With Microscope and Tweezers:
An Analysis of the Internet Virus of November 1988

Mark W. Eichin and Jon A. Rochlis

Massachusetts Institute of Technology
77 Massachusetts Avenue, E40-311
Cambridge, MA 02139

February 9, 1989

Abstract computer, it attempted to break into other machines on the
network. This paper is an analysis of that virus program
In early November 1988 the Internet, a collection of net-and of the reaction of the Internet community to the attack.
works consisting of 60,000 host computers implementing
the TCP/IP protocol suite, was attacked by a virus, a pro-
gram which broke into computers on the network and which
spread from one machine to another. This paper is a de-
tailed analysis of the virus programitself, as well as the re-1.1 Organization
actions of the besieged Internet community. We discuss the

structure of the actual program, as well as the strategies the

virus used to reproduce itself. We present the chronolog n Section 1 we discuss the categorization of the program
of events as seen by our team at MIT, one of a handful o hich attacked the Internet, the goals of the teams work-

groups around the country working to take apart the virus, "9 ON isolating the virus and the methods they employed,

in an attempt to discover its secrets and to learn the net"Elnd summarize what the virus did and did not actually do.

work’s vulnerabilities. We describe the lessons that thisIn Section 2 we d_i;cuss in more detail the strategie_s item-
incident has taught the Internet community and topics forployed, the specific attacks it used, and the effective and

future consideration and resolution. A detailed routine bymeffectwe defenses proposed by the community. Section
routine description of the virus program including the con-

3 is a detailed presentation of the chronology of the virus.
tents of its built in dictionary is provided. It describe; how our group at MIT found out anq reacted

to the crisis, and relate the experiences and actions of se-
lect other groups throughout the country, especially as they
1 Introduction interacted with our group. Once the crisis had passed, the

Internet community had time not only to explore the vulner-
The |nternet[]_][2], a collection of interconnected networks abilities which had allowed the attack to succeed, but also
linking approximately 60,000 computers, was attacked by 40 consider how future attacks could be prevented. Section
virus program on 2 November 1988. The Internet commu-4 presents our views on the lessons learned and problems
n|ty is Comprised of academic, corporate, and govermenﬂo be faced in the future. In Section 5 we acknowledge the
research users, all seeking to exchange information to er2€ople on our team and the people at other sites who aided
hance their research efforts. us in the effort to understand the virus.

The virus broke into Berkeley Standard Distribution - yye present a subroutine by subroutine description of the
(BSD) UNIX* and derivative systems. Once residentin ay;y,g program itself in Appendix A, including a diagram

*Copyright(d 1988 Massachusetts Institute of Technology. A version Of.the mformatlgn ﬂOW.thrOUQh the _rOUt'neS Wh'Ch com-
of this paper will be presented at the 1989 IEEE Symposium on Researciprise the “cracking engine”. Appendix B contains a list of
in Security and Privacy. the words included in the built-in dictionary carried by the

LUNIX is atrademark of AT&T. DEC, VAX, and Ultrix are trademarks : ; : ; ;
of Digitial Equipment Corporation. Sun, SunOS, and NFS are trademark VIFUS. Fma”y In Append|x C we prOVIde an alphabetlzed

of Sun Microsystems, Inc. IBM is a trademark of International Businessﬁi_St of all the people menﬂo_ned in this paper, their affilia-
Machines, Inc. tions, and their network mail addresses.

1.2 A Rose by Any Other Name worm, butwe reject this definition. The infected computers
were affected but not all were “disabled”. There is also no
?nalog to the segments of a biological worm.

Denning has described how many personal computer
programs have been infected by viral programs[7]. These
are frequently analogous to lysogenetic viruses because

. S h ify th [-
reproduce within a host cell. A lytic virus enters a cell andt ey modify the actual program code as stored in the com

. . . r n . i
uses the cell's own metabolic machinery to replicate. ThéJ uter’'s secondary storage. As the infected programs are

X . o .~ copied from computer to computer through normal soft-

newly created viruses (more appropriately called “virons”) e . . .
. L7 ware distribution, the viral code is also copied. At some
break out of the infected cell, destroying it, and then seek

out new cells to infect. A lysogenetic virus, on the other point the viral code may activate and perform some action

. 4 ; such as deleting files or displaying a message. Applying
thhaenﬂbse,{tltg:I trge r%?jﬁigz :?ifvrvl;tlirffl Itsrehc;f)tdﬁigz tk:/t\a/ r:/(ie_rlhis definition of a virus while viewing programs as “hosts”
P gly rep does not work for the Internet infection, since the virus nei-

ral genes. At some point in the future, the viral genes A€o attacked nor modified programs in any way

ivi n i . .
activated and many virons are produced by the cell. These If, however, processes are view as *hosts”, then the In-

r reak fth . .) P .
proceed to break out of the cell and seek out other cells t?ernet infection can clearly be considered a viral infection.

infect[3]. Some single strand DNA viruses do not kill the The virus entered hosts throuah a daemon br trickin
host cell; they use the machinery of the host cell to repro- gh a daemon process, tricking

duce (perhaps slowing normal celluar growth by divertingthat process into creating a viral process, which would then

resources) and exitthe cells in a non-destructive manner[4 _ttempt to reproduce. In only one case, the finger attack,
. - . . as the daemon process actually changed; but as we noted
A “worm” is an organism with an elongated segmented

body. Because of the shape of their bodies worms car?bove only lysogenetic viruses actually change their host's

shake around obstacles and work their way into unexpectegenetIC material.

places. Some worms, for example the tapeworm, are para- ?en["nﬁ deél?esda bf?tcr'ger;]umt,as a pro?r?m V\llh'Ch repli-
sites. They live inside of a host organism, feeding directlyca es[iseffandieeds offthe nosts computational resources.

While this seems to describe the program which infected

from nutrients intended for host cells. These worms re- he Internet. it kward and q ot hich
produce by shedding one of their segments which contain € ’e €L, 111S ah awkward and vague gescription whic
oesn’'t seem to convey the nature of the infection at all.

many eggs. They have difficulty in reaching new hosts, o
since they usually leave an infected host through its excre- Thus we have chosen to call the program which infected

tory system and may not readily come into contact with an_the Internet a virus. We feel it is accurate and descriptive.
other host[5].
In deciding which term fits the program which infected 1 3 Goals and Targets
the Internet, we must decide which part of the system is
analogous to the “host”. Possibilities include the network, The program that attacked many Internet hosts was itself
host computers, programs, and processes. We must alg#facked by teams of programmers around the country. The
consider the actions of the program and its structure. goal of these teams was to find alitthe inner workings of
Viewing the network layer as the “host” is not fruitful; the virus. This included not just understanding how to stop
the network was not attacked, specific hosts on the networkurther attacks, but also understanding whether any perma-
were. The infection never spread beyond the Internet evefient damage had been done, including destruction or alter-
though there were gateways to other types of networksation of data during the actual infection, or possible “time
One could view the infection as a worm, which “wiggled” bombs” left for later execution.
throughout the network. But as Beckman points out[6] the There were several steps in achieving these goals: in-
program didn’t have connected “segments” in any sensecluding
Thus it can’t be a worm. e isolating a specimen of the virus in a form which could
A model showing the computers as the “host” is more be analyzed.
promising. The infection of 2 November entered the hosts, e “decompiling” the virus, into a form that could be
reproduced, and exited in search of new hosts to infect. shown to reduce to the executable of the real thing,
Some people might argue that since the host was not de- so that the higher level version could be interpreted.
stroyed in this process, that the infecting program was more e analyzing the strategies used by the virus, and the el-
like a worm than a virus. But, as mentioned earlier, not all ements of its design, in order to find weaknesses and
viruses destroy their host cells. Denning [7] defines acom- methods of defeating it.
puter worm as a program which enters a workstation and The first two steps were completed by the morning of
disablesit. In that sense the infection could be considered 4 November 1988. Enough of the third was complete to

The question of how to classify the program which infected
the Internet has received a fair amount of attention. Was i
a “virus” or “worm”; or was it something else?

There is confusion about the term “virus.” To a biolo-
gistavirusis an agent of infection which can only grow and

determine that the virus was harmless, but there were n®.4.3 What it attacked

clues to the higher level issues, such as the reason for the
virus’ rapid spread.

Once the decompiled code existed, and the threat of the
virus known to be minimal, it was clear to the MIT team
and those at Berkeley that the code should be protected.
We understood that the knowledge required to write such
a program could not be kept secret, but felt that if the code
were publicly available, someone could too easily modify
it and release a damaging mutated strain. If this occurred
before many hosts had removed the bugs which allowed the
penetration in the first place, much damage would be done.

SUNSs and VAXes only

machines il et ¢/ host s. equi v

machines il . r host s

machines in cracked accountd or war d files

machines in cracked accountg’ host s files

machines listed as network gateways in routing tables
machines at the far end of point-to-point interfaces
possibly machines at randomly guessed addresses on
networks of first hop gateways

There was also a clear need to explain to the community-4-4 What it did NOT do

what the virus was and how it worked. This information, in
the form of this report, can actually lmore useful to inter-

e gain privileged access (it almost never broke in as
root)

ested people than the source code could be, since itincludes destroy or attempt to destroy any data

discussion of the side effects and results of the code, as well
as flaws init, rather than merely listing the code line by line.
Conversely, there are people interested in the intricate detail
of how and why certain routines were used; there should be
enough detail here to satisfy them as well. Readers will also
find Seely[8] and Spafford’s[9] papers interesting.

1.4 Major Points

This section provides an outline of the how the virus at-

2

tacked and who it attacked. It also lists several things thep

virus did not do, but which many people seem to have at-

e |eave time bombs behind

o differentiate among networks (such as MILNET,
ARPANET)

e use UUCP at all

¢ attack specific well-known or privileged accounts such
asr oot

Strategies

1 Attacks

tributed to the virus. All of the following points are de- This virus attacked several things, directly and indirectly. It

scribed in more detail in Section 2.

1.4.1 How it entered

picked out some deliberate targets, such as specific network
daemons through which to infect the remote host. There
were also less direct targets, such as mail service and the
flow of information about the virus.

e sendmail (heeded debug mode, as in SunOS binary re-
leases)

¢ finger[10] (only VAX hosts were victims)

e remote execution system, using

rexec
rsh

1.4.2 Who it attacked

e accounts with obvious passwords, such as

none at all

the user name

the user name appended to itself
the “nickname”

the last name

the last name spelled backwards

2.1.1 Sendmail Debug Mode

The virus exploited the “debug” function afendnmi | ,
which enables debugging mode for the duration of the cur-
rent connection. Debugging mode has many features, in-
cluding the ability to send a mail message with a program
as the recipient (i.e. the program would run, with all of its
input coming from the body of the message). This is inap-
propriate and rumor[11] has it that the author included this
feature to allow him to circumvent security on a machine
he was using for testing. It certainly exceeds the intended
design of the Simple Mail Transfer Protocol (SMTP) [12].
Specification of a program to execute when mail is re-
ceived is normally allowed in theendnmai | aliases file
or users'. f or war d files directly, forvacat i on %, mail

e accounts with passwords in a 432 word dictionary (seearchive programs, and personal mail sorters. fioisnor-
Appendix B)

e accounts with passwords frusr / di ct / wor ds
e accounts which trusted other machines via the

. rhost s mechanism

mally allowed for incoming connections. In the virus, the

2 A program which accepts incoming mail and sends back mail to the
original sender, usually saying something like “l am on vacation, and will
not read your mail until | return.”

“recipient” was a command to strip off the mail headers e this file was an easy-to-obtain list of user names to at-

and pass the remainder of the message to a command in- tack,

terpreter. The body was a script that created a C program, e the dictionary attack was a method of verifying pass-

the “grappling hook,” which transfered the rest of the mod- word guesses which would not be noted in security

ules from the originiating host, and the commands to link logs.

and execute them. Both VAX and Sun binaries were transThe principle of “least privilege” [15] is violated by the

fered and both would be tried in turn, no attempt to deter-existence of this password file. Typical programs have no

mine the machine type was made. On other architectureseed for a list of user names and password strings, so this

the programs would not run, but would use resources in therivileged information should not be available to them. For

linking process. All other attacks used the same “grapplingexample, Project Athena’s network authentication system,

hook” mechanism, but used other flaws to inject the “grap- Kerberos [16], keeps passwords on a central server which

pling hook” into the target machine. logs authentication requests, thus hiding the list of valid
The fact that debug was enabled by default was reportedser names. However, once a name is found, the authen-

to Berkeley by several sources during the 4.2BSD releasaication “ticket” is still vulnerable to dictionary attack.

