want to talk with him about
organizing a Texas contingent contribution as we try to get things rolling here. "

BuzzNUG Buzzings #3 February 1990

51

Scenes from the NeXT Issue

First off, we’ve got few articles that were missed this time. Midterm time
prevented my finishing my Array-Processing with the DSP article. Morris
Meyer is still signing off on his Godzilla Distributed Processing article and we
had to get a designated hitter for the best of Public Domain article. Lighthouse,
has been working hard, but still promises their Object Persistence article -- real
soon now.

We’ve got an unspecified article from Dave Stutz out of NeXT, Bryce
Jasmer of Oregon State will have his turn at describing his archive site at
cs.orst.edu. Craig Shock will submit some article and William Shipley is
looking at either an X.11 or Listener/Speaker writeup.

We’ve got another article promised on extending Interface Builder by
adding an enhanced slider object from the authors (Judy Halchin & Chuck
Fleming) of a new package called "Spring", which we’ll be reviewing for
March. We’ll also be reviewing the Communae Demo from Active Ingredients.

Doug Brenner has offered to write about Custom Icon Association with
Digital Librarian.

For April, we’ve got an interview lined up with Bruce Webster, the
author of the NeXT Book. Please start sending questions to me at
erica@kong.gatech.edu that you’d like included in the interview. We’ll be
reviewing the 1.0 version of the book. Emerald City has tentatively agreed to
send a review copy (if I can get a disk out to them) of DisplayTalk for the April
Issue. I talked to them in late January and probably should drop a pointed hint
again soon. They sounded like nice people, so things should go well.

Finally, I’ll try to summarize the results of an ongoing survey : "Which
little things annoy you most about your NeXT?" and "What application
software is missing for the NeXT?"

BuzzNUG Buzzings #3 February 1990

52

Buzz’s Hint Corner

• Bored with your login window? Change it! Copy the default NeXT login
window, /usr/lib/NextStep/nextlogin.tiff to your directory, edit it it with
the Icon program and reset the default by
dwrite loginwindow ImageFile your-file-path

Try this out by logging out, typing "exit" instead of your login and press return
twice.

• Want to read your Next-Specific mail without running "Mail"? David Kay and
Jacob Gore came to my rescue with this well-timed advice & code.

1. Save the mail to a local file, say foo (leave, mail using "x" to preserve all your
mail) & delete up to (but not including) the word begin in ed or emacs or
vi. Yes, NeXT mail does uuencode. Decode the file. uudecode foo A
file named .tar.###.something will be created. (### refers to some
arbitrary number)

2. Rename the .tar file to, perhaps, foo.tar.Z. mv .tar* foo.tar.Z Change the
protections to readable/writable by doing a chmod 644 foo.tar.Z.
Uncompress the file. uncompress foo.tar.Z.

3. The tar file will probably contain a file called index.rtf, containing the heart
of the mail, not including the NeXT Enclosures. Use David’s spiffy rich-
text-file program, that follows to "clean" it and then read it. stripText
index.rtf then more index.rtf.clean.

Caveat : You can’t run the rich-text-reader from a remote login. You may get
the "gist" of the message by doing more index.rtf, but it’s messy.

/*

cc -ObjC rich.c -o rich -lNeXT_s -lsys_s

 dbk 15/18 december 1989

 This program reads in rich text and writes out

 plan text. It uses a Text object to do the work.

 BUG: It doesn’t handle non-RTF input well. Plain

 text is deformed; badly-formed RTF can hang it.

 */

BuzzNUG Buzzings #3 February 1990

53

#import <stdlib.h>

#import <sys/file.h>

#import <appkit/appkit.h>

void main(int argc, char *argv[])

{

 int outFd;

 id someText;

 char outFile[1024];

 short ix;

 NXStream *inStream;

 NXStream *outStream;

 if (argc < 2) {

 printf("Usage: stripText f1 [f2,...fn]\n");

 exit(-1);

 }

 NXApp = [Application new]; // Application new does some

 // initialization of the Text

 // class for us.

 someText = [Text new];

 for (ix = 1; ix < argc; ix++) {

 sprintf(outFile,"%s.clean",argv[ix]); //

output = input.clean

 inStream = NXMapFile(argv[ix],NX_READONLY); //

open input NeXT stream

 outFd = open(outFile,O_WRONLY|O_CREAT|O_TRUNC,0666); //

open output file...

 outStream = NXOpenFile(outFd,NX_WRITEONLY); //

...and associated stream

 [someText readRichText: inStream]; //

read text in as rich...

 [someText writeText: outStream]; //

...and out as plain

 NXCloseMemory(inStream,NX_FREEBUFFER); //

close input...

 NXClose(outStream); //

...and output

 close(outFd);

 }

 exit(0);

}

BuzzNUG Buzzings #3 February 1990

54

