
Is Simon really Zippy the Pinhead?
Reviewed by Todd Nathan

Copyright 1992 Liveware Corporation

Installation

Simon Says is a sophisticated, and well thought out speach recognition, and macro event
playing application by Agog, Inc., written by Greg Cockroft. Simon Says was sent via
the InterNet in a special form. Installation was simple and straight forward, but since I do
not have the shipped package with printed manual, I can’t comment on the printed
manual. The implementation of a ’key’ to drag into the app license panel was a new and
nice touch.

Training

The process of training Simon is simple. The training consists of sampling the user’s
voice. You can set the number of samples from 3-6 in the Prefs panel. I found 4-5 being
about right. 3 just doesn’t seem to be enough to get a good average voice sample. The
more times you sample, you increase the sampling time linearly. It can take quite a while
at 5 samples per command to get an application trained. And besides, it gets boring.
After the novelty wore off, the people in the office got annoyed by my using SimonSays.

Before you use Simon, you must train it for the basic built in functions of most
applications. Some of these are ’Hide_App’, ’Quit_Application’ and so on. Along with
generic application commands, you can add an application while in training mode. A
nice feature of Simon’s add app button, is it will try to extract (I call it autoload) as many
commands from the application’s menus as possible. SimonSays does this by launching
the app in question, extracting if possible and then quitting the application. Most of the
standard apps where no problem, and then there are a few apps that I found Simon was
not able to load commands from. But once the app is added, you can always add
additional commands to the list. See Table 1.

The command list is shown in a browser, not unlike how the browser in Workspace
Manager works. For a given application, you are at the root level of the browser, and in
that ’directory’ there are the commands that belong to that application. Each application
has a word in CommonWords to activate it as well as a browser level for the words
associated with that application. (SimonSays adds this activation word automatically
when you add a new app). SimonSays will not listen for words in an application until all
words in the application have been trained. But after loading the commands

automagically by Simon, I found I didn’t want to sit there for 3-5 minutes training 30 or
so commands at 3-5 samples each when all I wanted was a few of the commands trained.
Simon should be able to proceed, and ignore without deleting the untrained commands.

Table 1

Program Number of Commands Time to Train AutoLoadCommands
Edit 29 commands 3:45 YES
Terminal 6 4:15 NO

Note: When commands are autoloaded, it saves a huge amount of time. I had to fish
around in the menus to find the commands, and then enter them into SimonSays
while figuring out a proper command name length so SimonSays would not get
confused. The manual states longer commands can sometimes confuse SS.

Also, as can be seen in the Time to Time column, sound lengths can be rather long. This
could have made things prohibitive, but the sound data is signal processed into a format
that represents the shape of your vocal tract 66 times a second. This is a nice touch.

Macros

Once the training is finished, you can assign macros to the voice command. This is
where Simon really shines, for all the former and current Mac crossovers who know
QuickKeys and it’s successor (booo!!!) QuickKeys2, will love it for this alone. Simon is
basically a verbal macro system. You can think of each command as a macro, possibly
containing any number of 6 possible types of entries.

There exists, keyboard input, mouse input, sound input, mail response, text field input,
and last and not least the UNIX script execution input. All these seemed to work quite
well.

Keyboard input is basically useful only for specifying key equivlacies in menus. I tried
to enter some lengthy text this way, and most often it was garbled or lost.

The mouse input is mostly for those commands in the menu of an applciation that is not
assigned a key-equivalent. Here again, it worked well, but I am pretty sure Greg used the
NXJourneler object. I found that I had to preview the menu and find where I was going
(even though I knew the menu item existed) and then use the mouse macro facility
quickly and execute the menu actions. This is due to the fact that the mouse macro
actually responds in the same time frame as when you did the macro recording. I found
this to be very annoying, and redundant, for text formatting and other commands that
tend to be deeply rooted in the menu structure of a program. What I would like to see is
an option to either go with cronologically timing, or quick timing which would ignor all
mouse actions that where not ’part’ of the actually meant action. I know this might take

some doing, but it could be done.

Sound input worked flawlessly. A short coming was the sound engine only had record,
stop and play buttons. I would have liked to edit sounds (my voice) to get rid of the
mouse clicking to start and stop the sound recording process. I found the clicks kinda
annoying after a while. Dragging sound files into the sound well is supported, so you can
quickly add sounds to a macro from your own personal ~/Library/Sounds. The playing of
sounds was relatively flawless. On every other playing of sounds, the last 10th of a
second was chopped off. I have not heard back from Greg on whether this is a SoundKit
bug, or a SimonSays bug.

There is a really cool feature implemented in SimonSays and the sound files which it
maintains. Here is a quote from Greg, the author of SimonSays...

"Todd,

Each application in the browser has a separate file package. The file package contains 2 files. Device
independent training information in the voicemodel.smodel and the macros in the commands file.
The only thing you will notice if an file is trained is that the voicemodel.smodel file will be larger.

The reason we have this setup is so application developers can distribute a file package for their
applicaiton that a user can drop in the SimonSays folder and Simon Says will see it the next time it
starts up."

I hope this design encourages developers to include file packages for their applications,
thus expediting the training process, and making everyone feel good about using voice
recognition as a standard tool in NeXTstep.

I didn’t find a need to use the mail response macro module, so I will leave that to the
reader to figure out.