The 4.3BSD release as well as Sun releases still had this

option enabled by default [13]. The then current release of

Ultrix did not have debug mode enabled, but the beta tesiz'l'4 Rsh and Trust

version of the newest release did have debug enabled (e virus attempted to use the Berkeley remote shell pro-

was disabled before finally being shipped). MIT's ProjeCttgram (calledr sh) to attack other machines without using
Athena was among a number of sites which went out ofyasgwords. The remote shell utility is similar in function

its way to disable debug mode; however, it is unlikely that i, the remote execution system, although it is “friendlier”

many binary-only sites were able to be as diligent. since the remote end of the connection is a command inter-
preter, instead of thexec function. For convenience, a file
2.1.2 Finger Daemon Bug / et ¢/ host s. equi v can contain a list of hosts trusted

by this host. The r host s file provides similar function-

The vgu;sf hit t?f Enger d:lgllem(irh(;(nget;]d) ?y ive_:_frllow- ality on a per-user basis. The remote host can pass the user
INg a bulter which was aflocated on the stack. € OVel ame from a trusted port (one which can only be opened
flow was possible becaug$e nger d used a library func-

. : : . . by r oot) and the local host will trust that as proof that the
tion which did not do range checking. Since the buffer WaS . nection is being made for the named user.

on the stack, the overflow allowed a fake stack frame to This system has an important design flaw, which is that

be created, which caused a small piece of code to be exe- .
. : e local host only knows the remote host by its network
cuted when the procedure returniedThe library function :
address, which can often be forged. It also trusts the ma-

in question turns out to be a backward-compatibility rou- chine, rather than any property of the user, leaving the ac-
tine, which should not have been needed after 1979 [14]. count open to attack at all times rather than when the user

Only 4.3BSD VAX machines were attacked this way. . .
The virus did not attempt a Sun specific attack on finger's present [16]. The virus took advantage of the latter flaw

and its VAX attack failed when invoked on a Sun target, to propagate between accounts on trusted machines. Least

Ultrix was not vulnerable to this since production releases;p”.Vllege would also |n_d|cate that the lists of trusted ma-
did notinclude & | nger d. chines be only accessible to the daemons who need to de-

cide to whether or not to grant access.

2.1.3 Rexec and Passwords
2.1.5 Information Flow
The virus attacked using the Berkeley remote execution

protocol, which required the user name and plaintext passWhen it became clear that the virus was propagating via
wordto be passed over the net. The program only used paigendnai | , the first reaction of many sites was to cut off
of user names and passwords which it had already testediail service. This turned out to beserious mistake, since
and found to be correct on the local host. A common, worldit cut off the information needed to fix the problem. Mailer
readable file/(et ¢/ passwd) that contains the user names programs on major forwarding nodes, suclreay.cs.net,
and encrypted passwords for every user on the system favere shut down delaying some critical messages by as long
cilitated this search. Specifically: as twenty hours. Since the virus had alternate infection
channelsi(exec andf i nger), this made the isolated ma-
*MIT's Project Athena has a “write” daemonwhich has a similar piece oina g safe haven for the virus, as well as cutting off infor-
of code with the same flaw but it explicitly exits rather than returning, and

thus never uses the (damaged) return stack. A comment in the code notéyaﬁo_n from machines further “dc_)WHStrea:m" (thus pIacmg
that it is mostly copied from the finger daemon. them in greater danger) since no information about the virus

could reach them by méil Thus, by attackingendnai |, 2.3 Flaws
the virus indirectly attacked the flow of information that

was the only real defense against its spread. The virus also had a number of flaws, ranging from the sub-

tle to the clumsy. One of the later messages from Berkeley
posted fixes for some of the more obvious ones, as a humor-

2.2 Self Protection ous gesture.

The virus used a number of techniques to evade detectior2.3.1 Reinfection prevention

It attempted both to cover it tracks and to blend into the)))))
normal UNIX environment using camouflage. These tech-The code for preventing reinfection of an actively infected
niques had had varying degrees of effectiveness. machine harbored some major flaws. These flaws turned

out to be critical to the ultimate “failure” of the virus, as
reinfection drove up the load of many machines, causing it
2.2.1 Covering Tracks to be noticed and thus counterattacked.
The code had several timing flaws which made it un-
The program did a number of things to cover its trail. It jikely to work. While written in a “paranoid” manner, us-
erased |tS argument ”St, once |t had finiShed processing thmg Weak authentication (exchanging “magic" numbers) to
arguments, so that the process status command would ngktermine whether the other end of the connection is indeed

show how it was invoked. a copy of the virus, these routines would often exit with er-
It also deleted the executing binary, which would leaverors (and thusiot attempt to quit) if:

the data intact but unnamed, and only referenced by the o several viruses infected a clean machine at once, in
execution of the program. If the machine were rebooted which case all of them would look for listeners: none
while the virus was actually running, the file system sal- of them would find any; all of them would attempt
vager would recover the file after the reboot. Otherwise the {5 pecome listeners: one would succeed: the others

program would vanish after exiting. would fail, give up, and thus be invulnerable to future
The program also used resource limit functions to pre- checking attempts.

venta core dump. Thus, it prevented any bugs in the pro- o several viruses starting at once, in the presence of a

gram from leaving tell-tale traces behind. running virus. If the first one “wins the coin toss”

with the listening virus, other new-starting ones will

have contacted the losing one and have the connection

closed upon them, permitting them to continue.

It was compiled under the nansh, the same name used a machine is slow or heavily loaded, which could cause
by the Bourne Shell, a command interpreter which is of- e virus to exceed the timeouts imposed on the ex-
ten used in shell scripts and automatic commands. Evena change of numbers, especially if the compiler was run-
diligent system manager would probably not notice a large ~ NiNg (possibly multiple times) due to a new infection;
number of shells running for short periods of time. note that this is exacerbated by a busy _machlne (which

The virus forked, splitting into a parent and child, ap- slows down further) on a moderately sized network.
proximately every three minutes. The parent would thepNote that “atonce” means “withina 5-20 second window”
exit, leaving the child to continue from the exact samein most cases, and is sometimes looser.
place. This had the effect of “refreshing” the process, since A critical weakness in the interlocking code is that even
the new fork started offwith no resources used, such as Cp¥yhen itdoes decide to quit, all it does is set the variable
time or memory usage. It also kept each run of the virugP! easequi t . This variable does not have an effect until
short, making the virus a more difficult to seize, even whenthe virus has gone through
it had been noticed. e collecting the entire list of host names to attack

All the constant strings used by the program were ob- ® collecting the entire list of user names to attack
scured by XOR'ing each character with the constans81 ~ ® tryingto attack all of the “obvious” permutation pass-
This meant that one could not simply look at the binaryto ~ Words (see Section A.4.3) ,
determine what constants the virus refered to (e.g. what ® Ying ten words selected at random from the inter-
files it opened). But it was a weak method of hiding the ~ Na! dictionary (see Appendix B) against all of the user

strings; it delayed efforts to understand the virus, but not ~_ "ames .
for very long. Since the virus was careful to clean up temporary files,

its presence alone didn’tinterfere with reinfection.
4USENET news [17] was an effective side-channel of information Also, a mumplymfeCt.ed machine would spread the virus
spread, although a number of sites disabled that as well. faster, perhaps proportionally to the number of infections it

2.2.2 Camouflage

was harboring, since
¢ the program scrambles the lists of hosts and users it

2.

4 Defenses

attacks; since the random number generator is seede,U’ere were many attempts to stop the virus. They varied in

with the current time, the separate instances are likel
to hit separate targets.

e the program tries to spend a large amount of time
sleeping and listening for other infection attempts
(which never report themselves) so that the processes
would share the resources of the machine fairly well.

Thus, the virus spread much more quickly than the perpe-

trator expected, and was noticed for that very reason. The
MIT Media Lab, for example, cut themselves completely
off from the network because the computer resources ab-
sorbed by the virus were detracting from work in progress,
while the lack of network service was a minor problem.

2.3.2 Heuristics

One attempt to make the program not waste time on non-
UNIX systems was to sometimes try to open a telnet or rsh
connection to a host before trying to attack it and skipping
that host if it refused the connection. If the host refused
telnetor rsh connections, itwas likely to refuse other attacks
as well. There were several problems with this heuristic:

e A number of machines exist which provide mail ser-
vice (for example) but that do not provide telnet or rsh
service, and although vulnerable, would be ignored
under this attack. The MIT Project Athena mailhub,
athena.mit.edu, is but one example.

e The telnet “probing” code immediately closed the
connection upon finding that it had opened it. By
the time the “inet daemon”, the “switching station”
which handles most incoming network services, iden-
tified the connection and started a telnet daemon, the
connection was already closed, causing the telnet dae-
mon to indicate an error condition of high enough pri-
ority to be logged on most systems. Thus the times
of the earliest attacks were noted, if not the machines
they came from.

2.3.3 Vulnerabilities not used

)llnconvenience to the end users of the vulnerable systems,
In the amount of skill required to implement them, and in
their effectiveness.

e Full isolation from network was frequently inconve-
nient, but was very effective in stopping the virus, and
was simple to implement.

¢ Turning off mail service was inconvenient both to lo-
cal users and to “downstream” sites, was ineffective
at stopping the virus, but was simple to implement.

e Patching outthdebug command irsendnai | was
only effective in conjunction with other fixes, did not
interfere with normal users, and simple instructions for
implementing the change were available.

e Shutting down the finger daemon was also effective
only if the other holes were plugged as well, was an-
noying to users if not actually inconvenient, and was
simple to perform.

¢ Fixing the finger daemon required source code, but
was as effective as shutting it down, without annoy-
ing the users at all.

e nkdi r /usr/tnp/shwasconvenient, simple, and
effective in preventing the virus from propagatfg
(See Section A.8.2.)

e Defining pl easequi t in the system libraries was
convenient, simple, and did almost nothing to stop the
virus (See Section A.3.2.)

¢ Renaming the UNIX C compiler and linkec¢ and
| d) was drastic, and somewhat inconvenient to users
(though much less so than cutting off the network,
since different names were available) but effective in
stopping the virus.

e Requiring new passwords for all users (or at least all
users who had passwords which the virus could guess)
was difficult, but it only inconvenienced those users
with weak passwords to begin with, and was effective
in conjunction with the other fixes (See Section A.4.3
and Appendix B.)

After the virus was analyzed, a tool which duplicated the

The virus did not exploita number of obvious opportunities. P2ssword attack (including the virus® internal dictionary)
e When looking for lists of hosts to attack, it could have Was posted to the network. This tool allowed system admin-

done “zone transfers” from the Internet domain name istrators to analyze the passwords in use on their system.
servers to find names of valid hosts [18]. Many of The spread of this virus should be effective in raising the
these records also include host type, so the searcRAWareness of users (and administrators) to the importance
could have limited itself to the appropriate processorOf choosing “difficult” passwords. Lawrence Livermore

and operating system types.

National Laboratories went as far as requiring all passwords

o It did not attack both machine types consistently. If P& changed, and modifying the password changing program
the VAX finger attack failed, it could have tried a Sun 10 téstnew passwords against the lists that include the pass-

attack, but that hadn’t been implemented.

words attacked by the virus [6].

e It did not try to find privileged users on the local host
(such ag oot).

5However, both sets of binaries were still compiled, consuming pro-

cessor time on an attacked machine.

3 Chronology was infected. It was running a versionséndnai | with
thedebug command turned on. Mike believes that the at-
This is a description of the chronology of the virus, as seenack came fronprep.ai.mit.edu since he had an account on
from MIT. Itis intended as a description of how one major prep andwombat was listed in his r host s, a file which
Internet site discovered and reacted to the virus. This inspeciﬁes alist of hosts and users on those hosts who may log
cludes the actions of our group at MIT which wound up de-into an account over the network without supplying a pass-
compilingthe virus and discovering its inner details, and theword. Unfortunately the appropriate logs were lost, mak-
people across country who were mounting similar efforts.ing the source of the infection uncertain. (The loggoep
Itis our belief that the people involved acted swiftly and ef- were forwarded visysl| og, the 4.3BSD UNIX logging
fectively during the crisis and deserve many thanks. Alsopackage, to another host which was down and by the time
there is much to be learned from the way events unfoldedanybody looked thet np log, which records logins, it was
Some clear lessons for the future emerged, and as usualuncated, perhaps deliberately, to some point on Thursday.
many unresolved and difficult issues have also risen to thghe lack of logging information and the routine discarding
forefront to be considered by the networking and computeiof what old logs did exist hampered investigations.)
community. Mike Muuss of BRL reported at the NCSC meeting that

The events described took place between Wednesday@AND was also hit at 9:00pm or soon thereafter; Steve
November 1988 and Frlday 11 November 1988. All tlmeSMi”er of the University of Mary|and (UMD) reports the

are stated in eastern standard time. UMD was first hit at 10:54pm; Phil Lapsley of the Univer-
sity of California, Berkeley (UCB) stated that Berkeley was
3.1 Wednesday: Genesis hit at 11:00pm.

Gene Myers[6] of the NCSC analyzed the Corfietlailer

logs. He found thattesting of tisendmai | attack firstoc- 3.2 Thursday Morning: “This isn’t April
curred on 19 October 1988 and continued through 28 Octo- First”

ber1988. On 29 October 1988, there was an increased level

of testing; Gene believes the virus author was attemptingt®-2.1 More People Notice the Virus

send the binaries over the SMTP connections, an attem%ave Edwards. of SRI International. said at the NCSC

whichwas bound to fail since the SMTP is only defined for i . .
7 bit ASCII data transfers[12]. The author appeared to gc)meetmg that SRI was hit at midnight. Chuck Cole and Rus-

back to the drawing board, returning with the “grappling sell Brand of the Lawrence Livermore National Laboratory

hook” program (see section A.7) on Wednesday 2 Novem-(LLNL) reported that they were assgmbllng their response

. o team by 2:00am, and John Bruner independently reported
ber 1988. The virus was tested or launched at 5:01:59pm.” " . .)

o . , spotting the virus on the S1 machines at LLNL about that
The logs show it infecting a second Cornell machine at.
5:04pm. This may have been the genesis of the virus, bu me | ch is of th Media Lab £ th
that is disputed by reports in the New York Times[11] in Pascal Chesnais of the MIT Media Lab was one of the

which Paul Graham of Harvard states the virus started on %rst pbe(iple at Mlg tto spot thte“vlrlus, ?fter 10:00pm WedTez-
machine at the MIT Al Lab via remote login from Cornell. ay, butassumed it was Just ‘alocal runaway program-.

