
OPENSTEP
SPECIFICATION

October 19, 1994

OpenStep Specification—10/19/94

Copyright 1994 NeXT Computer, Inc. All rights reserved.

This document sets forth the OpenStep application programming interface (API).

You may down-load one copy of this specification as long as it is for purposes of study only. We look
forward to licensing third parties to create original implementations of this API. No such license is
granted or implied by the publication of this specification. If you would like information on obtaining
such a license, please contact NeXT at OpenStep@NeXT.COM.

OpenStep, NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo, Application Kit, Foundation
Kit, Interface Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. PostScript and
Display PostScript are registered trademarks of Adobe Systems, Incorporated. UNIX is a registered
trademark in the United States and other countries, licensed exclusively through X/Open Company
Limited. PANTONE is a registered trademark of Pantone, Inc. Unicode is a trademark of Unicode,
Inc. All other trademarks mentioned belong to their respective owners.

OpenStep Specification—10/19/94

Contents

Introduction

1-1 Chapter 1: Application Kit

1-1 Introduction

1-2 Classes
NSActionCell, p. 1-4
NSApplication, p. 1-6
NSBitmapImageRep, p. 1-16
NSBox, p. 1-20
NSBrowser, p. 1-22
NSBrowserCell, p. 1-29
NSBundle Additions, p. 1-31
NSButton, p. 1-32
NSButtonCell, p. 1-35
NSCachedImageRep, p. 1-38
NSCell, p. 1-39
NSClipView, p. 1-46
NSCoder Additions, p. 1-48
NSColor, p. 1-49
NSColorList, p. 1-57
NSColorPanel, p. 1-60
NSColorPicker, p. 1-63
NSColorWell, p. 1-65
NSControl, p. 1-67
NSCStringText, p. 1-74
NSCursor, p. 1-85
NSCustomImageRep, p. 1-87

OpenStep Specification—10/19/94

NSDataLink, p. 1-88
NSDataLinkManager, p. 1-91
NSDataLinkPanel, p. 1-95
NSEPSImageRep, p. 1-97
NSEvent, p. 1-99
NSFont, p. 1-104
NSFontManager, p. 1-108
NSFontPanel, p. 1-112
NSForm, p. 1-114
NSFormCell, p. 1-116
NSHelpPanel, p. 1-118
NSImage, p. 1-122
NSImageRep, p. 1-129
NSMatrix, p. 1-133
NSMenu, p. 1-141
NSMenuCell, p. 1-143
NSOpenPanel, p. 1-144
NSPageLayout, p. 1-146
NSPanel, p. 1-148
NSPasteboard, p. 1-150
NSPopUpButton, p. 1-154
NSPrinter, p. 1-157
NSPrintInfo, p. 1-164
NSPrintOperation, p. 1-167
NSPrintPanel, p. 1-171
NSResponder, p. 1-173
NSSavePanel, p. 1-176
NSScreen, p. 1-179
NSScroller, p. 1-181
NSScrollView, p. 1-184
NSSelection, p. 1-187
NSSlider, p. 1-190
NSSliderCell, p. 1-192
NSSpellChecker, p. 1-195
NSSpellServer, p. 1-199
NSSplitView, p. 1-203
NSText, p. 1-205
NSTextField, p. 1-214
NSTextFieldCell, p. 1-217
NSView, p. 1-218
NSWindow, p. 1-227
NSWorkspace, p. 1-240

OpenStep Specification—10/19/94

1-245 Protocols
NSChangeSpelling, p. 1-245
NSColorPickingCustom, p. 1-246
NSColorPickingDefault, p. 1-247
NSDraggingDestination, p. 1-250
NSDraggingInfo, p. 1-252
NSDraggingSource, p. 1-254
NSIgnoreMisspelledWords, p. 1-255
NSMenuActionResponder, p. 1-257
NSNibAwaking, p. 1-259
NSServicesRequests, p. 1-261

1-262 Application Kit Functions
Rectangle Drawing Functions, p. 1-262
Color Functions, p. 1-263
Text Functions, p. 1-264
Array Allocation Functions for Use by the NSText Class, p. 1-266
Imaging Functions, p. 1-266
Attention Panel Functions, p. 1-267
Services Menu Functions, p. 1-268
Other Application Kit Functions, p. 1-269

1-271 Types and Constants
Application, p. 1-271
Box, p. 1-271
Buttons, p. 1-272
Cells and Button Cells, p. 1-272
Color, p. 1-274
Data Link, p. 1-274
Drag Operation, p. 1-275
Event Handling, p. 1-276
Exceptions, p. 1-278
Fonts, p. 1-280
Graphics, p. 1-281
Matrix, p. 1-283
Notifications, p. 1-283
Panel, p. 1-285
Page Layout, p. 1-286
Pasteboard, p. 1-286
Printing, p. 1-287
Save Panel, p. 1-290
Scroller, p. 1-290
Text, p. 1-291

OpenStep Specification—10/19/94

View, p. 1-299
Window, p. 1-299
Workspace, p. 1-300

2-1 Chapter 2: Foundation Kit

2-1 Introduction

2-2 Classes
NSArchiver, p. 2-4
NSArray, p. 2-6
NSAssertionHandler, p. 2-10
NSAutoreleasePool, p. 2-12
NSBTreeBlock, p. 2-16
NSBTreeCursor, p. 2-19
NSBundle, p. 2-22
NSByteStore, p. 2-26
NSByteStoreFile, p. 2-31
NSCalendarDate, p. 2-33
NSCharacterSet, p. 2-38
NSCoder, p. 2-41
NSConditionLock, p. 2-45
NSConnection, p. 2-47
NSCountedSet, p. 2-51
NSData, p. 2-53
NSDate, p. 2-57
NSDeserializer, p. 2-61
NSDictionary, p. 2-62
NSDistantObject, p. 2-66
NSEnumerator, p. 2-68
NSException, p. 2-69
NSInvocation, p. 2-74
NSLock, p. 2-76
NSMethodSignature, p. 2-77
NSMutableArray, p. 2-79
NSMutableCharacterSet, p. 2-82
NSMutableData, p. 2-84
NSMutableDictionary, p. 2-87
NSMutableSet, p. 2-89
NSMutableString, p. 2-91
NSNotification, p. 2-94
NSNotificationCenter, p. 2-96
NSNotificationQueue, p. 2-99

OpenStep Specification—10/19/94

NSNumber, p. 2-102
NSObject, p. 2-105
NSProcessInfo, p. 2-110
NSProxy, p. 2-112
NSRecursiveLock, p. 2-114
NSRunLoop, p. 2-115
NSScanner, p. 2-117
NSSerializer, p. 2-120
NSSet, p. 2-122
NSString, p. 2-125
NSThread, p. 2-136
NSTimer, p. 2-138
NSTimeZone, p. 140
NSTimeZoneDetail, p. 2-143
NSUnarchiver, p. 2-144
NSUserDefaults, p. 2-146
NSValue, p. 152

2-155 Protocols
NSCoding, p. 2-155
NSCopying, p. 2-156
NSLocking, p. 2-157
NSMutableCopying, p. 2-158
NSObjCTypeSerializationCallBack, p. 2-159
NSObject, p. 2-162

2-165 Foundation Kit Functions
Memory Allocation Functions, p. 2-165
Object Allocation Functions, p. 2-167
Error-Handling Functions, p. 2-168
Geometric Functions, p. 2-170
Range Functions, p. 2-173
Hash Table Functions, p. 2-174
Map Table Functions, p. 2-176
Miscellaneous Functions, p. 2-179

2-181 Types and Constants
Exception Handling, p. 2-181
Geometry, p. 2-181
Hash Table, p. 2-182
Map Table, p. 2-183
Notification Queue, p. 2-185
Run Loop, p. 2-185
Search Results, p. 2-185

OpenStep Specification—10/19/94

String, p. 2-186
Threads, p. 2-186
User Defaults, p. 2-187
Miscellaneous, p. 2-188

3-1 Chapter 3: Display PostScript

3-1 Classes
NSDPSContext, p. 3-1

3-6 Protocols
NSDPSContextNotification, p. 3-6

3-7 Display PostScript Operators

3-8 Client Library Functions
PostScript Execution Context Functions, p. 3-8
Communication with the Display PostScript Server, p. 3-8

3-10 Single-Operator Functions
“PS” Prefix Functions, p. 3-10
“DPS” Prefix Functions, p. 3-10

3-11 Types and Constants
Defined Types, p. 3-11
Enumerations, p. 3-13
Symbolic Constants, p. 3-14
Global Variables p. 3-14

Intro-1OpenStep Specification—10/19/94

Introduction

This document describes the application programming interface (API) of OpenStep . OpenStep is an operating
system independent, object-oriented application layer, based on NeXT’s advanced object technology. OpenStep
contains these major components:

Figure 1 . Major Components of OpenStep

Application

Application Kit

Foundation Kit

Display PostScript
System

Device-Dependent
Windowing Extensions

Operating System

OpenStep

Intro-2 OpenStep Specification—10/19/94

Application Kit The Application Kit provides the basic software for writing interactive
applications—applications that use windows, draw on the screen, and respond
to user actions on the keyboard and mouse. The Application Kit contains the
components that define the OpenStep user interface.

Foundation Kit The Foundation Kit provides the fundamental building blocks that
applications use to manage data and resources. It defines facilities for handling
multibyte character sets, object persistency and distribution, and provides an
interface to common operating system facilities.

Display PostScript System The Display PostScript system provides OpenStep with its
device-independent imaging model.

The OpenStep API is expressed in the Objective C language, an object-oriented extension of ANSI C. The language
itself lies outside of the scope of this specification. For information on Objective C, see NEXTSTEP
Object-Oriented Programming and the Objective C Language (Addison-Wesley Publishing Co., 1993). Please note
that many of the types used for method argument and return values in the OpenStep specification are defined in the
Objective C language. These include:

BOOL
Class
id
IMP
nil
Protocol
SEL

In addition, the type codes used to encode method argument and return types for archiving and other purposes are
also defined in the Objective C language.

How this Document Is Organized

The three components of OpenStep are described in separate chapters of this document, starting with Chapter 1,
“The Application Kit”. Each chapter is organized in the same way, having these standard sections:

Intro-3OpenStep Specification—10/19/94

Classes

This section lists the API for each class defined in the component. For each class, these subsections may appear:

Inherits From: The inheritance hierarchy for the class. For example:

NSPanel : NSWindow : NSResponder : NSObject

The first class listed (NSPanel, in this example) is the class’s superclass. The
last class listed is generally NSObject, the root of almost all OpenStep
inheritance hierarchies. The classes between show the chain of inheritance
from NSObject to the superclass. (This particular example shows the
inheritance hierarchy for the NSMenu class of the Application Kit.)

Conforms To: The formal protocols that the class conforms to. These include both protocols
the class adopts and those it inherits from other adopting classes. If inherited,
the name of the adopting class in given in parentheses. For example:

NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

(This particular example is from the NSArray class in the Foundation Kit.)

Declared In: The header file that declares the class interface. For example:

Foundation/NSString.h

(This example is from the NSString class.)

Next, the methods the class declares and implements are listed by name and grouped by type. For example, methods
used to draw are listed separately from methods used to handle events. This listing includes all the methods
declared in the class. It also may include a method declared in a protocol the class conforms to, if there is something
extraordinary about the class’s implementation of the method. Each method is accompanied by a brief description
which states what the method does and mentions the arguments and return value, if any.

If a class lets you define another object—a delegate—that can intercede on behalf of instances of the class, the
methods that the delegate can implement are described in a separate section. These are not methods defined in the
class; rather, they’re methods that you can define to respond to messages sent from instances of the class. In essence,
this section documents an informal protocol. But because these methods are so closely tied to the behavior of a
particular class, they’re documented with the class rather than in the “Protocols” section.

Some class specifications have separate sections with titles such as “Methods Implemented by the Superview”,
“Methods Implemented by Observers”, or “Methods Implemented by the Owner.” These are also informal
protocols. They document methods that can or must be implemented to receive messages on behalf of instances of
the class.

Intro-4 OpenStep Specification—10/19/94

Protocols

The protocols section documents both formal and informal protocols. Formal protocols are those that are declared
using the @protocol compiler directive. They can be formally adopted and implemented by a class and tested by
sending an object a conformsToProtocol: message.

Some formal protocols are adopted and implemented by OpenStep classes. However, many formal protocols are
declared by a kit, but not implemented by it. They list methods that you can implement to respond to kit-generated
messages.

A few formal protocols are implemented by a kit, but not by a class that’s part of the documented API. Rather, the
protocol is implemented by an anonymous object that the kit supplies. The protocol lets you know what messages
you can send to the object.

Like formal protocols, informal protocols declare a list of methods that others are invited to implement. If an
informal protocol is closely associated with one particular class—for example, the list of methods implemented by
the delegate—it’s documented in the class description. Informal protocols associated with more than one class, or
not associated with any particular class, are documented with the formal protocols in this section.

Protocol information is organized into many of the same sections as described above for a class specification. But
protocols are not classes and therefore differ somewhat in the kind of information provided. The sections of a
protocol specification are shown in bold in the following:

Adopted By: A list of the OpenStep classes that adopt the protocol. Many protocols declare
methods that applications must implement and so are not adopted by any
OpenStep classes.

Some protocols are implemented by anonymous objects (instances of an
unknown class); the protocol is the only information available about what
messages the object can respond to. Protocols that have an implementation
available through an anonymous object generally don’t have to be
reimplemented by other classes.

An informal protocol can’t be formally adopted by a class and it can’t formally incorporate another protocol. So its
description begins with information about the category where it’s declared:

Category Of: The class that the category belongs to. Informal protocols are typically
declared as categories of the NSObject class. This gives them the widest
possible scope.

All descriptions of protocols, whether formal or informal, list where the protocol is declared:

Declared In: The header file where the protocol is declared.

If the protocol includes enough methods to warrant it, they’re divided by type and presented just as the methods of
a class are.

Intro-5OpenStep Specification—10/19/94

Functions

Related functions are grouped together under a heading that describes the common purpose. Each function, its
arguments, and its return value are briefly described in an accompanying comment.

Types and Constants

Related defined types, enumeration constants, symbolic constants, structures, and global variables are grouped
together under a heading that describes the common purpose. A short description accompanies each group.

Intro-6

Introduction: Application Kit 1-1OpenStep Specification—10/19/94

1 Application Kit

Introduction

The Application Kit defines Objective C classes, protocols, C functions, constants, and data types that are designed
to be used by virtually every OpenStep application. The principal aim of the Application Kit is to provide the
framework for implementing a graphical, event-driven application.

OpenStep Specification—10/19/941-2 Chapter 1: Application Kit

Classes

The Application Kit contains over sixty classes which inherit directly or indirectly from NSObject, the root class
defined in the Foundation Kit. The following diagram shows the inheritance relationship among these classes. After
the diagram, the specifications for these classes are arranged in alphabetical order.

Classes: Application Kit 1-3OpenStep Specification—10/19/94

Figure 1-1 . Application Kit Classes

NSObject

NSCell

NSBrowserCell

NSActionCell NSButtonCell

NSFormCell

NSSliderCell

NSTextFieldCell

NSMenuCell

NSColor

NSColorList

NSColorPicker

NSCursor

NSDataLink

NSDataLinkManager

NSEvent

NSFont

NSFontManager

NSImage

NSImageRep

NSPasteboard

NSPrintInfo

NSPrintOperation

NSPrinter

NSScreen

NSSelection

NSSpellChecker

NSSpellServer

NSWorkspace

NSResponder

NSApplication

NSView

NSWindow

NSBox

NSClipView

NSControl

NSScrollView

NSSplitView

NSText NSCStringText

NSBrowser

NSButton NSPopUpButton

NSColorWell

NSMatrix NSForm

NSScroller

NSSlider

NSTextField

NSPanel

NSBitmapImageRep

NSCachedImageRep

NSCustomImageRep

NSEPSImageRep

NSColorPanel

NSDataLinkPanel

NSFontPanel

NSHelpPanel

NSMenu

NSPageLayout

NSPrintPanel

NSSavePanel NSOpenPanel

OpenStep
Application Kit Classes

OpenStep Specification—10/19/941-4 Chapter 1: Application Kit

NSActionCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSActionCell.h

Class Description

An NSActionCell defines an active area inside a control (an instance of NSControl or one of its subclasses). As an
NSControl’s active area, an NSActionCell does three things: it usually performs display of text or an icon (the
subclass NSSliderCell is an exception); it provides the NSControl with a target and an action; and it handles mouse
(cursor) tracking by properly highlighting its area and sending action messages to its target based on cursor
movement. The only way to specify the NSControl for a particular NSActionCell is to send the NSActionCell a
drawWithFrame:inView: message, passing the NSControl as the argument for the inView: keyword of the
method.

NSActionCell implements the target object and action method as defined by its superclass, NSCell. As a user
manipulates an NSControl, NSActionCell’s trackMouse:inRect:ofView:untilMouseUp: method (inherited from
NSCell) updates its appearance and sends the action message to the target object with the NSControl object as the
only argument.

Usually, the responsibility for an NSControl’s appearance and behavior is completely given over to a corresponding
NSActionCell. (NSMatrix, and its subclass NSForm, are NSControls that don’t follow this rule.)

A single NSControl may have more than one NSActionCell. To help identify it in this case, every NSActionCell
has an integer tag. Note, however, that no checking is done by the NSActionCell object itself to ensure that the tag
is unique. See the NSMatrix class for an example of a subclass of NSControl that contains multiple NSActionCells.

Many of the methods that define the contents and look of an NSActionCell, such as setFont: and setBordered:,
are reimplementations of methods inherited from NSCell. They’re subclassed to ensure that the NSActionCell is
redisplayed if it’s currently in an NSControl.

Configuring an NSActionCell

– (void)setAlignment:(NSTextAlignment)mode Sets the NSActionCell’s text alignment to mode.

– (void)setBezeled:(BOOL)flag Adds or removes the NSActionCell’s bezel.

– (void)setBordered:(BOOL)flag Adds or removes the NSActionCell’s border.

– (void)setEnabled:(BOOL)flag Sets whether the NSActionCell reacts to mouse and
keyboard events.

Classes: NSActionCell 1-5OpenStep Specification—10/19/94

– (void)setFloatingPointFormat:(BOOL)autoRange
left: (unsigned int)leftDigits Sets the NSActionCell’s floating point format.
right: (unsigned int)rightDigits

– (void)setFont:(NSFont *)fontObject Sets the NSActionCell’s font to fontObject.

– (void)setImage:(NSImage *)image Sets the NSActionCell’s icon to image.

Manipulating NSActionCell V alues

– (double)doubleValue Returns the NSActionCell’s contents as a double.

– (float)floatValue Returns the NSActionCell’s contents as a float.

– (int)intValue Returns the NSActionCell’s contents as an int .

– (void)setStringValue:(NSString *)aString Sets the NSActionCell’s contents to a copy of aString.

– (NSString *)stringValue Returns the NSActionCell’s contents as a string.

Displaying

– (void)drawWithFrame: (NSRect)cellFrame Draws the NSActionCell in the rectangle cellFrame of
inView: (NSView *)controlView controlView (which should normally be an NSControl).

– (NSView *)controlView Returns the view (normally an NSControl) in which the
NSActionCell was last drawn.

Target and Action

– (SEL)action Returns the NSActionCell’s action method.

– (void)setAction:(SEL)aSelector Sets the NSActionCell’s action method to aSelector.

– (void)setTarget:(id)anObject Sets the NSActionCell’s target object to anObject.

– (id)target Returns the NSActionCell’s target object.

Assigning a Tag

– (void)setTag:(int)anInt Sets the NSActionCell’s tag to anInt.

– (int)tag Returns the NSActionCell’s tag.

OpenStep Specification—10/19/941-6 Chapter 1: Application Kit

NSApplication

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSApplication.h
AppKit/NSColorPanel.h
AppKit/NSDataLinkPanel.h
AppKit/NSHelpPanel.h
AppKit/NSPageLayout.h

Class Description

The NSApplication class provides the central framework of your application’s execution. Every application must
have exactly one instance of NSApplication (or of a custom subclass of NSApplication). Your program’s main()
function should create this instance by calling the sharedApplication class method. (Alternatively, you could use
alloc and init , making sure they’re called only once.) After creating the NSApplication, the main() function should
load your application’s main nib file, and then start the event loop by sending the NSApplication a run message.
Here’s an example of a typical OpenStep main() function in its entirety:

void main(int argc, char *argv[]) {

 NSApplication *app = [NSApplication sharedApplication];

[NSBundle loadNibNamed:@"myMain" owner:app];

 [app run];

}

Creating the NSApplication object connects the program to the window system and the Display PostScript server,
and initializes its PostScript environment. The NSApplication object maintains a list of all the NSWindows that the
application uses, so it can retrieve any of the application’s NSViews.

The NSApplication object’s main task is to receive events from the window system and distribute them to the proper
NSResponders. The NSApplication translates an event into an NSEvent object, then forwards the NSEvent to the
affected NSWindow object. A key-down event that occurs while the Command key is pressed results in a
commandKey: message, and every NSWindow has an opportunity to respond to it. Other keyboard and mouse
events are sent to the NSWindow associated with the event; the NSWindow then distributes these NSEvents to the
objects in its view hierarchy.

In general, it’s neater and cleaner to separate the code that embodies your program’s functionality into a number of
custom objects. Usually those custom objects are subclasses of NSObject. Methods defined in your custom objects
can be invoked from a small dispatcher object without being closely tied to the NSApplication object. It’s rarely
necessary to create a custom subclass of NSApplication. You will need to do so only if you need to provide your
own special response to messages that are routinely sent to the NSApplication object. To use a custom subclass of
NSApplication, simply substitute it for NSApplication in the main() function above.

Classes: NSApplication 1-7OpenStep Specification—10/19/94

When you create an instance of NSApplication (or of a custom subclass of NSApplication), it gets stored as the
global variable NSApp. Although this global variable isn’t used in the example main() function above, you might
find it convenient to refer to NSApp within the source code for your application’s custom objects. Note that you
can also retrieve the NSApplication object by invoking sharedApplication.

The NSApplication class sets up autorelease pools during initialization and during the event loop—that is, within
its init (or sharedApplication) and run methods. Similarly, the methods that the Application Kit adds to NSBundle
employ autorelease pools during the loading of nib files. The autorelease pools aren’t accessible outside the scope
of the respective NSApplication and NSBundle methods. This isn’t usually a problem, because a typical OpenStep
application instantiates its objects by loading nib files (and by having the objects from the nib file create other
objects during initialization and during the event loop). However, if you do need to use OpenStep classes within the
main() function itself (other than to invoke the methods just mentioned), you should instantiate an autorelease pool
before using the classes, and then release the pool once you’re done. For more information, see the description of
the NSAutoreleasePool class in the Foundation Kit.

The Delegate and Observers

The NSApplication object can be assigned a delegate that responds on behalf of the NSApplication to certain
messages addressed to the NSApplication object. Some of these messages, such as
application:openFile:withType:, ask the delegate to open a file. Another message,
applicationShouldTerminate:, lets the delegate determine whether the application should be allowed to quit.

An NSApplication can also have observers. Observers receive notifications of changes in the NSApplication, but
they don’t have the unique responsibility that a delegate has. Any instance of a class that implements an observer
method can register to receive the corresponding notification. For example, if a class implements
applicationDidFinishLaunching: and registers to receive the corresponding notification, instances of this class
are given an opportunity to react after the NSApplication has been initialized. (The observer methods are listed later
in this class specification. For information about how to register to receive notifications, see the class specification
for the Foundation Kit’s NSNotificationCenter class.)

There can be only one delegate, but there can be many observers. The delegate itself can be an observer—in fact,
in many applications the delegate might be the only observer. Whereas most observers need to explicitly register
with an NSNotificationCenter before they can receive a particular notification message, the delegate need only
implement the method. By simply implementing an observer method, the NSApplication’s delegate is
automatically registered to receive the corresponding notification.

Creating and Initializing the NSApplication

+ (NSApplication *)sharedApplication Returns the NSApplication instance, creating it if it doesn’t
yet exist.

OpenStep Specification—10/19/941-8 Chapter 1: Application Kit

– (void)finishLaunching Activates the application, opens any files specified by the
“NSOpen” user default, and unhighlights the
application’s icon in the Workspace Manager. This
method is invoked by run before it starts the event loop.
When this method begins, it posts the notification
NSApplicationWillFinishLaunchingNotification with
the receiving object to the default notification center.
When it successfully completes, it posts the notification
NSApplicationDidFinishLaunchingNotification. If you
override finishLaunching, the subclass method should
invoke the superclass method.

Changing the Active Application

– (void)activateIgnoringOtherApps:(BOOL)flag Makes this the active application. If flag is NO, the
application is activated only if no other application is
currently active.

– (void)deactivate Deactivates the application.

– (BOOL)isActive Returns whether this is the active application.

Running the Event Loop

– (void)abortModal Aborts the event loop started by runModalForWindow: .

– (NSModalSession)beginModalSessionForWindow:(NSWindow *)theWindow
Sets up a modal session with theWindow.

– (void)endModalSession:(NSModalSession)session
Finishes a modal session.

– (BOOL)isRunning Returns whether the main event loop is running.

– (void)run Starts the main event loop.

– (int)runModalForWindow: (NSWindow *)theWindow
Starts a modal event loop for theWindow.

– (int)runModalSession:(NSModalSession)session
Runs a modal session.

Classes: NSApplication 1-9OpenStep Specification—10/19/94

– (void)sendEvent:(NSEvent *)theEvent Dispatches events to other objects. When sending the
activate application event, this method posts the
notifications NSApplicationWillBecomeActive and
NSApplicationDidBecomeActive with the receiving
object to the default notification center. When sending
the deactivate application event, it posts the
NSApplicationWillResignActiveNotification and
NSApplicationDidResignActiveNotification
notifications with the receiving object to the default
notification center.

– (void)stop:(id)sender Stops the main event loop.

– (void)stopModal Stops the modal event loop.

– (void)stopModalWithCode:(int)returnCode Stops the event loop started by runModalForWindow:
and sets the code that runModalForWindow: will
return.

Getting, Removing, and Posting Events

– (NSEvent *)currentEvent Returns the current event.

– (void)discardEventsMatchingMask:(unsigned int)mask
beforeEvent:(NSEvent *)lastEvent Removes from the event queue all events matching mask

that were generated before lastEvent.

– (NSEvent *)nextEventMatchingMask:(unsigned int)mask
untilDate: (NSDate *)expiration Returns the next event matching mask, or nil if
inMode:(NSString *)mode no such event is found before the expiration date. If flag
dequeue:(BOOL)flag; is YES, the event is removed from the queue. The mode

argument names an NSRunLoop mode that determines
what other ports are listened to and what timers may fire
while the NSApplication is waiting for the event.

– (void)postEvent:(NSEvent *)event atStart: (BOOL)flag
Adds event to the beginning of the application’s event

queue if flag is YES, and to the end otherwise.

Sending Action Messages

– (BOOL)sendAction:(SEL)aSelector Sends an action message to aTarget or up the responder
to:(id)aTarget chain.
from: (id)sender

– (id)targetForAction: (SEL)aSelector Returns the object that receives the action message
aSelector.

OpenStep Specification—10/19/941-10 Chapter 1: Application Kit

– (BOOL)tryToPerform: (SEL)aSelector Attempts to send a message to the application or the
with: (id)anObject delegate.

Setting the Application’s Icon

– (void)setApplicationIconImage:(NSImage *)anImage
Sets the application’s icon to anImage.

– (NSImage *)applicationIconImage Returns the NSImage used for the application’s icon.

Hiding All Windows

– (void)hide:(id)sender Hides all the application’s windows. When this method
begins, it posts the notification
NSApplicationWillHideNotification with the receiving
object to the default notification center. When it
completes successfully, it posts the notification
NSApplicationDidHideNotification.

– (BOOL)isHidden Returns YES if windows are hidden.

– (void)unhide:(id)sender Restores hidden windows to the screen.

– (void)unhideWithoutActivation Restores hidden windows without activating their owner.
When this method begins, it posts the notification
NSApplicationWillUnhideNotification with the
receiving object to the default notification center. When
it completes successfully, it posts the notification
NSApplicationDidUnhideNotification.

Managing Windows

– (NSWindow *)keyWindow Returns the key window.

– (NSWindow *)mainWindow Returns the main window.

– (NSWindow *)makeWindowsPerform:(SEL)aSelector
inOrder: (BOOL)flag Sends the aSelector message to the application’s

NSWindows—in front-to-back order if flag is YES,
otherwise in the order of the array that the windows
method returns.

– (void)miniaturizeAll: (id)sender Miniaturizes all the receiver’s application windows.

– (void)preventWindowOrdering Suppresses the usual window ordering in handling the most
recent mouse-down event.