Text field entry worked great, and was very useful for things like commonly entered text
in a file, or for other redundant tasks in typing. Here is Simon has the most potential. As
a suffer of Redundant Motion Syndrome and Carpal Tunnel Syndrome, I would love to
reduce the typing volume I perform daily. Such things as headers to letters, signiture and
signoffs are basically great candidates for voice commands. What lacks though is a
timing mechanism for delays, such as those needed when I login to a remote machine, or
telnet, ftp or other network redunancy function. A timing delay is needed for many of
these operations, and the text field module doesn’t support it in a very robust way. There
is a timing delay of 1 second i fyou enter cmd-space in a keyboard macro. But I would
like to see specific seconds allowed, and this can be done with timed entries. Greg did
send me his ’remember’ macro, and it does work... Here it is

 "For instance my favorite macro is called Jot_Grab I have the keyboard object do
Command-c
Command-space

This sucks highlighted text into pasteboard. The one second delay makes sure the app has time to do
the copy. Then I have a unix command to

 paste | jot

Then I just go around highlighting stuff I want to remember and just say ’Jot_Grab’"

The UNIX script execution was only tested lightly as of this writing, but as the previous
example shows (thanks Greg) it works.

Manual

The manual is about 70 pages and is well written. I bombed through it in 48 minutes. It
is easy reading, and has lots ’o pictures for people like me who hate to read manuals. The
fast pace keeps you going. I must point out I had played and figured out every feature
except Sublevels prior to reading the manual. So the reading was rather redundant for
me, but I can see it is well structured, and written. Dave Peter at HSD said he spent about
a week solid on it, and it shows. Good work Dave.

The manual is 10 chapters short, with 3 Appendices and a software license notice. The
chapters cover the Introduction, Installation, Getting Stared with Simon Says,
Understanding Voice Recognition (not a lecture), Training Voice Commands, Using
Voice Control, Adding Applications, Voice-Activated Macros, Advanced Features
(sublevels are covered here), and Menu Commands. Appendix A is Troubleshooting, B
is Multi-User Installations and C is the software license. You will not find a more brief
and complete manual on the market.

 I was told the box is nice (by Greg) and the manual is good too. I have neither in hand,
so I make no comment on their quality. The online manual is well done, but I hate to
print out online manuals. If you are like me, your eyes will be a bit sore when finished
with the reading.

Software Support from HSD

I had the opportunity to talk to Dave Peter at HSD, and Greg at Agog about this product.
Both where very helpful and understanding of my needs. They both talked rather openly
about the market and where Simon fits in. Greg discussed his future a little, without
revealing any trade secrets. He did tell me he did Simon Says in a short cycle. Due to
the quick development time NeXTstep offers, and Greg’s interest in Voice Recognition,
we are likely to see him coming out with more advanced and powerful software in the
near future. Lets hope so, as this is a good starting point for such a package. Can you say
speaker independent, voice independent? I thought you could ;’).

The support should be excellent. HSD is not doing much these days except marketing
and support. This gives HSD the opportunity to show the industry that a marketing
company can work. Greg basically is going back to hacking and HSD is doing the
selling, and both will do a great job of it. So don’t call Greg, give HSD a call to purchase
this software.

Bugs/Fixes

Here is a non-comprehensive list of some bugs in SS release 1.0, and are already
corrected. So if you have purchased 1.0, you can plan on hearing from HSD, or just call
them and let them know you need an upgrade to 1.1 when it is available.

° Error recording sound causes you to restart SS.
° Some windows in applications do not come to the front when made key. The

best examples of this is the send window in Mail.
° Can’t train with Backspace running.

Summary

There are some limitations, like the lack of timing delays in text fields, and sound editing
capabilities in Simon Says. I found the sublevels didn’t work all that well, and you
couldn’t have Simon go through the entire sublevel to record it, you had to do each
sublevel entry separately. Greg’s response was, well you can train the whole application.
But there are times when this may not be appropriate, like when I just want to train 3 or 4
commands in a sublevel of 15 or so, but would like to do these 4 or so a once. Lets hope
this is fixed in release 1.1, available soon I am told. Aside from this an a couple other
short comings, the ease of use was immediately apparent. The minor limitations of this
first release could always be worked around. I highly recommend you purchase this
software. It is a steal at the price.

System Tested On: NeXTstation 400/32
Price: $295.00 MSRP

$206.50 Educational
Contact:: Dave Peter (dpeter@hsd.com)

HSD
(415) 964-1400
(800) 828-5522

Upgrade Policy: Shipping Charges for minor upgrades
Small amounts for major upgrades

Toddster Rating: 4 star in a 5 star system
Release Evaluated: 1.0 (march 16, 1992)

Major Disclaimer

In no way am I being compensated for doing this review. It is for the benefit of the
reader, and only the reading audience. If you have any questions, comments or basic
complaints about this article’s contents, I am the person to contact. Do not bother the
HSD people, or Agog people if this article pisses you off. Please, keep it short if you
choose to bash me for it’s contents. Oh, I don’t work for HSD, Agog or NeXT.

Self Glorification

Todd Nathan is the Founder and President/CEO of Liveware Corporation. He is a NeRD,
NUGhead and basically a totally converted NeXTite. But at times reality hits, and he
does work on other platforms to pay the bills. He may be contacted at

Todd Nathan
MegaView Publications
(303) 484-7607
todd@liveware.com