Cliff Stoll of Harvard also believes that the virus was started 9r°UP 8t the Medialab killed the anomalous shell gnd com-
from the MIT Al Lab. At the time this paper was written, pilers processes, and all seemed normal. After going for an

nobody has analyzed the infected Cornell machines to de(jmner and ice cream, they figured out that it was a virus

termine where the virus would have gone next if they wergdnd itwas coming nvia mail. Their response was to shut
indeed the first infected machines. down network services such as mail and to isolate them—
In any case, Paul Flaherty of Stanford reported tddpe selves from the campus network. The MIT Telecommuni-

group@ucsd.edu mailing list on Friday that Stanford was (I\:/latldqnsLNet,\)two[kGrot:tp'stmom:odrlnglnfct)rinlitllgn Sh&""ﬁ the
infected at 9:00pm and that it got to “most of the campus edia Lab gateway first went down at 11.2Upm vvednes-

UNIX machines (cf. © 2500 boxes).” He also reported the ?hay'f.bl:t Wf.ls baf?; up by S;Ohgf}rmt.) At 3:1.0 am Pascal gavfe
virus originated fromprep.ai.mit.edu. This is the earliest the (;rs no |ce|_o IabeVIruqu 1 y creating a message o
report of the virus we have seen. edayo iarlab (see Figure 1).

At 9:30pm Wednesdayyombat.mit.edu, a private work-
station at MIT Project Athena maintained by Mike Shanzer3.2.2 False Alarms or Testing?

8Cornell systems personel had discovered unusual messages in theiﬁascm later reported that logs media-lab show several
mailer logs and passed the logs to Berkeley which passed them to the

NCSC. Later it was reported that the alleged author of the virus was sScattered messages, “ttloop: peer di?d: No such file or di-
Cornell graduate student[19]. rectory”, which frequently occurred just before the virus

A Virus has been detected on nedi a-1ab, we suspect that whole internet is
infected by now. The virus is spread via mail of all things... So Mail
outside of nedia-lab will NOT be accepted. Ml addressed to foreign
hosts will NOT be delivered. This situation will continue until someone
figures out a way of killing the virus and telling everyone howto

do it without using email...

--- lacsap Nov 3 1988 03: 10am
Figure 1: Thursday morning’s message of the daynedia-lab.mit.edu.

attacked (see section A.5.2). There were a few every cowef, being suresendmai | was compiled without the
ple of days, several during Wednesday afternoon and mangebug command, and not runningexecd.
starting at 9:48pm. The logs anedia-lab start on 25 Oc- Mike Patton, Network Manager for the MIT Laboratory
tober 1988 and entries were madeti®l net d onthe fol- for Computer Science (LCS), was the first to point out to us
lowing dates before the swarm on Wednesday night: Octhe peculiarities of this posting. Itwas made from an Annex
26 15:01:57, Oct 28 11:26:55, Oct 28 17:36:51, Oct 31terminal servef® at Aiken Laboratory at Harvard, by tel-
16:24:41,Nov 1 16:08:24, Nov 1 18:02:43, Nov 1 18:58:30, neting to the SMTP port dfis.brown.edu. This is obvious
Nov 2 12:23:51, and Nov 2 15:21:47. since the message was from “foo%bar.arpa” and because
It is not clear whether these represent early testing of théhe last line of the message was “§UVrA17A 177", an
virus, or if they were just truly accidental premature clos- attempt to get rubout processing out of the Brown SMTP
ings of telnet connections. We assume the latter. With hindserver, a common mistake when faking Internet mail.
sight we can say ael net d that logged its peer address, Itwas ironic that this posting did almost no good. Figure
even for such error messages, would have been quite usefdishows the path it took to get to Athena. There was a 20
in tracing the origin and progress of the virus. hour delay before the message escaped fr@ay.cs.net'?
and got tosri-nic.arpa. Another 6 hours went by before
the message was receivedatiiena.mit.edu 2. Other sites
3.2.3 E-mail warnings have reported similar delays.

The first posting mentioning the virus was by Peter Yee of .)

NASA Ames at 2:28am on Wednesday to top-ip@sri- 5-2-4 Yet More People Notice the Virus

nic.arpamailing list. Peter stated that UCB, UCSD, LLNL, apout 4:00am Thursday Richard Basch of MIT Project

Stanford, and NASA Ames had been attacked, and deathena noticed a “text table full’sysl og message from

scribed the use of sendmail to pull over the virus bina-parismit.edu, an Athena development machine. Since

ries, including the x* files which the virus briefly stored {here was only one message and he was busy doing a project

in/ usr/tnp. The virus was observed sending VAX and {o 3 digital design lab course, he ignored it.

Sun binaries, having DES tables builtin, and making some At 4:51am Chris Hanson of the MIT Al Laboratory re-

use of. r host s andhost s. equi v files. Aphone num- orted spotting anomalous telnet traffic to serveral gate-

ber at Berkeley was given and Phil Lapsley and Kurt Piresyays coming from machines at LCS. He noted that the at-

were listed as being knowledgeable about the virus. tempts were occurring every one or two seconds and had
At 3:34am Andy Sudduth from Harvard made his anony-peen happening for several hours.

mous posting to tcp-ip@sri-nic.arpa ® The posting said At 5:58am Thursday morning Keith Bostic of Berke-

that a virus might be loose on the Internet and that thergey made the first bug fix posting. The message went

were three steps to take to prevent further transmission

These included not runninigi nger d or fixing it not to 9This was a level of detail that only the originator of the virus could

. - . have known at that time. To our knowledge nobody had yet identified the
overwrite the stack when readlng Its arguments from the?inger bug, since it only affected certain VAX hosts, and certainly nobody

had discovered its mechanism.

7In a message to the same mailing list on Saturday 5 November 1988, 1°Perhaps ironically namedfluenza.harvard.edu.
he acknowledged being the author of the Thursday morning message and ! This is probably becauselay.cs.net was off the air during most of
stated he had posted the message anonymously because “at the timette crisis.

didn’'t want to answer questions about how | knew.” 12phil Lapsley and Mike Karels of Berkeley reported that the only way
8 An “obscure electronic bulletin board”, according to the New York to get mail tatcp-ip@sri-nic.arpato flow quickly is to call up Mark Lottor
Times[11]. Nothing could be further from the truth. at SRI and ask him to manually push the queue through.

Recei ved: by ATHENA. M T. EDU (5.45/4.7) id AA29119; Sat, 5 Nov 88 05:59:13 EST
Recei ved: from RELAY.CS. NET by SRI-NIC. ARPA with TCP; Fri, 4 Nov 88 23:23:24 PST
Recei ved: from cs. brown. edu by RELAY.CS. NET id aa05627; 3 Nov 88 3:47 EST
Received: fromiris.brown. edu (iris.ARPA) by cs.brown. edu (1.2/1.00)

id AA12595; Thu, 3 Nov 88 03:47:19 est
Received: from (128.103.1.92) with SMIP via tcp/ip

by iris.brown. edu on Thu, 3 Nov 88 03: 34: 46 EST

Figure 2: Path of Andy Sudduth’s warning message from Harvard to MIT.

to the tcp-ip@sri-nic.arpa mailing list and the news- to the virus around 8:00am by powering off some network
groups comp.bugs.4bsd.ucb-fixes, news.announce, and equipmentin LCS. Tim Shepard, also a LCS graduate stu-
news.sysadmin. It supplied the “compile withoutthe debug dent, soon joined him. They were hampered by a growing
command” fix tosendrai | (or patch thedebug com- number of people who wanted information about what was
mand to a garbage string), as well as the very wise sughappening. Mark and Tim tried to call Peter Yee several
gestion to rename the UNIX C compiler and loadec (times and eventually managed to get through to Phil Laps-
and| d), which was effective since the virus needed toley who relayed what was then known about the virus.
compile and link itself, and which would be effective at At about this time, Richard Basch returned to his work-
protecting against nosendmai | attacks, whatever those station (you can only do so much school-work after all)
might have turned out to be. It also told people that theand noticed many duplicates of the “text table full” mes-
virus renamed itself to “(sh)” and used temporary files sages fronparis and went to investigate. He discovered
in /usr/tnp named XNNN,vax.o, XNNN,sun3.0, and several suspicious logins from old accounts which should
XNNN,I1.c (where NNN were random numbers, possibly have long ago been purged. The load was intolerably high,
processid’s), and suggested that you could identify infectedind he only managed to get one line out afiet st at
machine by looking for these files. That was somewhat difcommand before giving up, but that proved quite interest-
ficultto do in practice, however, since the virus quickly got ing. It showed an outgoingsh connection fronparis to

rid of all of these files. A somewhat better solution was fmgc.mit.edu, which is a standalone non-UNIX gateway.
proposed later in the day by, among others, John Kohl of - pyring Thursday morning Ray Hirschfeld spotted the
DEC and Project Athena, who suggested doim@& -V yirys on the MIT Math department Sun workstations and

/ usr/ t np, thus revealing the raw contents of the direc- shut down the math gateway to the MIT backbone at
tory, including the names of deleted files whose directory,g-15am. It remained down until 3:15pm.

slots had not yet been re-udéd Around 11:00am the MIT Statistics Center called Dan
Thefingerd attack was not even known, much less Geer, Manager of System Development at Project Athena,
understood, at this point. Phil Lapsley reported at thegne of their Sun workstationglolphin.mit.edu had been
NCSC meeting that Ed Wang of Berkeley discovered thnfecteq via a Project Athena guest account with a weak
fi ngerd mechanism around 8:00am and sent mail to,4¢5y0rd, along with the account of a former staff member.
Mike Karels, but this mail went unread until after the crisis This infection had spread to all hosts in the Statistics Cen-
had passed. ter. They had been trying for some time prior to call Dan
At 8:06am Gene Spafford of Purdue forwarded totg eradicate the virus, but the continual reinfection among
thenntp-manager s@uchvax.berkeley.edumailinglistKeith thejr |ocal hosts had proved insurmountably baffling.
Bostic's fixes. Ted Ts'o of MIT Project Athena forwarded qith Bostic sent a second virus fix message to

this to an inte_rnal Project Athena hackers 'M(Ch”.‘ak' .. comp.4bsd.ucb-fixes at 11:12am. It suggested using Oxff
ers@gthena.mﬂ.edu) at 10:07am. He expressed dls_bellef instead of 0x00 in the binary patch gendnai | . The
(o, it's not April 1st”), and thought Athena machines o ious patch, while effective against the current virus,
were safe. Though no production Athena servers were NGould drop you into debug mode if you sent an empty com-
fected, several private workstations and development mas .4 line. He also suggested using the UNI: i ngs

chines werg, so this proved overly optimistic. command to look in theendnai | binary for the string
Mark Reinhold, a MIT LCS graduate student, reactedudebugn_ If it didn’t appear at all then your version of

133 Salt MIT EECS Profi d Technical Direct f Proj tsendrrai | was safe.
erry Saltzer, rofessor and Technical Director of Projec _ .
Athena, included similar detection advice in a message describingthe virus APOUt 11:30am Pascal Chesnais requested that the Net-

to the Athena staff sent at 11:17am on Friday. work Group isolate the Media Lab building and it remained

so isolated until Friday at 2:30pm. logged such abnormal input. At the time we thought the
Russ Mundy of the Defense Communications Agencyvirus might be systematically attacking all possible network

reported at the NCSC meeting that the MILNET to services exploiting some unknown common flaw. This was

ARPANET mailbridges were shut down at 11:30am and re-not true but it seemed scary at the time. Milo also informed

mained down until Friday at 11:00am. us that DCA had shut down the mailbridges which serve
In response to complaints from non-UNIX users, Mark as gateways between the MILNET and the ARPANET. He

Reinhold and Stan Zanarotti, another LCS graduate stupointed us to the group at Berkeley and Peter Yee specifi-

dent, turned on the repeaters at LCS which had been presally.

viously powered down and physically disconnected UNIX

machines from the network around 11:15am. Tim Shep-

ard reloaded a root partition of one machine from tape (to>-3-2 It uses finger

start with known software), and added a featurkitad, a a¢ gpout 6:00pm on Thursday, Ron Hoffmann, of the MIT
UNIX file system scanner, to report low-level modification t¢jecommunications Network, Group observ,ed the virus

times. Working with Jim Fullton °_f the X Consortium, Tim 41tempting to log into a standalone router using the Berke-
inspectedllspicelcs.mit.edu; by 1:00pm, they had verified ley remote login protocol; the remote login attempt origi-

thatthe virus had not modified any files alfspiceand had y51ed from a machine previously believed immune since it

installed a recompiledendni | . was running a mailer with théebug command turned off.
The virus was running under the user namenobody,

3.3 Thursday Afternoon: “This is Bad and it appeared that it had to be attacking through the fin-

News” ger service, the only network service running under that
user name. At that point, we called the group working at
3.3.1 Word Spreads Berkeley; they confirmed our suspicions that the virus was