Classes: NSApplication 1-11OpenStep Specification—10/19/94

– (void)setWindowsNeedUpdate:(BOOL)flag Sets whether the application’s windows need updating
when the application has finished processing the current
event. This method is especially useful for making sure
menus are updated to reflect changes not initiated by
user actions.

– (void)updateWindows Sends an update message to on-screen NSWindows. When
this method begins, it sends the notification
NSApplicationWillUpdateNotification with the
receiving object to the default notification center. When
it successfully completes, it sends the notification
NSApplicationDidUpdateNotification.

– (NSArray *)windows Returns an array of the application’s NSWindows.

– (NSWindow *)windowWithWindowNumber: (int)windowNum
Returns the NSWindow object corresponding to

windowNum.

Showing Standard Panels

– (void)orderFrontColorPanel: (id)sender Brings up the color panel.

– (void)orderFrontDataLinkPanel: (id)sender Shows the shared instance of the data link panel, creating it
first if necessary.

– (void)orderFrontHelpPanel:(id)sender Shows the application’s help panel or the default one.

– (void)runPageLayout:(id)sender Runs the application’s page layout panel.

Getting the Main Menu

– (NSMenu *)mainMenu Returns the id of the application’s main menu.

– (void)setMainMenu:(NSMenu *)aMenu Makes aMenu the application’s main menu.

Managing the Windows Menu

– (void)addWindowsItem:(id)aWindow Adds a Windows menu item for aWindow.
title: (NSString *)aString
filename:(BOOL)isFilename

– (void)arrangeInFront: (id)sender Orders all registered NSWindows to the front.

– (void)changeWindowsItem:(id)aWindow Changes the Windows menu item for aWindow.
title: (NSString *)aString
filename:(BOOL)isFilename

–(void)removeWindowsItem:(id)aWindow Removes the Windows menu item for aWindow.

OpenStep Specification—10/19/941-12 Chapter 1: Application Kit

– (void)setWindowsMenu:(id)aMenu Sets the Windows menu.

– (void)updateWindowsItem:(id)aWindow Updates the Windows menu item for aWindow.

– (NSMenu *)windowsMenu Returns the Windows menu.

Managing the Services menu

– (void)registerServicesMenuSendTypes:(NSArray *)sendTypes
returnTypes:(NSArray *)returnTypes Registers pasteboard types the application can send and

receive.

– (NSMenu *)servicesMenu Returns the Services menu.

– (void)setServicesMenu:(NSMenu *)aMenu Sets the Services menu.

– (id)validRequestorForSendType:(NSString *)sendType
returnType: (NSString *)returnType Indicates whether the NSApplication can send and receive

the specified types.

Getting the Display PostScript Context

– (NSDPSContext *)context Returns the NSApplication’s Display PostScript context.

Reporting an Exception

– (void)reportException:(NSException *)anException
Logs the given exception by calling NSLog().

Terminating the Application

– (void)terminate:(id)sender Frees the NSApplication object and exits the application.

Assigning a Delegate

– (id)delegate Returns the NSApplication’s delegate.

– (void)setDelegate:(id)anObject Makes anObject the NSApplication’s delegate.

Implemented by the Delegate

– (BOOL)application:(id)sender Sent directly by sender to the delegate. Opens the specified
openFileWithoutUI: (NSString *)filename file to run without a user interface.Work with the file

will be under programmatic control of sender, rather
than under keyboard control of the user. Returns YES or
NO to indicate whether the file was successfully opened

Classes: NSApplication 1-13OpenStep Specification—10/19/94

– (BOOL)application:(NSApplication *)application Sent directly by application to the delegate. Like
openFile:(NSString *)filename application:openFileWithoutUI: , but brings up the

user interface of the file’s application.

– (BOOL)application:(NSApplication *)application Sent directly by application to the delegate. Like
openTempFile:(NSString *)filename application:openFile:, but a file opened through this

method is assumed to be temporary; it’s the
application's responsibility to remove the file at the
appropriate time.

– (void)applicationDidBecomeActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationDidBecomeActiveNotification. If the
delegate implements this method, it’s automatically
registered to receive the notification.

– (void)applicationDidFinishLaunching: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationDidFinishLaunchingNotification. If the
delegate implements this method, it’s automatically
registered to receive the notification.

– (void)applicationDidHide: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationDidHideNotification. If the delegate
implements this method, it’s automatically registered to
receive the notification.

– (void)applicationDidResignActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationDidResignActiveNotification. If the
delegate implements this method, it’s automatically
registered to receive the notification.

– (void)applicationDidUnhide:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationDidUnhideNotification. If the delegate
implements this method, it’s automatically registered to
receive the notification.

OpenStep Specification—10/19/941-14 Chapter 1: Application Kit

– (void)applicationDidUpdate:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationDidUpdateNotification. If the delegate
implements this method, it’s automatically registered to
receive the notification.

– (BOOL)applicationOpenUntitledFile:(NSApplication *)application
Sent directly by application to the delegate. Like

application:openFile:, but opens a new, untitled
document.

– (BOOL)applicationShouldTerminate:(id)sender Sent directly by sender to the delegate. Returns YES if the
application should terminate.

– (void)applicationWillBecomeActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationWillBecomeActiveNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)applicationWillFinishLaunching: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationWillFinishLaunchingNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)applicationWillHide: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationWillHideNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (void)applicationWillResignActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationWillResignActiveNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)applicationWillUnhide: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationWillUnhideNotification. If the delegate
implements this method, it’s automatically registered to
receive the notification.

Classes: NSApplication 1-15OpenStep Specification—10/19/94

– (void)applicationWillUpdate: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSApplicationWillUpdateNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

OpenStep Specification—10/19/941-16 Chapter 1: Application Kit

NSBitmapImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSBitmapImageRep.h

Class Description

An NSBitmapImageRep is an object that can render an image from bitmap data. The data can be in Tag Image File
Format (TIFF), or it can be raw image data. If it’s raw data, the object must be informed about the structure of the
image—its size, the number of color components, the number of bits per sample, and so on—when it’s first
initialized. If it’s TIFF data, the object can get this information from the various TIFF fields included with the data.

Although NSBitmapImageReps are often used indirectly, through instances of the NSImage class, they can also be
used directly—for example to manipulate the bits of an image as you might need to do in a paint program.

Setting Up an NSBitmapImageRep

A new NSBitmapImageRep is passed bitmap data for an image when it’s first initialized. An NSBitmapImageRep
can also be created from bitmap data that’s read from a specified rectangle of a focused NSView.

Although the NSBitmapImageRep class inherits NSImageRep methods that set image attributes, these methods
shouldn’t be used. Instead, you should either allow the object to find out about the image from the TIFF fields or
use methods defined in this class to supply this information when the object is initialized.

Classes: NSBitmapImageRep1-17OpenStep Specification—10/19/94

TIFF Compression

TIFF data can be read and rendered after it has been compressed using any one of the four schemes briefly described
below:

LZW Compresses and decompresses without information loss, achieving
compression ratios up to 5:1. It may be somewhat slower to compress and
decompress than the PackBits scheme.

PackBits Compresses and decompresses without information loss, but may not achieve
the same compression ratios as LZW.

JPEG Compresses and decompresses with some information loss, but can achieve
compression ratios anywhere from 10:1 to 100:1. The ratio is determined by a
user-settable factor ranging from 1.0 to 255.0, with higher factors yielding
greater compression. More information is lost with greater compression, but
15:1 compression is safe for publication quality. Some images can be
compressed even more. JPEG compression can be used only for images that
specify at least 4 bits per sample.

CCITTFAX Compresses and decompresses 1 bit grayscale images using international fax
compression standards CCITT3 and CCITT4.

An NSBitmapImageRep can also produce compressed TIFF data for its image using any of these schemes.

Allocating and Initializing a New NSBitmapImageRep Object

+ (id)imageRepWithData:(NSData *)tiffData Creates and returns an initialized NSBitmapImageRep
corresponding to the first image in tiffData.

+ (NSArray *)imageRepsWithData:(NSData *)tiffData
Creates and returns initialized NSBitmapImageRep objects

for all the images in tiffData.

– (id)initWithData: (NSData *)tiffData Initializes a newly allocated NSBitmapImageRep from the
first TIFF header and image data found in tiffData.

– (id)initWithFocusedViewRect:(NSRect)rect Initializes the new object using data read from the image
contained in the rectangle rect.

OpenStep Specification—10/19/941-18 Chapter 1: Application Kit

– (id)initWithBitmapDataPlanes: (unsigned char **)planes
pixelsWide:(int)width Initializes the new object from raw bitmap data in the
pixelsHigh:(int)height planes data buffers. As the data is raw, the other
bitsPerSample:(int)bps arguments specify its attributes.
samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
isPlanar:(BOOL)config
colorSpaceName:(NSString *)colorSpaceName
bytesPerRow:(int)rowBytes
bitsPerPixel:(int)pixelBits

Getting Information about the Image

– (int)bitsPerPixel Returns how many bits are needed to specify one pixel.

– (int)samplesPerPixel Returns the number of samples (components) in the data.

– (BOOL)isPlanar Returns YES if in planar configuration, NO if meshed.

– (int)numberOfPlanes Returns the number of data planes.

– (int)bytesPerPlane Returns the number of bytes in each data plane.

– (int)bytesPerRow Returns the number of bytes in a scan line.

Getting Image Data

– (unsigned char *)bitmapData Returns a pointer to the bitmap data. If the data is planar,
returns a pointer to the first plane.

– (void)getBitmapDataPlanes:(unsigned char **)data
Provides pointers to each plane of bitmap data.

Producing a TIFF Representation of the Image

+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)anArray
Returns a TIFF representation of the images in the

specified NSArray, using the compression that’s
returned by getCompression:factor: (if applicable).

+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)anArray
usingCompression:(NSTIFFCompression)compressionType
factor: (float)factor Returns a TIFF representation of the images in the

specified NSArray, which are compressed using
compressionType and factor. If the specified
compression isn’t applicable, no compression is used.

Classes: NSBitmapImageRep1-19OpenStep Specification—10/19/94

– (NSData *)TIFFRepresentation Returns a TIFF representation of the image, using the
compression that’s returned by
getCompression:factor: (if applicable).

– (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)compressionType
 factor:(float)factor Returns a compressed TIFF representation of the image,

having the specified compression type and compression
factor. If the specified compression isn’t applicable, no
compression is used. Raises NSTIFFException if an
atempt is made to create a TIFF representation using
OpenStep custom color space bitmaps.

Setting and Checking Compression Types

+ (void)getTIFFCompressionTypes:(const NSTIFFCompression **)list
count:(int *)numTypes Returns all available compression types.

+ (NSString *)localizedNameForTIFFCompressionType:(NSTIFFCompression)compression
Returns the localized name for the compression type.

– (BOOL)canBeCompressedUsing:(NSTIFFCompression)compression
Returns YES if the image can be compressed using the

specified type of compression.

– (void)getCompression:(NSTIFFCompression *)compression
factor: (float *)factor Returns, in its arguments, the compression type and

compression factor.

– (void)setCompression:(NSTIFFCompression)compression
factor: (float)factor Sets the compression type and compression factor.

OpenStep Specification—10/19/941-20 Chapter 1: Application Kit

NSBox

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSBox.h

Class Description

An NSBox object is a simple NSView that can do two things: It can draw a border around itself and it can title itself.
You can use an NSBox to group, visually, some number of other NSViews. These other NSViews are added to the
NSBox through the typical subview-adding methods, such as addSubview: and replaceSubview:with:.

An NSBox contains a content area, a rectangle set within the NSBox’s frame in which the NSBox’s subviews are
displayed. The size and location of the content area depends on the NSBox’s border type, title location, the size of
the font used to draw the title, and an additional measure that you can set through the setContentViewMargins:
method. When you create an NSBox, an instance of NSView is created and added (as a subview of the NSBox
object) to fill the NSBox’s content area. If you replace this content view with an NSView of your own, your NSView
will be resized to fit the content area. Similarly, as you resize an NSBox its content view is automatically resized
to fill the content area.

The NSViews that you add as subviews to an NSBox are actually added to the NSBox’s content view—NSView’s
subview-adding methods are redefined by NSBox to ensure that a subview is correctly placed in the view hierarchy.
However, you should note that the subviews method isn’t redefined: It returns an NSArray containing a single
object, the NSBox’s content view.

Getting and Modifying the Border and T itle

– (NSRect)borderRect Returns the rectangle in which the border is drawn.

– (NSBorderType)borderType Returns the box’s border type.

– (void)setBorderType:(NSBorderType)aType Sets the box’s border to aType.

– (void)setTitle:(NSString *)aString Sets the box’s title to aString.

– (void)setTitleFont:(NSFont *)fontObj Sets the NSFont of the title to fontObj.

– (void)setTitlePosition:(NSTitlePosition)aPosition Sets the position of the title to aPosition.

– (NSString *)title Returns the title of the box.

– (id)titleCell Returns the Cell used to draw the title.

– (NSFont *)titleFont Returns the NSFont used to draw the title.

Classes: NSBox 1-21OpenStep Specification—10/19/94

– (NSTitlePosition)titlePosition Returns the position of the title.

– (NSRect)titleRect Returns the rectangle in which the title is drawn.

Setting and Placing the Content V iew

– (id)contentView Returns the content view.

– (NSSize)contentViewMargins Gets the distances between the border and the content view.

– (void)setContentView:(NSView *)aView Replaces the NSBox’s content view with aView.

– (void)setContentViewMargins:(NSSize)offsetSize Sets the distances between the border and the content view
to the horizontal and vertical amounts in offsetSize.

Resizing the Box

– (void)setFrameFromContentFrame:(NSRect)contentFrame
Resizes the box to accommodate contentFrame.

– (void)sizeToFit Resizes the box to exactly enclose its subviews.

OpenStep Specification—10/19/941-22 Chapter 1: Application Kit

NSBrowser

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSBrowser.h

Class Description

NSBrowser provides a user interface for displaying and selecting items from a list of data, or from hierarchically
organized lists of data such as directory paths. When working with a hierarchy of data, the levels are displayed in
columns, which are numbered from left to right, beginning with 0. Each column consists of an NSScrollView
containing an NSMatrix filled with NSBrowserCells. NSBrowser relies on a delegate to provide the data in its
NSBrowserCells. See the NSBrowserCell class description for more on its implementation.

Browser Selection

An entry in an NSBrowser’s column can be either a branch node (such as a directory) or a leaf node (such as a file).
When the user selects a single branch node entry in a column, the NSBrowser sends itself the addColumn message,
which messages its delegate to load the next column. The user’s selection can be represented as a character string;
if the selection is hierarchical (for example, a filename within a directory), each component of the path to the
selected node is separated by “/”. To use some other character as the delimiter, invoke setPathSeparator:.

An NSBrowser can be set to allow selection of multiple entries in a column, or to limit selection to a single entry.
When set for multiple selection, it can also be set to limit multiple selection to leaf nodes only, or to allow selection
of both types of nodes together.

As a subclass of NSControl, NSBrowser has a target object and action message. Each time the user selects one or
more entries in a column, the action message is sent to the target. NSBrowser also adds an action to be sent when
the user double-clicks on an entry, which allows the user to select items without any action being taken, and then
double-click to invoke some useful action such as opening a file.

User Interface Features

The user interface features of an NSBrowser can be changed in a number of ways. The NSBrowser may or may not
have a horizontal scroller. (The NSBrowser’s columns, by contrast, always have vertical scrollers—although a
scroller’s buttons and knob might be invisible if the column doesn’t contain many entries.) You generally shouldn’t
create an NSBrowser without a horizontal scroller; if you do, you must make sure the bounds rectangle of the
NSBrowser is wide enough that all the columns can be displayed. An NSBrowser’s columns may be bordered and
titled, bordered and untitled, or unbordered and untitled. A column’s title may be taken from the selected entry in
the column to its left, or may be provided explicitly by the NSBrowser or its delegate.

Classes: NSBrowser 1-23OpenStep Specification—10/19/94

NSBrowser’s Delegate

NSBrowser requires a delegate to provide it with data to display. The delegate is responsible for providing the data
and for setting each item as a branch or leaf node, enabled or disabled. It can also receive notification of events like
scrolling and requests for validation of columns that may have changed.

You can implement one of two delegate types: active or passive. An active delegate creates a column’s rows (that
is, the NSBrowserCells) itself, while a passive one leaves that job to the NSBrowser. Normally, passive delegates
are preferable, because they’re easier to implement. An active delegate must implement
browser:createRowsForColumn:inMatrix: to create the rows of the specified column. A passive delegate, on the
other hand, must implement browser:numberOfRowsInColumn: to let the NSBrowser know how many rows to
create. These two methods are mutually exclusive; you can implement one or the other, but not both. (The
NSBrowser ascertains what type of delegate it has by which method the delegate responds to.)

Both types of delegate implement browser:willDisplayCell:atRow:column: to set up state (such as the cell’s
string value and whether the cell is a leaf or a branch) before an individual cell is displayed. (This delegate method
doesn’t need to invoke NSBrowserCell’s setLoaded: method, because the NSBrowser can determine that state by
itself.) An active delegate can instead set all the cells’ state at the time the cells are created, in which case it doesn’t
need to implement browser:willDisplayCell:atRow:column: . However, a passive delegate must always
implement this method.

Setting the Delegate

– (id)delegate Returns the NSBrowser’s delegate.

– (void)setDelegate:(id)anObject Sets the NSBrowser’s delegate to anObject. Raises
NSBrowserIllegalDelegateException if the delegate
specified by anObject doesn’t respond to
browser:willDisplayCell:atRow:column: and either
of the methods browser:numberOfRowsInColumn:
or browser:createRowsForColumn:inMatrix:

Target and Action

– (SEL)doubleAction Returns the NSBrowser’s double-click action method.

– (BOOL)sendAction Sends the action message to the target. Returns YES upon
success, NO if no responder for the message could be
found.

– (void)setDoubleAction:(SEL)aSelector Sets the NSBrowser’s double-click action to aSelector.

Setting Component Classes

+ (Class)cellClass Returns the NSBrowserCell class (regardless of whether a
setCellClass: message has been sent to a particular
instance).

OpenStep Specification—10/19/941-24 Chapter 1: Application Kit

– (id)cellPrototype Returns the NSBrowser’s prototype NSCell.

– (Class)matrixClass Returns the class of NSMatrix used in the NSBrowser’s
columns.

– (void)setCellClass:(Class)classId Sets the class of NSCell used in the columns of the
NSBrowser.

– (void)setCellPrototype:(NSCell *)aCell Sets the NSCell instance copied to display items in the
columns of NSBrowser.

– (void)setMatrixClass:(Class)classId Sets the class of NSMatrix used in the NSBrowser’s
columns.

Setting NSBrowser Behavior

– (BOOL)reusesColumns Returns YES if NSMatrix objects aren’t freed when their
columns are unloaded.

– (void)setReusesColumns:(BOOL)flag If flag is YES, prevents NSMatrix objects from being freed
when their columns are unloaded, so they can be reused.

– (void)setTakesTitleFromPreviousColumn:(BOOL)flag
Sets whether the title of a column is set to the string value

of the selected NSCell in the previous column.

– (BOOL)takesTitleFromPreviousColumn Returns YES if the title of a column is set to the string value
of the selected NSCell in the previous column.

Allowing Different Types of Selection

– (BOOL)allowsBranchSelection Returns whether the user can select branch items when
multiple selection is enabled.

– (BOOL)allowsEmptySelection Returns whether there can be nothing selected.

– (BOOL)allowsMultipleSelection Returns whether the user can select multiple items.

– (void)setAllowsBranchSelection:(BOOL)flag Sets whether the user can select branch items when
multiple selection is enabled.

– (void)setAllowsEmptySelection:(BOOL)flag Sets whether there can be nothing selected.

– (void)setAllowsMultipleSelection:(BOOL)flag Sets whether the user can select multiple items.

Setting Arrow Key Behavior

– (BOOL)acceptsArrowKeys Returns YES if the arrow keys are enabled.

Classes: NSBrowser 1-25OpenStep Specification—10/19/94

– (BOOL)sendsActionOnArrowKeys Returns NO if pressing an arrow key only scrolls the
browser, YES if it also sends the action message
specified by setAction:.

– (void)setAcceptsArrowKeys:(BOOL)flag Enables or disables the arrow keys.

– (void)setSendsActionOnArrowKeys:(BOOL)flag Sets whether pressing an arrow key will cause the action
message to be sent (in addition to causing scrolling).

Showing a Horizontal Scroller

– (void)setHasHorizontalScroller:(BOOL)flag Sets whether an NSScroller is used to scroll horizontally.

– (BOOL)hasHorizontalScroller Returns whether an NSScroller is used to scroll
horizontally.

Setting the NSBrowser’ s Appearance

– (int)maxVisibleColumns Returns the maximum number of visible columns.

– (int)minColumnWidth Returns the minimum column width.

– (BOOL)separatesColumns Returns whether columns are separated by bezeled borders.

– (void)setMaxVisibleColumns:(int)columnCount Sets the maximum number of columns displayed.

– (void)setMinColumnWidth: (int)columnWidth Sets the minimum column width.

– (void)setSeparatesColumns:(BOOL)flag Sets whether to separate columns with bezeled borders.

Manipulating Columns

– (void)addColumn Adds a column to the right of the last column.

– (int)columnOfMatrix: (NSMatrix *)matrix Returns the column number in which matrix is located.

– (void)displayAllColumns Updates the NSBrowser to display all loaded columns.

– (void)displayColumn:(int)column Updates the NSBrowser to display the column with the
given index.

– (int)firstVisibleColumn Returns the index of the first visible column.

– (BOOL)isLoaded Returns whether column zero is loaded.

– (int)lastColumn Returns the index of the last column loaded.

– (int)lastVisibleColumn Returns the index of the last visible column.

– (void)loadColumnZero Loads column zero; unloads previously loaded columns.

OpenStep Specification—10/19/941-26 Chapter 1: Application Kit

– (int)numberOfVisibleColumns Returns the number of columns visible.

– (void)reloadColumn:(int)column Reloads column if it is loaded; sets it as the last column.

– (void)selectAll:(id)sender Selects all NSCells in the last column of the NSBrowser.

– (int)selectedColumn Returns the index of the last column with a selected item.

– (void)setLastColumn:(int)column Sets the last column to column.

– (void)validateVisibleColumns Invokes delegate method browser:isColumnValid: for
visible columns.

Manipulating Column Titles

– (void)drawTitle: (NSString *)title Draws the title for the column at index column.
inRect:(NSRect)aRect
ofColumn:(int)column

– (BOOL)isTitled Returns whether columns display titles.

– (void)setTitled:(BOOL)flag Sets whether columns display titles.

– (void)setTitle:(NSString *)aString Sets the title of the column at index column to aString.
ofColumn:(int)column

– (NSRect)titleFrameOfColumn: (int)column Returns the bounds of the title frame for the column at
index column.

– (float)titleHeight Returns the height of column titles.

– (NSString *)titleOfColumn: (int)column Returns the title displayed for the column at index column.

Scrolling an NSBrowser

– (void)scrollColumnsLeftBy:(int)shiftAmount Scrolls columns left by shiftAmount columns.

– (void)scrollColumnsRightBy:(int)shiftAmount Scrolls columns right by shiftAmount columns.

– (void)scrollColumnToVisible:(int)column Scrolls to make the column at index column visible.

– (void)scrollViaScroller: (NSScroller *)sender Scrolls columns left or right based on an NSScroller.

– (void)updateScroller Updates the horizontal scroller to reflect column positions.

Event Handling

– (void)doClick: (id)sender Responds to mouse clicks in a column of the NSBrowser.

– (void)doDoubleClick:(id)sender Responds to double-clicks in a column of the NSBrowser.

Classes: NSBrowser 1-27OpenStep Specification—10/19/94

Getting Matrices and Cells

– (id)loadedCellAtRow:(int)row Loads if necessary and returns the NSCell at row in
column:(int)column column.

– (NSMatrix *)matrixInColumn: (int)column Returns the matrix located in column.

– (id)selectedCell Returns the last (rightmost and lowest) selected NSCell.

– (id)selectedCellInColumn:(int)column Returns the last (lowest) NSCell that’s selected in column.

– (NSArray *)selectedCells Returns all the rightmost selected NSCells.

Getting Column Frames

– (NSRect)frameOfColumn: (int)column Returns the rectangle containing the column at index
column.

– (NSRect)frameOfInsideOfColumn: (int)column Returns the rectangle containing the column at index
column, not including borders.

Manipulating Paths

– (NSString *)path Returns the browser’s current path.

– (NSString *)pathSeparator Returns the path separator. The default is “/”.

– (NSString *)pathToColumn:(int)column Returns a string representing the path from the first column
to the column at index column.

– (BOOL)setPath:(NSString *)path Parses path and selects corresponding items in columns.

– (void)setPathSeparator:(NSString *)aString Sets the path separator to aString.

Arranging an NSBrowser’s Components

– (void)tile Adjusts the various subviews of NSBrowser—scrollers,
columns, titles, and so on—without redrawing. Your
code shouldn’t send this message. It’s invoked any time
the appearance of the NSBrowser changes.

Methods Implemented by the Delegate

– (void)browser:(NSBrowser *)sender Creates a row in matrix for each row of data to be displayed
createRowsForColumn:(int)column in column of the browser. Either this method or
inMatrix: (NSMatrix *)matrix browser:numberOfRowsInColumn: must be

implemented, but not both (or an
NSBrowserIllegalDelegateException will be raised).

OpenStep Specification—10/19/941-28 Chapter 1: Application Kit

– (BOOL)browser:(NSBrowser *)sender
isColumnValid: (int)column Returns whether the contents of the specified column are

valid.

– (int)browser:(NSBrowser *)sender Returns the number of rows of data in the column at index
numberOfRowsInColumn:(int)column column. Either this method or

browser:createRowsForColumn:inMatrix: must be
implemented, but not both.

– (BOOL)browser:(NSBrowser *)sender Asks the delegate to select the NSCell with title title in
selectCell:(NSString *)title the column at index column.
inColumn: (int)column

– (NSString *)browser:(NSBrowser *)sender Queries the delegate for the title to display above the
titleOfColumn: (int)column column at index column.

– (void)browser:(NSBrowser *)sender Notifies the delegate when the NSBrowser will display
willDisplayCell: (id)cell the specified cell. The delegate should set any state
atRow:(int)row necessary for correct display of the cell.
column:(int)column

– (void)browserDidScroll:(NSBrowser *)sender Notifies the delegate when the NSBrowser has scrolled.

– (void)browserWillScroll: (NSBrowser *)sender Notifies the delegate when the NSBrowser will scroll.

Classes: NSBrowserCell1-29OpenStep Specification—10/19/94

NSBrowserCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSBrowserCell.h

Class Description

NSBrowserCell is the subclass of NSCell used by default to display data in the columns of an NSBrowser. (Each
column contains an NSMatrix filled with NSBrowserCells.) Many of NSBrowserCell’s methods are designed to
interact with NSBrowser and NSBrowser’s delegate. The delegate implements methods for loading the NSCells in
NSBrowser by setting their values and status. If your code needs access to a specific NSBrowserCell, you can use
the NSBrowser method loadedCellAtRow:column:.

You may find it useful to create a subclass of NSBrowserCell to alter its behavior and to enable it to work with and
display the type of data you wish to represent. Use NSBrowser’s setCellClass: or setCellPrototype: methods to
have it use your subclass.

See the NSBrowser class specification for more details. In particular, the class description and the “Methods
Implemented by the Delegate” section describe how the NSBrowser’s delegate interacts with both NSBrowser and
NSBrowserCells.

Accessing Graphic Attributes

+ (NSImage *)branchImage Returns the default NSImage for branch NSBrowserCells.

+ (NSImage *)highlightedBranchImage Returns the default NSImage for branch NSBrowserCells
that are highlighted.

– (NSImage *)alternateImage Returns this NSBrowserCell’s image for the highlighted
state.

– (void)setAlternateImage:(NSImage *)anImage Sets this NSBrowserCell’s image for the highlighted state.

Placing in the Browser Hierarchy

– (BOOL)isLeaf Returns whether the NSBrowserCell is a leaf or a branch.

– (void)setLeaf:(BOOL)flag Sets whether the NSBrowserCell is a leaf or a branch.

OpenStep Specification—10/19/941-30 Chapter 1: Application Kit

Determining Loaded Status

– (BOOL)isLoaded Returns YES if all the NSBrowserCell’s state has been set
and the cell is ready to display.

– (void)setLoaded:(BOOL)flag Sets whether all the NSBrowserCell’s state has been set and
the cell is ready to display.

Setting State

– (void)reset Unhighlights the NSBrowserCell and sets its state to 0.