By the time Jon Rochlis of the MIT Telecommunications SPreading throughi nger d.
Network Group arrived for work around noon on Thursday ~ On the surface, it seemed tHatnger d was too simple
3 November 1988, the Network Group had received mest0 have a protection bug similar to the onesiendnai | ;
sages from MIT Lincoln Laboratory saying they had “been it was a very short program, and the only program it in-
brought to their knees” by the virus, from Sergio Heker Voked (using the UNIexec system call) was named using
of the John Von Neumann National Supercomputer Centef constant pathname. A check of the modification dates of
warning of network problems, and from Kent England of both/ et ¢/ fi ngerd and/ usr/ ucb/ fi nger showed
Boston University saying they had cut their external links. that both had been untouched, and both were identical to
The MIT Network Group loathed the thought of severing known good copies located on a read-only filesystem.
MIT’s external connections and never did throughout the Berkeley reported that the attack on finger involved
crisis. “shoving some garbage at it”, probably control A's; clearly
At 1:30pm Dan Geer and Jeff Schiller, Manager of thean overrun buffer wound up corrupting something.
MIT Network and Project Athena Operations Manager, re- Bill Sommerfeld of Apollo Computer and MIT Project
turned to the MIT Statistics Center and were able to get botithena guessed that this bug might involve overwriting the
VAX and Sun binaries from infected machines. saved program counter in the stack frame; when he looked
Gene Spafford posted a message at 2:50pm Thursday & the source fof i nger d, he found that the buffer it was
a large number of people and mailing lists includimgp- using was located on the stack; in addition, the program
manager s@uchvax.berkeley.edu, which is how we saw it used the C librangets function, which assumes that the
guickly at MIT. It warned that the virus usedsh and buffer it is given is long enough for the line it is about to
looked inhost s. equi v and. r host s for more hosts read. To verify that this was a viable attack, he then went
to attack. on to write a program which exploited this hole in a benign
Around this time the MIT group in E40 (Project Athena way. The test virus sent the string “Bozo!” back out the
and the Telecommunications Network Group) called Milo network connection.
Medin of NASA and found out much of the above. Many Miek Rowan and Mike Spitzer also report having dis-
of us had not yet seen the messages. He pointed out thabvered thd i nger d mechanism at about the same time
the virus just loved to attack gateways, which were foundand forwarded their discovery to Gene Spafford and Keith
via the routing tables, and remarked that it must have noBostic, but in the heat of the moment the discovery went
been effective at MIT where we run our own C Gatewayunrecognized. Liudvikas Bukys of the University of
code on our routers, not UNIX. Milo also said that it seemedRochester posted to tlemp.bugs.4bsd newsgroup a de-
to randomly attack network services, swamping them withtailed description of thé i nger d mechanism at 7:21pm.
input. Some daemons that ran on non-standard ports hathe message also stated that the virus used telnet but per-

10

haps that was only after cracking passwords. In reality it3.4.2 The Media Descends
only sometimes used telnet to “qualify” a machine for later

attack, and only usedsh andr exec to take advantage of About this time a camera crew from WNEV-TV Channel 7

passwords it had guessed. (the Boston CBS affiliate) showed up at the office of James

.) . D. Bruce, MIT EECS Professor and Vice President for In-
~ A risks@K.sri.com digest[20] came out at 6:52pm. It ¢mation Systems. He called Jeff Schiller and headed over
included a message from Cliff Stoll which described theiq g40. They were both were interviewed and stated that
spread of the virus on MILNET and suggested that MIL- there were 60,000 Internet holtsalong with an estimate
NET sites might want to remove themselves from the nets 1094 infection rate for the 2,000 hosts at MIT. The in-
work. Cliff concluded by saying, “This is bad news.” e tion rate was a pure guess, but seemed reasonable at the
Other messages were from Gene Spafford, Peter Neumagn,e - These numbers were to stick in a way we never an-
of SRI, and Matt Bishop of Dartmouth. They described theyjcinated. Some of the press reports were careful to explain
sendmai | propagation mechanism. the derivation of the numbers they quoted, including how
one could extrapolate thatas many as 6,000 computers were
infected, but many reports were not that good and simply
stated things like “at least 6,000 machines had been hit.”

3.4 Thursday Evening: *"With Microscope We were unable to show the TV crew anything “visual”

and Tweezers” caused by the virus, something which eventually became a
. common media request and disappointment. Instead they
3.4.1 Getting Down To Work settled for people looking at workstations talking “com-
puter talk.”

In the office of the Student Information Processing Board The virus was the lead story on the 11:00pm news and
(SIPB), Stan Zanarotti and Ted Ts'o had managed to gelvas mentioned on National Public Radio as well. We were
a VAX binary and core dump from the virus while it was quite surprised that the real world would pay so much at-
running on a machine at LCS. tention. Sound bites were heard on the 2:00am CBS Radio

Stan and Ted started attacking the virus. Pretty soon thellews, and footage shot that evening was shown onthe CBS
had figured out the xor encoding of the text strings embed-morning news (butby that pointwe were too busy to watch).
ded in the program and were manually decoding them. By After watching the story on the 11:00pm news we real-
9:00pm Ted had written a program to decode all the stringézed it was time to get serious about figuring out the detailed
and we had the list of strings used by the program, exceptvorkings of the virus. We all agreed that decompiling was
for the built-in dictionary which was encoded in a different the route to take, though later we also mounted an effort to

fashion (by turning on the high order bit of each character).infect a specially instrumented machine to see the virus in
peration. As Jerry Saltzer said in a later message to the

At the same time they discovered the ip address oﬁ ‘et Ath ﬁ q K a “wizard-level |
ernie.berkeley.edu, 128.32.137.13, in the program; they .rc,),ject thena staft, we un“er.too a wizard-level analy-
sis” by going over the virus “with microscope and tweez-

proceeded to take apart the virus routsead_message to

figure out what it was sending &nie, how often, and if a ers.
handshake was involved. Stan told Jon Rochlis in the MIT
Network Group of the SIPB group’s progress. The people3.5 Friday: “Where’s Sigourney Weaver?”
in E40 called Berkeley and reported the findingeafie's
address. Nobody seemed to have any idea why that w

there. Tim Shepard joined the group in E40, just before midnight
At 9:20pm Gene Spafford created the mailing list on Thursday. We thought we saw packets goingrtoe
phage@purdue.edu. It included all the people he had been and replies coming back, though this later proved to be an
mailing virus information to since the morning; more peo- illusion. Tim had hundreds of megabytes of packet headers
ple were to be added during the next few days. This listgathered Thursday morning from a subnet at LCS which
proved invaluable, since it seemed to have many of thavas known to have had infected machines on it. Unfortu-
“right” people on it and seemed to work in near real time nately the data was sitting on a machine at LCS, which was
despite all the network outages. still off the network, so Tim decided to go back and look
through his data. Within an hour or two, Tim called back
to say that he found no unusual trafficamie at all. This
was our first good confirmation that tkeenie packets were

6%5.1 Decompiling in Earnest

At 10:18pm Keith Bostic made his third bug fix posting.
Itincluded new source code fbi nger d which usedgets
instead ofgets and did anexit instead ofreturn. He also
included a more generakendmai | patch which disabled 147his was based on Mark Lottor's presentation to the October 1988
thedebug command completely. meeting of the Internet Engineering Task Force.

11

a red-herring or at least that they didn't actually wind up of the target machines in many different places on the
being sent. “host” computer we could also see how the virus cre-
Serious decompiling began after midnight. Stanand Ted ated its lists of targets.
soon left the SIPB office and joined the group working in))]) .)
E40, bringing with them the decoding of the strings and ® Isolation. We considered isolating the chhmes in-
much of the decompiled main module for the virus. Mark ~ Volved from the network totally (for paranoia’s sake)
Eichin, who had recently spent a lot of time disassembling- ~ ©r by & link-layer bridge to cut down on the amount
assembling some ROMs and thus had recent experience at ©f extraneous traffic mt_nmtored. True |_solat|on pr_oved
reverse engineering binaries, took the lead in dividing the ~ mMore than we were willing to deal with at the time,
project up and assigning parts to people. He had also woke ~ Since all of our UNI_X workstations assume access t(_)
up in late afternoon and was the most prepared for the long ~ Many network services such as nameservers and file

night ahead. servers. We didn't want to take the time to build a
At 1:55am Mark discovered the first of the bugs in the ~ functional standalone system, though that would have
virus. Abzero call inif_init was botched. At 2:04am Stan been feasible if we had judged the risk of infecting

had a version of the main module that compiled. We called ~ ©ther machines too great.

Keith Bostic at Berkeley at 2:20am and arranged todo FTP

exchanges of source code on an MIT machine (both Berke- Mike Muuss reported that the BRL group focused on
ley and MIT had never cut their outside network connec-Tonitoring the virus in action. They prepared a special log-
tions). Unfortunately, Keith was unable to get the hackersJiNg kernel, but even in coordination with Berkeley were

at Berkeley to take a break and batch up their work, so ndinable to re-infect the machine in question until Saturday.
exchange happened at that time. By 1:00am Friday we had set up the monitoring equip-

At 2:45am Mark started working ocheckother 15 since ment (an IBM PC_ running a packet monitor) and _two work-
the Berkeley folks were puzzled by it. Jon Rochlis Wasstathns_ (one acting as the ta_rget, the other running a pr_:tcket
working on the latecracksome routines. By 3:06am Ted Monitoring program and saving the packet traces to disk),
had figured out thalba built a table of target hosts which 2!l separated from the network by a link-layer bridge and
had telnet listeners running. By 3:17am Ted and Hal Birke-n2d dubbed the whole setup the “virus net”. We, too,. were
land from the Media Lab had determined that¢hgpt rou- unsuccessful in our attempt to get our target machlne in-
tine was the same as one found in the C library. Nobody/€cted until we had enough of the virus decompiled to un-
had yet offered a reason why it was included in the virus,d€rstand what arguments it wanted. By 3:40am John Kohl
rather than being picked up at link tiffe Mark had fin- had the virus running on our "virus net and we learned a
ishedcheckother and Ted had finishepermute at 3:28am. lot by watching what it did. The virus was soon observed

We worked on other routines throughout the morning. rYing telnet, SMTP, and finger connections to all gateways
listed in the routing table. Later it was seen tryirgh and

r exec into one of the gateways.

At 4:22am, upon hearing of the virus going after yet an-
The first method of understanding the virus was the decomother hostin a “new” manner, Jon Rochlis remarked “This
pilation effort. A second method was towatch the virus as itreally feels like the moviélliens. So where is Sigourney
ran, in an attempt to characterize what it was doing — this igVeaver?” Seeing the virus reach out to infect other ma-
akin to looking at the symptoms of a biological virus, rather chines seemed quite scary and beyond our control.

3.5.2 Observations from Running the Virus

than analyzing the DNA of the virus. At 5:45am we called the folks at Berkeley and finally ex-
We wanted to do several things to prepare for observinghanged code. A number of people in Berkeley had punted
the virus: to get some sleep, and we had a bit of difficulty convinc-

o _ _ ing the person who answered Keith Bostic's phone that we
e Monitoring. We wanted to set up a machine with spe-weren't the bad guy trying to fool them. We gave him a
cial logging, mostly including packet monitors. number at MIT that showed up in the NIC’'s whois database,

. - but he never bothered to call back.
e Pointers. We wanted to “prime” the machine with . .
) . At this point a bunch of us went out and brought back
pointers to other machines so we could watch how the
. : . some breakfast.
virus would attack its targets. By placing the names

15This and all the other routines mentioned here are described in detai : ;
in Appendix A. The routines mentioned here are not intended to be anb's'3 The Media Really Arrives

exhaustive list of the routines we worked on. : :
. 1dn ISTr
18]t turned out that we were wrong and the versiogrypt wasnot the We had been very fortunate that the press did not distract

same as library version[g]. Not everything you do at 3:00am turns out to US, and thatlwel were thus ab'? to put mogt of our time into
be right. our decompilation and analysis efforts. Jim Bruce and the

12

MIT News Office did a first rate job of dealing with most to make it look like something that a computer might have

of the press onslaught. By early morning Friday there wagyenerated. We're sure they would have preferred a dot ma-

so much media interest that MIT News Office scheduledrix printer to the laser printer we used.

a press conference for noon in the Project Athena Visitor Keith Bostic called in the middle of the press zoo, but we

Center in E40. were too busy dealing with the press, so we cut the conver-
Just before the press conference, we briefed Jim on owation short. He called us back around 3:00pm and asked

findings and what we thought was important: the virus for our affiliations for his next postinf. Keith also asked

didn't destroy or even try to destroy any data; it did not if we liked the idea of posting bug fixes to the virus itself,

appear to be an “accident;” we understood enough of theand we instantly agreed with glee. Keith made his fourth

virus to speak with authority; many people (especially thebug fix posting at 5:04pm, this time with fixes to the virus.

people we had talked to at Berkeley) had helped to solvéAgain he recommended renamite the UNIX linker.

this. Things began to wind down after that, though the press
We were amazed at the size of the press conference Was still calling and we managed to put off the NBG-

there were approximately ten TV camera crews and twentyday show until Saturday afternoon. Most of us got a good

five reporters. Jeff Schiller spent a good amount of timea@mount of sleep for the first time in several days.

talking to reporters before the conference proper began, and

many got shots of Jeff poir_1ting at the letters “(sh)” on t.he 3.6 Saturday: Source Code Policy

output of aps command. Jim and Jeff answered questions

as the decompiling crew watched from a vantage point irSaturday afternoon, 5 November 1988, ffaglay show

the back of the room. Atone pointa reporter asked Jeff howcame to the SIPB Office, which they referred to as the

many people had enough knowledge to write such a viruscomputer support club” ¢ic), to find a group of hackers.

and in particular, if Jeff could have written such a program.They interviewed Mark Eichin and Jon Rochlis and used

The answer was of course many people could have writteark’s description of what hackers really try to do on Mon-

itand yes, Jeff was one of them. The obvious question waglay morning’s show.

then asked: “Where were you on Wednesday night, Jeff?” After the Today show crew left, many of us caught up

This was received with a great deal of laughter. But wheron our mail. It was then that we first saw Andy Sudduth’s

a reporter stated that sources at the Pentagon had said thiiursday morning posting top-ip@sri-nic.arpaand Mike

the instigator of the virus had come forward and was a BUPatton stopped by and pointed out how strange it was.

or MIT graduate student, we all gasped and hoped it hadn't We soon found ourselves in the middle of a heated discus-

really been one of our students. sion onphage@purdue.eduregarding distribution of the de-
After the conference the press filmed many of us Workingcompiled virus source code. Since we had received several

(or pretending to work) in front of computers, as well as private requests for our work, we sat back and talked about

short interviews. what to do, and quickly reached consensus. We agreed with
The media was uniformly disappointed that the virus did Most of the other groups around the country who had come

nothing even remotely visual. Several also seemed painel@ the decision not to release the source code they had re-

that we weren’'t moments away from World War I1I, or Verse engineered. We felt strongly that the details of the in-

that there weren't large numbers of companies and bank€r workings of the virus shoulibt be kept hidden, but that
hooked up to “MIT’s network” who were going to be re- gctual source F:ode was a dlffere_nt matter. We (andlothers)
ally upset when Monday rolled around. But the vast major_lntended to write about the algorithms used by the virus so
ity of the press seemed to be asking honest questions in dfiat People would learn what the Internet community was
attempt to grapple with the unfamiliar concepts of comput-UP gainst. This meant that somebody could use those al-
ers and networks. At the NCSC meeting Mike Muuss said30rithms to write a new virus; but the knowledge required
“My greatest fear was that of seeingNational Enquirer ~ © do so is much greater than what is necessary to recom-
headline: Computer Virus Escapes to Humans, 96 Killed.”Pil€ the source code with a new, destructive line or two in
We were lucky that didn’t happen. it. The energy barrier for this is simply too low. The people

Perhaps the funniest thing done by the press was the pié)_n our team (not the MIT administration) decided to keep

ture of the virus code printed in Saturday’s edition of the oursource private unti]thi_ngs calmed down; then we would
Boston Herald[21]. Jon Kamens of MIT Project Athena pon3|derto whom to distribute the program. A public post-
had made a window dump of the assembly code for thd"d of the N|”T code was nor: gomﬁ to happecr;.f cully th
start of the virus (along with corresponding decompiled C €Y Saltzer, among others, has argued forcefully that
code), even including the window dump command itself.the code itself should be publicly released at some pointin
The truly amusing thing was that théerald had gotten an 17He almost got them right, except that he turned the Laboratory for
artist to add tractor feed holes to the printoutin an attemptComputer Science into the Laboratory for Computer Services.

13

the future. After sites have had enough time to fix the holegan a heavily slanted story about the incident on Friday 11

with vendor supplied bug fixes, we might do so. November 1988[22].
Several mistakes were made here. First the NCSC was
3.7 Tuesday: The NCSC Meeting concerned about the wrong thing. The disassembled virus

was not important and was trivial for any infected site to

OnTuesday 8 November 1988 Mark Eichin and Jon Rochliggenerate. It simply was not anywhere near as important as
attended the Baltimore post-mortem meeting hosted by théhe decompiled virus, which could have very easily have
NCSC. We heard about the meeting indirectly at 2:00anP€een compiled and run. When the MIT group was indirectly
and flew to Baltimore at 7:00am. Figuring there was noinformed about this and discovered exactly what was pub-
time to waste with silly things like sleep, we worked on licly available, we wondered what the big deal was. Sec-
drafts of this document. The meeting will be described inondly, the NCSC acted in a strong-handed manner that up-
more detail by the NCSC, but we will present a very brief Set the people at Purdue who got pushed around.
summary here. Other similar incidents occurred around the same time.

Attending the meeting were representatives of the NaJean Diaz of the MIT SIPB, fowarded a partially decom-
tional Institute of Science and Technology (NIST), for- Piled copy of the viru&® to phage@purdue.edu at some
merly the National Bureau of Standards, the Defense Comtime on Friday 4 November 1988, but it spent several days
munications Agency (DCA) , the Defense Advanced Re-n a mail queue ohplabs.hp.combefore surfacing. Thus it
search Projects Agency (DARPA), the Department of En-had been posted before any of the discussion of source code
ergy (DOE), the Ballistics Research Laboratory (BRL), release had occurred. It also was very incomplete and thus
the Lawrence Livermore National Laboratory (LLNL), the posed little danger since the effort required to turn it into
Central |nte||igence Agency (C|A), the University of Cal- a Working virus was akin to the effort requirEd to write the
ifornia Berkeley (UCB), the Massachusetts Institute of virus from scratch.
Technology (MIT), Harvard University, SRI International, ~ These two incidents, however, caused the press to think
the Federal Bureau of Investigation (FBI), and of course thehat a second outbreak of the virus had once again brought
National Computer Security Center (NCSC). This is not athe network to its knees. Robert French, of the MIT SIPB
complete list. The lack of any vendor participation was no-and Project Athena, took one such call on Thursday 10
table. November and informed the reporter that no such outbreak

Three-quarters of the day was spent discussing what haggd occurred. Apparently rumors of source code availabil-
happened from the different perspectives of those attendingty (the Purdue incident and Jean’s posting) led to the erro-
This included chronologies, actions taken, and an analysigeous conclusion that enough information of some sort had
of the detailed workings of the virus; Meanwhile our very been letoutand damage had been done. Rumor control was
rough draft was duplicated and handed out. once again shown to be important.

The remaining time was spent discussing what we
learned from the attack and what should be done to pre-
pare for future attacks. This was much harder and it is4 Lessons and Open Issues
not clear that feasible solutions emerged, though there was L :
much agreement on several motherhood and apple-pie su he virus incident taugh.t marny |mportaqt lessons. It also
gestions. By this we mean the recommendations soun roughtqp many more difficultissues which need to be ad-
good and and by themselves are not objectionable, but wi ressed in the future .
doubt they will be effective.

4.1 Lessons from the Community’s Reac-
3.8 Wednesday-Friday: The Purdue Inci- tions

dent The chronology of events is interesting. The manner in

On Wednesday evening 9 November 1988, Rich KulawiecWh'Ch the Internet community reacted to the virus attack

of Purdue posted tihage@purdue.edu that he was making points out areas of concern or at least issues for future study.
available thainas disassembler that he (and others at Pur-
due) used to disassemble the virus. He also made available
the output of running the virus through this program. Ru-
mor spread and soonthe NCSC called several people at Pur-
due, including Gene Spafford, in an attempt to get this copy
of the virus removed. Eventually the President of Purdue
was called and the file was deleted. The New York Times !8This was the work of Don Becker of Harris Corporation.

e Connectivitywas important. Sites which disconnected
from the network at the first sign of trouble hurt them-
selves and the community. Not only could they not re-
port their experiences and findings, but they couldn’t
get timely bug fixes. Furthermore, other sites using

14

them as mail relays were crippled, thus delaying deliv-
ery of important mail, such as Andy Sudduth’s Thurs-
day morning posting, until after the crisis had passed.
Sites like MIT and Berkeley were able to collaborate
in a meaningful manner because they never took them-
selves off the network.

The “old boy network” worked. People called and
sent electronic mail to the people they knew and

Managing the press was critical. We were not dis-
tracted by the press and were able to be quite pro-
ductive. The MIT News office did a fine job keeping
the press informed and out of the way. Batching the
numerous requests into one press conference helped
tremendously. The Berkeley group, among others, re-
ported that it was difficult to get work done with the
press constantly hounding them.

trusted and much good communication happened, o General Points for the Future

This can’t be formalized but it did function quite well
in the face of the crisis.

More general issues have popped to the surface because of

the virus. These include the following:

Late night authentication is an interesting problem.
How did you know that it really is MIT on the
phone? How did you know that Keith Bostic’s patch to
sendmai | is really a fix and isn't introducing a new
problem? Did Keith really send the fix or was it his
evil twin, Skippy?

Whom do you call? If you need to talk to the man-
ager of the Ohio State University network at 3:00am
whom do you call? How many people can find that
information, and is the information up to date?

Speaker phones and conference calling proved very
useful.

How groups formed and who led them is a fascinating
topic for future study. Don Alvarez of the MIT Center
for Space Research presented his observations on this
at the NCSC meeting.

Misinformation and illusions ran rampant. Mike
Muuss categorized several of these at the NCSC meet-
ing. Our spotting of a handshake wimieis but one
example.

Tools were not as important as one would have ex-
pectd. Most of decompiling work was done manually
with no more tools than a disassembladp) and an
architecture manual. Based on its experience with PC
viruses, the NCSC feels that more sophisticated tools
must be developed. While this may be true for future
attacks, it was not the case for this attack.

Source availability was important. All of the sites
which responded quickly and made progress in truly
understanding the virus had UNIX source code.

The academic sites performed best. Government and
commercial sites lagged behind places like Berkeley
and MIT in figuring out what was going on and creat-
ing solutions.

15

Least Privilege. This basic security principle is fre-
guently ignored and this can result in disaster.

“We have met the enemy and he is us.” The alleged
author of the virus has made contributions to the com-
puter security field and was by any definition an in-
sider; the attack did not come from an outside source
who obtained sensitive information, and restricting in-
formation such as source code would not have helped
prevent this incident.

Diversity is good. Though the virus picked on the
most widespread operating system used on the Inter-
net and on the two most popular machine types, most
of the machines on the network were never in danger.
A wider variety of implementations is probably good,
not bad. There is a direct analogy with biological ge-
netic diversity to be made.

“The cure shouldn’t be worse than the disease.”
Chuck Cole made this point and Cliff Stoll also argued
that it may be more expensive to prevent such attacks
than itis to clean up after them. Backups are good. It
may be cheaper to restore from backups than to try to
figure out what damage an attacker has done[6].

Defensesmust be at the host level, not the network
level. Mike Muuss and CIiff Stoll have made this
point quite eloquently[6]. The network performed its
function perfectly and should not be faulted; the tragic
flaws were in several application programs. Attempts
to fix the network are misguided. Jeff Schiller likes to
use an analogy with the highway system: anybody can
drive up to your house and probably break into your
home, but that does not mean we should close down
the roads or put armed guards on the exit ramps.

Logging information is important. Thenet d and

t el net d interaction logging the source of virus at-
tacks turned out to be a lucky break, but even so many
sites did not have enough logging information avail-
able to identify the source or times of infection. This

greatly hindered the responses, since people frequently The SIPB’s role is quite interesting. Itis a volunteer stu-
had to install new programs which logged more infor- dent organization that represents students on issues of the
mation. On the other hand, logging information tends MIT computing environment, does software development,
to accumulate quickly and is rarely referenced. Thusprovides consulting to the community, and other miscel-
it is frequently automatically purged. If we log help- laneous tasks. Almost all the members of the MIT team
ful information, but find it is quickly purged, we have which took apart the virus were members of the SIPB, and
not improved the situtation much at all. Mike Muuss- the SIPB office was the focus for early efforts at virus catch-
points out that frequently one can retrieve such infor-ing until people gathered in the Project Athena offices.
mation from backups[6], but this is not always true. Mark W. Eichin (Athena and SIPB) and Stanley R. Za-
.) _narotti (LCS and SIPB) led the team disassembling the virus
» Denial of service attacks are easy. The Intemet ig,qe The team included Bill Sommerfeld (Athena/Apollo
amazmgly.v_ulnerable to such attacks. These attaCkE‘omputer and SIPB), Ted Y. Ts'o (Athena and SIPB), Jon
are quite difficultto prevent, butwe couldbe muchbet- g, opjis (Telecommunications Network Group and SIPB),
ter prepared to |dent|fyt.h.e|rsources than weare t,o,dayKen Raeburn (Athena and SIPB), Hal Birkeland (Media
For example, currently itis not harq toimagine wrm_ng Laboratory), and John T. Kohl (Athena/DEC and SIPB).
a program or set of programs which crash tWO'th'rdS Jeffrey I. Schiller (Campus Network Manager, Athena
.Of the eX|s_t|ng Sur1 Workstaho_ns or other m""Ch'n(.esOperations Manager, and SIPB) did a lot of work in trap-
implementing Sun’s Network Filesystem (NFS). This ping the virus, setting up an isolated test suite, and dealing

is serious since such machines are the most COMMORiih the media. Pascal Chesnais (Media Laboratory) was
computers connected to the Internet. Also, the tOtaIone of the first at MIT to spot the virus. Ron Hoffmann
lack of authentication and authorization for network

; . . . (Network Group) was one of the first to notice an MIT ma-
level routing makes it possible for an ordinary user to .. .
disruptcommunications for a large portion of the Inter chine attacked by finger.
) . . TimShepard (L rovided information he prop-
net. Bothtasks could be easily done in a manner which Shepard (LCS) providedinformationabout the prop

. o e agation of the virus, as well as large amounts of “netwatch”
rnake_s trackllng down the initiator extremely difficult, data and other technical help.
if not impossible.