– (void)set Highlights the NSBrowserCell and sets its state to 1.

Classes: NSBundle Additions1-31OpenStep Specification—10/19/94

NSBundle Additions

Inherits From: NSObject

Declared In: AppKit/NSImage.h
AppKit/NSNibLoading.h

Class Description

The Application Kit adds these methods to the Foundation Kit’s NSBundle class. These methods become part of
the class for all applications that use the Application Kit, but not for applications that don’t.

Getting the Location of Images in the File System

– (NSString *)pathForImageResource:(NSString *)name
Returns the absolute pathname of the file containing the

specified image resource. (The name of the resource is
simply the filename without the path of its bundle
directory; the filename extension need not be included.)

Loading an Interface Builder File

+ (BOOL)loadNibFile:(NSString *)fileName Unarchives the contents of the nib file whose absolute path
externalNameTable:(NSDictionary *)context is fileName. Objects from the nib file are allocated in
withZone:(NSZone *)zone the specified zone of memory. The context argument is

a name table—a dictionary whose keys are names like
“NSOwner” and whose values are existing objects that
can be referenced by the newly unarchived objects.
Returns YES upon success. (A nib file is a object
archive whose file format is currently implementation
specific. A public specification of this file format will be
available at a later date.)

+ (BOOL)loadNibNamed:(NSString *)aNibName Similar to loadNibFile:externalNameTable:withZone:,
owner:(id)owner but the name table’s only element is the specified owner

(stored with the key “NSOwner”). Objects from the nib
file are allocated in owner’s zone. If there’s a bundle for
owner’s class, this method looks in that bundle for the
nib file named aNibName (this argument need not
include the “.nib” extension); otherwise, it looks in the
main bundle. (A nib file is a object archive whose file
format is currently implementation specific. A public
specification of this file format will be available at a
later date.)

OpenStep Specification—10/19/941-32 Chapter 1: Application Kit

NSButton

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSButton.h

Class Description

NSButton is a subclass of NSControl that intercepts mouse-down events and sends an action message to a target
object when it’s clicked or pressed. By virtue of its NSButtonCell, NSButton is a two-state NSControl—it’s either
“off” or “on”—and it displays its state depending on the configuration of the NSButtonCell. NSButton acquires
other attributes of NSButtonCell. The state is used as the value, so NSControl methods like setIntValue: actually
set the state (the methods setState: and state are provided as a more conceptually accurate way of setting and
getting the state). The NSButton can send its action continuously and display highlighting in several different ways.
What’s more, an NSButton can have a key equivalent that’s eligible for triggering whenever the NSButton’s
NSPanel or NSWindow is the key window.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCell object. However,
while NSMatrix requires you to access the NSButtonCells directly, most of NSButton’s methods are “covers” for
identically declared methods in NSButtonCell. (In other words, the implementation of the NSButton method
invokes the corresponding NSButtonCell method for you, allowing you to be unconcerned with the NSButtonCell’s
existence.) The only NSButtonCell methods that don’t have covers relate to the font used to display the key
equivalent, and to specific methods for highlighting or showing the NSButton’s state (these last are usually set
together with NSButton’s setType: method).

Creating a Subclass of NSButton

Override the designated initializer (NSView’s initWithFrame: method) if you create a subclass of NSButton that
performs its own initialization. If you want to use a custom NSButtonCell subclass with your subclass of NSButton,
you have to override the setCellClass: method, as described in “Creating New NSControls” in the NSControl class
specification.

See the NSButtonCell class specification for more on NSButton’s behavior.

 Initializing the NSButton Factory

+ (Class)cellClass Returns the subclass of NSButtonCell used by NSButton.

+ (void)setCellClass:(Class)classId Sets the subclass of NSButtonCell used by NSButton.

Classes: NSButton 1-33OpenStep Specification—10/19/94

Setting the Button T ype

– (void)setType:(int)aType Sets how the NSButton highlights and shows its state.

Setting the State

– (void)setState:(int)value Sets the NSButton’s state to value (0 or 1).

– (int)state Returns the NSButton’s current state (0 or 1).

Setting the Repeat Inter val

– (void)getPeriodicDelay:(float *)delay Gets repeat parameters for continuous buttons.
interval: (float *)interval

– (void)setPeriodicDelay:(float)delay Sets repeat parameters for continuous buttons.
interval: (float)interval

Setting the Titles

– (NSString *)alternateTitle Returns the button’s alternate title.

– (void)setAlternateTitle:(NSString *)aString Makes aString the button’s alternate title.

– (void)setTitle:(NSString *)aString Makes aString the button’s title.

– (NSString *)title Returns the button’s title.

Setting the Images

– (NSImage *)alternateImage Returns the button’s alternate image.

– (NSImage *)image Returns the button’s image.

– (NSCellImagePosition)imagePosition Returns the position of the button’s image.

– (void)setAlternateImage:(NSImage *)anImage Makes anImage the alternate image.

– (void)setImage:(NSImage *)anImage Makes anImage the button’s icon.

– (void)setImagePosition:(NSCellImagePosition)aPosition
Sets the position of the button’s image to aPosition.

OpenStep Specification—10/19/941-34 Chapter 1: Application Kit

Modifying Graphic Attributes

– (BOOL)isBordered Returns whether the button has a bezeled border.

– (BOOL)isTransparent Returns whether the button is transparent.

– (void)setBordered:(BOOL)flag Sets whether the button has a bezeled border.

– (void)setTransparent:(BOOL)flag Sets whether the button is transparent.

Displaying

– (void)highlight: (BOOL)flag Highlights (or unhighlights) the button according to flag.

Setting the Key Equivalent

– (NSString *)keyEquivalent Returns the button’s key equivalent.

– (unsigned int)keyEquivalentModifierMask Returns the mask indicating the possible modifier keys for
button’s key equivalent.

– (void)setKeyEquivalent:(NSString *)aKeyEquivalent
Makes aKeyEquivalent the button’s key equivalent.

– (void)setKeyEquivalentModifierMask:(unsigned int)mask
Sets the mask that determines the possible modifier keys

for button’s key equivalent.

Handling Events and Action Messages

– (void)performClick: (id)sender Simulates the user’s clicking the button.

– (BOOL)performKeyEquivalent: (NSEvent *)anEvent
Simulates a mouse click, if the key in anEvent is right.

Classes: NSButtonCell 1-35OpenStep Specification—10/19/94

NSButtonCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSButtonCell.h

Class Description

NSButtonCell is a subclass of NSActionCell used to implement the user interfaces of push buttons, switches, and
radio buttons. It can also be used for any other region of a view that’s designed to send a message to a target when
clicked. The NSButton subclass of NSControl uses a single NSButtonCell. To create groups of switches or radio
buttons, use an NSMatrix holding a set of NSButtonCells.

An NSButtonCell is a two-state cell; it’s either “off” or “on,” and can be configured to display the two states
differently, with a separate title and/or image for either state. The two states are more often referred to as “normal”
and “alternate.” An NSButtonCell’s state is also used as its value, so NSCell methods that set the value
(setIntValue: and so on) actually set the NSButtonCell’s state to “on” if the value provided is non-zero (or non-null
for strings), and to “off” if the value is zero or null. Similarly, methods that retrieve the value return 1 for the “on”
or alternate state (an empty string in the case of stringValue), or 0 or NULL for the “off” or normal state. You can
also use NSCell’s setState: and state methods to set or retrieve the state directly. After changing the state, send a
display message to show the NSButtonCell’s new appearance. (NSButton does this automatically.)

An NSButtonCell sends its action message to its target once if its view is clicked and it gets the mouse-down event,
but can also send the action message continuously as long as the mouse is held down with the cursor inside the
NSButtonCell. The NSButtonCell can show that it’s being pressed by highlighting in several ways—for example,
a bordered NSButtonCell can appear pushed into the screen, or the image or title can change to an alternate form
while the NSButtonCell is pressed.

An NSButtonCell can also have a key equivalent (like a menu item). If the NSButtonCell is displayed in the key
window, the NSButtonCell gets the first chance to receive events related to key equivalents. This feature is used
quite often in modal panels that have an “OK” button containing the image that represents the Return key. Usually
an NSButtonCell displays a key equivalent as its image; if you ever set an image for the NSButtonCell, the key
equivalent remains, but doesn’t get displayed.

For more information on NSButtonCell’s behavior, see the NSButton and NSMatrix class specifications.

Exceptions

In its implementation of the compare: method (declared in NSCell), NSButtonCell raises
NSBadComparisonException if the otherCell argument is not of the NSButtonCell class.

OpenStep Specification—10/19/941-36 Chapter 1: Application Kit

Setting the Titles

– (NSString *)alternateTitle Returns the NSButtonCell’s alternate title (used while the
button is in the highlighted state).

– (void)setAlternateTitle:(NSString *)aString Makes a copy of aString and uses it as the NSButtonCell’s
alternate title.

– (void)setFont:(NSFont *)fontObject Sets the NSFont used to draw the title.

– (void)setTitle:(NSString *)aString Makes a copy of aString and uses it as the NSButtonCell’s
title.

– (NSString *)title Returns the NSButtonCell’s title.

Setting the Images

– (NSImage *)alternateImage Returns the NSButtonCell’s alternate image (used while
the button is in the highlighted state).

– (NSCellImagePosition)imagePosition Returns the position of the NSButtonCell’s image.

– (void)setAlternateImage:(NSImage *)anImage Makes anImage the alternate image.

– (void)setImagePosition:(NSCellImagePosition)aPosition
Sets the position of the NSButtonCell’s image in relation to

its title.

Setting the Repeat Inter val

– (void)getPeriodicDelay:(float *)delay Gets repeat parameters for continuous NSButtonCells.
interval: (float *)interval

– (void)setPeriodicDelay:(float)delay Sets repeat parameters for continuous NSButtonCells.
interval: (float)interval

Setting the Key Equivalent

– (NSString *)keyEquivalent Returns the NSButtonCell’s key equivalent.

– (NSFont *)keyEquivalentFont Returns the NSFont used to draw the key equivalent.

– (unsigned int)keyEquivalentModifierMask Returns the mask indicating the possible modifier keys for
NSButtonCell’s key equivalent.

– (void)setKeyEquivalent:(NSString *)aKeyEquivalent
Sets the NSButtonCell’s key equivalent.

Classes: NSButtonCell 1-37OpenStep Specification—10/19/94

– (void)setKeyEquivalentModifierMask:(unsigned int)mask
Sets the mask that determines the possible modifier keys

for NSButtonCell’s key equivalent.

– (void)setKeyEquivalentFont:(NSFont *)fontObj Sets the NSFont used to draw the key equivalent.

– (void)setKeyEquivalentFont:(NSString *)fontName
size:(float)fontSize Sets the NSFont and size used to draw the key equivalent.

Modifying Graphic Attributes

– (BOOL)isOpaque Returns whether receiver is opaque.

– (BOOL)isTransparent Returns whether the NSButtonCell is transparent.

– (void)setTransparent:(BOOL)flag Sets whether the NSButtonCell is transparent.

Modifying Graphic Attributes

– (int)highlightsBy Returns how the NSButtonCell highlights when pressed.

– (void)setHighlightsBy:(int)aType Sets how the NSButtonCell highlights when pressed.

– (void)setShowsStateBy:(int)aType Sets how the NSButtonCell shows its alternate (pressed)
state.

– (void)setType:(NSButtonType)aType Sets the NSButtonCell’s display behavior.

– (int)showsStateBy Returns how NSButtonCell shows its alternate (pressed)
state.

Simulating a Click

– (void)performClick: (id)sender Simulates a user’s mouse click on the NSButtonCell.

OpenStep Specification—10/19/941-38 Chapter 1: Application Kit

NSCachedImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSCachedImageRep.h

Class Description

NSCachedImageRep, a subclass of NSImageRep, defines an object that stores its source data as a rendered image
in a window, typically a window that stays off-screen. The only data that’s available for reproducing the image is
the image itself. Thus an NSCachedImageRep differs from the other kinds of NSImageReps defined in the
Application Kit, all of which can reproduce an image from the information originally used to draw it. Instances of
this class are generally used indirectly, through an NSImage object.

Initializing an NSCachedImageRep

– (id)initWithSize: (NSSize)aSize Initializes a new NSCachedImageRep for an image of the
depth:(NSWindowDepth)aDepth specified size and depth. The separate argument
separate:(BOOL)separate specifies whether the image will get its own unique
alpha:(BOOL)alpha cache, instead of possibly sharing one with other

images. For best performance (although it’s not
essential), the alpha argument should be set according
to whether the image will have a channel for
transparency information.

– (id)initWithWindow: (NSWindow *)aWindow Initializes the new NSCachedImageRep for an image to be
rect:(NSRect)aRect drawn in the rectangle aRect of the specified window.

This method retains aWindow.

Getting the Representation

– (NSRect)rect Returns the rectangle where the image is cached.

– (NSWindow *)window Returns the NSWindow where the image is cached.

Classes: NSCell 1-39OpenStep Specification—10/19/94

NSCell

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSCell.h

Class Description

The NSCell class provides a mechanism for displaying text or images in an NSView without the overhead of a full
NSView subclass. In particular, it provides much of the functionality of the NSText class by providing access to a
shared NSText object used by all instances of NSCell in an application. NSCells are also extremely useful for
placing titles or images at various locations in a custom subclass of NSView.

NSCell is used heavily by most of the NSControl classes to implement their internal workings. For example,
NSSlider uses an NSSliderCell, NSTextField uses an NSTextFieldCell, and NSBrowser uses an NSBrowserCell.
Sending a message to the NSControl is often simpler than dealing directly with the corresponding NSCell. For
instance, NSControls typically invoke updateCell: (causing the cell to be displayed) after changing a cell attribute;
whereas if you directly call the corresponding method of the NSCell, the NSCell might not automatically display
itself again.

Some subclasses of NSControl (notably NSMatrix) allow multiple NSCells to be grouped and to act together in
some cooperative manner. Thus, with an NSMatrix, a group of radio buttons can be implemented without needing
an NSView for each button (and without needing an NSText object for the text on each button).

The NSCell class provides primitives for displaying text or an image, editing text, formatting floating-point
numbers, maintaining state, highlighting, and tracking the mouse. NSCell’s method
trackMouse:inRect:ofView:untilMouseUp: supports the target object and action method used to implement
controls. However, NSCell implements target/action features abstractly, deferring the details of implementation to
subclasses of NSActionCell.

The initImageCell: method is the designated initializer for NSCells that display images. The initTextCell: method
is the designated initializer for NSCells that display text. Override one or both of these methods if you implement
a subclass of NSCell that performs its own initialization. If you need to use target and action behavior, you may
prefer to subclass NSActionCell, which provides the default implementation of this behavior.

For more information on how NSCell is used, see the NSControl class specification.

Initializing an NSCell

– (id)initImageCell: (NSImage *)anImage Initializes a new NSCell with the NSImage anImage.

– (id)initTextCell: (NSString *)aString Initializes a new NSCell with title aString.

OpenStep Specification—10/19/941-40 Chapter 1: Application Kit

Determining Component Sizes

– (void)calcDrawInfo: (NSRect)aRect Implemented by subclasses to recalculate drawing sizes.

– (NSSize)cellSize Returns the minimum size needed to display the NSCell.

– (NSSize)cellSizeForBounds:(NSRect)aRect Returns the minimum size needed to display the NSCell.

– (NSRect)drawingRectForBounds:(NSRect)theRect
Returns the rectangle the NSCell draws in.

– (NSRect)imageRectForBounds:(NSRect)theRect Returns the rectangle that the cell’s image is drawn in.

– (NSRect)titleRectForBounds:(NSRect)theRect Returns the rectangle that the cell’s title is drawn in.

Setting the NSCell’s Type

– (void)setType:(NSCellType)aType Sets the NSCell’s type to aType.

– (NSCellType)type Returns the NSCell’s type.

Setting the NSCell’s State

– (void)setState:(int)value Sets the state of the NSCell to value (0 or 1).

– (int)state Returns the state of the NSCell (0 or 1).

Enabling and Disabling the NSCell

– (BOOL)isEnabled Returns whether the NSCell reacts to mouse events.

– (void)setEnabled:(BOOL)flag Sets whether the NSCell reacts to mouse events.

Setting the Image

– (NSImage *)image Returns the NSCell’s image.

– (void)setImage:(NSImage *)anImage Makes anImage the NSCell’s image.

Setting the NSCell’s Value

– (double)doubleValue Returns the NSCell’s value as a double.

– (float)floatValue Returns the NSCell’s value as a float.

– (int)intValue Returns the NSCell’s value as an int .

– (NSString *)stringValue Returns the NSCell’s value as a string.

Classes: NSCell 1-41OpenStep Specification—10/19/94

– (void)setDoubleValue:(double)aDouble Sets the NSCell’s value to aDouble.

– (void)setFloatValue:(float)aFloat Sets the NSCell’s value to aFloat.

– (void)setIntValue:(int)anInt Sets the NSCell’s value to anInt.

– (void)setStringValue:(NSString *)aString Sets the NSCell’s value to a copy of aString.

Interacting with Other NSCells

– (void)takeDoubleValueFrom:(id)sender Sets the NSCell’s value to sender’s double floating-point
value.

– (void)takeFloatValueFrom:(id)sender Sets the NSCell’s value to sender’s floating-point value.

– (void)takeIntValueFrom: (id)sender Sets the NSCell’s value to sender’s integer value.

– (void)takeStringValueFrom:(id)sender Sets the NSCell’s value to sender’s string value.

Modifying Text Attributes

– (NSTextAlignment)alignment Returns the alignment of text in the NSCell.

– (NSFont *)font Returns the Font used to display text in the NSCell.

– (BOOL)isEditable Returns whether the NSCell’s text is editable.

– (BOOL)isSelectable Returns whether the NSCell’s text is selectable.

– (BOOL)isScrollable Returns whether the NSCell scrolls to follow typing.

– (void)setAlignment:(NSTextAlignment)mode Sets the alignment of text in the NSCell to mode.

– (void)setEditable:(BOOL)flag Sets whether the NSCell’s text is editable.

– (void)setFont:(NSFont *)fontObject Sets the Font used to display text in the NSCell to
fontObject.

– (void)setSelectable:(BOOL)flag Sets whether the NSCell’s text is selectable.

– (void)setScrollable:(BOOL)flag Sets whether the NSCell scrolls to follow typing.

– (NSText *)setUpFieldEditorAttributes: (NSText *)textObject
Sets NSText parameters for the field editor. (See the

documentation for NSText.)

– (void)setWraps:(BOOL)flag Sets whether the NSCell’s text is word-wrapped.

– (BOOL)wraps Returns whether the NSCell’s text is word-wrapped.

OpenStep Specification—10/19/941-42 Chapter 1: Application Kit

Editing Text

– (void)editWithFrame: (NSRect)aRect Allows text editing in response to a mouse-down event.
inView: (NSView *)controlView
editor: (NSText *)textObject
delegate:(id)anObject
event:(NSEvent *)theEvent

– (void)endEditing:(NSText *)textObject Ends any text editing occurring in the NSCell.

– (void)selectWithFrame:(NSRect)aRect Allows text selection in response to a mouse-down event.
inView: (NSView *)controlView
editor: (NSText *)textObject
delegate:(id)anObject
start: (int)selStart
length:(int)selLength

Validating Input

– (int)entryType Returns the type of data the user can type into the NSCell.

– (BOOL)isEntryAcceptable:(NSString *)aString Returns whether aString is acceptable for the entry type.

– (void)setEntryType:(int)aType Sets the type of data the user can type into the NSCell.

Formatting Data

– (void)setFloatingPointFormat:(BOOL)autoRangeSets the display format for floating-point values.
left: (unsigned int)leftDigits
right: (unsigned int)rightDigits

Modifying Graphic Attributes

– (BOOL)isBezeled Returns whether the NSCell has a bezeled border.

– (BOOL)isBordered Returns whether NSCell has a plain border.

– (BOOL)isOpaque Returns whether the NSCell is opaque.

– (void)setBezeled:(BOOL)flag Sets whether the NSCell has a bezeled border.

– (void)setBordered:(BOOL)flag Sets whether the NSCell has a plain border.

Classes: NSCell 1-43OpenStep Specification—10/19/94

Setting Parameters

– (int)cellAttribute: (NSCellAttribute)aParameter
Returns various flag values.

– (void)setCellAttribute: (NSCellAttribute)aParameter
to:(int)value Sets various NSCell flags.

Displaying

– (NSView *)controlView Implemented by subclasses to return the NSView last
drawn in (normally an NSControl).

– (void)drawInteriorWithFrame: (NSRect)cellFrame Draws the area within the NSCell’s border in controlView.
inView: (NSView *)controlView

– (void)drawWithFrame: (NSRect)cellFrame Draws the entire NSCell in controlView.
inView: (NSView *)controlView

– (void)highlight: (BOOL)lit If lit is YES, highlights the NSCell in controlView,
withFrame: (NSRect)cellFrame otherwise unhighlights.
inView: (NSView *)controlView

– (BOOL)isHighlighted Returns whether the NSCell is highlighted.

Target and Action

– (SEL)action Implemented by subclasses to return the action method.

– (BOOL)isContinuous Returns whether the NSCell continuously sends the action.

– (int)sendActionOn:(int)mask Determines when the action is sent while tracking.

– (void)setAction:(SEL)aSelector Implemented by subclasses to set the action method.

– (void)setContinuous:(BOOL)flag Sets whether the NSCell continuously sends the action.

– (void)setTarget:(id)anObject Implemented by subclasses to set the target object.

– (id)target Implemented by subclasses to return the target object.

Assigning a Tag

– (void)setTag:(int)anInt Implemented by subclasses to set an identifier tag.

– (int)tag Implemented by subclasses to return the identifier tag.

OpenStep Specification—10/19/941-44 Chapter 1: Application Kit

Handling Keyboard Alternatives

– (NSString *)keyEquivalent Implemented by subclasses to return a key equivalent.

Tracking the Mouse

+ (BOOL)prefersTrackingUntilMouseUp Returns NO, so tracking stops when the mouse leaves the
NSCell; subclasses may override.

– (BOOL)continueTracking:(NSPoint)lastPoint Returns whether tracking should continue based on
at:(NSPoint)currentPoint lastPoint and currentPoint within controlView.
inView: (NSView *)controlView

– (int)mouseDownFlags Returns the event flags set at the start of mouse tracking.

– (void)getPeriodicDelay:(float *)delay Returns repeat values for continuous sending of the action.
interval: (float *)interval

– (BOOL)startTrackingAt: (NSPoint)startPoint Determines whether tracking should begin based on
inView: (NSView *)controlView startPoint within controlView.

– (void)stopTracking:(NSPoint)lastPoint Allows the NSCell to update itself to end tracking, based on
at:(NSPoint)stopPoint lastPoint and stopPoint within controlView; flag is YES
inView: (NSView *)controlView if this method was invoked because the mouse went up.
mouseIsUp:(BOOL)flag

– (BOOL)trackMouse:(NSEvent *)theEvent Tracks the mouse, returning YES if the mouse goes up
inRect:(NSRect)cellFrame while in cellFrame. This method is usually invoked by
ofView:(NSView *)controlView an NSControl’s mouseDown: method, which passes
untilMouseUp:(BOOL)flag the mouse-down event in theEvent. If flag is YES, the

method keeps tracking until the mouse goes up;
otherwise it tracks until the mouse leaves cellFrame.

Managing the Cursor

– (void)resetCursorRect:(NSRect)cellFrame Sets text NSCells to show the I-beam cursor.
inView: (NSView *)controlView

Comparing to Another NSCell

– (NSComparisonResult)compare:(id)otherCell Compares the string values of this cell and otherCell
(which must be a kind of NSCell). Raises
NSBadComparisonException if otherCell is not of the
NSCell class.

Classes: NSCell 1-45OpenStep Specification—10/19/94

Using the NSCell to Represent an Object

– (id)representedObject Returns the object that the receiver represents, if any.

– (void)setRepresentedObject:(id)anObject Creates an association between the receiver and anObject.
anObject will be retained, released, archived, and
unarchived whenever the receiver is. If another cell is
already associated with anObject, that association is
broken, and the receiver is associated with the object.

OpenStep Specification—10/19/941-46 Chapter 1: Application Kit

NSClipView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSClipView.h

Class Description

An NSClipView object lets you scroll a document that may be larger than the NSClipView’s frame rectangle,
clipping the visible portion of the document to the frame. You don’t normally use the NSClipView class directly;
it’s provided primarily as the scrolling machinery for the NSScrollView class. However, you might use the
NSClipView class to implement a class similar to NSScrollView.

The document, which must be an NSView, is called the NSClipView’s document view. An NSClipView’s document
view, which is set through the setDocumentView: method, is the NSClipView’s only subview. You can set the
cursor that’s displayed when the mouse enters an NSClipView’s frame (in other words, when it’s poised over the
document view) through the setDocumentCursor: method.

When the NSClipView is instructed to scroll its document view, it normally copies that portion of the document
view that’s visible both before and after the scrolling, so that this part won’t need to be redrawn from scratch.
However, you can turn off this behavior and force the entire visible area to be redrawn by sending the NSClipView
a setCopiesOnScroll:NO message.

After scrolling, the NSClipView sends itself a setNeedsDisplayInRect: message to indicate that some part of the
document view should be displayed again. The argument to this message is the freshly exposed area of the
document view, unless the NSClipView received a setCopiesOnScroll:NO message, in which case the argument
is the entire visible area.

The NSClipView sends its superview (usually an NSScrollView) a reflectScrolledClipView: message whenever
the relationship between the NSClipView and the document view has changed. This allows the superview to update
itself to reflect the change—for example, the NSScrollView class uses this method to change the position of its
scrollers when the user causes the document to autoscroll.

Managing the Document V iew

– (NSRect)documentRect Returns the document rectangle.

– (id)documentView Returns the NSClipView’s document view.

– (NSRect)documentVisibleRect Gets the visible portion of the document view.

– (void)setDocumentView:(NSView *)aView Makes aView the NSClipView’s document view.

Classes: NSClipView 1-47OpenStep Specification—10/19/94

Setting the Cursor

–(NSCursor *)documentCursor Returns the cursor for the document view.

– (void)setDocumentCursor:(NSCursor *)anObject Sets the cursor for the document view.

Setting the Background Color

– (NSColor *)backgroundColor Returns the NSClipView’s background color.

– (void)setBackgroundColor:(NSColor *)color Sets the NSClipView’s background color.

Scrolling

– (BOOL)autoscroll:(NSEvent *)theEvent Scrolls in response to mouse-dragged events.

– (NSPoint)constrainScrollPoint:(NSPoint)newOrigin
Prevents scrolling to an undesirable position.

– (BOOL)copiesOnScroll Indicates whether the visible portions of the document
view are copied when scrolling occurs. If not, the
document view is responsible for redrawing the entire
visible portion. The default is YES.

– (void)scrollToPoint:(NSPoint)newOrigin Lowest-level unconstrained scrolling routine.

– (void)setCopiesOnScroll:(BOOL)flag Sets how the visible areas are redrawn.

Responding to a Changed Frame

– (void)viewFrameChanged:(NSNotification *)notification
Notification that the document view’s frame has changed.

OpenStep Specification—10/19/941-48 Chapter 1: Application Kit

NSCoder Additions

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSColor.h

Class Description

The Application Kit adds this method to the Foundation Kit’s NSCoder class. This method becomes part of the class
for all applications that use the Application Kit, but not for applications that don’t.

Converting an Archived NXColor to an NSColor

– (NSColor *)decodeNXColor Returns an autoreleased NSColor object equivalent to the
archived NXColor structure. This method is needed to
read colors from archives that were created by
pre-OpenStep versions of NEXTSTEP.

Classes: NSColor 1-49OpenStep Specification—10/19/94

NSColor

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSColor.h

An NSColor represents a color. The color can be a grayscale value and can include alpha (opacity) information. By
sending a set message to an NSColor instance, you set the color for the current PostScript drawing context. This
causes subsequently drawn graphics to have the color represented by the NSColor instance.

A color is defined in some particular color space. A color space consists of a set of dimensions—such as red, green,
and blue in the case of RGB space. Each point in the space represents a unique color, and the point’s location along
each dimension is called a component. An individual color is usually specified by the numeric values of its
components, which range from 0.0 to 1.0. For instance, a pure red is specified in RGB space by the component
values 1.0, 0.0, and 0.0.

Some color spaces include an alpha component, which defines the color’s opacity. An alpha value of 1.0 means
completely opaque, and 0.0 means completely transparent. The alpha component is ignored when the color is used
on a device that doesn’t support alpha, such as a printer.

There are three kinds of color space in OpenStep:

• Device-dependent. This means that a given color might not look the same on different displays and printers.

• Device-independent, also known as calibrated. With this sort of color space, a given color should look the
same on all devices.

• Named. The “named color space” has components that aren’t numeric values, but simply names in various
catalogs of colors. Named colors come with lookup tables that provide the ability to generate the correct
color on a given device.

OpenStep includes six different color spaces, referred to by these enumeration constants:

 NSDeviceCMYKColorSpace Cyan, magenta, yellow, black, and alpha components

 NSDeviceWhiteColorSpace White and alpha components

 NSDeviceRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha components

 NSCalibratedWhiteColorSpace White and alpha components

 NSCalibratedRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha components

 NSNamedColorSpace Catalog name and color name components

OpenStep Specification—10/19/941-50 Chapter 1: Application Kit

(Color spaces whose names start with “NSDevice” are device-dependent; those with “NSCalibrated” are
device-independent.)

There’s usually no need to retrieve the individual components of a color, but when needed, you can either retrieve
a set of components (using such methods as getRed:green:blue:alpha:) or an individual component (using such
methods as redComponent). However, it’s illegal to ask an NSColor for components that aren’t defined for its
color space. You can identify the color space by sending a colorSpaceName method to the NSColor. If you need
to ask an NSColor for components that aren’t in its color space (for instance, when you’ve gotten the color from
the color panel), first convert the color to the appropriate color space using the colorUsingColorSpaceName:
method. If the color is already in the specified color space, you get the same color back; otherwise you get a
conversion that’s usually lossy or that’s correct only for the current device. You might also get back nil if the
specified conversion can’t be done.

Subclasses of NSColor need to implement the colorSpaceName and set methods, as well as the methods that return
the components for that color space and the methods in the NSCoding protocol. Some other methods—such as
colorWithAlphaComponent: , isEqual:, and colorUsingColorSpaceName:device:—may also be implemented
if they make sense for the color space. Mutable subclasses (if any) should additionally implement copyWithZone:
to provide a true copy.

Creating an NSColor from Component Values

+ (NSColor *)colorWithCalibratedHue: (float)hue Creates and returns a new NSColor whose color space is
saturation:(float)saturation NSCalibratedRGBColorSpace, whose opacity value is
brightness:(float)brightness alpha, and whose components in HSB space would be
alpha:(float)alpha hue, saturation, and brightness. All values are legal, but

values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

+ (NSColor *)colorWithCalibratedRed: (float)red Creates and returns a new NSColor whose color space is
green:(float)green NSCalibratedRGBColorSpace, whose opacity value is
blue:(float)blue alpha, and whose RGB components are red, green, and
alpha:(float)alpha blue. All values are legal, but values less than 0.0 are set

to 0.0, and values greater than 1.0 are set to 1.0.

+ (NSColor *)colorWithCalibratedWhite: (float)white
alpha:(float)alpha Creates and returns a new NSColor whose color space is

NSCalibratedWhiteColorSpace, whose opacity value is
alpha, and whose grayscale value is white. All values
are legal, but values less than 0.0 are set to 0.0, and
values greater than 1.0 are set to 1.0.

+ (NSColor *)colorWithCatalogName:(NSString *)listName
 colorName:(NSString *)colorName Creates and returns a new NSColor whose color space is

NSNamedColorSpace, by finding the color named
colorName in the catalog named listName.

Classes: NSColor 1-51OpenStep Specification—10/19/94

+ (NSColor *)colorWithDeviceCyan:(float)cyan Creates and returns a new NSColor whose color space is
magenta:(float)magenta NSDeviceCMYKColorSpace, whose opacity value is
yellow:(float)yellow alpha, and whose CMYK components are cyan,
black:(float)black magenta, yellow, and black. All values are legal, but
alpha:(float)alpha values less than 0.0 are set to 0.0, and values greater

than 1.0 are set to 1.0.

+ (NSColor *)colorWithDeviceHue:(float)hue Creates and returns a new NSColor whose color space is
saturation:(float)saturation NSDeviceRGBColorSpace, whose opacity value is
brightness:(float)brightness alpha, and whose components in HSB space would be
alpha:(float)alpha hue, saturation, and brightness. All values are legal, but

values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

+ (NSColor *)colorWithDeviceRed:(float)red Creates and returns a new NSColor whose color space is
green:(float)green NSDeviceRGBColorSpace, whose opacity value is
blue:(float)blue alpha, and whose RGB components are red, green, and
alpha:(float)alpha blue. All values are legal, but values less than 0.0 are set

to 0.0, and values greater than 1.0 are set to 1.0.

+ (NSColor *)colorWithDeviceWhite:(float)white Creates and returns a new NSColor whose color space is
alpha:(float)alpha NSDeviceWhiteColorSpace, whose opacity value is

alpha, and whose grayscale value is white. All values
are legal, but values less than 0.0 are set to 0.0, and
values greater than 1.0 are set to 1.0.

Creating an NSColor With Preset Components

+ (NSColor *)blackColor Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 0.0 and whose alpha value is
1.0.

+ (NSColor *)blueColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.0, 0.0, 1.0 and whose alpha value
is 1.0.

+ (NSColor *)brownColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.6, 0.4, 0.2 and whose alpha value
is 1.0.

+ (NSColor *)clearColor Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale and alpha values are both 0.0.

+ (NSColor *)cyanColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.0, 1.0, 1.0 and whose alpha value
is 1.0.

OpenStep Specification—10/19/941-52 Chapter 1: Application Kit

+ (NSColor *)darkGrayColor Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 1/3 and whose alpha value is
1.0.

+ (NSColor *)grayColor Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 0.5 and whose alpha value is
1.0.

+ (NSColor *)greenColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.0, 1.0, 0.0 and whose alpha value
is 1.0.

+ (NSColor *)lightGrayColor Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 2/3 and whose alpha value is
1.0.

+ (NSColor *)magentaColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 0.0, 1.0 and whose alpha value
is 1.0.

+ (NSColor *)orangeColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 0.5, 0.0 and whose alpha value
is 1.0.

+ (NSColor *)purpleColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.5, 0.0, 0.5 and whose alpha value
is 1.0.

+ (NSColor *)redColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 0.0, 0.0 and whose alpha value
is 1.0.

+ (NSColor *)whiteColor Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale and alpha values are both 1.0.

+ (NSColor *)yellowColor Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 1.0, 0.0 and whose alpha value
is 1.0.

Ignoring Alpha Components

+ (BOOL)ignoresAlpha Returns YES (the default) if the application hides the color
panel’s opacity slider and sets imported colors’ alpha
values to 1.0.

+ (void)setIgnoresAlpha:(BOOL)flag If flag is YES, no opacity slider is displayed in the color
panel, and colors dragged in or pasted have their alpha
values set to 1.0.

Classes: NSColor 1-53OpenStep Specification—10/19/94

Retrieving a Set of Components

– (void)getCyan:(float *)cyan Returns the CMYK and alpha values in the respective
magenta:(float *)magenta arguments. If NULL is passed in as an argument, the
yellow:(float *)yellow method doesn’t set that value. It’s an error if the
black:(float *)black receiver isn’t a CMYK color.
alpha:(float *)alpha

– (void)getHue:(float *)hue Returns the HSB and alpha values in the respective
saturation:(float *)saturation arguments. If NULL is passed in as an argument, the
brightness:(float *)brightness method doesn’t set that value. It’s an error if the
alpha:(float *)alpha receiver isn’t a CMYK color.

– (void)getRed:(float *)red Returns the RGB and alpha values in the respective
green:(float *)green arguments. If NULL is passed in as an argument, the
blue:(float *)blue method doesn’t set that value. It’s an error if the
alpha:(float *)alpha receiver isn’t a CMYK color.

– (void)getWhite:(float *)white Returns the grayscale and alpha values in the respective
alpha:(float *)alpha arguments. If NULL is passed in as an argument, the

method doesn’t set that value. It’s an error if the receiver
isn’t a CMYK color.

OpenStep Specification—10/19/941-54 Chapter 1: Application Kit

Retrieving Individual Components

– (float)alphaComponent Returns the alpha (opacity) component (1.0 by default).

– (float)blackComponent Returns the black component. It’s an error if the receiver
isn’t a CMYK color.

– (float)blueComponent Returns the blue component. It’s an error if the receiver
isn’t an RGB color.

– (float)brightnessComponent Returns the brightness component of the HSB color
equivalent to the receiver. It’s an error if the receiver
isn’t an RGB color.

– (NSString *)catalogNameComponent Returns the name of the catalog containing this color, or nil
if the receiver’s color space isn’t NSNamedColorSpace.

– (NSString *)colorNameComponent Returns the name of this color, or nil if the receiver’s color
space isn’t NSNamedColorSpace.

– (float)cyanComponent Returns the cyan component. It’s an error if the receiver
isn’t a CMYK color.

– (float)greenComponent Returns the green component. It’s an error if the receiver
isn’t an RGB color.

– (float)hueComponent Returns the hue component of the HSB color equivalent to
the receiver. It’s an error if the receiver isn’t an RGB
color.

– (NSString *)localizedCatalogNameComponent Like catalogNameComponent, but returns a localized
string.

– (NSString *)localizedColorNameComponent Like colorNameComponent, but returns a localized
string.

– (float)magentaComponent Returns the magenta component. It’s an error if the receiver
isn’t a CMYK color.

– (float)redComponent Returns the red component. It’s an error if the receiver isn’t
an RGB color.

– (float)saturationComponent Returns the saturation component of the HSB color
equivalent to the receiver. It’s an error if the receiver
isn’t an RGB color.

– (float)whiteComponent Returns the white component. It’s an error if the receiver
isn’t a grayscale color.

– (float)yellowComponent Returns the yellow component. It’s an error if the receiver
isn’t a CMYK color.

Classes: NSColor 1-55OpenStep Specification—10/19/94

Converting to Another Color Space

– (NSString *)colorSpaceName Returns the name of the NSColor’s color space.

– (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace
Returns a newly created NSColor whose color is the same

as the receiver’s, except that the new NSColor is in the
color space named colorSpace. This method calls
colorUsingColorSpaceName:device: with the current
device, indicating that the color is appropriate for the
current device (the current window if drawing, or the
current printer if printing).

– (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace
device:(NSDictionary *)deviceDescription Returns a newly created NSColor whose color is the same

as the receiver’s, except that the new NSColor is in the
color space named colorSpace and is specific to the
device described by deviceDescription.

Changing the Color

– (NSColor *)blendedColorWithFraction: (float)fraction
ofColor: (NSColor *)aColor Returns a newly created NSColor in

NSCalibratedRGBColorSpace whose component
values are a weighted sum of the receiver’s and
aColor’s. The method converts aColor and a copy of the
receiver to RGB, and then sets each component of the
returned color to fraction of aColor’s value plus
1 – fraction of the receiver’s. If the colors can’t be
converted to NSCalibratedRGBColorSpace, nil is
returned.

– (NSColor *)colorWithAlphaComponent: (float)alpha
Returns a newly created NSColor that has the same color

space and component values as the receiver, except that
its alpha component is alpha. If the receiver’s color
space doesn’t include an alpha component, the receiver
is returned.

Copying and Pasting

+ (NSColor *)colorFromPasteboard:(NSPasteboard *)pasteBoard
Returns the NSColor currently on the pasteboard, or nil if

the pasteboard doesn’t contain color data. The returned
color’s alpha component is set to 1.0 if ignoresAlpha
returns YES.

OpenStep Specification—10/19/941-56 Chapter 1: Application Kit

– (void)writeToPasteboard:(NSPasteboard *)pasteBoard
Writes the receiver’s data to the pasteboard, unless the

pasteboard doesn’t support color data (in which case the
method does nothing).

Drawing

– (void)drawSwatchInRect:(NSRect)rect Draws the current color in the rectangle rect. Subclasses
adorn the rectangle in some manner to indicate the type
of color. This method is invoked by color wells,
swatches, and other user-interface objects that need to
display colors.

– (void)set Sets the color of subsequent PostScript drawing to the color
that the receiver represents. If the application is drawing
to the screen rather than printing, this method also sets
the current drawing context’s alpha value to the value
returned by alphaComponent.

Classes: NSColorList 1-57OpenStep Specification—10/19/94

NSColorList

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSColorList.h

Class Description

Instances of NSColorList are used to manage named lists of NSColors. NSColorPanel’s list-mode color picker uses
instances of NSColorList to represent any lists of colors that come with the system, as well as any lists created by
the user. An application can use NSColorList to manage document-specific color lists, which may be added to an
application’s NSColorPanel using its attachColorList: method.

An NSColorList is similar to a dictionary object: An NSColor is added to, looked up in, and removed from the list
by specifying its key, which is an NSString. In addition, colors can be inserted at specified positions in the list. The
list itself has a name, specified when you create the object (using either initWithName: or
initWithName:fromFile:).

An NSColorList saves and retrieves its colors from files with the extension “.clr ” in directories defined by a
standard search path. To access all the color lists in the standard search path, use the availableColorLists method;
this returns an array of NSColorLists, from which you can retrieve the individual color lists by name.

NSColorList reads color list files in several different formats; it saves color lists using the archiver API.

Initializing an NSColorList

– (id)initWithName: (NSString *)name Initializes and returns the receiver, registering it under the
specified name if the name isn’t in use already.

– (id)initWithName: (NSString *)name Initializes and returns the receiver, registering it under the
fromFile: (NSString *)path specified name if the name isn’t in use already. path

should be the full path to the file for the color list; name
should be the name of the file for the color list (minus
the “.clr” extension).

Getting All Color Lists

+ (NSArray *)availableColorLists Returns an array of all NSColorLists found in the standard
color list directories. Color lists created at run time
aren’t included in this list unless they’re saved into one
of the standard color list directories.

OpenStep Specification—10/19/941-58 Chapter 1: Application Kit

Getting a Color List by Name

+ (NSColorList *)colorListNamed:(NSString *)name
Searches the array that’s returned by availableColorLists

and returns the NSColorList named name, or nil if no
such color list exists. name mustn’t include the “.clr”
suffix.

– (NSString *)name Returns the name of the NSColorList.

Managing Colors by Key

– (NSArray *)allKeys Returns an array of NSString objects that contains all the
keys by which the NSColors are stored in the
NSColorList. The length of this array equals the
number of colors, and its contents are arranged
according to the ordering specified when the colors
were inserted.

– (NSColor *)colorWithKey: (NSString *)key Returns the NSColor associated with key, or nil if there is
none.

– (void)insertColor: (NSColor *)color Inserts color at the specified location in the list (which is
key:(NSString *)key numbered starting with 0). If the list already contains a
atIndex:(unsigned)location color with the same key at a different location, it’s

removed from the old location. This method posts the
NSColorListChangedNotification notification to the
default notification center. Raises
NSColorListNotEditableException if the color list is
not editable. This method posts the
NSColorListChangedNotification notification to the
default notification center.

– (void)removeColorWithKey: (NSString *)key Removes the color associated with key from the list. This
method does nothing if the list doesn’t contain the key.
This method posts the
NSColorListChangedNotification notification to the
default notification center. Raises
NSColorListNotEditableException if the color list is
not editable.

– (void)setColor:(NSColor *)aColor Associates the specified NSColor with the key key. If the
forKey: (NSString *)key list already contains key, this method sets the

corresponding color to aColor; otherwise, it inserts
aColor at the end of the list.

Classes: NSColorList 1-59OpenStep Specification—10/19/94

Editing

– (BOOL)isEditable Returns YES if the color list can be modified. This depends
on the source of the list: If it came from a
write-protected file, this method returns NO.

Writing and Removing Files

– (BOOL)writeToFile: (NSString *)path If path is a directory, saves the NSColorList in a file named
listname.clr (where listname is the name with which the
NSColorList was initialized). If path includes a file
name, this method saves the file under that name. If path
is nil , this method saves the file as listname.clr in the
standard location. Returns YES upon success.

– (void)removeFile Deletes the file from which the list was created, unless the
user doesn’t own the color list. The receiver is removed
from the list of available colors, but isn’t released.

OpenStep Specification—10/19/941-60 Chapter 1: Application Kit

NSColorPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSColorPanel.h

Class Description

NSColorPanel provides a standard user interface for selecting color in an application. It provides a number of
standard color selection modes, and, with the NSColorPickingDefault and NSColorPickingCustom protocols,
allows an application to add its own color selection modes. It allows the user to save swatches containing frequently
used colors. Once set, these swatches are displayed by NSColorPanel in any application where it is used, giving the
user color consistency between applications. NSColorPanel enables users to capture a color anywhere on the screen
for use in the active application, and allows dragging colors from itself into views in an application. NSColorPanel’s
action message is sent to the target object when the user changes the current color.

An application has only one instance of NSColorPanel, the shared instance. Invoking the sharedColorPanel:
method returns the shared instance of NSColorPanel, instantiating it if necessary. You can also initialize an
NSColorPanel for your application by invoking NSApplication’s orderFrontColorPanel method.

You can put NSColorPanel in any application created with Interface Builder by adding the “Colors...” item from
the Menu palette to the application’s menu.

Color Mask and Color Modes

The color mask determines which of the color modes are enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of the other
color mask constants: it causes the NSColorPanel to display all standard color pickers. When initializing a new
instance of NSColorPanel, you can logically OR any combination of color mask constants to restrict the available
color modes.

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask
Red-Green-Blue NSColorPanelRGBModeMask
Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask
Hue-Saturation-Brightness NSColorPanelHSBModeMask
TIFF image NSColorPanelCustomPaletteModeMask
Custom color lists NSColorPanelColorListModeMask
Color wheel NSColorPanelWheelModeMask
All of the above NSColorPanelAllModesMask

Classes: NSColorPanel 1-61OpenStep Specification—10/19/94

The NSColorPanel’s color mode mask is set using the class method setPickerMask:. The mask must be set before
creating an application’s instance of NSColorPanel.

When an application’s instance of NSColorPanel is masked for more than one color mode, your program can set
its active mode by invoking the setMode: method with a color mode constant as its argument; the user can set the
mode by clicking buttons on the panel. Here are the standard color modes and mode constants:

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel
Red-Green-Blue NSRGBModeColorPanel
Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel
Hue-Saturation-Brightness NSHSBModeColorPanel
TIFF image NSCustomPaletteModeColorPanel
Color lists NSColorListModeColorPanel
Color wheel NSWheelModeColorPanel

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the user
adjusts colors by manipulating sliders. In the custom palette mode, the user can load a TIFF file into the
NSColorPanel, then select colors from the TIFF image. In custom color list mode, the user can create and load lists
of named colors. The two custom modes provide NSPopUpLists for loading and saving files. Finally, color wheel
mode provides a simplified control for selecting colors. If a color panel has been used, it uses whatever mode it was
in last as the default mode when NSColorPanelAllModesMask is used to initialize the NSColorPanel. Otherwise,
it uses color wheel mode.

Associated Classes and Protocols

The NSColorList class provides an API for managing custom color lists. The NSColorPanel methods
attachColorList: and detachColorList: let your application add and remove custom lists from the
NSColorPanel’s user interface.

The protocols NSColorPickingDefault and NSColorPickingCustom provide an API for adding custom color
selection to the user interface. The NSColorPicker class implements the NSColorPickingDefault protocol; you can
subclass NSColorPicker and implement the NSColorPickingCustom protocol in your subclass to create your own
user interface for color selection.

See also: NSColorList, NSColorPickingDefault, NSColorPicker, NSColorPickingDefault protocol,
NSColorPickingCustom protocol, NSColorWell

Creating the NSColorPanel

+ (NSColorPanel *)sharedColorPanel Creates if necessary and returns the shared NSColorPanel.

+ (BOOL)sharedColorPanelExists Returns YES if the NSColorPanel has been created already.

Setting the NSColorPanel

+ (void)setPickerMask:(int)mask Sets the mask that determines which color selection modes
are available in the color panel.

OpenStep Specification—10/19/941-62 Chapter 1: Application Kit

+ (void)setPickerMode:(int)mode Sets the color picker mode.

– (NSView *)accessoryView Returns the accessory view, or nil if there is none.

– (BOOL)isContinuous Returns YES if the NSColorPanel continuously sends the
action message to the target.

– (int)mode Returns the mode of the NSColorPanel.

– (void)setAccessoryView:(NSView *)aView Sets the accessory view to aView.

– (void)setAction:(SEL)aSelector Sets the action message sent to the target.

– (void)setContinuous:(BOOL)flag Sets the NSColorPanel to continuously send the action
message to the target.

– (void)setMode:(int)mode Sets the mode of the NSColorPanel.

– (void)setShowsAlpha:(BOOL)flag Sets the NSColorPanel to show alpha values.

– (void)setTarget:(id)anObject Sets the target of the NSColorPanel.

– (BOOL)showsAlpha Returns YES if the NSColorPanel shows alpha values.

Attaching a Color List

– (void)attachColorList: (NSColorList *)aColorList
Adds the specified list of NSColors to all the color pickers

in the color panel that display color lists.

– (void)detachColorList:(NSColorList *)aColorList
Removes the specified list of NSColors from all the color

pickers in the color panel that display color lists.

Setting Color

+(BOOL)dragColor: (NSColor **)aColor Drags aColor into a destination view from sourceView.
withEvent: (NSEvent *)anEvent
fromView: (NSView *)sourceView

– (float)alpha Returns the NSColorPanel’s current alpha value, or 1.0
(opaque) if the panel has no opacity slider.

– (NSColor *)color Returns the currently displayed color.

– (void)setColor:(NSColor *)aColor Sets the color to be displayed. This method posts the
NSColorPanelChangedNotification notification with
the receiving object to the default notification center.

Classes: NSColorPicker1-63OpenStep Specification—10/19/94

NSColorPicker

Inherits From: NSObject

Conforms To: NSColorPickingDefault
NSObject (NSObject)

Declared In: AppKit/NSColorPicker.h

Class Description

NSColorPicker is an abstract superclass that implements the NSColorPickingDefault protocol. The
NSColorPickingDefault and NSColorPickingCustom protocols define a way to add color pickers (custom user
interfaces for color selection) to the NSColorPanel. The simplest way to implement a color picker is to create a
subclass of NSColorPicker, instead of implementing the NSColorPickingDefault protocol in another kind of
object. (To add functionality, implement the NSColorPickingCustom methods in your subclass.)

The NSColorPickingDefault protocol specification describes the details of implementing a color picker and adding
it to your application’s NSColorPanel; you should look there first for an overview of how NSColorPicker works.
This specification is provided to document the specific behavior of NSColorPicker’s methods.

Initializing an NSColorPicker

– (id)initWithPickerMask: (int)aMask Initializes the receiver for the specified mask and color
colorPanel:(NSColorPanel *)colorPanel panel, caching the colorPanel value so it can later be

returned by the colorPanel method.

Getting the Color Panel

– (NSColorPanel *)colorPanel Returns the NSColorPanel that owns this NSColorPicker.

Adding Button Images

– (void)insertNewButtonImage:(NSImage *)newImage
in: (NSButtonCell *)newButtonCell Called by the color panel to insert a new image into the

specified cell. Override this method to customize
newImage before insertion in newButtonCell.

OpenStep Specification—10/19/941-64 Chapter 1: Application Kit

– (NSImage *)provideNewButtonImage Returns the button image for the color picker. The color
panel will place this image in the mode button that the
user uses to select this picker. (This is the same image
that the color panel uses as an argument when sending
the insertNewButtonImage:in: message.) The default
implementation looks in the color picker’s bundle for a
TIFF file named after the color picker’s class, with the
extension ".tiff".

Setting the Mode

– (void)setMode:(int)mode Does nothing. Override to set the color picker’s mode.

Using Color Lists

– (void)attachColorList: (NSColorList *)colorList Does nothing. Override to attach a color list to a color
picker.

– (void)detachColorList:(NSColorList *)colorList Does nothing. Override to detach a color list from a color
picker.

Responding to a Resized View

– (void)viewSizeChanged:(id)sender Does nothing. Override to respond to a size change.

Classes: NSColorWell 1-65OpenStep Specification—10/19/94

NSColorWell

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSColorWell.h

Class Description

NSColorWell is an NSControl for selecting and displaying a single color value. An example of an NSColorWell
object (or simply color well) is found in NSColorPanel, which uses a color well to display the current color
selection. NSColorWell is available from the Palettes panel of Interface Builder.

An application can have one or more active NSColorWells. You can activate multiple NSColorWells by invoking
the activate: method with NO as its argument. When a mouse-down event occurs on an NSColorWell’s border, it
becomes the only active color well. When a color well becomes active, it brings up the color panel also.

The mouseDown: method enables an instance of NSColorWell to send its color to another NSColorWell or any
other subclass of NSView that implements the NSDraggingDestination protocol.

See also: NSColorPanel (class)

Drawing

– (void)drawWellInside: (NSRect)insideRect Draws the colored area inside the color well at the location
specified by insideRect without drawing borders.

Activating

– (void)activate:(BOOL)exclusive Activates the NSColorWell, displays the Color panel, and
makes the NSColorPanel’s current color the same as its
own. If exclusive is YES, deactivates any other
NSColorWells; if NO, keeps them active.

– (void)deactivate Deactivates the NSColorWell.

– (BOOL)isActive Returns YES if the NSColorWell is active.

OpenStep Specification—10/19/941-66 Chapter 1: Application Kit

Managing Color

– (NSColor *)color Returns the color of the color well.

– (void)setColor:(NSColor *)color Sets the color of the well to color.

– (void)takeColorFrom: (id)sender Changes the color of the well to that of sender.

Managing Borders

– (BOOL)isBordered Indicates whether the color well is bordered.

– (void)setBordered:(BOOL)bordered Places or removes a border, depending on bordered.

Classes: NSControl 1-67OpenStep Specification—10/19/94

NSControl

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSControl.h

Class Description

NSControl is an abstract superclass that provides three fundamental features for implementing user interface
devices. First, as a subclass of NSView, NSControl allows the on-screen representation of the device to be drawn.
Second, it receives and responds to user-generated events within its bounds by overriding NSResponder’s
mouseDown: method and providing a position in the responder chain. Third, it implements the sendAction:to:
method to send an action message to the NSControl’s target object. Subclasses of NSControl defined in the
Application Kit are NSBrowser, NSButton (and its subclass NSPopUpButton), NSColorWell, NSMatrix (and its
subclass NSForm), NSScroller, NSSlider, and NSTextField.

Target and Action

Target objects and action methods provide the mechanism by which NSControls interact with other objects in an
application. A target is an object that an NSControl has effect over. The target class defines an action method to
enable its instances to respond to user input. An action method takes only one argument: the id of the sender. The
sender may be either the NSControl that sends the action message or another object that the target should treat as
the sender. When it receives an action message, a target can return messages to the sender requesting additional
information about its status. NSControl’s sendAction:to: asks the NSApplication object, NSApp, to send an action
message to the NSControl’s target object. The method used for this is NSApplication’s sendAction:to:from: . You
can also set the target to nil and allow it to be determined at run time. When the target is nil , the NSApplication
object must look for an appropriate receiver. It conducts its search in a prescribed order, by following the responder
chain until it finds an object that can respond to the message:

• It begins with the first responder in the key window and follows nextResponder links up the responder chain
to the NSWindow object. After the NSWindow object, it tries the NSWindow’s delegate.

• If the main window is different from the key window, it then starts over with the first responder in the main
window and works its way up the main window’s responder chain to the NSWindow object and its delegate.

• Next, it tries to respond itself. If the NSApplication object can’t respond, it tries its own delegate. NSApp
and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the action method. However, these methods
require that an NSControl have an associated subclass of NSCell that provides a target and an action, such as
NSActionCell and its subclasses.

OpenStep Specification—10/19/941-68 Chapter 1: Application Kit

Target objects and action methods demonstrate the close relationship between NSControls and NSCells. In most
cases, a user interface device consists of an instance of an NSControl subclass paired with one or more instances
of an NSCell subclass. Each implements specific details of the user interface mechanism. For example,
NSControl’s mouseDown: method sends a trackMouse:inRect:ofView:untilMouseUp: message to an NSCell,
which handles subsequent mouse and keyboard events; an NSCell sends an NSControl a sendAction:to: message
in response to particular events. NSControl’s drawRect: method is implemented by sending a
drawWithFrame:inView: message to the NSCell. As another example, NSControl provides methods for setting
and formatting its contents; these methods send corresponding messages to NSCell, which actually owns the
contents.

See the NSActionCell class specification for more on the implementation of target and action behavior.

Changing the NSCell Class

Since NSControl uses the NSCell class to implement most of its actual functionality, you can usually implement a
unique user interface device by creating a subclass of NSCell rather than NSControl. As an example, let’s say you
want all your application’s NSSliders to have a type of cell other than the generic NSSliderCell. First, you create a
subclass of NSCell, NSActionCell, or NSSliderCell. (Let’s call it MyCellSubclass.) Then, you can simply invoke
NSSlider’s setCellClass: class method:

[NSSlider setCellClass:[MyCellSubclass class]];

All NSSliders created thereafter will use MyCellSubclass, until you call setCellClass: again.