James D. Bruce (EECS Professor and Vice President for
e A central Security fix repository may be a good idea. Information Systems) and the MIT News Office did an ad-
Vendorsmust participate. End users, who likely only mirable job of keeping the media manageable and letting us
want to get their work done, must be educated aboug€t our work done.
the importance of installing security fixes.

« Knee-jerk reactions should be avoided. Openness an@-2 1he Berkeley Team

free flow ofinformation_is the whole point of network- We communicated and exchanged code with Berkeley ex-
ing, and fundmg agencies S,hOl,JId hot be encouraged t?ens;ively throughoutthe morning of 4 November 1988. The
dp anyt_hmg damaging to this yvrthoutvery _carefu| CON- team there included Keith Bostic (Computer Systems Re-
S|de_rat|on. Networ!< connect|y|ty prqved its worth S search Group, University of California, Berkeley), Mike
an aid to collaboration bY playing an |r.1valuable.rc.)Ie N Karels (Computer Systems Research Group, University of
thg defenge and angly&s efforts during the crisis, deZ:alifornia, Berkeley), Phil Lapsley (Experimental Comput-
spite the sites which isolated themselves. ing Facility, University of California, Berkeley), Dave Pare
(FX Development, Inc.), Donn Seeley (University of Utah),
5 Acknowledgments Chris Torek (Univer;ity of Mgryland_), and Peter Yee (!Ex—
perimental Computing Facility, University of California,

Many people contributed to our effort to take apart the virus. Berkeley).
We would like to thank them all for their help and insights
both during the immediate crisis and afterwards. 5.3 Others

51 The MIT team Numerous others across the. co_untry deserve tr_\anks; many
of them worked directly or indirectly on the virus, and
The MIT group effort encompassed many organizationshelped coordinate the spread of information. Special thanks
withinthe Institute. Itincluded people from Project Athena, should go to Gene Spafford (Purdue) for serving as a central
the Telecommunications Network Group, the Student Infor-information point and providing key insight into the work-
mation Processing Board (SIPB), the Laboratory for Com-ings of the virus. Don Becker (Harris Corporation) has pro-
puter Science, and the Media Laboratory. vided the most readable decompilation of the virus which

16

we have seen to date. It was most helpful.

An attempt was made to provide a review copy of this
paper to all people mentioned by name. Most read a copy
and many provided useful corrections.

People who offered particularly valuable advice included
Judith Provost, Jennifer Steiner, Mary Vogt, Stan Zanarotti,
Jon Kamens, Marc Horowitz, Jenifer Tidwell, James Bruce,
Jerry Saltzer, Steve Dyer, Ron Hoffmann and many un-
named people from the SIPB Office. Any remaining flaws
in this paper are our fault, not theirs.

Special thanks to Bill Sommerfeld for providing the de-
scription of the finger attack and its discovery.

17

A The Program address space. Ifit can't load one of them, it quits. If the
- p argument is given, it also deletes the object files, and

This Appendix describes the virus program subroutine byater tries to remove the disk image of running virus, as well

subroutine. For reference, the flow of information amongas the file/ t mp/ . dunb. (This file is not referenced any-

the subroutines is shown in Figure 3. where else in the virus, so itis unclear why it is deleted.)
The programthen tried a few further steps, exiting (“bail-
A.1 Names ing out”) if any of them failed:

e It checked that it had been given at least one object on

The core of the virus is a pair of binary modules, one for the command line.
the VAX architecture and the other for the Sun architec- o |t checked to see if it had successfully loaded in the
ture. These are linkable modules, and thus have name lists gpjectl 1. c.
for their internal procedures. Many of the original names | the “.p” argument was given, the program closes all
are included here with the descriptions of the functions theyjje descriptors, in case there are any connections open to
routines performed. the parent.

Itis surprising that the names are included, and astonish- The program then erases the text of the argumentarray, to
ingthat they are meaningful. Some simple techniques, sucyrther obscure how it was started (perhaps to hide anything
as randomizing the procedure names, would have removeglone were to get a core image of the running virus.)

a number of clues to the function of the virus. It scans all of the network interfaces on the machine, gets
the flags and addresses of each interface. It tries to get the
A.2 main point-to-point address of the interface, skipping the loop-

back address. It also stores the netmask for that network
The main module, the starting point of any C language pro{23].

gram, does some initialization, processes its command line, Finally, it kills off the process id given with the “-p” op-
and then goes off into the loop which organizes all of theyjon 1t also changes the current process group, so that it

real work. doesn’t die when the parent exits. Once this is cleaned up,
it falls into the doit routine which performs the rest of the
A.2.1 Initialization work.

The program first takes some steps to hide itself. It changes
the “zeroth” argument, which is the process namesto A.3 doit routine
Thus, no matter how the program was invoked, it would__ . L
show up in the process table with the same name as thEhis routine is where the program spends most of its time.
Bourne Shell, a program which often runs legitimately.

The program also sets the maximum core dump size té&\.3.1 Initialization

zero blocks. If the program crashié@dt would not leave i) o
<Like the main routine, it seeds the random number generator

a core dump behind to help investigators. It also turns off-"
handling of write errors on pipes, which normally cause theWith the clock,.and stores the clopk value_to later measure
how long the virus has been running on this system.

program to exit. . N A
The next step is to read the clock, store the current time It then trieshg. If that fails, it trieshl. If that fails, it tries

in a local variable, and use that value to seed the randoi&))]]
number generator. Itthen tries to check if there is already a copy of the virus

running on this machine. Errors in this code contributed to

the large amounts of computer time taken up by the virus.

Specifically:

The virus program itself takes an optional argumept « On a one-in-seven chance, itwon't even try to test for

which must be followed by a decimal number, which seems another virus.

to be a process id of the parent which spawned it. It uses e The first copy of the virus to run is the only one which

this number later to kill that process, probably to “close the listens for others; if multiple infections occur “simul-

door” behind it. taneously” they will not “hear” each other, and all but
The rest of the command line arguments are “object one will fail to listen (see section A.12).

names”. These are names of files it tries to load into its The remainder of the initialization routine seems de-
19For example, the virus was originally compiled using 4.3BSD decla- Slgned to send a smgle byte to address 128.32.137.13,

ration files. Under 4.2BSD, the alias name list did not exist, and code suctVhich is_emie-berkele)/-eduv on port11357. This never hap-
as the virus which assumes aliases are there can crash and dump core. pens, since the author used seadto function on a TCP

A.2.2 Command line argument processing

18

Interface Table Routing Table

/.rhosts

letc/ hosts. equiv

N

Phase 0 [etc/ passwd
if_init rt_init
~/ . forward ~/.rhosts
Phase 1 Qbvi ous Quesses
Host Li st User Nane Li st H H
Phase 2 Internal Wrds
Guessed Passwords Phase 3 {usr/di ct/words
Ht finger Ht SMIP Ht rsh Ht rexec
wai t hit
(wait for infected client to respond)

Figure 3: The structure of the attacking engine.

19

stream connection, instead of a UDP datagram sdket. A.4.2 Phase 0
We have no explanation for this; it only tries to send this

packet with a one in fifteen random chance. The first phase of theracksome routines reads through

the/ et ¢/ host s. equi V file to find machine names that
) would be likely targets. While this file indicates what hosts
A.3.2 Main loop the current machine trusts, it is fairly common to find sys-
An infinite loop comprises the main active component of €Ms where all machines in a cluster trust each other, and
the virus. It calls thecracksome routine! which tries to @t the very least it is likely that people with accounts on
find some hosts that it can break in to. Then it waits 30this machine will have accounts on the other machines men-
seconds, listening for other virus programs attempting tofioned in/ et c/ hosts. equi v. o
break in, and tries to break into another batch of machines. !t lso reads thé. rhost s file, which lists the set of
After this round of attacks, it forks, creating two copies of Machines that this machine trusts root access from. Note
the virus; the original (parent) dies, leaving the fresh copy.that it does not take advantage of the trust itself [25] but
The child copy has all of the information the parent had, merely uses the names as a list (_)f additional machines to
while not having the accumulated CPU usage of the parengtack. Often, system managers will deny read access to this
It also has a new process id, making it hard to find. file to any user other than rootitself, to avoid providing any
Next, thehg, hl, andha routines search for machines to €asy list qf secqndary targets that could be used to subyert
infect (see Appendix A.5). The program sleeps for 2 min-the machine; this practice would have prevented the virus
utes, and then checks to see if it has been running for morom discovering those names, althougfr host s is very
than 12 hours, cleaning up some of the entries in the hospften a subsetafet ¢/ hosts. equi v. .
listif it has. The program then reads the entire local password file,

Finally, before repeating, it checks the global variable/ €t ¢/ passwd. It uses this to find personaf orward
pl easequi t . Ifitis set, and if it has tried more than 10 files, and reads them in search of names of other machines

words from its own dictionary against existing passwords, it €an attack. It also records the user name, encrypted
it quits. Thus forcingpl easequi t to be set in the sys- password, andGECOS information string, all of which

tem libraries will do very little to stem the progress of this &re stored in thé et ¢/ passwd file. Once the program
virus?2. scanned the entire file, it advanced to Phase 1.

A.4 Cracking routines A4.3 Phase 1

This phase of the cracking code attacked passwords on the

cracksome, the main switch, chooses which of four strate- local ma_chine. It chose several likely passwords fof each
gies to execute. It is would be the central point for addingYS®" Wh'Ch were ther_1 encrypted and compared against the
new strategies if the virus were to be further extended ENCryptions obtained in Phase 0 frérat ¢/ passwa:

The virus works each strategy through completely, then ® No password at.all.

switches to the next one. Each pass through the cracking ® The user name itself. .

routines only performs a small amount of work, butenough ® The user name appended to itself.

state is remembered in each pass to continue the next time ® 1 1€ second of the comma separa@eCOSinforma-
around. tion fields, which is commonly a nickname.

e The remainder of the full name after the first name in
the GECOS fields, i.e. probably the last name, with
the first letter converted to lower case.

The cracksome routine is the central switching routine of ~ ® This “lastname” reversed.

the cracking code. It decides which of the cracking strate- All of these attacks are applied to fifty passwords at a
gies is actually exercised next. Again, note that this rou-time from those collected in Phase 0. Once it had tried to
tine was named in the global symbol table. It could haveduess the passwords for all local accounts, it advanced to
been given a confusing or random name, but it was actually’hase 2.

clearly labelled, which lends some credence to the idea that

the virus was released prematurely. A.4.4 Phase 2

This collection of routines is the “brain” of the virus.

A.4.1 cracksome

201f the author had been as careful with error checking here as he triedPhase 2 takes the internal word list distributed as part of
to be elsewhere, he would have noted the error “socket not (:onnected"the virus (see Appendix B) and shuffles it. Then it takes
every time this routine is invoked. .) . .
21This name was actually in the symbol table of the distributed binary! th€ words one at a time and decodes them (the high bit is

22 Although it was suggested very early [24]. set on all of the characters to obscure them) and tries them

20

against all collected passwords. It maintains a global variA.5.5 hn

ablenext was an index into this table. The main loop uses

thisto prevenpl easequi t from causing the virustoexit Thehnroutine (our name) followel takes a network num-
until at least ten of the words have been checked against aller as an argument. Surprisingly it returns if the network

of the encryptions in the collected list. number supplied is the same as the network number of any
Again, when the word listis exhausted the virus advancef the interfaces on the local machine. For Class A ad-

to Phase 3. dresses it uses the Arpanet IMP convention to create pos-
sible addresses to attack (net.[1-8].0.[1-255]). For all other

A.45 Phase 3 networks it guesses hosts number one through 255 on that

network. It randomizes the order of this list of possible

Phase 3 looks at the localusr/ di ct/words file, @ nsts and tries to attack up to twenty of them usisg,
24474 word list distributed with 4.3BSD (and other UNIX ¢ nger , and SMTP. If a host does not accept connections

systems) as a spelling dictionary. The words are stored i, TCP port 514, the sh port, hn will not try to attack it.
this file one word per line. One word at a time is tried |t 5 host is successfully attackéd returns.
against all encrypted passwords. If the word begins with
an upper case letter, the letter is converted to lower case
and the word is tried again.

When the dictionary runs out, the phase counter is agaif\-5.6 Usage
advanced to 4 (thus no more password cracking is at-
tempted). The “h routines” are called in groups in the main loop; if
the first routine succeedes in finding a vulnerable host the
remaining routines are not called in the current pass. Each
routine returns after it finds one vulnerable host. Tige
The “h routines” are a collection of routines with short routine is always called first, which indicates the virus re-
names, such asg, ha, hi, andhl, which search for other ally wanted to infect gateway machines. Next corhes

A.5 H routines

hosts to attack. which tried to infect normal hosts found viaacksome. If
hi fails, hais called, which seemed to try breaking into hosts
A5.1 hg with randomly guessed addresses on the far side of gate-

ways. This assumes that all the addresses for gateways had
Thehgroutine callstinit (ifit has notalready been called) peen obtained (which is not trivial to verify from the con-
to scan the routing table, and records all gateways exceRfoluted code inrt init), and implies that the virus would
the |00pbaCk addreSS in a Specia| I|St It then trieS a generi%refer to infect a gateway and from there reach out to the
attack routine to attack viash, finger, and SMTP. It gateway’s connected networks, rather than trying to hop the

returns after the first successful attack. gateway directly. Ihg, hi, andhaall failed to infect a host,
thenhl is called which is similar tda but uses for local
A5.2 ha interfaces for a source of networks.