If you want to create generic NSSliders (ones that use NSSliderCell) in the same application as the customized
NSSliders that use MyCellSubclass, there are two possible approaches. One is to invoke setCellClass: as above
whenever you’re about to create a custom NSSlider, resetting the cell class to NSSliderCell afterwards. The other
approach is to create a custom subclass of NSSlider that automatically uses MyCellSubclass, as explained below.

Creating New NSControls

If you create a custom NSControl subclass that uses a custom subclass of NSCell, you should override NSControl’s
cellClass method:

+ (Class) cellClass

{

 return [MyCellSubclass class];

}

NSControl’s initWithFrame: method will use the return value of cellClass to allocate and initialize an NSCell of
the correct type.

Classes: NSControl 1-69OpenStep Specification—10/19/94

If you want to be able to change the type of cell that your subclass uses (without changing the type that its superclass
uses), override setCellClass: to store the NSCell subclass in a global variable, and modify cellClass to return that
variable:

static id myStoredCellClass;

+ setCellClass:classId

{

 myStoredCellClass = classId;

}

+ (Class) cellClass

{

 return (myStoredCellClass ? myStoredCellClass : [MyCellSubclass class]);

}

An NSControl subclass doesn’t have to use an NSCell subclass to implement itself; NSScroller and NSColorWell
are examples of NSControls that don’t. However, such subclasses have to take care of details that NSCell would
otherwise handle. Specifically, they have to override methods designed to work with an NSCell. What’s more, the
lack of an NSCell means you can’t make use of NSMatrix—a subclass of NSControl designed specifically for
managing multi-cell arrays such as radio buttons.

Override the designated initializer (initWithFrame:) if you create a subclass of NSControl that performs its own
initialization.

Initializing an NSControl Object

– (id)initWithFrame: (NSRect)frameRect Initializes a new NSControl object in frameRect, and
attempts to create a corresponding NSCell.

Setting the Control’s Cell

+ (Class)cellClass Returns nil ; overridden by subclasses.

+ (void)setCellClass:(Class)factoryId Implemented by subclasses to set the NSCell class used.

– (id)cell Returns the control’s NSCell.

– (void)setCell:(NSCell *)aCell Sets the control’s NSCell to aCell.

Enabling and Disabling the Control

– (BOOL)isEnabled Returns whether the control reacts to mouse events.

– (void)setEnabled:(BOOL)flag Sets whether the control reacts to mouse events.

OpenStep Specification—10/19/941-70 Chapter 1: Application Kit

Identifying the Selected Cell

– (id)selectedCell Returns the control’s selected NSCell.

– (int)selectedTag Returns the tag of the control’s selected cell.

Setting the Control’s Value

– (double)doubleValue Returns the value of the control's selected cell as a double.

– (float)floatValue Returns the value of the control's selected cell as a float.

– (int)intValue Returns the value of the control's selected cell as a int .

– (void)setDoubleValue:(double)aDouble Sets the value of the control's selected cell to aDouble.

– (void)setFloatValue:(float)aFloat Sets the value of the control's selected cell to aFloat.

– (void)setIntValue:(int)anInt Sets the value of the control's selected cell to anInt.

– (void)setNeedsDisplay Set the NeedsDisplay flag.

– (void)setStringValue:(NSString *)aString Sets the value of the control's selected cell to aString.

– (NSString *)stringValue Returns the value of the control's selected cell as an
NSString.

Interacting with Other Controls

– (void)takeDoubleValueFrom:(id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending a doubleValue message to sender.

– (void)takeFloatValueFrom:(id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending a floatValue message to sender.

– (void)takeIntValueFrom: (id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending a intValue message to sender.

– (void)takeStringValueFrom:(id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending a stringValue message to sender.

Formatting Text

– (NSTextAlignment)alignment Returns the alignment of text in the control’s cell.

– (NSFont *)font Returns the Font used to draw text in the control’s cell.

– (void)setAlignment:(NSTextAlignment)mode Sets the alignment mode of the text in the control's cell to
mode.

Classes: NSControl 1-71OpenStep Specification—10/19/94

– (void)setFont:(NSFont *)fontObject Sets the Font used to draw text in the control’s cell to
fontObject.

– (void)setFloatingPointFormat:(BOOL)autoRangeSets the display format for floating point values in the
left: (unsigned)leftDigits control’s cell
right: (unsigned)rightDigits

Managing the Field Editor

– (BOOL)abortEditing Aborts editing of text displayed by the NSControl.

– (NSText *)currentEditor Returns the object used to edit text in the control.

– (void)validateEditing Validates the user’s changes to editable text.

Resizing the Control

– (void)calcSize Recalculates internal size information.

– (void)sizeToFit Resizes the control to fit its cell.

Displaying the Control and Cell

– (void)drawCell: (NSCell *)aCell Redraws aCell if it’s the control’s cell.

– (void)drawCellInside:(NSCell *)aCell Redraws aCell’s inside if it’s the control’s cell.

– (void)selectCell:(NSCell *)aCell Selects aCell if it’s the control’s cell.

– (void)updateCell:(NSCell *)aCell Redisplays aCell or marks it for redisplay.

– (void)updateCellInside:(NSCell *)aCell Redisplays the inside of aCell or marks it for redisplay.

Target and Action

– (SEL)action Returns the NSControl’s action method.

– (BOOL)isContinuous Returns whether the control’s NSCell continuously sends
its action.

– (BOOL)sendAction:(SEL)theAction Has the NSApplication object send theAction to theTarget.
to:(id)theTarget

– (int)sendActionOn:(int)mask Determines when the action is sent while tracking.

– (void)setAction:(SEL)aSelector Sets the NSControl’s action method to aSelector.

– (void)setContinuous:(BOOL)flag Sets whether the control’s NSCell continuously sends its
action.

OpenStep Specification—10/19/941-72 Chapter 1: Application Kit

– (void)setTarget:(id)anObject Sets the NSControl’s target object to anObject.

– (id)target Returns the NSControl’s target object.

Assigning a Tag

– (void)setTag:(int)anInt Sets the tag of the control’s NSCell to anInt.

– (int)tag Returns the tag of the control’s NSCell.

Tracking the Mouse

– (void)mouseDown:(NSEvent *)theEvent Invoked when the mouse button goes down while the
cursor is within the bounds of the NSControl. This
method highlights the NSControl’s NSCell and sends it
a trackMouse:inRect:ofView:untilMouseUp:
message. Whenever the NSCell finishes tracking the
mouse (for example, because the cursor has left the
cell’s bounds), the cell is unhighlighted. If the mouse
button is still down and the cursor reenters the bounds,
the cell is again highlighted and a new
trackMouse:inRect:ofView:untilMouseUp:
message is sent. This behavior repeats until the mouse
button goes up.

– (BOOL)ignoresMultiClick Indicates whether multiple clicks are ignored.

– (void)setIgnoresMultiClick :(BOOL)flag Sets whether multiple clicks are ignored, according to flag.

Methods Implemented by the Delegate

NSControl itself doesn’t have a delegate. These delegate methods are declared in NSControl.h but are intended for
subclasses, such as NSTextField and NSMatrix, that do have delegates and that allow text editing.

– (BOOL)control: (NSControl *)control Sent directly by control to the delegate; returns YES if the
textShouldBeginEditing:(NSText *)fieldEditor NSControl should be allowed to start editing the text.

– (BOOL)control: (NSControl *)control Sent directly by control to the delegate; returns YES if the
textShouldEndEditing:(NSText *)fieldEditor NSControl should be allowed to end its edit session.

– (void)controlTextDidBeginEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSControlTextDidBeginEditingNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

Classes: NSControl 1-73OpenStep Specification—10/19/94

– (void)controlTextDidEndEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSControlTextDidEndEditingNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)controlTextDidChange:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSControlTextDidChangeNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

OpenStep Specification—10/19/941-74 Chapter 1: Application Kit

NSCStringText

Inherits From: NSText : NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling, NSIgnoreMisspelledWords (NSText)
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSCStringText.h

Class Description

The NSCStringText class declares the programmatic interface to objects that manage text using eight-bit character
encodings. The encoding is the same as the default C string encoding provided by defaultCStringEncoding in the
NSString class. NSCStringText can be used in situations where backwards compatibility with the detailed
interfaces of the NEXTSTEP Text object is important. Applications that can use the interface of NSText should do
so.

The NSCStringText class is unlike most other classes in the Application Kit in its complexity and range of features.
One of its design goals is to provide a comprehensive set of text-handling features so that you'll rarely need to create
a subclass. An NSCStringText object can (among other things):

• Control the color of its text and background.

• Control the font and layout characteristics of its text.

• Control whether text is editable.

• Wrap text on a word or character basis.

• Write text to, or read it from, a file, as either RTF or plain ASCII data.

• Display graphic images within its text.

• Communicate with other applications through the Services menu.

• Let another object, the delegate, dynamically control its properties.

• Let the user copy and paste text within and between applications.

• Let the user copy and paste font and format information between NSCStringText objects.

• Let the user check the spelling of words in its text.

• Let the user control the format of paragraphs by manipulating a ruler.

NSCStringText can deal only with eight-bit characters. Therefore, it is not able to deal with Unicode character sets,
and NSCStringText can’t be fully internationalized.

Classes: NSCStringText1-75OpenStep Specification—10/19/94

Plain and Rich NSCStringText Objects

When you create an NSCStringText object directly, by default it allows only one font, line height, text color, and
paragraph format for the entire text. You can set the default font used by new NSCStringText instances by sending
the NSCStringText class object a setDefaultFont: message. Once an NSCStringText object is created, you can alter
its global settings using methods such as setFont:, setLineHeight:, setTextGray:, and setAlignment:. For
convenience, such an NSCStringText object will be called a plain NSCStringText object.

To allow multiple values for these attributes, you must send the NSCStringText object a setRichText:YES
message. An NSCStringText object that allows multiple fonts also allows multiple paragraph formats, line heights,
and so on. For convenience, such an NSCStringText object will be called a rich NSCStringText object.

A rich NSCStringText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words
are supported: On input, an NSCStringText object ignores any control word it doesn't recognize; some of those it
can read and interpret it doesn't write out. Refer to the class description of NSText for a list of the RTF control words
that an NSCStringText object recognizes.

Note: An NSCStringText object writes eight-bit characters in the default C string encoding, which differs somewhat
from the ANSI character set.

In an NSCStringText object, each sequence of characters having the same attributes is called a run. A plain
NSCStringText object has only one run for the entire text. A rich NSCStringText object can have multiple runs.
Methods such as setSelFont: and setSelColor: let you programmatically modify the attributes of the selected
sequence of characters in a rich NSCStringText object. As discussed below, the user can set these attributes using
the Font panel and the ruler.

NSCStringText objects are designed to work closely with various objects and services. Some of these—such as the
delegate or an embedded graphic object—require a degree of programming on your part. Others—such as the Font
panel, spelling checker, ruler, and Services menu—take no effort other than deciding whether the service should be
enabled or disabled. The following sections discuss these interrelationships.

Notifying the NSCStringText Object's Delegate

Many of an NSCStringText object's actions can be controlled through an associated object, the NSCStringText
object's delegate. If it implements any of the following methods, the delegate receives the corresponding message
at the appropriate time:

textWillResize:
textDidResize:oldBounds:
textWillSetSel:toFont:
textWillConvert:fromFont:toFont:
textWillStartReadingRichText:
textWillFinishReadingRichText:
textWillWrite:
textDidRead:paperSize:

So, for example, if the delegate implements the textWillConvert:fromFont:toFont: method, it will receive
notification upon the user's first attempt to change the font of the text. Moreover, depending on the method's return
value, the delegate can either allow or prohibit changes to the text. See “Methods Implemented by the Delegate”.
The delegate can be any object you choose, and one delegate can control multiple NSCStringText objects.

OpenStep Specification—10/19/941-76 Chapter 1: Application Kit

Adding Graphics to the Text

A rich NSCStringText object allows graphics to be embedded in the text. Each graphic is treated as a single
(possibly large) “character”: The text's line height and character placement are adjusted to accommodate the
graphic “character.” Graphics are embedded in the text in either of two ways: programmatically or directly through
user actions. The programmatic approach is discussed first.

In the programmatic approach, you add an object—generally a subclass of NSCell—to the text. This object
manages the graphic image by drawing it when appropriate. Although NSCell subclasses are commonly used, the
only requirement is that the embedded object responds to these messages—see “Methods Implemented by an
Embedded Graphic Object” for more information:

highlight:withFrame:inView:
drawWithFrame:inView:
trackMouse:inRect:ofView:untilMouseUp:
cellSize:
readRichText:forView:
richTextforView:

You place the graphic object in the text by sending the NSCStringText object a replaceSelWithCell: message.

An NSCStringText object displays a graphic in its text by sending the managing object a
drawWithFrame:inView: message. To record the graphic to a file or to the pasteboard, the NSCStringText object
sends the managing object a richTextforView: message. The object must then write an RTF control word along
with any data (such as the path of a TIFF file containing its image data) it might need to recreate its image. To
reestablish the text containing the graphic image from RTF data, an NSCStringText object must know which class
to associate with particular RTF control words. You associate a control word with a class object by sending the
NSCStringText class object a registerDirective:forClass: message. Thereafter, whenever an NSCStringText
object finds the registered control word in the RTF data being read from a file or the pasteboard, it will create a new
instance of the class and send the object a readRichText:forView: message.

An alternate means of adding an image to the text is for the user to drag an EPS or TIFF file icon directly into an
NSCStringText object. The NSCStringText object automatically creates a graphic object to manage the display of
the image. This feature requires a rich NSCStringText object that has been configured to receive dragged images—
see the setImportsGraphics: method of the NSText class.

Images that have been imported in this way can be written as RTFD documents. Programmatic creation of RTFD
documents is not supported in this version of OpenStep. RTFD documents use a file package, or directory, to store
the components of the document (the “D” stands for “directory”). The file package has the name of the document
plus a “.rtfd” extension. The file package always contains a file called TXT.rtf for the text of the document, and one
or more TIFF or EPS files for the images. An NSCStringText object can transfer information in an RTFD document
to a file and read it from a file—see the writeRTFDToFile:atomically: and readRTFDFromFile: methods in the
NSText methods.

Classes: NSCStringText1-77OpenStep Specification—10/19/94

Cooperating with Other Objects and Services

NSCStringText objects are designed to work with the Application Kit's font conversion system. By default, an
NSCStringText object keeps the Font panel updated with the font of the current selection. It also changes the font
of the selection (for a rich NSCStringText object) or of the entire text (for a default NSCStringText object) to reflect
the user's choices in the Font panel or menu. To disconnect an NSCStringText object from this service, send it a
setUsesFontPanel:NO message (this method is actually implemented by NSText—the superclass).

If an NSCStringText object is a subview of an NSScrollView, it can cooperate with the NSScrollView to display
and update a ruler that displays formatting information. The NSScrollView retiles its subviews to make room for
the ruler, and the NSCStringText object updates the ruler with the format information of the paragraph containing
the selection. The toggleRuler: method controls the display of this ruler. Users can modify paragraph formats by
manipulating the components of the ruler.

By means of the Services menu, an NSCStringText object can make use of facilities outside the scope of its own
application. By default, an NSCStringText object registers with the services system that it can send and receive RTF
and plain ASCII data. If the application containing the NSCStringText object has a Services menu, a menu item is
added for each service provider that can accept or return these formats. To prevent NSCStringText objects from
registering for services, send the NSCStringText class object an excludeFromServicesMenu:YES message before
any NSCStringText objects are created.

Coordinates and sizes mentioned in the method descriptions below are in PostScript units—1/72 of an inch.

Initializing a New NSCStringT ext Object

– (id)initWithFrame: (NSRect)frameRect Returns a new NSCStringText object at frameRect
text:(NSString *)theText initialized with the contents of theText and with mode
alignment:(NSTextAlignment)mode alignment.

Modifying the Frame Rectangle

– (void)resizeTextWithOldBounds:(NSRect)oldBounds
maxRect:(NSRect)maxRect Used by the NSCStringText object to resize and redisplay

itself.

Laying Out the Text

– (int)calcLine Calculates line breaks.

– (BOOL)changeTabStopAt:(float)oldX Resets the position of the specified tab stop.
to:(float)newX

– (BOOL)charWrap Returns whether extra long words are wrapped.

– (void *)defaultParagraphStyle Returns the default paragraph style.

– (float)descentLine Returns distance from base line to bottom of line.

OpenStep Specification—10/19/941-78 Chapter 1: Application Kit

– (void)getMarginLeft: (float *)leftMargin Gets by reference the dimensions of margins around the
right: (float *)rightMargin text.
top:(float *)topMargin
bottom:(float *)bottomMargin

– (void)getMinWidth: (float *)width Given the widthMax and heightMax, calculates the
minHeight: (float *)height minimum area needed to display the text and returns
maxWidth: (float)widthMax width and height by reference.
maxHeight:(float)heightMax

– (float)lineHeight Returns height of a line of text.

– (void *)paragraphStyleForFont:(NSFont *)fontId Recalculates the paragraph style based on new font fontId
alignment:(int)alignment and alignment.

– (void)setCharWrap:(BOOL)flag Sets whether extra long words are wrapped.

– (void)setDescentLine:(float)value Sets the distance from the base line to the bottom of line to
value.

– (void)setLineHeight:(float)value Sets the height of a line of text to value.

– (void)setMarginLeft: (float)leftMargin Adjusts the margins around the text.
right: (float)rightMargin
top:(float)topMargin
bottom:(float)bottomMargin

– (void)setNoWrap Disables word wrap.

– (void)setParagraphStyle:(void *)paraStyle Sets the default paragraph style for the entire text.

– (BOOL)setSelProp:(NSParagraphProperty)property
to:(float)value Sets a paragraph property for one or more selected

paragraphs to value.

Reporting Line and Position

– (int)lineFromPosition:(int)position Converts character position to line number.

– (int)positionFromLine: (int)line Converts line number to character position.

Reading and Writing Text

– (void)finishReadingRichText Sent after the NSCStringText object reads RTF data.

– (NSTextBlock *)firstTextBlock Returns a pointer to the first text block in the
NSCStringText object.

Classes: NSCStringText1-79OpenStep Specification—10/19/94

– (NSRect)paragraphRect:(int)paraNumber Returns the location and size of a paragraph identified by
start: (int *)startPos paraNumber; also returns the starting and ending
end:(int *)endPos character positions by reference.

– (void)startReadingRichText Sent before the NSCStringText object begins reading RTF
data.

Editing Text

– (void)clear:(id)sender Deletes the selected text.

– (void)hideCaret Removes the caret from the text display.

– (void)showCaret Displays the previously hidden caret in the text display.

Managing the Selection

– (void)getSelectionStart:(NSSelPt *)start Gets information (by reference) relating to the starting and
end:(NSSelPt *)end ending character positions of the selection.

– (void)replaceSel:(NSString *)aString Replaces the selection with aString.

– (void)replaceSel:(NSString *)aString Replaces the selection with length bytes of aString.
length:(int)length

– (void)replaceSel:(NSString *)aString Replaces the selection with length bytes of aString.
length:(int)length insertRuns is a pointer to the current run in the run
runs:(NSRunArray *)insertRuns array.

– (void)scrollSelToVisible Brings the selection within the frame rectangle.

– (void)selectError Selects all the text.

– (void)selectNull Deselects the current selection.

– (void)setSelectionStart:(int)start Selects text from characters start through end.
end:(int)end

– (void)selectText:(id)sender Makes the receiver the first responder and selects all text.

Setting the Font

+ (NSFont *)defaultFont Returns the default NSFont object for NSCStringText
objects.

+ (void)setDefaultFont:(NSFont *)anObject Makes anObject the default NSFont object for
NSCStringText objects.

– (void)setFont:(NSFont *)fontObj Sets the NSFont object and paragraph style for all text.
paragraphStyle:(void *)paragraphStyle

OpenStep Specification—10/19/941-80 Chapter 1: Application Kit

– (void)setSelFont:(NSFont *)fontObj Sets the NSFont object for the selection.

– (void)setSelFont:(NSFont *)fontObj Sets the NSFont object and paragraph style for the
paragraphStyle:(void *)paragraphStyle selection.

– (void)setSelFontFamily:(NSString *)fontName Sets the font family for the selection.

– (void)setSelFontSize:(float)size Sets the font size for the selection.

– (void)setSelFontStyle:(NSFontTraitMask)traits Sets the font style for the selection.

Finding Text

– (BOOL)findText: (NSString *)textPattern Searches for textPattern in the text, starting at the insertion
ignoreCase:(BOOL)ignoreCase point. ignoreCase instructs the search to disregard case;
backwards:(BOOL)backwards backwards means search backwards; wrap means that
wrap: (BOOL)wrap when the search reaches the beginning or end of the text

(depending on the direction), it should continue by
wrapping to the end or beginning of the text.

Modifying Graphic Attributes

– (NSColor *)runColor: (NSRun *)run Returns the color of the specified text run.

– (NSColor *)selColor Returns the color of the selected text.

– (void)setSelColor:(NSColor *)color Sets the color of the selected text.

Reusing an NSCStringText Object

– (void)renewFont:(NSFont *)newFontObj Resets the NSCStringText object to draw different text
text:(NSString *)newText newText in font newFontId within frame newFrame.
frame:(NSRect)newFrame
tag:(int)newTag

– (void)renewFont:(NSString *)newFontName Resets the NSCStringText object to draw different text
size:(float)newFontSize newText in the font identified by newFontName,
style:(int)newFontStyle newFontSize, and newFontStyle. Drawing occurs within
text:(NSString *)newText frame newFrame.
frame:(NSRect)newFrame
tag:(int)newTag

– (void)renewRuns:(NSRunArray *)newRuns Resets the NSCStringText object to draw different text
text:(NSString *)newText newText in newFrame.
frame:(NSRect)newFrame
tag:(int)newTag

Classes: NSCStringText1-81OpenStep Specification—10/19/94

Setting Window Attributes

– (BOOL)isRetainedWhileDrawing Returns whether a retained window is used for drawing.

– (void)setRetainedWhileDrawing:(BOOL)flag Allows use of a retained window when drawing.

Assigning a Tag

– (void)setTag:(int)anInt Makes anInt the NSCStringText object’s tag.

– (int)tag Returns the NSCStringText object’s tag.

Handling Event Messages

– (void)becomeKeyWindow Activates the caret if selection has width of 0.

– (void)moveCaret:(unsigned short)theKey Moves the caret in response to arrow keys.

– (void)resignKeyWindow Deactivates the caret.

Displaying Graphics within the Text

+ registerDirective:(NSString *)directive Associates an RTF control word (directive) with class
forClass:class (usually NSCell and subclasses); objects of this class

are encoded through RTF control words in
NSCStringText objects.

– (NSPoint)locationOfCell:(NSCell *)cell Returns the location of cell.

– (void)replaceSelWithCell:(NSCell *)cell Replaces the selection with cell object cell.

– (void)setLocation:(NSPoint)origin Sets the origin point of cell.
ofCell:(NSCell *)cell

Using the Services Menu and the Pasteboard

+ excludeFromServicesMenu:(BOOL)flag Controls whether NSCStringText objects can register for
services.

– (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard
Replaces the selection with data from pasteboard pboard.

– (id)validRequestorForSendType:(NSString *)sendType
returnType: (NSString *)returnType Determines which Service menu items are enabled.

– (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
types:(NSArray *)types Copies the selection to pasteboard pboard.

OpenStep Specification—10/19/941-82 Chapter 1: Application Kit

Setting Tables and Functions

– (const NSFSM *)breakTable Returns the table defining word boundaries.

– (const unsigned char *)charCategoryTable Returns the table defining character categories.

– (NSCharFilterFunc)charFilter Returns the current character filter function.

– (const NSFSM *)clickTable Returns the table defining double-click selection.

– (NSTextFunc)drawFunc Returns the current draw function.

– (const unsigned char *)postSelSmartTable Returns cut and paste table for right word boundary.

– (const unsigned char *)preSelSmartTable Returns cut and paste table for left word boundary.

– (NSTextFunc)scanFunc Returns the current scan function.

– (void)setBreakTable:(const NSFSM *)aTable Sets the table defining word boundaries.

– (void)setCharCategoryTable:(const unsigned char *)aTable
Sets the table defining character categories used in the word

wrap or click tables.

– (void)setCharFilter: (NSCharFilterFunc)aFunction
Makes aFunction the character filter function.

– (void)setClickTable:(const NSFSM *)aTable Sets the table defining double-click selection.

– (void)setDrawFunc:(NSTextFunc)aFunction Makes aFunction the function that draws the text.

– (void)setPostSelSmartTable:(const unsigned char *)aTable
Sets the cut and paste table for right word boundary.

– (void)setPreSelSmartTable:(const unsigned char *)aTable
Sets the cut and paste table for left word boundary.

– (void)setScanFunc:(NSTextFunc)aFunction Makes aFunction the scan function.

– (void)setTextFilter:(NSTextFilterFunc)aFunction Makes aFunction the text filter function.

– (NSTextFilterFunc)textFilter Returns the current text filter function.

Printing

– (void)adjustPageHeightNew:(float *)newBottom Assists with automatic pagination of text.
top:(float)oldTop
bottom:(float)oldBottom
limit: (float)bottomLimit

Classes: NSCStringText1-83OpenStep Specification—10/19/94

Implemented by an Embedded Graphic Object

– (NSSize)cellSize Embedded cell returns its size.

– (void)drawWithFrame: (NSRect)cellFrame Embedded object draws itself, including frame, within
inView: (NSView *)controlView cellFrame in controlView.

– (void)highlight: (BOOL)flag Embedded object highlights or unhighlights itself with
withFrame: (NSRect)cellFrame cellFrame of controlView, depending on the value of
inView: (NSView *)controlView flag.

– (void)readRichText:(NSString *)stringObject Embedded object reads its RTF representation from
forView: (NSView *)view stringObject and initializes itself.

– (NSString *)richTextForView: (NSView *)view Embedded object stores its RTF representation within view
as a string object and returns it.

– (BOOL)trackMouse:(NSEvent *)theEvent Embedded object implements this method to track mouse
inRect:(NSRect)cellFrame movement within tracking rectangle (cellFrame) and to
ofView:(NSView *)controlView detect mouse-up event (untilMouseUp).
untilMouseUp:(BOOL)untilMouseUp

Implemented by the Delegate

– (void)textDidRead:(NSCStringText *)textObject Lets the delegate review paper size.
paperSize:(NSSize)paperSize

– (NSRect)textDidResize:(NSCStringText *)textObject
oldBounds:(NSRect)oldBounds Reports size change to delegate.

– (NSFont *)textWillConvert: (NSCStringText *)textObject
fromFont: (NSFont *)font Lets delegate intercede in selection’s font change.
toFont:(NSFont *)font

– (void)textWillFinishReadingRichText: (NSCStringText *)textObject
Informs delegate that the NSCStringText object finished

reading RTF data.

– (void)textWillResize:(NSCStringText *)textObject
Informs delegate of impending size change.

– (void)textWillSetSel:(NSCStringText *)textObject
toFont:(NSFont *)font Lets delegate intercede in the updating of the Font panel.

– (void)textWillStartReadingRichText: (NSCStringText *)textObject
Informs delegate that NSCStringText object will read RTF

data.

– (NSSize)textWillWrite: (NSCStringText *)textObject
Lets the delegate specify paper size.

OpenStep Specification—10/19/941-84 Chapter 1: Application Kit

Compatibility Methods

- (NSCStringTextInternalState *)cStringTextInternalState
Returns a structure that represents the instance variables of

the NSCStringText object. The structure is defined in
appkit/NSCStringText.h, and in the “Types and
Constants” section of the Application Kit
documentation. Note that this method is provided for
applications that really must depend on changing the
values of an NSCStringText object’s instance variables.

Classes: NSCursor 1-85OpenStep Specification—10/19/94

NSCursor

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Inherits From: AppKit/NSCursor.h

Class Description

An NSCursor holds an image that the window system can display for the cursor. An NSCursor is initialized with
an NSImage object (which can subsequently be replaced by sending the NSCursor a setImage: message). To make
the window system display a particular image as the current cursor, simply send a set message to the NSCursor
instance associated with that image.

For automatic cursor management, an NSCursor can be assigned to a cursor rectangle within a window. When the
window is key and the user moves the cursor into the rectangle, the NSCursor becomes the current cursor. It ceases
to be the current cursor when the cursor leaves the rectangle. The assignment is made using NSView’s
addCursorRect:cursor: method, usually inside a resetCursorRects method:

- (void)resetCursorRects

{

 [self addCursorRect:someRect cursor:theNSCursorObject];

}

This is the recommended way of associating a cursor with a particular region inside a window. However, the
NSCursor class provides two other ways of setting the cursor:

• The class maintains its own stack of cursors. Pushing an NSCursor instance on the stack sets it to be the
current cursor. Popping an NSCursor from the stack sets the next NSCursor in line, the one that’s then at the
top of the stack, to be the current cursor.

• An NSCursor can be made the owner of a tracking rectangle and told to set itself when it receives a
mouse-entered or mouse-exited event.

The Application Kit provides two ready-made NSCursor instances: the standard arrow cursor, and the I-beam
cursor that’s displayed over editable or selectable text. These can be retrieved with the class methods arrowCursor
and IBeamCursor, respectively. There’s no NSCursor instance for the wait cursor. The wait cursor is displayed
automatically by the system, without any required program intervention.

Initializing a New NSCursor Object

– (id)initWithImage: (NSImage *)newImage Initializes a new NSCursor object with newImage.

OpenStep Specification—10/19/941-86 Chapter 1: Application Kit

Defining the Cursor

– (NSPoint)hotSpot Returns the point on the cursor that’s aligned with the
mouse.

– (NSImage *)image Returns the NSImage object that has the cursor image.

– (void)setHotSpot:(NSPoint)spot Sets the point on the cursor that’s aligned with the mouse.

– (void)setImage:(NSImage *)newImage Makes newImage the NSImage object that supplies the
cursor image.

Setting the Cursor

+ (void)hide Hides the cursor.

+ (void)pop Restores the previous cursor.

+ (void)setHiddenUntilMouseMoves:(BOOL)flag; Hides cursor when flag is YES; reveals it otherwise.

+ (void)unhide Shows the cursor.

– (BOOL)isSetOnMouseEntered Returns YES if mouseEntered: sets cursor.

– (BOOL)isSetOnMouseExited Returns YES if mouseExited: sets cursor.

– (void)mouseEntered:(NSEvent *)theEvent Responds to a mouse-entered event by setting the cursor if
setOnMouseEntered was sent.

– (void)mouseExited:(NSEvent *)theEvent Responds to a mouse-exited event by setting the cursor if
setOnMouseExited was sent.

– (void)pop Removes the topmost NSCursor object from the cursor
stack, and makes the next NSCursor down the current
cursor.

– (void)push Puts the receiving NSCursor on the cursor stack and sets it
to be the current cursor.

– (void)set Sets the NSCursor to be the current cursor.

– (void)setOnMouseEntered:(BOOL)flag Determines whether mouseEntered: sets cursor.

– (void)setOnMouseExited:(BOOL)flag Determines whether mouseExited: sets cursor.

Getting the Cursor

+ (NSCursor *)arrowCursor Returns an arrow cursor.

+ (NSCursor *)currentCursor Returns the current cursor.

+ (NSCursor *)IBeamCursor Returns an I-beam cursor.

Classes: NSCustomImageRep1-87OpenStep Specification—10/19/94

NSCustomImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSCustomImageRep.h

An NSCustomImageRep is an object that uses a delegated method to render an image. When called upon to produce
the image, it sends a message to its delegate to have the method performed.

Like most other kinds of NSImageReps, an NSCustomImageRep is generally used indirectly, through an NSImage
object. An NSImage must be able to choose between various representations of a given image. It also needs to
provide an off-screen cache of the appropriate depth for any image it uses. It determines this information by
querying its NSImageReps.

Thus to work with an NSImage, an NSCustomImageRep must be able to provide some information about its image.
Use the following methods, inherited from the NSImageRep class, to set these attributes of the
NSCustomImageRep:

setSize:
setColorSpaceName:
setAlpha:
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Initializing a New NSCustomImageRep

– (id)initWithDrawSelector: (SEL)aSelector Initializes a new instance so that it delegates the
delegate:(id)anObject responsibility for drawing to anObject. When the

NSCustomImageRep receives a draw message, it sends
an aSelector message to anObject.

Identifying the Object

– (id)delegate Returns the delegate.

– (SEL)drawSelector Returns the associated draw method selector.

OpenStep Specification—10/19/941-88 Chapter 1: Application Kit

NSDataLink

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSDataLink.h

Class Description

An NSDataLink object (or data link) defines a single link between a selection in a source document and a
dependent, dynamically updated selection in a destination document.

A data link is typically created when linkable data is copied to the pasteboard. First, an NSSelection object
describing the data is created. Then a link to that selection is created using
initLinkedToSourceSelection:managedBy:supportingTypes:. The link can then be written to the pasteboard
using writeToPasteboard:. Usually, after the link has been written to the pasteboard (or saved to a file using
writeToFile:) the link is freed because it’s generally of no further use to the source application.

Once the data and link have been written to the pasteboard, they can be added to a destination document by an
object that can respond to a message to Paste and Link. The object responding to this message will paste the data
as usual. The destination application will then read the link from the pasteboard using initWithPasteboard: , create
an NSSelection describing the linked data within the destination document, and will add the link by sending
addLink:at: to the document’s NSDataLinkManager object (also known as a data link manager or simply link
manager).

When the link is added to the destination document’s link manager, it becomes a destination link. At that time, the
data link’s object establishes a connection with the source document’s link manager, which automatically creates a
source link in the source application; the source link refers to the source selection.

A link that isn’t managed by a link manager is a broken link. (Both source and destination links have link managers.)
All links are broken links when they are created. Links can be explicitly broken (ensuring that they cause no
updates) using the break method. Broken links (that aren’t former source links) can be hooked up as destination
links with the addLink:at: method. The disposition of a link (destination, source, or broken) can be retrieved with
the disposition method. Most of the messages defined by the NSDataLink class can be sent to a link of any
disposition, but some only make sense when sent to a link with a specific disposition; these are so noted in their
method descriptions.

Links of all dispositions (except links to files) maintain an NSSelection object referring to the link’s selection in
the source document; this selection is returned by the sourceSelection method. Links directly to files represent
entire files rather than selections in a document; these links are created with initLinkedToFile: and have no source
selection.

Source and destination links also maintain an NSSelection describing the location of the data in the destination
document; this selection is returned by the destinationSelection method.

Classes: NSDataLink 1-89OpenStep Specification—10/19/94

See the NSSelection class description for more information on NSSelection objects.

Initializing a Link

– (id)initLinkedToFile: (NSString *)filename Initializes a new instance corresponding to filename.

– (id)initLinkedToSourceSelection:(NSSelection *)selection
managedBy:(NSDataLinkManager *)linkManager
supportingTypes:(NSArray *)newTypes Initializes a newly allocated instance corresponding to a

selection in the source document selection.
linkManager is the source document's link manager.
newTypes is a set of types that linkManager's delegate is
willing to provide when a destination of the link
requests the data described by selection.

– (id)initWithContentsOfFile :(NSString *)filename Initializes a new instance from filename.

– (id)initWithPasteboard: (NSPasteboard *)pasteboard
Initializes a new instance from pasteboard.

Exporting a Link

– (BOOL)saveLinkIn: (NSString *)directoryName Saves the link in a filename provided by the user; the
NSSavePanel’s initial directory is in directoryName.

– (BOOL)writeToFile: (NSString *)filename Writes the link into the file filename, returning NO if the
file can’t be written.

– (void)writeToPasteboard:(NSPasteboard *)pasteboard
Writes the link onto the pasteboard pasteboard.

Information about the Link

– (NSDataLinkDisposition)disposition Identifies the link’s type.

– (NSDataLinkNumber)linkNumber Returns the link’s number.

– (NSDataLinkManager *)manager Returns the link’s manager.

Information about the Link’s Source

– (NSDate *)lastUpdateTime Returns the last time the link was updated.

– (BOOL)openSource Opens the source document of the link and makes the
source selection visible.

– (NSString *)sourceApplicationName Returns the name of the application that owns the source
document.

OpenStep Specification—10/19/941-90 Chapter 1: Application Kit

– (NSString *)sourceFilename Returns the file name of the source document.

– (NSSelection *)sourceSelection Returns the source selection.

– (NSArray *)types Returns the types that the source document can provide.

Information about the Link’s Destination

– (NSString *)destinationApplicationName Returns the name of the application that owns the
destination document.

– (NSString *)destinationFilename Returns the file name of the destination document.

– (NSSelection *)destinationSelection Returns the destination selection.

Changing the Link

– (BOOL)break Breaks the link

– (void)noteSourceEdited Informs a source link that the data referred to by its source
selection has changed.

– (void)setUpdateMode:(NSDataLinkUpdateMode)mode
Sets the link’s update mode to mode.

– (BOOL)updateDestination Updates the data referred to by the link’s destination
selection with the contents referred to by the source
selection.

– (NSDataLinkUpdateMode)updateMode Returns the link’s update mode.

Classes: NSDataLinkManager1-91OpenStep Specification—10/19/94

NSDataLinkManager

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSDataLinkManager.h

Class Description

An NSDataLinkManager object (also known as a data link manager or simply link manager) manages data linked
from and into a document through NSDataLink objects. NSDataLink objects (or data links) provide a link between
a selection in a source document and a dependent, dynamically updated selection in a destination document. When
a user does a Paste and Link command in the destination document, the link manager creates the link in response
to a addLink:at: message. When this link is added to the destination document, it makes a connection with the
source document’s link manager, which creates a source link in the source application.

If an application supports data linking, a link manager should be instantiated for every document the application
creates. A link manager must be assigned a delegate that assists it in keeping the document up to date; this delegate
must implement some or all of the methods listed in the “Methods Implemented by the Delegate” section of this
class specification. In addition, the delegate must keep the link manager informed of the state of the document,
sending it messages whenever the document is edited, saved, or otherwise altered.

Only applications that support continuously updating links need to be aware of when source links are created; these
applications can have the delegate of the destination document’s link manager return YES in response to a
dataLinkManagerTracksLinksIndividually: message, and then respond to
dataLinkManager:startTrackingLink: messages to receive notifications that source links are created.

For more information about NSDataLink objects, see the NSDataLink class description. See the NSSelection class
description for more information on NSSelection objects.

Initializing and Freeing a Link Manager

– (id)initWithDelegate:(id)anObject Initializes and returns a newly allocated instance,
designating anObject as the delegate.

– (id)initWithDelegate:(id)anObject Initializes and returns a newly allocated instance
 fromFile: (NSString *)path designating anObject as the delegate. The document's

file is specified by the full path path.

OpenStep Specification—10/19/941-92 Chapter 1: Application Kit

Adding and Removing Links

– (BOOL)addLink: (NSDataLink *)link Adds the link link to the document, indicating that the data
at:(NSSelection *)selection in the document described by selection is dependent

upon the link.

– (BOOL)addLinkAsMarker: (NSDataLink *)link Incorporates link into the document as a marker in the
 at:(NSSelection *)selection location of the destination document described by

selection.

– (NSDataLink *)addLinkPreviouslyAt: (NSSelection *)oldSelection
fromPasteboard:(NSPasteboard *)pasteboardCreates and adds a new destination link corresponding to
at:(NSSelection *)selection the same source data as the link described by the

destination selection oldSelection with the new link's
destination selection provided in selection; the
document's links must have been written to the
pasteboard pasteboard.

– (void)breakAllLinks Breaks all the destination links in the document.

– (void)writeLinksToPasteboard:(NSPasteboard *)pasteboard
Writes all the link manager’s links to pasteboard.

Informing the Link Manager of Document Status

– (void)noteDocumentClosed Informs link manager that document has been closed.

– (void)noteDocumentEdited Informs link manager that document has been edited.

– (void)noteDocumentReverted Informs link manager that changes have been reverted.

– (void)noteDocumentSaved Informs link manager that document has been saved.

– (void)noteDocumentSavedAs:(NSString *)path Informs link manager that document has been saved in the
file specified by the full pathname path.

– (void)noteDocumentSavedTo:(NSString *)path Informs link manager that document has been saved in the
file specified by the full pathname path.

Getting and Setting Information about the Link Manager

– (id)delegate Returns the data link manager’s delegate.

– (BOOL)delegateVerifiesLinks Returns YES if delegate is asked to verify updates.

– (NSString *)filename Returns the filename for the link manager’s document.

– (BOOL)interactsWithUser Tells whether the link manager displays panels if link errors
occur.

Classes: NSDataLinkManager1-93OpenStep Specification—10/19/94

– (BOOL)isEdited Returns YES if the document was edited since the last save.

– (void)setDelegateVerifiesLinks:(BOOL)flag Sets whether the delegate is asked to verify updates.

– (void)setInteractsWithUser:(BOOL)flag Sets whether the link manager displays panels if link errors
occur.

Getting and Setting Information about the Manager’ s Links

– (BOOL)areLinkOutlinesVisible Returns YES if outlines are visible.

– (NSEnumerator *)destinationLinkEnumerator Returns an enumerator of the destination’s source links.

– (NSDataLink *)destinationLinkWithSelection:(NSSelection *)destSel
Returns the destination link for the selection destSel.

– (void)setLinkOutlinesVisible:(BOOL)flag Sets whether outlines are visible.

– (NSEnumerator *)sourceLinkEnumerator Returns an enumerator of the receiver’s source links.

Methods Implemented by the Delegate

– (BOOL)copyToPasteboard:(NSPasteboard *)pasteboard
at:(NSSelection *)selection Implemented by the link manager’s delegate to supply the
cheapCopyAllowed:(BOOL)flag source data described by selection on the pasteboard

pasteboard. If flag is YES, the system guarantees that
no events will be processed by the application before
the delegate is requested to provide the specified data;
in this case, the application doesn’t necessarily have to
write any data representations to the pasteboard. This
method should return YES upon success, or NO if the
selection can’t be resolved.

– (void)dataLinkManager: (NSDataLinkManager *)sender
didBreakLink: (NSDataLink *)link Informs the delegate that the destination link link was

broken and thus data based on the link's destination
selection will no longer be updated.

– (BOOL)dataLinkManager: (NSDataLinkManager *)sender
isUpdateNeededForLink:(NSDataLink *)link Returns YES if the source data identified by link's source

selection has been modified since the link's last update
time.

– (void)dataLinkManager: (NSDataLinkManager *)sender
startTrackingLink: (NSDataLink *)link Informs the delegate that a destination document has

established a data link link to the link manager's
document and is tracking it.

OpenStep Specification—10/19/941-94 Chapter 1: Application Kit

– (void)dataLinkManager: (NSDataLinkManager *)sender
stopTrackingLink: (NSDataLink *)link Informs the delegate that a destination is no longer tracking

the source link link.

– (void)dataLinkManagerCloseDocument:(NSDataLinkManager *)sender
Closes documents opened without the user interface.

– (void)dataLinkManagerDidEditLinks: (NSDataLinkManager *)sender
Informs the delegate that link data has been modified; the

delegate should use this notification to mark the
document as edited.

– (void)dataLinkManagerRedrawLinkOutlines: (NSDataLinkManager *)sender
Directs the delegate to redraw objects with link outlines.

– (BOOL)dataLinkManagerTracksLinksIndividually: (NSDataLinkManager *)sender
Returns whether the receiver is willing to track links

individually.

– (BOOL)importFile: (NSString *)filename Imports the file filename at the destination described by
at:(NSSelection *)selection selection. Returns YES upon success, or NO if the

selection can’t be resolved.

– (BOOL)pasteFromPasteboard:(NSPasteboard *)pasteboard
at:(NSSelection *)selection Pastes the updated data that has been made available on

pasteboard. The destination for the data is described by
selection, which was supplied to the link manager as an
argument to the addLink:at: method. Returns YES
upon success, or NO if the selection can’t be resolved.

– (BOOL)showSelection:(NSSelection *)selection Shows the source data for the specified selection selection.
Returns YES upon success, or NO if the selection can’t
be resolved.

– (NSWindow *)windowForSelection:(NSSelection *)selection
Returns the NSWindow object for the given selection, or

nil if the selection can’t be resolved.

Classes: NSDataLinkPanel 1-95OpenStep Specification—10/19/94

NSDataLinkPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSDataLinkPanel.h

Class Description

An NSDataLinkPanel is an NSPanel that allows the user to inspect data links. The NSDataLinkPanel functions
primarily by sending messages to the current data link manager (representing the current document) and to the
current link (representing the current selection if it’s based on a data link). Thus, the panel should be informed, by
a setLink:manager:isMultiple: message, any time the selection changes or a document is created or activated.
Since the selection may need to be tracked even before the panel is created, this message can be sent to either the
NSDataLinkPanel class or the shared instance.

The NSDataLinkPanel is generally displayed using NSApplication’s orderFrontDataLinkPanel: method. An
application’s sole instance of NSDataLinkPanel can be accessed with the sharedDataLinkPanel method.

Initializing

+ (NSDataLinkPanel *)sharedDataLinkPanel Initializes and returns the shared NSDataLinkPanel object.

Keeping the Panel Up to Date

+ (void)getLink: (NSDataLink **)link Gets information about the NSDataLinkPanel’s currently
manager:(NSDataLinkManager **)linkManager selected link; returns the link in link, the link manager
isMultiple: (BOOL *)flag in linkManager, and the multiple selection status in flag.

+ (void)setLink: (NSDataLink *)link Informs the receiver of the current document and selection
manager:(NSDataLinkManager *)linkManager using link as the currently selected link and
isMultiple: (BOOL)flag linkManager as the current link manager. flag is YES if

the panel will indicate that more than one link is
selected. Returns self.

– (void)getLink: (NSDataLink **)link Gets information about the NSDataLinkPanel’s currently
manager:(NSDataLinkManager **)linkManager selected link; returns the link in link, the link manager
isMultiple: (BOOL *)flag in linkManager, and the multiple selection status in flag.

OpenStep Specification—10/19/941-96 Chapter 1: Application Kit

– (void)setLink: (NSDataLink *)link Informs the receiver of the current document and selection
manager:(NSDataLinkManager *)linkManager using link as the currently selected link and
isMultiple: (BOOL)flag linkManager as the current link manager. flag is YES if

the panel will indicate that more than one link is
selected. Returns self.

Customizing the Panel

– (NSView *)accessoryView Returns the NSDataLinkPanel’s custom accessory view.

– (void)setAccessoryView:(NSView *)aView Adds aView to the NSDataLinkPanel’s view hierarchy.

Responding to User Input

– (void)pickedBreakAllLinks: (id)sender Invoked when the user clicks the Break All Links button;
puts up an attention panel to confirm the user’s action,
and then sends a breakAllLinks message to the current
link manager.

– (void)pickedBreakLink: (id)sender Invoked when the user clicks the Break Link button; puts
up an attention panel to confirm the user’s action, and
then sends a break message to the current link.

– (void)pickedOpenSource:(id)sender Invoked when the user clicks the Open Source button;
sends an openSource message to the current link.

– (void)pickedUpdateDestination:(id)sender Invoked when the user clicks Update from Source button;
sends a message to the current link to verify and update
the data source and then update the destination data.
Returns self.

– (void)pickedUpdateMode:(id)sender Invoked when the user selects the update mode; sends a
setUpdateMode: message to the current link.

Classes: NSEPSImageRep1-97OpenStep Specification—10/19/94

NSEPSImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSEPSImageRep.h

Class Description

An NSEPSImageRep is an object that can render an image from encapsulated PostScript code (EPS).

Like most other kinds of NSImageReps, an NSEPSImageRep is generally used indirectly, through an NSImage
object. An NSImage must be able to choose between various representations of a given image. It also needs to
provide an off-screen cache of the appropriate depth for any image it uses. It determines this information by
querying its NSImageReps.

Thus to work with an NSImage, an NSEPSImageRep must be able to provide some information about its image.
The size of the object is set from the bounding box specified in the EPS header comments. Use these methods,
inherited from the NSImageRep class, to set the other attributes of the NSEPSImageRep:

setColorSpaceName:
setAlpha:
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Initializing a New Instance

+ (id)imageRepWithData:(NSData *)epsData Invokes initWithData: to return an instance with data from
epsData.

– (id)initWithData: (NSData *)epsData Initialize an instance with data from epsData.

Getting Image Data

– (NSRect)boundingBox Returns the rectangle that bounds the image.

– (NSData *)EPSRepresentation Returns the EPS representation of the image.

OpenStep Specification—10/19/941-98 Chapter 1: Application Kit

Drawing the Image

– (void)prepareGState Implemented by subclasses to initialize the graphics state
before the image is drawn.

Classes: NSEvent 1-99OpenStep Specification—10/19/94

NSEvent

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSEvent.h

Class Description

An NSEvent object contains information about an event such as a mouse-click or a key-down. The window system
associates each such user action with a window, reporting the event to the application that created the window.
Pertinent information about each event—such as which character was typed and where the mouse was located—is
collected in an NSEvent object and made available to the application. As events are received in the application,
they’re temporarily placed in storage called the event queue. When the application is ready to process an event, it
takes an NSEvent from the queue.

NSEvents are typically passed to the responder chain—a set of objects within the window that inherit from
NSResponder. For example, NSResponder’s mouseDown: and keyDown: methods take an NSEvent as an
argument. When an NSApplication retrieves an NSEvent from the event queue, it dispatches it to the appropriate
NSWindow (which is itself an NSResponder) by invoking keyDown: or a similar message. The NSWindow in turn
passes the event to the first responder, and the event gets passed on down the responder chain until some object
handles it. In the case of a mouse-down, a mouseDown: message is sent to the NSView in which the user clicked
the mouse, which relays the message to its next responder if it can’t handle the message itself.

Most events follow this same path: from the window system to the application’s event queue, and from there, to the
appropriate objects of the application. However, the Application Kit can create an NSEvent from scratch and insert
it into the event queue for distribution, or send it directly to its destination. (It’s rare for an application to create an
event directly, but it’s possible, using NSEvent class methods. The newly created events can be added to the event
queue by invoking NSWindow’s (or NSApplication’s) postEvent:atStart: method.

Events are retrieved from the event queue by calling the NSWindow method
nextEventMatchingMask:untilDate:inMode:dequeue: or a similar NSApplication method. These methods
return an instance of NSEvent. The nature of the retrieved event can then be ascertained by invoking NSEvent
instance methods—type, window, and so forth. All types of events are associated with a window. The
corresponding NSWindow object can be gotten by invoking window. The location of the event within the window’s
coordinate system is obtained from locationInWindow, and the time of the event is gotten from timestamp. The
modifierFlags method returns an indication of which modifier keys (Command, Control, Shift, and so forth) were
held down while the event occurred.

OpenStep Specification—10/19/941-100 Chapter 1: Application Kit

The type method returns an NSEventType, a constant that identifies the sort of event. The different types of events
fall into five groups:

• Keyboard events

• Mouse events

• Tracking-rectangle events

• Periodic events

• Cursor-update events

Some of these groups comprise several NSEventType constants; others only one. The following sections discuss
the groups, along with the corresponding NSEventType constants.

Keyboard Events

Among the most common events sent to an application are direct reports of the user's keyboard actions, identified
by these three NSEventType constants:

• NSKeyDown: The user generated a character by pressing a key.

• NSKeyUp: The key was released.

• NSFlagsChanged: The user pressed or released a modifier key, or turned Alpha Lock on or off.

Of these, key-down events are the most useful to the application. When the type method returns NSKeyDown, your
next step is typically to determine the character or characters generated by the key-down, by sending the NSEvent
a characters message.

Key-up events are less used since they follow almost automatically when there has been a key-down event. And
because NSEvent’s modifierFlags method returns the state of the modifier keys regardless of the type of event,
applications normally don't need to receive flags-changed events; they're useful only for applications that have to
keep track of the state of these keys continuously.

Mouse Events

Mouse events are generated by changes in the state of the mouse buttons and by changes in the position of the
mouse cursor on the screen. This category consists of:

• NSLeftMouseDown, NSLeftMouseUp, NSRightMouseDown, NSRightMouseUp: Two sets of mouse-down
and mouse-up events, one for the left mouse button and one for the right. “Mouse-down” means the user
pressed the button; “mouse-up” means the button was released. If the mouse has just one button, only left
mouse events are generated. By sending a clickCount message to the NSEvent, you can determine whether
the mouse event was a single-click, double-click, and so on.

• NSLeftMouseDragged, NSRightMouseDragged: Two types of mouse-dragged events—one for when the
mouse is moved with its left mouse button down, or with both buttons down, and one for when it's moved
with just the right button down. A mouse with a single button generates only left mouse-dragged events. As
the mouse is moved with a button down, a series of mouse-dragged events is produced. The series is always
preceded by a mouse-down event and followed by a mouse-up event.

• NSMouseMoved: The user moved the mouse without holding down either mouse button.

Classes: NSEvent1-101OpenStep Specification—10/19/94

Mouse-dragged and mouse-moved events are generated repeatedly as long as the user keeps moving the mouse. If
the user holds the mouse stationary, neither event is generated until it moves again.

Note: OpenStep doesn’t specify facilities for the third button of a three-button mouse.

Tracking-Rectangle Events

NSMouseEntered and NSMouseExited events are like the “Mouse Events” listed previously, in that they’re
dependent on mouse movements. However, unlike the others, they’re generated only if the application has asked
the window system to set a tracking rectangle in a window. An NSMouseEntered or NSMouseExited event is
created when the cursor has entered the tracking rectangle or left it. A window can have any number of tracking
rectangles; the NSEvent method trackingNumber identifies which rectangle was entered or exited.

Periodic Events

An event of type NSPeriodic simply notifies an application that a certain time interval has elapsed. By using the
NSEvent class method startPeriodicEventsAfterDelay:withPeriod:, an application can register that it wants
periodic events and that they should be placed in its event queue at a certain frequency. When the application no
longer needs them, the flow of periodic events can be turned off by invoking stopPeriodicEvents. An application
can’t have more than one stream of periodic events active at a time. Unlike keyboard and mouse events, periodic
events aren’t dispatched to an NSWindow.

Cursor-Update Events

Events of type NSCursorUpdate are used to implement NSView’s cursor-rectangle methods. An NSCursorUpdate
event is generated when the cursor has crossed the boundary of a predefined rectangular area. The application can
respond by updating the cursor's shape.

Creating NSEvent Objects

+ (NSEvent *)enterExitEventWithType: (NSEventType)type
location:(NSPoint)location Returns an NSEvent object initialized with general event
modifierFlags:(unsigned int)flags data and information specific to mouse tracking
timestamp:(NSTimeInterval)time (eventNum, trackingNum, userData).
windowNumber:(int)windowNum
context:(NSDPSContext *)context
eventNumber:(int)eventNum
trackingNumber: (int)trackingNum
userData:(void *)userData

OpenStep Specification—10/19/941-102 Chapter 1: Application Kit

+ (NSEvent *)keyEventWithType:(NSEventType)type
location:(NSPoint)location Returns an NSEvent object initialized with general event
modifierFlags:(unsigned int)flags data and information specific to keyboard events (keys,
timestamp:(NSTimeInterval)time repeatKey, code, ukeys). (ukeys sets the unmodified
windowNumber:(int)windowNum character string.)
context:(NSDPSContext *)context
characters:(NSString *)keys
charactersIgnoringModifiers:(NSString *)ukeys
isARepeat:(BOOL)repeatKey
keyCode:(unsigned short)code

+ (NSEvent *)mouseEventWithType:(NSEventType)type
location:(NSPoint)location Returns an NSEvent object initialized with general event
modifierFlags:(unsigned int)flags data and information specific to mouse events
timestamp:(NSTimeInterval)time (eventNum, clickNum, pressureValue).
windowNumber:(int)windowNum
context:(NSDPSContext *)context
eventNumber:(int)eventNum
clickCount: (int)clickNum
pressure:(float)pressureValue

+ (NSEvent *)otherEventWithType: (NSEventType)type
location:(NSPoint)location Returns an NSEvent object initialized with general event
modifierFlags:(unsigned int)flags data and information specific to kit-defined events
timestamp:(NSTimeInterval)time (subType, data1, data2).
windowNumber:(int)windowNum
context:(NSDPSContext *)context
subtype:(short)subType
data1:(int)data1
data2:(int)data2

Getting General Event Information

– (NSDPSContext *)context Returns the Display PostScript context of the event.

– (NSPoint)locationInWindow Returns the event’s location in the base coordinate system
of its window.

– (unsigned int)modifierFlags Returns an integer bitfield containing modifier-key flags.

– (NSTimeInterval)timestamp Returns the time the event occurred in seconds since
system startup.

– (NSEventType)type Returns the type of the event (left-mouse-up,
right-mouse-dragged, key-down, etc.).

– (NSWindow *)window Returns the window object associated with the event.

– (int)windowNumber Returns the number of the window associated with the
event.

Classes: NSEvent1-103OpenStep Specification—10/19/94

Getting Key Event Information

– (NSString *)characters Returns the character code (a string of characters generated
by the key event).