Theha routine goes through the gateway list and connects Itis not clear thaba andhl worked. Becausén returns

to TCP port 23, the telnet port, looking for gateways which If the address is locahl appears to have no chance of suc-
are running telnet listeners. It randomizes the order of suctfeeding. If alternate addresses for gateways are indeed ob-
gateways and callsn (our name) with the network number fained by other parts of the virus thea could work. But

of each gateway. Thiea returns aftehn reports that it has i only the addresses in the routing table were used it could
succeeded broken into a host. not work, since by definition these addresses must be on

a directly connected network. Also, in our monitoring we
never detected an attack on a randomly generated address.
These routines do not seem to have been functional.

Thehl routine iterates through all the addresses for the local

machine callinghn with the network number for each one.
It returns ifhn indicates success in breaking into a host.

A5.3 hl

A.6 Attack routines
A5.4 hi . . .

There are a collection of attack routines, all of which try to
Thehi routine goes through the internal host list (see sec-obtain a Bourne Shell running on the targeted machine. See
tion A.4.2) and tries to attack each host vigh, f i nger, Appendix A.7 for a description of thel. ¢ program, used
and SMTP. It returns if when one host is infected. by all the attack routines.

21

A.6.1 hul e /usr/ucb/rsh

[usr/bin/rsh
Thehul routine is called by the Phase 1 and Phaseagk- : /bin/rsh

some subroqtines._Onpe a passvyord for user name guessgfiyq of them succeeds, it tries to resynchronize (see Ap-
cprrectly, this routine is called with a host.name read frompendix A.8.1) the connection; if that doesn't succeed within
either the user's f orwar dor. r.host s files. In order hirty seconds it kills off the child process. If successful the
to assume the user’s id it then tries to connect to the local = tion can then be used to launch the c sgrappling
machine’'s exec server using the guessed name and PaSK oo program at the victim

word. If successful it runs ansh to the target machine, Note that this infection method doesn't specify a user
trying to e>.<ecute a Bqurne _Shell, whichituses to send OV€hame to attack; if it gets into the remote account, it is be-
and compile thé 1. ¢ infection program. cause the user thatthe virus is running as also has an account

on the other machine which trusts the originating machine.
A.6.2 Hit SMTP

This routine make a connection to TCP port 25, the SMTPA-6-5 Hit rexec

port, of a remote machine and used it to take advantage ofhe hit rexec routine uses the remote execution system
the sendmail bug. It attempts to use the debug option tQyhich is similar tor sh, but designed for use by programs.

makesendmai | run a command (the “recipient” of the |t connects and sends the user name, the password, and
message), which transfers thé&. ¢ program included in / pi n/ sh as the command to execute.

the body of the message.

A.6.6 makemagic

A.6.3 Hit finger
This routine tries to make a telnet connection to each of the

The “hitfinger” routine tries to make a connection to TCP available addresses for the current victim. It broke the con-
port 79, the finger port, of the remote machine. Then itnections immediately, often producing error reports from

creates a “magic packet” which consists of the telnet daemon, which were recorded, and provide some
e A 400 byte “runway” of VAX “nop” instructions, of the earliest reports of attack attempts.
which can be executed harmlessly. If it succeedes in reaching the host, it creates a TCP lis-

¢ A small piece of code which executes a Bourne Shelltener on a random port number which the infected machine
e A stack frame, with a return address which would would eventually connect back to.
hopefully point into the code.
Notg that the piecelof code is VAX code, and the stacka - Grappling Hook
frameis a VAX frame, inthe wrong order for the Sun. Thus,
although the Sun finger daemon has the same bug as tieshort program, namet1l. c, is the common grappling
VAX one, this piece of code cannot exploit it. hook that all of the attack routines use to pull over the rest
The attack on the finger daemon is clearly a lysogeneti®f the virus. Itis robustly written, and fairly portable. Itran
“viral” attack (see Section 1.2), since although a worm on a number of machines which were neither VAX or Sun,
doesn’t modify the host machine at all, the finger attackloading them down as well, but only making them periph-
does modify the running finger daemon process. The “in-eral victims of the virus.
jected DNA” component of the virus contained the VAX The first thing it does is delete the binary it was running
instructions shown in Figure 4. from. It checks that it has three arguments (exiting if there
The execve system call causes the current process t@ren’t three of them). It closes all file descriptors and then
be replaced with an invocation of the named programforks, exiting if the fork fails. If it succeeds, the parent ex-
/ bi n/ sh is the Bourne Shell, a UNIX command inter- its; this leaves no connection from the child to the infection
preter. Inthis case, the shell winds up running with its inputroute.
coming from, and its output going to, the network connec- Next, it creates a TCP connection back to the address
tion. The virus then sends over thd. ¢ bootstrap pro- given as the firstargument, and the port given as the second.
gram. Then it sends over the magic number given as the third.
The text of each argument is erased immediately after it is
used. The stream connection isthen reused as the program’s

A-64 Hitrsh standard input and output.

This unlabeled routine triessh to the target host (assum- 230n fast machines, such as the DEC VAX 3200, there may be no record

ing it can getin as Fhe current user). It tries three differentyf iese attacks, since the connection is handed off fast enough to satisfy
names for the sh binary, the daemon.

22

pushl $68732f push '/ sh<NUL>'

pushl $6e69622f push ' /bin

nov| sp, ri1o0 save address of start of string
pushl $0 push 0 (arg 3 to execve)

pushl $0 push 0 (arg 2 to execve)

pushl rio push string addr (arg 1 to execve)
pushl $3 push argunment count

nov| sp, ap set argument pointer

chnk $3b do "execve" kernel call

Figure 4: VAX intructions for thé i nger attack.

A loop reads in a length (as a network byte order 32- e if the delete fails, pick a random name to use instéad
bit integer) and then a filename. The file is unlinked and e scan the list of objects, looking for names ending in

opened for write, and then the file itself is read in (using the .0

number of bytes read in earlier.) On any error, all of the e link and run each of these, with the command line ar-
files are unlinked. If the length read in is -1, the loop exits, guments

and a Bourne Shell is executed (replacingltieprogram, e -p 3$3%, where$s$ is the process id of the victim
and getting its input from the same source.) shell

e each object name
) e resynchronize; if this fails, assume that the virus suc-
A.8 Install Routines ceeded (since thep option tells the virus to kill off
the parent shell) and set flag bit 1 of the host list entry
(the host list is detailed in section A.9).
e delete the compiled program, and go on to the next
object.
Thus, to add another machine type, the virus merely
needs to be started with a new object binary as a command
A.8.1 resynch line option, which will then be propagated to the next in-
fected host and tried.
Theresynch routine sends commands to a remote shell, re- Note that the path used here wdATH= bi n:
guesting that it echo back a specific randomly chosen num-usr / bi n: / usr/ uchb which is certainly reason-
ber. It then waits a certain amount of time for a responseable on most systems. This protects systems with “un-
This routine is used to indicate when the various subprousual” filesystem layouts, and suggests that complete con-
grams of the infection procedure have compiled or executedistency among systems makes them more vulnerable.
and a Bourne Shell prompt is available again.

There are a variety of routines used to actually move the
virus from one machine to the other. They deal with the
“virus protocol” connection made by thel. ¢ injected
program or with the shell that it spawns.

A.9 Host modules

A.8.2 waithit These are a set of routines designed to collect names and
addresses of target hosts in a master list. Each entry con-
tains up to six addresses, up to twelve names, and a flags
field.

This routine does much of the high level work. It waits (up
to 2 minutes) for a return connection from a victim (which
has had 1. c injected into it.) It then tries to read a magic
number (which had been previously sent to that victim as a

command line argument to thel program) and gives up A-9-1 Name to host

after ten seconds. . This routine searches the host list for a given named host,
. After the connection is established, all of the current “ob- returns the list entry describing it, and optionally adds it to
jects” in storage in the virus are fed down the connectionthe list if it isn’t there already.

into the victim. Then it tries to resynchronize, and if it suc-

ceeds, sends down commands to crontmg o g e vesio8) Howesor e
e i i u viru . However,
e set thePATH of the victim shell virus would still use CPU resources attempting to link the objects, even

e tryto deletesh in the current directory/(usr / t np) though it couldn’twrite to the outputfile (since it was a directory).

23

A.9.2 Address to host is UP and RUNNING (specific fields of the flag structure).

If the entry is a point to point type interface, the remote
Jddress is saved and added to the host table. It then tries to
enter the router into the list of hosts to attack.

This routine searches the host list for a given host addres
returns the list entry describing it, and optionally adds it to
the listif it isn't there already.

A.9.3 Add address/name A11.2 rtinit

These two routines added an address or a name to a host [fEfis routinerunsiet st at -r - n as a subprocess. This
entry, checking to make sure that the address or name w&$ows the routing table, with the addresses listed numer-

not already known. ically. It gives up after finding 500 gateways. It skips the
default route, as well as the loopback entry. It checks for re-
A9.4 Clean up table dundant entries, and checks to see if this address is already

an interface address. If not, it adds it to the list of gateways.
This routine cycles through the host list, and removes any After the gateway listis collected, it shuffles it and enters
hosts which only have flag bits 1 and 2 set (and clears thosgye addresses in the host table.
bits.) Bit 1 is set when a resynchronize (imithit) fails,
probably indicating that this host “got lost”. Bit 2 is set]
when a named host has no addresses, or when several dff.-12 Interlock routines
ferent attack attempts fail. Bit 3 is set when Phase 0 of th

. . h inegheckother andoth r he heart
crack routines successfully retrieves an address for the hos0 e wo routinesheckother andothersieep are at the

f the excessive propagation of the virus. Itis clear that the
author intended for the virus to detect that a machine was
A.9.5 Get addresses already infected, and if so to skip it. The code is actually

This routine takes an entry in the host table and tries to fillffaught with timing flaws and design errors which lead it
in the the gaps. It looks up an address for a name it has, dp permit multiple infections, probably more often than the

looks up a name for the addresses it has. It also includedesigner intended. .
any aliases it can find. An active infection uses thethersleep routine for two

purposes, first to sleep so that it doesn’t use much processor
. . time, and second to listen for requests from “incoming”
A.10 Object routines viruses. The virus which is runniraghersleepis referred to
These routines are what the system uses to pull all of it@s the “listener” and the virus which is runnimeckother
pieces into memory when it starts (after the host has beeis referred to as the “tester”.

infected) and then to retrieve them to transmit to any host it

infects. A.12.1 Checkother

A.10.1 Load object The tester tries to connect to port 23357 on the local ma-

chine (using the loopback address, 127.0.0.1) to see ifitcan

This routine opens a file, determines its length, allocating.gnnect to a listener. If any errors occur during this check,

the appropriate amount of memory, reads itin as one blockie virus assumes that no listener is present, and tries to be-
decodes the block of memory (with XOR). If the object gme a listener itself.

hame contains a comma, itmoves past itand starts the name¢yhe connection is successful, the checker sends a magic

there. numbe?®, and listens (for up to 300 seconds) for a magic
. number from the listenéf. If the magic number is wrong,
A.10.2 Get object by name the checker assumes it is being spoofed and continues to

Thisroutine returns a pointer to the requested object. This igun-

used to find the pieces to download when infecting another 1he checker then picks a random number, shifts it right
host. by three (throwing away the lower three bits) and sends it

to the listener. It expects a number back within ten sec-

et . . onds, which it adds to the one sent. If this sum is even, the
A.11 Other initialization routines

e 25This behavior was noted by both looking at the code and by creating
A1l ifinit a testbed setup, manually running a program that performs the checking

. . . and listening functions.
This routine scans the array of network interfaces. It gets 26g74697, 4, 886543110, 0416432275

the flags for each interface, and makes sure the interface27148898,,134568819, 051042304

24

sender incrementsl easequi t, which (as noted in sec-
tion A.3.2) does very little.

Once it has finished communicating (or failing to com-
municate) with the listener, the checker sleeps for five sec-
onds and tries to become a listener. It creates a TCP stream
socket, sets the socket options to indicate that it should al-
low multiple binds to that address (in case the listestiér
hasn’t exited, perhaps?) and then binds the socket to port
23357, and listens on it (permitting a backlog of up to ten
pending connections.)

A.12.2 Othersleep

The otherdeep routine is run when the main body of the
virus wants to idle for a period of time. This was appar-
ently intended to help the virus “hide” so that it wouldn’t
use enough processor time to be noticed. While the main
program sleeps, the listener code waits to see if any check-
ers have appeared and queried for the existence of a listener,
as a simple “background task” of the main virus.

The routine first checks to see if it has been set up as a
listener; if not, it calls the normaleep function to sleep for
the requested number of seconds, and returns.

If it is set up as a listener, it listens on the checking port
with a timeout. If it times out, it returns, otherwise it deals
withthe connection and subtracts the elapsed real time from
the time out value.

The body of the listener “accepts” the connection, and
sends a magic number to the checker. It then listens (for up
to 10 seconds) for the checker’s magic number, and picks a
random number. It shifts the random number right by three,
discarding the lower bits, and sends it up to the checker; it
then listens (for up to 10 seconds) for a random number
from the checker. If any of these steps fail, the connection
is closed and the checker is ignored.