– (NSString *)charactersIgnoringModifiers Returns the string of characters generated by the key event
as if no modifier key had been pressed (except for
Shift).

– (BOOL)isARepeat Returns whether the key event is being repeated (user is
holding down the key).

– (unsigned short)keyCode Returns the code that maps to a key on the keyboard.

Getting Mouse Event Information

– (int)clickCount Returns the number of mouse clicks associated with the
mouse event.

– (int)eventNumber Returns the event number of the latest mouse-down event.
This information is also useful for handling tracking
events.

– (float)pressure Returns a value indicating the pressure applied to the input
device (used for appropriate devices, not mice).

Getting Tracking Event Information

– (int)trackingNumber Returns the number that identifies the tracking rectangle.

– (void *)userData Returns data arbitrarily associated with the event.

Requesting Periodic Events

+ (void)startPeriodicEventsAfterDelay:(NSTimeInterval)delaySeconds
withPeriod: (NSTimeInterval)periodSeconds Start generating periodic events with frequency

periodSeconds after delay delaySeconds for current
thread.

+ (void)stopPeriodicEvents Stop generating periodic events for current thread, and
discard any periodic events remaining in the queue.

Getting Information about Specially Defined Events

– (int)data1 Returns special data associated with the event.

– (int)data2 Returns special data associated with the event.

– (short)subtype Returns the identifier of the specially defined event.

OpenStep Specification—10/19/941-104 Chapter 1: Application Kit

NSFont

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSFont.h

Class Description

The NSFont class declares the programmatic interface to objects that correspond to fonts. NSFont is in principle
an abstract class that represents fonts in general, not just PostScript fonts. In practice, at this time, NSFont objects
represent PostScript fonts. Each NSFont object records a font’s name, size, style, and matrix. When an NSFont
object receives a set message, it establishes its font as the current font in the PostScript Server’s current graphics
state.

For a given application, only one NSFont object is created for a particular PostScript font/size or font/matrix
combination. That is—if you ask for 24-point Optima, a new font object is created for 24-point Optima if such an
object doesn’t exist already. When the NSFont class object receives a message to create a new object for a particular
font, it first checks whether an object has already been created for that font. If so, the the NSFont class object returns
the existing font object; otherwise, the the NSFont class object creates a new font object and returns it.

This sharing of NSFont objects minimizes the number of distinct font objects created. It also implies that no one
object in your application can know whether it has the only reference to a particular NSFont object. Thus, NSFont
objects shouldn’t be deallocated, but should be treated like auto-released Foundation class objects.

Where matrix is used, it refers to a PostScript-style six-element array of numbers that indicate transformations to
be applied to a font. An NSFontIdentityMatrix identifies a font matrix used for fonts created by specifying a size.

The size of a font in the method definitions is defined in “points”, which in currently accepted practice, are actually
PostScript units—a PostScript unit being defined as 1/72 of an inch, or 0.0139 of an inch. In metric equivalents, a
PostScript unit is 0.3528 millimetres. PostScript “points” are minimally different from “printer’s points”, so for all
intents and purposes you can think of PostScript units and points as interchangeable.

In general, you instantiate an NSFont object by sending one of the methods listed in “Creating a Font Object” to
the NSFont class object. The methods with system and user in their names obtain special pre-determined fonts
defined at the system level and the application level, respectively. In general, you would use the
fontWithName:size: and fontWithName:matrix: methods to obtain a named font.

A variety of methods are available for querying a font object. In particular, AFM (Adobe Font Metrics) data can be
obtained by invoking afmDictionary or afmFileContents.

Methods whose descriptions state “Returns…and matrix NSFontIdentityMatrix” actually return an
NSFontIdentityMatrix whose first and fourth elements are multiplied by the current size of the font.

Classes: NSFont1-105OpenStep Specification—10/19/94

Exceptions

Methods listed in “Creating a Font Object” can all raise a NSFontUnavailableException if the requested font can’t
be constructed.

Creating a Font Object

+ (NSFont *)boldSystemFontOfSize:(float)fontSize Returns the font object representing the bold system font
of size fontSize and matrix NSFontIdentityMatrix.

+ (NSFont *)fontWithName: (NSString *)fontName matrix: (const float *)fontMatrix
Returns a font object for font fontName and matrix

fontMatrix.

+ (NSFont *)fontWithName: (NSString *)fontName size:(float)fontSize
Returns a font object for font fontName of size fontSize.

+ (NSFont *)systemFontOfSize:(float)fontSize Returns the font object representing the system font of size
fontSize and matrix NSFontIdentityMatrix.

+ (NSFont *)userFixedPitchFontOfSize:(float)fontSize
Returns the font object representing the application’s

fixed-pitch font of size fontSize and matrix
NSFontIdentityMatrix.

+ (NSFont *)userFontOfSize:(float)fontSize Returns the font object representing the application’s
standard font of size fontSize and matrix
NSFontIdentityMatrix.

Setting the Font

+ (void)setUserFixedPitchFont:(NSFont *)aFont Sets the fixed-pitch font used by default in the application
to aFont.

+ (void)setUserFont:(NSFont *)aFont Sets the standard font used by default in the application to
aFont.

+ (void)useFont:(NSString *)fontName Registers that fontName is used in the document. This
information is used by the printing machinery

– (void)set Makes this font the graphic state’s current font.

Querying the Font

– (NSDictionary *)afmDictionary Returns the font’s AFM dictionary if the font has an AFM
file. The return value can possibly be nil , so you must
check to determine if a non-nil value was actually
returned.

OpenStep Specification—10/19/941-106 Chapter 1: Application Kit

– (NSString *)afmFileContents Returns the raw contents of the entire AFM file, in terms of
strings, if the font has an AFM file. If the font does not
have an AFM file, this method returns nil .

– (NSRect)boundingRectForFont Returns the bounding rectangle for the font. This is the
font’s FontBBox field scaled to the current size of the
font.

– (NSString *)displayName Returns the full name of the font as displayed in the font
panel. This is the localized version of the font’s name. It
is not necessarily the FullName field of the font.

– (NSString *)familyName Returns the name of the font’s family.

– (NSString *)fontName Returns the name of the font.

– (BOOL)isBaseFont Indicates whether the font is a base font, as opposed to a
composite font.

– (const float *)matrix Returns a pointer to an array of six floats representing the
font’s matrix. You should not alter the data pointed to by
matrix. If you wish to change values for any reason you
must make a copy of the matrix

– (float)pointSize Returns the size of the font in points.

– (NSFont *)printerFont Returns the printer font for the font, if the receiving font
object is a screen font. Else, this method returns self.

– (NSFont *)screenFont Returns the screen font for the font, if there is one. Else this
method returns self.

– (float)widthOfString: (NSString *)string Returns the width of string in the font. Use this method
with caution: it assumes that the characters in stringcan
all actually be rendered in the font. It uses lossy
encoding methods in NSString to get the character data.

– (float *)widths Returns a pointer to an array representing the widths of the
glyphs in the font.

Manipulating Glyphs

– (NSSize)advancementForGlyph:(NSGlyph)aGlyph
Returns the horizontal and vertical advancement for

aGlyph. That is, this method returns the amount by
which the current point would be displaced in both x
and y if the specified glyph were rendered in the current
font and size. In general, the y component of the
displacement for “Western” fonts will be zero.

Classes: NSFont1-107OpenStep Specification—10/19/94

– (NSRect)boundingRectForGlyph:(NSGlyph)aGlyph
Returns a bounding rectangle for aGlyph, scaled to the

font’s actual size and matrix.

– (BOOL)glyphIsEncoded:(NSGlyph)aGlyph Indicates whether aGlyph is encoded. That is, aGlyph is
present in the encoding for the font.

– (NSPoint)positionOfGlyph: (NSGlyph)curGlyph Returns curGlyph’s position when it follows prevGlyph.
precededByGlyph:(NSGlyph)prevGlyph nominal is a pointer to a BOOL. If not nil , this method
isNominal:(BOOL *)nominal fills in nominal with YES, to indicate that the position

has been modified by kerning information, and NO to
indicate that no kerning information was present.

OpenStep Specification—10/19/941-108 Chapter 1: Application Kit

NSFontManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSFontManager.h

Class Description

NSFontManager declares the programmatic interface to objects that manage font conversion in an application.
NSFontManager is the center of activity for font conversion. NSFontManager accepts messages from font
conversion user-interface objects such as the Font menu or the Font panel (see NSFontPanel for more details) and
appropriately converts the current font in the selection by sending a changeFont: message up the responder chain.

When an object receives a changeFont: message, it should message NSFontManager (by sending it a convertFont:
message), asking it to convert the font in whatever way the user has specified. Thus, any object containing a font
that can be changed should respond to the changeFont: message by sending a convertFont: message back to the
NSFontManager for each font in the selection.

To use NSFontManager, you simply insert a Font menu into your application’s menu using the appropriate interface
construction tools (such as Interface Builder). You can also obtain a Font menu by sending a getFontMenu:
message to NSFontManager and then inserting the menu it returns into the application’s main menu. Once the Font
menu is installed, your application automatically gains the functionality of both the Font menu and the Font panel.

NSFontManager’s delegate can restrict which font names will appear in the Font Panel. See “Methods Implemented
by the Delegate” at the end of this class specification for more information.

NSFontManager can be used to convert a font or find out the attributes of a font. It can also be overridden to convert
fonts in some application-specific manner. The default implementation of font conversion is very conservative: The
font isn’t converted unless all traits of the font can be maintained across the conversion.

Generally, you obtain an instance of NSFontManager by sending a sharedFontManager message to the
NSFontManager class object. NSFontManager will return a font manager object that is shared within your
application. NSFontManager normally returns a pre-defined font manager object, but the actual object which is
returned can be changed by previously invoking the setFontManagerFactory factory to some other kind of object.

Font Traits

Fonts work mainly in terms of traits, or characteristics, such as bold, italic, condensed, and so on. Traits are
described by a collection of constants such as NSItalicFontMask, NSBoldFontMask, and so on. The full
complement of traits are defined in AppKit/NSFontManager.h. The values of traits are defined in bitwise form
so they can be or’ed together, although some traits, such as NSBoldFontMask and NSUnboldFontMask naturally
conflict and have the effect of turning each other off. You use one of the convertFont… methods to obtain a font
of the desired characteristics from an existing font.

Classes: NSFontManager1-109OpenStep Specification—10/19/94

The convertFont:toHaveTrait: and the convertFont:toNotHaveTrait: methods deal with only one trait at a time.
To convert a font to have (or not have) multiple traits, you must invoke these methods for each separate trait you
wish to add to or remove from the font. Alternatively, use the fontWithFamily:traits:weight:size: method to
specify multiple traits in one invocation.

The size of a font in the method definitions below is defined in “points”, which, in the current milieu, are actually
PostScript units—a PostScript unit being defined as 1/72 of an inch, or 0.0139 of an inch. In metric equivalents, a
PostScript unit is 0.3528 millimetres. PostScript “points” are minimally different from “printer’s points”, so for all
intents and purposes you can think of PostScript units and points as interchangeable.

The weight of a font as used in these methods is simply a value representing a point in a continuum of font weights
from lightest to heaviest. There’s no simple one-to-one mapping of some integer value to, say, a bold weight. If you
query the font for its weight value, increment the value, and use it as a new weight, you’ll not necessarily obtain a
different face (such as a transition from medium to bold) in a new instance of the font.

Managing the FontManager

+ (void)setFontManagerFactory:(Class)classId Sets the class used to create the NSFontManager.

+ (void)setFontPanelFactory:(Class)classId Sets the class used to create the FontPanel.

+ (NSFontManager *)sharedFontManager Returns a shared FontManager.

Converting Fonts

– (NSFont *)convertFont:(NSFont *)fontObject Converts fontObject according to the user’s selections from
the Font panel or the Font menu.

– (NSFont *)convertFont:(NSFont *)fontObject Returns a Font object whose traits are the same as those of
toFamily: (NSString *)family fontObject except as specified by family.

– (NSFont *)convertFont:(NSFont *)fontObject Returns a Font object whose traits are the same as those of
toFace:(NSString *)typeface fontObject except as specified by typeface.

– (NSFont *)convertFont:(NSFont *)fontObject Returns a Font object whose traits are the same as those of
toHaveTrait: (NSFontTraitMask)trait fontObject except as altered by the addition of the traits

specified by trait.

– (NSFont *)convertFont:(NSFont *)fontObject Returns a Font object whose traits are the same as those of
toNotHaveTrait: (NSFontTraitMask)trait fontObject except as altered by the removal of the traits

specified by trait.

– (NSFont *)convertFont:(NSFont *)fontObject Returns a Font object whose traits are the same as those of
toSize:(float)size fontObject except as specified by size.

– (NSFont *)convertWeight:(BOOL)upFlag Attempts to increase (if upFlag is YES) or decrease (if
ofFont:(NSFont *)fontObject upFlag is NO) the weight of the font specified by

fontObject.

OpenStep Specification—10/19/941-110 Chapter 1: Application Kit

– (NSFont *)fontWithFamily: (NSString *)family Tries to find a font that matches the specified
traits: (NSFontTraitMask)traits characteristics.
weight:(int)weight
size:(float)size

Setting and Getting Parameters

– (SEL)action Gets the action sent by the FontManager.

– (NSArray *)availableFonts Provides an array listing all available fonts.

– (NSMenu *)fontMenu: (BOOL)create Returns the Font menu, creating one if it doesn’t exist and
create is YES.

– (NSFontPanel *)fontPanel:(BOOL)create Returns the Font panel, creating one if it doesn’t exist and
create is YES.

– (BOOL)isEnabled Returns whether the Font panel and menu are enabled.

– (BOOL)isMultiple Returns whether the selection contains multiple fonts.

– (NSFont *)selectedFont Returns the first font in the current selection

– (void)setAction:(SEL)aSelector Sets the action to that specified by aSelector to be sent by
the FontManager when the user selects a new font.

– (void)setEnabled:(BOOL)flag Enables or disables the Font panel and menu depending on
flag.

– (void)setFontMenu:(NSMenu *)newMenu Sets the font menu to newMenu.

– (void)setSelectedFont:(NSFont *)fontObject Notifies FontManager of the selection’s current font from
isMultiple: (BOOL)flag fontObject with flag indicating whether the selection

has multiple fonts.

– (NSFontTraitMask)traitsOfFont: (NSFont *)fontObject
Returns the font traits of fontObject.

– (int)weightOfFont:(NSFont *)fontObject Returns the font weight of fontObject.

Target and Action Methods

– (BOOL)sendAction Dispatches the action message up the responder chain.

Assigning a Delegate

– (id)delegate Returns the FontManager’s delegate.

– (void)setDelegate:(id)anObject Sets the FontManager’s delegate to anObject.

Classes: NSFontManager1-111OpenStep Specification—10/19/94

Methods Implemented by the Delegate

– (BOOL)fontManager:(id)sender willIncludeFont: (NSString *)fontName
Responds to a message informing the FontManager’s

delegate that the FontPanel is about to include
fontName in the list displayed to the user; if this method
returns NO, the font isn’t added; otherwise, it is.

OpenStep Specification—10/19/941-112 Chapter 1: Application Kit

NSFontPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSFontPanel.h

Class Description

The NSFontPanel class declares the programmatic interface to a user-interface object that displays a list of available
fonts, enabling users to preview them and change the typefaces in which text is displayed. Actual changes to text
are effected through conversion messages sent to the NSFontManager. There is only one NSFontPanel object for
each application.

In general, you add the facilities of the NSFontPanel (and of the other components of the font conversion system:
the NSFontManager and the Font menu) to your application through interface construction tools (such as Interface
Builder). You do this by including a Font menu into one of your application’s menus. At runtime, when the user
chooses the Font Panel command for the first time, the NSFontPanel object is created and hooked into the font
conversion system. You can also create (or access) NSFontPanel through the sharedFontPanel method.

An NSFontPanel can be customized by adding an additional NSView object or hierarchy of NSView objects by
using the setAccessoryView: method. If you want the NSFontManager to instantiate a panel object from some
class other than NSFontPanel, use the NSFontManager’s setFontPanelFactory: method. See NSFontManager for
details on the font manager object that performs font conversion tasks.

Creating an NSFontPanel

+ (NSFontPanel *)sharedFontPanel Returns an NSFontPanel object.

– (NSFont *)panelConvertFont:(NSFont *)fontObject

Returns a Font object whose traits are the same as those of
fontObject except as specified by the user’s choices in
the Font Panel.

Setting the Font

– (void)setPanelFont:(NSFont *)fontObject Sets the FontPanel’s current font from fontObject with flag
 isMultiple: (BOOL)flag indicating whether it contains multiple fonts.

Classes: NSFontPanel1-113OpenStep Specification—10/19/94

Configuring the NSFontPanel

– (NSView *)accessoryView Returns the application-customized view.

– (BOOL)isEnabled Returns whether the FontPanel’s Set button is enabled.

– (void)setAccessoryView:(NSView *)aView Adds aView above the action buttons at the bottom of the
panel.

– (void)setEnabled:(BOOL)flag Enables or disables the FontPanel’s Set button depending
on flag.

– (BOOL)worksWhenModal Returns whether FontPanel works when another window is
modal.

Displaying the NSFontPanel

– (void)orderWindow: (NSWindowOrderingMode)place
relativeTo:(int)otherWindows Repositions the FontPanel above or below the other

windows otherWindows as indicated by place and
updates the FontPanel if necessary.

OpenStep Specification—10/19/941-114 Chapter 1: Application Kit

NSForm

Inherits From: NSMatrix : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSForm.h

Class Description

An NSForm is an NSMatrix that contains titled entries (text fields) into which a user can type data values. Entries
are indexed from the top down (starting with zero). Each item in the NSForm, including the titles, is an
NSFormCell. A mouse click on an NSFormCell (that is, on the title or in the entry area) starts text editing in that
entry. If the user presses the Return or Enter key while editing an entry, the action of the entry is sent to the target
of the entry, or—if the entry doesn't have an action—the NSForm sends its action to its target. If the user presses
the Tab key, the next entry in the NSForm is selected; if the user presses Shift-Tab, the previous entry is selected.

For more information, see the NSFormCell and NSMatrix class specifications.

Laying Out the Form

– (NSFormCell *)addEntry: (NSString *)title Adds and returns a new entry with title as its title at the end
of the Form.

– (NSFormCell *)insertEntry: (NSString *)title Inserts a new entry at index with title as its title.
atIndex:(int)index

– (void)removeEntryAtIndex: (int)index Removes the entry at index.

– (void)setInterlineSpacing:(float)spacing Sets the spacing between entries to spacing.

Finding Indices

– (int)indexOfCellWithTag: (int)aTag Returns the index for the entry with tag aTag.

– (int)indexOfSelectedItem Returns the index of the currently selected entry.

Modifying Graphic Attributes

– (void)setBezeled:(BOOL)flag Sets whether entries have a bezeled border.

– (void)setBordered:(BOOL)flag Sets whether the entries have a plain border.

– (void)setTextAlignment:(int)mode Sets how text is aligned within the entries to mode.

– (void)setTextFont:(NSFont *)fontObject Sets the font used to draw entry text to fontObject.

Classes: NSForm1-115OpenStep Specification—10/19/94

– (void)setTitleAlignment:(NSTextAlignment)mode Sets how titles are aligned to mode.

– (void)setTitleFont:(NSFont *)fontObject Sets the font used to draw entry titles to fontObject.

Setting the Cell Class

+ (Class)cellClass Returns the class last set in a setCellClass: message, or the
NSFormCell class if setCellClass: has never been
called.

+ (void)setCellClass:(Class)classId Sets the class of NSCell used in the NSForm.

Getting a Cell

– (id)cellAtIndex: (int)index Returns the Cell at index.

Displaying a Cell

– (void)drawCellAtIndex: (int)index Displays the Cell at the specified index.

Editing Text

– (void)selectTextAtIndex:(int)index Selects the text in the entry at index.

Resizing the Form

– (void)setEntryWidth: (float)width Sets the width of all the entries (including the title part) to
width.

OpenStep Specification—10/19/941-116 Chapter 1: Application Kit

NSFormCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSFormCell.h

Class Description

This class is used to implement entries in an NSForm. It displays a title within itself, on the left-hand side of the
cell. Editing is allowed only in the remaining (right-hand) portion.

See the NSForm class specification for more on the use of NSFormCell.

Initializing an NSFormCell

– (id)initTextCell: (NSString *)aString Initializes a new NSFormCell with aString as its title.

Determining an NSFormCell’s Size

– (NSSize)cellSizeForBounds:(NSRect)aRect Calculates the NSFormCell’s size within aRect.

Determining Graphic Attributes

– (BOOL)isOpaque Returns whether the NSFormCell is opaque.

Modifying the Title

– (void)setTitle:(NSString *)aString Sets the NSFormCell’s title to aString.

– (void)setTitleAlignment:(NSTextAlignment)mode Sets the alignment of the title to mode.

– (void)setTitleFont:(NSFont *)fontObject Sets the font used to draw the title to fontObject.

– (void)setTitleWidth: (float)width Sets the width of the NSFormCell’s title field to width.

– (NSString *)title Returns the NSFormCell’s title.

– (NSTextAlignment)titleAlignment Returns the alignment of the title.

– (NSFont *)titleFont Returns the font used to draw the title.

Classes: NSFormCell1-117OpenStep Specification—10/19/94

– (float)titleWidth Returns the width of the title.

– (float)titleWidth: (NSSize)aSize Returns the width of the title, constrained to aSize.

Displaying

– (void)drawInteriorWithFrame: (NSRect)cellFrameDraws only the editable text portion of the FormCell.
inView: (NSView *)controlView

OpenStep Specification—10/19/941-118 Chapter 1: Application Kit

NSHelpPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSHelpPanel.h

Class Description

The NSHelpPanel class is the central component of the OpenStep help system. It provides the Help panel that
displays the text and illustrations that constitute your application’s help information. The NSHelpPanel class object
itself stores the table of associations between an application’s user-interface objects and specific passages of the
help text.

Users can display the Help panel by choosing the Help command from an application’s Info menu. The panel
employs the metaphor of a book: It displays a table of contents, body text, and an index. Users can browse through
the text by clicking entries in the table of contents or index. The panel also supports hypertext-like help links, which
appear as diamond-shaped images within the text and allow the user to easily follow cross references. By using the
help cursor and clicking user-interface objects, the user can query the Help panel for information associated with
those objects.

The Help Text

An NSHelpPanel object looks in a language-specific directory within the application’s file package for the text that
it will display. (Some implementations may employ more efficient means of storage than files and directories.) For
example, if the user’s language preference is English, the panel searches for a directory named Help within the
English.lproj directory of the application’s file package. It searches for two files: TableOfContents.rtf and
Index.rtfd . There may also be one or more files containing the body text that the Help panel will display. The
table-of-contents, index, and body files are interconnected by a system of help links and help markers.

A help marker is a named position holder in the stream of text—in most cases, it’s invisible to users. A help link is
a diamond-shaped button embedded in the text. Help links store a file name and, optionally, a help marker name.
When a user clicks a help link, the Help panel displays the named file. If the help link also stores a marker name,
the displayed file is scrolled to the position of the marker, and the text is selected from the marker’s position to the
end of the line.

Table-of-Contents and Index Files

The table-of-contents and index files are specially designed documents in Rich Text Format (RTF). An
NSHelpPanel object identifies these files by name (TableOfContents.rtf and Index.rtfd) and processes them
differently than it does other help files.

The table-of-contents file should contain one entry for each help text file in the help directory. Each entry begins
with a help link that stores the name of the destination file for that entry. Following the link is the text of the entry,

Classes: NSHelpPanel1-119OpenStep Specification—10/19/94

which may wrap and span several lines. Although the table of contents in the Help panel looks like it’s displayed
by an NSMatrix, it’s actually displayed by a modified NSText object. Thus, you can use the full generality of RTF
to format your table of contents.

The index file is structured similarly although there is no enforced one-to-one mapping. Generally, the help link
that begins an index entry stores both a file name and a marker name, since an index entry usually points to a specific
word or phrase within a file.

Generic Help Files

An application’s Help directory can contain only table-of-contents and index files, and yet the application may be
able to display numerous help subjects, each of a general nature. This is because OpenStep applications have access
to generic help files contained in a directory found in a system-specific location.

When a help link is being resolved, the NSHelpPanel first looks for the specified file within the appropriate
language.lproj/Help directory of the application’s file package. If the file isn’t found, it then searches the directory
of generic help files. This search path is used for all links, whether they are in the table of contents, index, or body
text.

If one of these generic help files is inappropriate for your application, you have two remedies: You can remove the
table-of-contents and index entries that refer to it, or you can override the file with one that’s more appropriate. By
placing a file of the same name and relative location within your application’s Help directory, NSHelpPanel will
display it rather than the generic file.

Associating Help Text with Objects

The NSHelpPanel class stores associations between user-interface objects and help text. When the user presses the
Help modifier key (which varies depending on the hardware running the application), a question mark cursor
appears. If the user clicks an object using this cursor, the Help panel displays the associated help text.

You can attach a help file to a user-interface object programmatically, by sending an
attachHelpFile:markerName:to: message to the NSHelpPanel class object. This method takes a file name, a
marker name, and an object id as its arguments. The detachHelpFrom: message removes such an association.

Just as with help links, an NSHelpPanel searches both the application’s file package and the generic help files in
attempting to find the file associated with a particular user-interface object.

Hidden Files

Although in general there’s a one-to-one relationship between table-of-contents entries and files in the Help
directory, you can force a single table-of-contents entry to represent multiple “hidden” files. This can be useful in
reducing the overall length of the table of contents.

Hidden files can’t be accessed from the table of contents; rather, the user must find them by Help-clicking an object
in the application’s user interface, by using the Help Panel’s Find command, by using the index, or by following a
help link from some other file. However, when a hidden file is displayed, the Help panel must select some entry in
the table of contents.

OpenStep Specification—10/19/941-120 Chapter 1: Application Kit

Conversely, when the user selects such a table-of-contents entry, the Help panel must display one of the files in the
directory of hidden files; by convention, this file must be named Prolog.rtfd . The prolog file typically informs users
that they can get help on a particular user-interface object by Help-clicking that object.

The Help panel’s Find button searches through all the files that are connected to table-of-contents entries, first
looking in the application’s Help directory and then in the generic help material. If you don’t want some hidden
file in the generic help material to appear in your application’s Help panel as the result of a Find operation, override
the file with an empty file of the same name. Since the file is empty, no search string will ever be found in it, and it
will effectively block the generic file of the same name from being searched.

Searching the Help Text

By clicking the Help panel’s Find button, users can search the help text for strings. NSHelpPanel uses two
approaches to locate text containing a specific string. First, it attempts to find the string in the currently displayed
help text by sending the object that displays the text (an instance of NSCStringText) a
findText:ignoreCase:backwards:wrap: message. If the search is unsuccessful, or if the search is continued past
the last occurrence of the string in the current file, the NSHelpPanel object scans for the string in other help files,
both within the application’s help files and within the generic help files. Some implementations of NSHelpPanel
may make use of a previously built index of all the help text to speed this search.

Help Supplements

Since in OpenStep an application may load executable modules dynamically (for example, a drawing program
could allow the user to load a new drawing tool), an NSHelpPanel object provides the ability to load supplemental
help information. When the application loads the module, it sends the NSHelpPanel object an
addSupplement:inPath: message to inform the object of the location of the new help supplement. The
NSHelpPanel object appends the contents of the supplement’s TableOfContents.rtf to the existing table of
contents, so the supplement should have a title that clearly sets it off from the main part of the table of contents, for
example:

—Pattern Tool Supplement—

Pattern Options
Brick

Stucco

Wood

Tile

Custom

Resizing and Rotating
Blending Patterns
Index to Supplement

The supplement’s index is only accessible from the table of contents; the Help panel’s Index button displays only
the main index.

Classes: NSHelpPanel1-121OpenStep Specification—10/19/94

Accessing the Help Panel

+ (NSHelpPanel *)sharedHelpPanel Creates, if necessary, and returns the NSHelpPanel object.

+ (NSHelpPanel *)sharedHelpPanelWithDirectory:(NSString *)helpDirectory
Creates, if necessary, and returns the NSHelpPanel object.

If the panel is created, it loads the help directory
specified by helpDirectory. The help directory must
reside in the main bundle. If a Help panel already exists
but has loaded a help directory other than
helpDirectory, a second panel will be created.

Managing the Contents

+ (void)setHelpDirectory:(NSString *)helpDirectory Initializes the panel to display the help text found in
helpDirectory. By default, the receiver looks for a
directory named “Help”.

– (void)addSupplement:(NSString *)helpDirectory Append additional help entries to the Help panel’s table of
inPath:(NSString *)supplementPath contents.