Once the exchanges have occurred, the address of the in-
coming connection is compared with the loopback address.
Ifitis not from the loopback address, the attemptisignored.
Ifitis, then if the sum of the exchanged random numbers is
odd, the listener incremenfd easequi t (with little ef-
fect, as noted in section A.3.2) and closes the listener con-
nection.

B Built in dictionary

432 words were included:

aaa academia aerobics
airplane albany albatross
albert alex alexander
algebra aliases alphabet
ama amorphous analog
anchor andromache animals
answer anthropogenic anvils

25

anything
arrow
atmosphere
bacchus
bananas
barber
bassoon
beauty
benz
berliner
bicameral
brian
bumbling
cantor
carolina
castle
celtics
charles
chester
clusters
collins
condo
cornelius
creosote
dancer
dave
deluge
dieter
disney
duncan
edges
edwina
eileen
elizabeth
engine
enzyme
estate
extension
fender
finite
float
foolproof
format
fred

fun
gardner
george
glacier
gorgeous
gouge
guest
guntis
handily

aria
arthur
aztecs
bailey
bandit
baritone
batman
beethoven
beowulf
beryl
bob
bridget
burgess
cardinal
caroline
cat
cerulean
charming
cigar
coffee
commrades
cookie
couscous
cretin
daniel
december
desperate
digital
dog
eager
edinburgh
egghead
einstein
ellen
engineer
ersatz
euclid
fairway
fermat
fishers
flower
football
forsythe
friend
fungible
garfield
gertrude
gnu
gorges
graham
guitar
hacker
happening

ariadne
athena
azure
banana
banks
bass
beater
beloved
berkeley
beverly
brenda
broadway
campanile
carmen
cascades
cayuga
change
charon
classic
coke
computer
cooper
creation
daemon
danny
defoe
develop
discovery
drought
easier
edwin
eiderdown
elephant
emerald
enterprise
establish
evelyn
felicia
fidelity
flakes
flowers
foresight
fourier
frighten
gabriel
gauss
ginger
golfer
gosling
gryphon
gumption
hamlet
harmony

harold
heinlein
herbert
honey
hutchins
include
innocuous
japan
jixian
joshua
julia
kernel
ladle
larkin
lebesgue
leroy

lisa
macintosh
magic
markus
master
merlin
michelle
minsky
morley
napoleon
network
noxious
oceanography
olivia
orwell
oxford
pakistan
password
peoria
persona
philip
pizza
polynomial
poster
prelude
protect
puneet
rachmaninoff
raleigh
really

rick
rochester
ronald
roses
ruth
scamper
scotty

harvey
hello
hiawatha
horse
imbroglio
ingres
irishman
jessica
johnny
judith
kathleen
kirkland
lambda
larry
lee
lewis
louis
mack
malcolm
marty
maurice
mets
mike
moguls
mozart
nepenthe
newton
nutrition
ocelot
oracle
osiris
pacific
pam
patricia
percolate
pete
phoenix
plover
pondering
praise
prince
protozoa
puppet
rainbow
random
rebecca
ripple
rolex
rosebud
ruben
sal
scheme
secret

hebrides
help
hibernia
horus
imperial
inna
isis
jester
joseph
juggle
kermit
knight
lamination
lazarus
leland
light
lynne
maggot
mark
marvin
mellon
michael
minimum
moose
nancy
ness
next
nyquist
olivetti
orca
outlaw
painless
papers
penguin
persimmon
peter
pierre
plymouth
pork
precious
princeton
pumpkin
rabbit
raindrop
rascal
remote
robotics
romano
rosemary
rules
saxon
scott
sensor

26

serenity
sheffield
shivers
simon
single
smooch
shoopy
sossina
spring
strangle
subway
super
supported
swearer
tape
taylor
thailand
tomato
toyota
trombone
umesh
unknown
vasant
village
water
whiting
william
winston
wombat
yacov
yosemite

C Cast of Characters

This is an alphabetical list of all the people mentioned in
section 3, their network addresses, and affiliations.

sharks
sheldon
shuttle
simple
smile
smother
soap
sparrows
springer
stratford
success
superstage
surfer
symmetry
target
telephone
tiger
topography
trails
tubas
unhappy
urchin
vertigo
virginia
weenie
whitney
williamsburg
wisconsin
woodwind
yang
zap

sharon
shiva
signature
singer
smiles
shatch
socrates
spit
squires
stuttgart
summer
support
suzanne
tangerine
tarragon
temptation
toggle
tortoise
trivial
tuttle
unicorn
utility
vicky
warren
whatnot
will
willie
wizard
wormwood
yellowstone
zimmerman

Don Alvarez<boomer@space.mit.egiu
MIT Center for Space Research

Richard Basch<probe@athena.mit.egu
MIT Athena and SIPB

Don Becker<becker@trantor.harris-atd.com

Harris Corporation and MIT SIPB.

Matt Bishop<bishop@bear.dartmouth.edu
Dartmouth University

Hal Birkeland<hkbirke @athena.mit.edu
MIT Media Laboratory

Keith Bostic<bostic@okeeffe.berkeley.edu

University of California, Berkeley

Russell Brand<brand@lll-crg.lInl.gow
Lawrence Livermore National Laboratory

James D. Brucejdb@delphi.mit.edr+
MIT Information Systems

John Brunekjdb@mordor.s1.goy
Lawrence Livermore National Laboratory

Liudvikas Bukys<bukys@cs.rochester.edu
University of Rochester

Chuck Cole<cole@lll-crg.linl.gov>
Lawrence Livermore National Laboratory

Pascal Chesnaislacsap@media-lab.media.mit.eglu
MIT Media Laboratory

Jean Diazcambar@athena.mit.eciu
Oracle Corporation and MIT SIPB

Dave Edwardscdle@sri.com>
SR, International

Mark Eichin<eichin@athena.mit.edu
MIT Athena and SIPB

Kent England<kwe@bu-cs.bu.edw
Boston University

Paul Flahertyk paulf@jessica.stanford.egu
Stanford University

Jim Fulton<jim@expo.lcs.mit.edx
MIT X Consortium

Robert French:rfrench@athena.mit.egu
MIT SIPB and Project Athena

Dan Geer<geer@athena.mit.egu
MIT Project Athena

Paul Grahamxpg@harvard.edu
Harvard University

Chris Hansonccph@zurich.ai.mit.edu
MIT Al Laboratory

Sergio Hekerheker@jvnca.csc.org
John Von Neumann National Supercomputer Center

Ray Hirschfeld<ray@math.mit.edu
MIT Math Department/Al Laboratory

Ron Hoffmann<hoffmann@bitsy.mit.edy
MIT Telecommunications Network Group

Jon Kamensjik@athena.mit.edu
MIT Project Athena and SIPB

Mike Karels<karels@ucbarpa.berkeley.eslu
University of California, Berkeley

John Kohl<jtkohl@athena.mit.edu
Digital Equipment Corporation, MIT Athena and SIPB

Rich Kulawiec<rsk@mace.cc.purdue.edu
Purdue

Phil Lapsley<phil@berkeley.edx
University of California, Berkeley

Milo Medin <medin@nsipo.nasa.gpv
NASA Ames

Steve Miller<steve@umiacs.umd.egu
University of Maryland

Russ Mundy<mundy@beast.ddn.mil
Defense Communications Agency

Mike Muuss<mike@brl.mit>
Ballistic Research Laboratory

Eugene MyerscEDMyers@dockmaster.arpa
National Computer Security Center

Peter Neumanrineumann@csl.sri.com
SRI International

Mike Patton<map@lcs.mit.ed
MIT LCS

Kurt Pires<kjpires@berkeley.ed
University of California, Berkeley

Mark Reinhold<mbr@Ics.mit.edr+
MIT Laboratory of Computer Science

Jon Rochliscjon@bitsy.mit.edp
MIT Telecommunications Network Group and SIPB

Miek Rowan<mtr@mace.cc.purdue.egu
Purdue University

[3] S. E. Luria, S. J. Gould, and S. SingArView of Life.
Jerry Saltzek: Saltzer@athena.mit.ephu Menlo Park, California: Benjamin/Cummings Pub-
MIT Laboratory of Computer Science and Project Athena lishing Company, Inc., 1981.

[4] J. Watsonet al., Molecular Biology of the Gene.

Jeff Schiller<jis@bitsy. mit.edw Menlo Park, California: Benjamin/Cummings Pub-

MIT Telecommunications Network Group, Athena, and

SIPB lishing Company, Inc., 1987.

)) [5] G. G. Simpson and W. S. Beckife: An Introduction
Mike Shanzex shanzer@athena.mit.eslu to Biology. New York, New York: Harcourt, Brace
MIT Project Athena and Ward, Inc., 1965.

Tim Shepard<shep@ptt.Ics.mit.ed [6] L. Castro et al., “Post Mortem of 3 November
MIT Laboratory of Computer Science ARPANET/MILNET Attack.” National Computer

Security Center, Ft. Meade MD, 8 November 1988.

Bill Sommerfeld<wesommer@athena.mit.edu

Apollo Computer, MIT Athena and SIPB [7] P.J. Denning, “Computer VirusesAmerican Scien-

tist, vol. 766, pp. 236—238, May-June 1988.

Gene Spafford:spaf@cs.purdue.eghu [8] D. Seeley, “ATour of the Worm,” inUSENI X Associ-
Purdue University ation Winter Conference 1989 Proceedings, pp. 287—
304, January 1989.

Mike Spitzer<mjs@mentor.cc.purdue.edu
Purdue University [9] E. H. Spafford, “The Internet Worm Program: An

Analysis,” ACM SGCOM, vol. 19, January 1989.

Cliff Stoll <cliff@cfa200.harvard.edw [10] K. Harrenstien, “NAME/FINGER Protocol Proto-
Harvard University col,” Request For Comments NIC/RFC 742, Network

Working Group, USC ISI, Novemeber 1977.
Andy Sudduth<sudduth@harvard.egu
Harvard University [11] J. Markoff, “Computer Snarl: A ‘Back Door’ Ajar,”
New York Times, p. B10, 7 November 1988.

Ted Ts'o<tytso@athena.mit.edu o))
MIT Athena and SIPB [12] J. B. Postel, “Simple Mail Transfer Protocol,” Re-
quest For Comments NIC/RFC 821, Network Work-

Edward Wang<edward@berkeley.edu ing Group, USC IS, August 1982.

University of California, Berkeley [13] S. Bellovin, “The worm and the debug option,” in
Forum on Risks to the Public in Computers and Re-
Peter Yeecyee@ames.arc.nasa.gov lated Systems, vol. 7, num. 74, ACM Committee on
NASA Ames Computers and Public Policy, 10 November 1988.
Stan Zanarottisrz@Ilcs.mit.edz [14] J. Collyer, “Risks of unchecked inputin C programs,”
MIT Laboratory of Computer Science and SIPB in Forum on Risksto the Publicin Computersand Re-

lated Systems, vol. 7, num. 74, ACM Committee on
Computers and Public Policy, 10 November 1988.

[15] J. Saltzer and M. Schroeder, “The Protection of Infor-
mation in Computer Systems,” iroc. | EEE, vol. 63,
num. 9, pp. 1278-1308, IEEE, September 1975.

References

[1] R. Hinden, J. Haverty, and A. Sheltzer, “The DARPA

Internet: Interconnecting Heterogeneous Computef1g] J. Steiner, C. Neuman, and J. Schiller, “Kerberos: An
Networks with Gateways,1EEE Computer Maga- Authentication Service for Open Network Systems,”
zine, vol. 16, num. 9, pp. 38-48, September 1983. in USENIX Association Winter Conference 1988 Pro-

, ceedings, pp. 191-202, February 1988.
[2] J. S. Quarterman and J. C. Hoskins, “Notable Com-

puter Networks,” inCommunications of the ACM, [17] M. R. Horton, “How to Read the Network News,”
vol. 29, num. 10, pp. 932971, October 1986. UNIX User’s Supplementary Documents, April 1986.

28

[18] P. Mockapetris, “Domain Names - Concepts And
Facilities,” Request For Comments NIC/RFC 1034,
Network Working Group, USC ISI, November 1987.

[19] J. Markoff, “Author of Computer ‘Virus’ Is Son of
U.S. Electronic Security Expert,New York Times,
p. Al, 5 November 1988.

[20] P. G. Neumann, edForum on Risks to the Public
in Computers and Related Systems, vol. 7, num. 69,
ACM Committee on Computers and Public Policy, 3
November 1988.

[21] ???, “College Whiz “Put Virus in Computers”,”
Boston Herald, p. 1, 5 November 1988.

[22] J. Markoff, “U.S. Is Moving to Restrict Access To
Facts About Computer Virus,"New York Times,
p. A28, 11 November 1988.

[23] J. Mogul and J. B. Postel, “Internet Standard Subnet-
ting Procedure,” Request For Comments NIC/RFC
950, Network Working Group, USC IS, August 1985.

[24] G. Spafford, “A cure!!lll,” in Forum on Risks to
the Public in Computers and Related Systems, vol. 7,
num. 70, ACM Committee on Computers and Public
Policy, 3 November 1988.

[25] R. W. Baldwin,Rule Based Analysis of Computer Se-
curity. PhD thesis, MIT EE, June 1987.

[26] G. Spafford, “A worm “condom”,” in Forum on
Riskstothe Publicin Computersand Related Systems,
vol. 7, num. 70, ACM Committee on Computers and
Public Policy, 3 November 1988.

29