– (NSString *)helpDirectory Returns the absolute path of the help directory.

– (NSString *)helpFile Returns the path of the currently loaded help file.

Attaching Help to Objects

+ (void)attachHelpFile:(NSString *)filename Associates the help file filename and markerName with
markerName:(NSString *)markerName anObject.
to:(id)anObject

+ (void)detachHelpFrom:(id)anObject Removes any help information associated with anObject.

Showing Help

– (void)showFile:(NSString *)filename Causes the panel to display the help contained in filename
atMarker: (NSString *)markerName at markerName.

– (BOOL)showHelpAttachedTo:(id)anObject Causes the panel to display help attached to anObject.

Printing

– (void)print: (id)sender Prints the currently displayed help text.

OpenStep Specification—10/19/941-122 Chapter 1: Application Kit

NSImage

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImage.h

Class Description

An NSImage object contains an image that can be composited anywhere without first being drawn in any particular
view. It manages the image by:

• Reading image data from the application bundle, from an NSPasteboard, or from an NSData object.

• Keeping multiple representations of the same image.

• Choosing the representation that’s appropriate for a particular data type.

• Choosing the representation that’s appropriate for any given display device.

• Caching the representations it uses by rendering them in off-screen windows.

• Optionally retaining the data used to draw the representations, so that they can be reproduced when needed.

• Compositing the image from the off-screen cache to where it’s needed on-screen.

• Reproducing the image for the printer so that it matches what’s displayed on-screen, yet is the best
representation possible for the printed page.

• Automatically using any filtering services installed by the user to convert image data from unsupported
formats to supported formats.

Defining an Image

An image can be created from various types of data:

• Encapsulated PostScript code (EPS)

• Bitmap data in Tag Image File Format (TIFF)

• Untagged (raw) bitmap data

• Other image data supported by an NSImageRep subclass registered with the NSImage class

• Data that can be filtered to a supported type by a user-installed filter service

Classes: NSImage1-123OpenStep Specification—10/19/94

If data is placed in a file (for example, in an application bundle), the NSImage object can access the data whenever
it’s needed to create the image. If data is read from an NSData object, the NSImage object may need to store the
data itself.

Images can also be defined by the program, in two ways:

• By drawing the image in an off-screen window maintained by the NSImage object. In this case, the NSImage
maintains only the cached image.

• By defining a method that can be used to draw the image when needed. This allows the NSImage to delegate
responsibility for producing the image to some other object.

Image Representations

An NSImage object can keep more than one representation of an image. Multiple representations permit the image
to be customized for the display device. For example, different hand-tuned TIFF images can be provided for
monochrome and color screens, and an EPS representation or a custom method might be used for printing. All
representations are versions of the same image.

An NSImage returns an NSArray of its representations in response to a representations message. Each
representation is a kind of NSImageRep object:

NSEPSImageRep An image that can be recreated from EPS data that’s either stored by the object
or at a known location in the file system.

NSBitmapImageRep An image that can be recreated from bitmap or TIFF data.

NSCustomImageRep An image that can be redrawn by a method defined in the application.

NSCachedImageRep An image that has been rendered in an off-screen cache from data or
instructions that are no longer available. The image in the cache provides the
only data from which the image can be reproduced.

You can define other NSImageRep subclasses for objects that render images from other types of source data. To
make these new subclasses available to an NSImage object, they need to be added to the NSImageRep class registry
by invoking the registerImageRepClass: class method. NSImage determines the data types that each subclass can
support by invoking its imageUnfilteredFileTypes and imageUnfilteredPasteboardTypes methods.

Choosing Representations

The NSImage object will choose the representation that best matches the rendering device. By default, the choice
is made according to the following set of ordered rules. Each rule is applied in turn until the choice of representation
is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale representation for a monochrome device.

2. Choose a representation with a resolution that matches the resolution of the device, or if no representation
matches, choose the one with the highest resolution.

OpenStep Specification—10/19/941-124 Chapter 1: Application Kit

By default, any image representation with a resolution that’s an integer multiple of the device resolution is
considered to match. If more than one representation matches, the NSImage will choose the one that’s
closest to the device resolution. However, you can force resolution matches to be exact by passing NO to the
setMatchesOnMultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution, over EPS representations,
which don’t. However, you can use the setUsesEPSOnResolutionMismatch: method to have the NSImage
choose an EPS representation in case a resolution match isn’t possible.

3. If all else fails, choose the representation with a specified bits per sample that matches the depth of the
device. If no representation matches, choose the one with the highest bits per sample.

By passing NO to the setPrefersColorMatch: method, you can have the NSImage try for a resolution match before
a color match. This essentially inverts the first and second rules above.

If these rules fail to narrow the choice to a single representation—for example, if the NSImage has two color TIFF
representations with the same resolution and depth—the one that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NSImage object chooses the representation that’s best for the
destination display device, as outlined above. It renders the representation in an off-screen window on the same
device, then composites it from this cache to the desired location. Subsequent requests to composite the image use
the same cache. Representations aren’t cached until they’re needed for compositing.

When printing, the NSImage tries not to use the cached image. Instead, it attempts to render on the printer—using
the appropriate image data, or a delegated method—the best version of the image that it can. Only as a last resort
will it image the cached bitmap.

Image Size

Before an NSImage can be used, the size of the image must be set, in units of the base coordinate system. If a
representation is smaller or larger than the specified size, it can be scaled to fit.

If the size of the image hasn’t already been set when the NSImage is provided with a representation, the size will
be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The TIFF fields
“ImageLength” and “ImageWidth” are used to determine the size of an NSBitmapImageRep.

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate system; they can’t be rotated or flipped.
When composited, an image maintains this orientation, no matter what coordinate system it’s composited to. (The
destination coordinate system is used only to determine the location of a composited image, not its size or
orientation.)

It’s possible to refer to portions of an image when compositing by specifying a rectangle in the image’s coordinate
system, which is identical to the base coordinate system, except that the origin is at the lower left corner of the
image.

Classes: NSImage1-125OpenStep Specification—10/19/94

Named Images

An NSImage object can be identified either by its id or by a name. Assigning an NSImage a name adds it to a table
kept by the class object; each name in the database identifies one and only one instance of the class. When you ask
for an NSImage object by name (with the imageNamed: method), the class object returns the one from its database,
which also includes all the system bitmaps provided by the Application Kit. If there’s no object in the database for
the specified name, the class object tries to create one by checking for a system bitmap of the same name, checking
the name of the application’s own image, and then checking for the image in the application’s main bundle.

If a section or file matches the name, an NSImage is created from the data stored there. You can therefore create
NSImage objects simply by including EPS or TIFF data for them within the executable file, or in files inside the
application’s file package.

Image Filtering Services

NSImage is designed to automatically take advantage of user-installed filter services for converting unsupported
image file types to supported image file types. The class method imageFileTypes returns an array of all file types
from which NSImage can create an instance of itself. This list includes all file types supported by registered
subclasses of NSImageRep, and those types that can be converted to supported file types through a user-installed
filter service.

Initializing a New NSImage Instance

– (id)initByReferencingFile:(NSString *)filename Initializes the new NSImage from the data in filename. The
file is assumed to persist and may be reread later if the
NSImage is resized or otherwise modified.

– (id)initWithContentsOfFile: (NSString *)filename
Initializes the new NSImage from the data in filename.

– (id)initWithData: (NSData *)data Initializes the new NSImage from data.

– (id)initWithPasteboard: (NSPasteboard *)pasteboard
Initializes the new NSImage with the data in pasteboard.

– (id)initWithSize: (NSSize)aSize Initializes the new NSImage to the specified size.

Setting the Size of the Image

– (void)setSize:(NSSize)aSize Sets the size of the image to aSize in base coordinates.

– (NSSize)size Returns the size of the image.

Referring to Images by Name

+ (id)imageNamed:(NSString *)name Returns the NSImage object having name. Searches the
main bundle for the image if necessary.

OpenStep Specification—10/19/941-126 Chapter 1: Application Kit

– (BOOL)setName:(NSString *)name Assigns name to be the receiver’s name. Returns NO if
name is already in use; otherwise, returns YES.

– (NSString *)name Returns the receiver’s name.

Specifying the Image

– (void)addRepresentation:(NSImageRep *)imageRep
Adds imageRep to the receiver’s list of representations.

– (void)addRepresentations:(NSArray *)imageRepArray
Adds the imageReps from imageRepArray to the receiver’s

list of representations.

– (void)lockFocus Prepares for drawing in the best representation.

– (void)lockFocusOnRepresentation:(NSImageRep *)imageRep
Prepares for drawing in imageRep.

– (void)unlockFocus Balances a previous lockFocus or
lockFocusOnRepresentation:.

Using the Image

– (void)compositeToPoint:(NSPoint)aPoint Composites the image to aPoint using the operation op.
operation:(NSCompositingOperation)op

– (void)compositeToPoint:(NSPoint)aPoint Composites the aRect portion of the image to aPoint using
fromRect:(NSRect)aRect the operation op.
operation:(NSCompositingOperation)op

– (void)dissolveToPoint:(NSPoint)aPoint Composites the image to aPoint using the dissolve
fraction: (float)aFloat operator. aFloat is a value from 0.0 to 1.0 that

determines how much of the resulting composite comes
from the receiver.

– (void)dissolveToPoint:(NSPoint)aPoint Composites the aRect portion of the image to aPoint using
fromRect:(NSRect)aRect the dissolve operator. aFloat is a value from 0.0 to 1.0
fraction: (float)aFloat that determines how much of the resulting composite

comes from the receiver.

Choosing Which Image Representation to Use

– (void)setPrefersColorMatch:(BOOL)flag Determines whether color matches are preferred.

– (BOOL)prefersColorMatch Returns whether color matches are preferred.

– (void)setUsesEPSOnResolutionMismatch:(BOOL)flag
Sets whether to use EPS representations on mismatch.

Classes: NSImage1-127OpenStep Specification—10/19/94

– (BOOL)usesEPSOnResolutionMismatch Returns whether to use EPS representations on mismatch.

– (void)setMatchesOnMultipleResolution:(BOOL)flag
Sets whether resolution multiples match.

– (BOOL)matchesOnMultipleResolution Returns whether resolution multiples match.

Getting the Representations

– (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription
Returns the best representation for the device described by

deviceDescription. If deviceDescription is nil , the
current device is assumed. See NSGraphics.h for
appropriate dictionary keys and values.

– (NSArray *)representations Returns an array of all the representations.

– (void)removeRepresentation:(NSImageRep *)imageRep
Removes imageRep from the receiver’s list of

representations.

Determining How the Image is Stored

– (void)setCachedSeparately:(BOOL)flag Sets whether representations are cached separately.

– (BOOL)isCachedSeparately Returns whether representations are cached separately.

– (void)setDataRetained:(BOOL)flag Sets whether image data is retained by the object after the
image is cached.

– (BOOL)isDataRetained Returns whether image data is retained.

– (void)setCacheDepthMatchesImageDepth:(BOOL)flag
Sets whether the default depth limit applies to caches.

– (BOOL)cacheDepthMatchesImageDepth Returns whether the default depth limit applies to caches.

Determining How the Image is Drawn

– (BOOL)isValid Returns YES to indicate that the receiver’s image is valid.

– (void)setScalesWhenResized:(BOOL)flag If flag is YES, representations are scaled to fit.

– (BOOL)scalesWhenResized Returns whether representations are scaled to fit.

– (void)setBackgroundColor:(NSColor *)aColor Sets the background color of the image to aColor.

– (NSColor *)backgroundColor Returns the background color of the image.

OpenStep Specification—10/19/941-128 Chapter 1: Application Kit

– (BOOL)drawRepresentation:(NSImageRep *)imageRep
inRect:(NSRect)aRect Overridden to have imageRep draw the representation in

aRect.

– (void)recache Invalidates caches of all representations, so they will be
redrawn.

Assigning a Delegate

– (void)setDelegate:(id)anObject Makes anObject the delegate of the NSImage.

– (id)delegate Returns the delegate of the NSImage.

Producing TIFF Data for the Image

– (NSData *)TIFFRepresentation Returns a data object containing TIFF for all
representations, using their default compressions.

– (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp
factor: (float)aFloat Returns a data object containing TIFF for all the

representations.

Managing NSImageRep Subclasses

+ (NSArray *)imageUnfilteredFileTypes Returns an array of file types recognized by the NSImage
without filtering. This list comes from all registered
NSImageReps.

+ (NSArray *)imageUnfilteredPasteboardTypes
Returns an array of pasteboard types recognized by the

NSImage.

Testing Image Data Sources

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard
Returns YES if the receiver can create a representation

from pasteboard; otherwise, returns NO.

+ (NSArray *)imageFileTypes Returns an array of supported image data file types.

+ (NSArray *)imagePasteboardTypes Returns an array of supported pasteboard types.

Methods Implemented by the Delegate

– (NSImage *)imageDidNotDraw:(id)sender Responds to message that image couldn’t be composited
inRect:(NSRect)aRect into aRect.

Classes: NSImageRep1-129OpenStep Specification—10/19/94

NSImageRep

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImageRep.h

Class Description

NSImageRep is an abstract superclass; each of its subclasses knows how to draw an image from a particular kind
of source data. While an NSImageRep subclass can be used directly, it’s typically used through an NSImage object.
An NSImage manages a group of representations, choosing the best one for the current output device.

There are four subclasses defined in the Application Kit:

Subclass Source Data

NSBitmapImageRep Tag Image File Format (TIFF) and other bitmap data
NSEPSImageRep Encapsulated PostScript code (EPS)
NSCustomImageRep A delegated method that can draw the image
NSCachedImageRep A rendered image, usually in an off-screen window

You can define other NSImageRep subclasses for objects that render images from other types of source
information. New subclasses must be added to the NSImageRep class registry by invoking the
registerImageRepClass: class method. The NSImageRep subclass informs the registry of the data types it can
support through its imageUnfilteredFileTypes, imageUnfilteredPasteboardTypes, and canInitWithData: class
methods. Once an NSImageRep subclass is registered, an instance of that subclass is created anytime NSImage
encounters the type of data handled by that subclass.

Creating an NSImageRep

+ (id)imageRepWithContentsOfFile:(NSString *)filename
In subclasses that respond to imageFileTypes and

imageRepWithData:, returns an object that has been
initialized with the data in filename. NSImageRep’s
implementation returns an instance of the appropriate
registered subclass.

OpenStep Specification—10/19/941-130 Chapter 1: Application Kit

+ (NSArray *)imageRepsWithContentsOfFile:(NSString *)filename
In subclasses that respond to imageFileTypes and

imageRepWithData: (or imageRepWithData:),
returns an array of objects that have been initialized
with the data in filename. NSImageRep’s
implementation returns an array of objects (each an
instance of the appropriate registered subclass) that
have been initialized with the data in filename.

+ (id)imageRepWithPasteboard:(NSPasteboard *)pasteboard
In subclasses that respond to imagePasteboardTypes and

imageRepWithData:, returns an object that has been
initialized with the data in pasteboard. NSImageRep’s
implementation returns an instance of the appropriate
registered subclass.

+ (NSArray *)imageRepsWithPasteboard:(NSPasteboard *)pasteboard
In subclasses that respond to imagePasteboardTypes and

imageRepsWithData: (or imageRepWithData:),
returns an array of objects that have been initialized
with the data in pasteboard. NSImageRep’s
implementation returns an array of objects (each an
instance of the appropriate registered subclass) that
have been initialized with the data in pasteboard.

Checking Data Types

+ (BOOL)canInitWithData: (NSData *)data Overridden in subclasses to return YES if the receiver can
initialize itself from data.

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard
Overridden in subclasses to returnYES if the receiver can

initialize itself from pasteboard.

+ (NSArray *)imageFileTypes Returns an array of strings representing all file types.

+ (NSArray *)imagePasteboardTypes Returns an array of strings representing all pasteboard
types.

+ (NSArray *)imageUnfilteredFileTypes Returns an array of strings representing directly supported
file types.

+ (NSArray *)imageUnfilteredPasteboardTypes Returns an array of strings representing directly supported
pasteboards.

Classes: NSImageRep1-131OpenStep Specification—10/19/94

Setting the Size of the Image

– (void)setSize:(NSSize)aSize Sets the size of the image.

– (NSSize)size Returns the size of the image.

Specifying Information about the Representation

– (int)bitsPerSample Returns the number of bits per pixel in each component.

– (NSString *)colorSpaceName Returns the name of the image’s color space.

– (BOOL)hasAlpha Returns whether there is a coverage component.

– (BOOL)isOpaque Returns whether the representation is opaque.

– (int)pixelsHigh Returns the height specified in the image data.

– (int)pixelsWide Returns the width specified in the image data.

– (void)setAlpha:(BOOL)flag Informs the receiver whether there is a coverage
component.

– (void)setBitsPerSample:(int)anInt Informs the receiver there are anInt bits/pixel in a
component.

– (void)setColorSpaceName:(NSString *)aString Informs the receiver of the image’s color space.

– (void)setOpaque:(BOOL)flag Informs the receiver of the image’s opacity.

– (void)setPixelsHigh:(int)anInt Informs the receiver that its data is for an image anInt
pixels high.

– (void)setPixelsWide:(int)anInt Informs the receiver that its data is for an image anInt
pixels wide.

Drawing the Image

– (BOOL)draw Implemented by subclasses to draw the image.

– (BOOL)drawAtPoint: (NSPoint)aPoint Modifies current coordinates so the image is drawn at
aPoint.

– (BOOL)drawInRect: (NSRect)aRect Modifies current coordinates so the image is drawn in
aRect.

OpenStep Specification—10/19/941-132 Chapter 1: Application Kit

Managing NSImageRep Subclasses

+ (Class)imageRepClassForData:(NSData *)data Returns the NSImageRep subclass that handles data of type
data.

+ (Class)imageRepClassForFileType:(NSString *)type
Returns the NSImageRep subclass that handles data of file

type type.

+ (Class)imageRepClassForPasteboardType:(NSString *)type
Returns the NSImageRep subclass that handles data of

pasteboard type type.

+ (void)registerImageRepClass:(Class)imageRepClass
Adds imageRepClass to the registry of available

NSImageRep classes. This method posts the
NSImageRepRegistryChangedNotification notification
with the receiving object to the default notification
center.

+ (NSArray *)registeredImageRepClasses Returns the names of the registered NSImageRep classes.

+ (void)unregisterImageRepClass:(Class)imageRepClass
Removes imageRepClass from the registry of available

NSImageRep classes. This method posts the
NSImageRepRegistryChangedNotification notification
with the receiving object to the default notification
center.

Classes: NSMatrix 1-133OpenStep Specification—10/19/94

NSMatrix

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSMatrix.h

Class Description

NSMatrix is a class used for creating groups of NSCells that work together in various ways. It includes methods
for arranging NSCells in rows and columns, either with or without space between them. NSCells in an NSMatrix
are numbered by row and column, each starting with 0; for example, the top left NSCell would be at (0, 0), and the
NSCell that’s second down and third across would be at (1, 2).

The cell objects that an NSMatrix contains are usually of a single subclass of NSCell, but they can be of multiple
subclasses of NSCell. The only restriction is that all cell objects must be the same size. An NSMatrix can be set up
to create new NSCells by copying a prototype object, or by allocating and initializing instances of a specific NSCell
class.

An NSMatrix adds to NSControl’s target/action paradigm by allowing a separate target and action for each of its
NSCells in addition to its own target and action. It also allows for an action message that’s sent when the user
double-clicks an NSCell, and which is sent in addition to the single-click action message. If an NSCell doesn’t have
an action, the NSMatrix sends its own action to its own target. If an NSCell doesn’t have a target, the NSMatrix
sends the NSCell’s action to its own target. The double-click action of an NSMatrix is always sent to the target of
the NSMatrix.

Since the user might press the mouse button while the cursor is within the NSMatrix and then drag the mouse
around, NSMatrix offers four “selection modes” that determine how NSCells behave when the NSMatrix is
tracking the mouse:

• NSTrackModeMatrix is the most basic mode of operation. In this mode the NSCells are asked to track the
mouse with trackMouse:inRect:ofView:untilMouseUp: whenever the mouse is inside their bounds. No
highlighting is performed. An example of this mode might be a “graphic equalizer” NSMatrix of sliders,
where moving the mouse around causes the sliders to move under the mouse.

• NSHighlightModeMatrix is a modification of NSTrackModeMatrix. In this mode, an NSCell is highlighted
before it’s asked to track the mouse, then unhighlighted when it’s done tracking. This is useful for multiple
unconnected NSCells that use highlighting to inform the user that they are being tracked (like push-buttons
and switches).

• NSRadioModeMatrix is used when you want no more than one NSCell to be selected at a time. It can be
used to create a set of buttons of which one and only one is selected (there’s the option of allowing no button
to be selected). Any time an NSCell is selected, the previously selected NSCell is unselected. The canonical
example of this mode is a set of radio buttons.

OpenStep Specification—10/19/941-134 Chapter 1: Application Kit

• NSListModeMatrix is the opposite of NSTrackModeMatrix. NSCells are highlighted, but don’t track the
mouse. This mode can be used to select a range of text values, for example. NSMatrix supports the standard
multiple-selection paradigms of dragging to select, using the shift key to make discontinuous selections, and
using the alternate key to extend selections.

Initializing the NSMatrix Class

+ (Class)cellClass Returns the default class used to make cells.

+ (void)setCellClass:(Class)classId Sets the default class used to make cells.

Initializing an NSMatrix Object

– (id)initWithFrame: (NSRect)frameRect Initializes a new NSMatrix object in frameRect.

– (id)initWithFrame: (NSRect)frameRect Initializes a new NSMatrix object in frameRect, with
mode:(int)aMode aMode as the selection mode, classId as the class used
cellClass:(Class)classId to make new cells, and having rowsHigh rows and
numberOfRows:(int)rowsHigh colsWide columns.
numberOfColumns:(int)colsWide

– (id)initWithFrame: (NSRect)frameRect Initializes a new NSMatrix object with the given values
mode:(int)aMode with aMode as the selection mode, aCell as the
prototype:(NSCell *)aCell prototype copied to make new cells, and having
numberOfRows:(int)rowsHigh rowsHigh rows and colsWide columns.
numberOfColumns:(int)colsWide

Setting the Selection Mode

– (NSMatrixMode)mode Returns the selection mode of the matrix.

– (void)setMode:(NSMatrixMode)aMode Sets the selection mode of the matrix.

Configuring the NSMatrix

– (BOOL)allowsEmptySelection Returns whether it’s possible to have no cells selected.

– (BOOL)isSelectionByRect Returns whether a user can drag a rectangular selection.

– (void)setAllowsEmptySelection:(BOOL)flag Sets whether it’s possible to have no cells selected.

– (void)setSelectionByRect:(BOOL)flag Sets whether a user can drag a rectangular selection (the
default is YES). If flag is NO, selection is on a
row-by-row basis.

Classes: NSMatrix 1-135OpenStep Specification—10/19/94

Setting the Cell Class

– (Class)cellClass Returns the subclass of NSCell used to make new cells.

– (id)prototype Returns the prototype cell copied to make new cells.

– (void)setCellClass:(Class)classId Sets the subclass of NSCell used to make new cells.

– (void)setPrototype:(NSCell *)aCell Sets the prototype cell copied to make new cells.

Laying Out the NSMatrix

– (void)addColumn Adds a new column of cells to the right of the last column.

– (void)addColumnWithCells:(NSArray *)cellArray Adds a new column of cells, using those contained in
cellArray.

– (void)addRow Adds a new row of cells below the last row.

– (void)addRowWithCells:(NSArray *)cellArray Adds a new row of cells, using those contained in
cellArray.

– (NSRect)cellFrameAtRow:(int)row Returns the frame rectangle of the cell at row and column.
column:(int)column

– (NSSize)cellSize Returns the width and height of cells in the matrix.

– (void)getNumberOfRows:(int *)rowCount Gets the number of rows and columns in the matrix.
columns:(int *)columnCount

– (void)insertColumn:(int)column Inserts a new column of cells at column, creating as many
as needed to make the matrix column columns wide.

– (void)insertColumn:(int)column withCells:(NSArray *)cellArray
Inserts a new row of cells at column, using those contained

in cellArray.

– (void)insertRow:(int)row Inserts a new row of cells at row, creating as many as
needed to make the matrix row rows wide.

– (void)insertRow:(int)row withCells:(NSArray *)cellArray
Inserts a new row of cells at row, using those contained in

cellArray.

– (NSSize)intercellSpacing Returns the vertical and horizontal spacing between cells

– (NSCell *)makeCellAtRow:(int)row Creates a new cell at row, column in the matrix and returns
column:(int)column it.

– (void)putCell: (NSCell *)newCell Replaces the cell at row and column with newCell.
atRow:(int)row
column:(int)column

OpenStep Specification—10/19/941-136 Chapter 1: Application Kit

– (void)removeColumn:(int)column Removes the column at column, releasing the cells.

– (void)removeRow:(int)row Removes the row at row, releasing the cells.

– (void)renewRows:(int)newRows Changes the number of rows and columns in the receiver
columns:(int)newColumns without freeing any cells.

– (void)setCellSize:(NSSize)aSize Sets the width and height of all cells in the matrix.

– (void)setIntercellSpacing:(NSSize)aSize Sets the vertical and horizontal spacing between cells.

– (void)sortUsingFunction:(int (*)(id element1, id element2, void *userData))comparator
context:(void *)context Sorts the receiver’s cells in ascending order as defined by

the comparison function comparator. context is passed
as the function’s third argument.

– (void)sortUsingSelector:(SEL)comparator Sorts the receiver’s cells in ascending order as defined by
the comparison method comparator.

Finding Matrix Coordinates

– (BOOL)getRow:(int *)row Gets the row and column position corresponding to aPoint.
column:(int *)column Returns YES if aPoint is within the matrix;
forPoint: (NSPoint)aPoint NO otherwise.

– (BOOL)getRow:(int *)row Gets the row and column position of aCell.
column:(int *)column Returns YES if aCell is in the matrix; NO otherwise.
ofCell:(NSCell *)aCell

Modifying Individual Cells

– (void)setState:(int)value Sets the state of the cell at row and column to value.
atRow:(int)row
column:(int)column

Selecting Cells

– (void)deselectAllCells Clears the receiver’s selection, assuming that the NSMatrix
allows an empty selection.

– (void)deselectSelectedCell Deselects the selected cell.

– (void)selectAll:(id)sender Selects all the cells in the matrix.

– (void)selectCellAtRow:(int)row Selects the cell at row and col.
column:(int)column

– (BOOL)selectCellWithTag:(int)anInt Selects the cell with the tag anInt.

Classes: NSMatrix 1-137OpenStep Specification—10/19/94

– (id)selectedCell Returns the most recently selected cell or nil if no cell has
been selected.

– (NSArray *)selectedCells Returns an array containing the selected cells.

– (int)selectedColumn Returns the column of the selected cell or –1 if no column
has been selected.

– (int)selectedRow Returns the row of the selected cell or –1 if no row has been
selected.

– (void)setSelectionFrom:(int)startPos Selects the cells in the matrix from startPos to endPos,
to:(int)endPos counting in row order from the upper left, as though
anchor:(int)anchorPos anchorPos were the number of the last cell selected, and
highlight: (BOOL)flag highlighting the cells according to flag.

Finding Cells

– (id)cellAtRow:(int)row Returns the cell at row row and column col.
column:(int)column

– (id)cellWithTag: (int)anInt Returns the cell having anInt as its tag.

– (NSArray *)cells Returns the matrix’s array of cells.

Modifying Graphic Attributes

– (NSColor *)backgroundColor Returns the color of the background between cells.

– (NSColor *)cellBackgroundColor Returns the color of the background within cells.

– (BOOL)drawsBackground Returns whether the receiver draws the background
between cells.

– (BOOL)drawsCellBackground Returns whether the receiver draws the background within
cells.

– (void)setBackgroundColor:(NSColor *)aColor Sets the color of the background between cells to aColor.

– (void)setCellBackgroundColor:(NSColor *)aColor
Sets the color of the background within cells to aColor.

– (void)setDrawsBackground:(BOOL)flag Sets whether the receiver draws the background between
cells.

– (void)setDrawsCellBackground:(BOOL)flag Sets whether the receiver draws the background within
cells.

OpenStep Specification—10/19/941-138 Chapter 1: Application Kit

Editing Text in Cells

– (void)selectText:(id)sender Selects the text in the first or last editable cell.

– (id)selectTextAtRow:(int)row Selects the text of the cell at row, column in the matrix.
column:(int)column

– (void)textDidBeginEditing: (NSNotification *)notification
Invoked when there’s a change in the text after the receiver

gains first responder status. Default behavior is pass to
this message on to the text delegate. This method posts
the NSControlTextDidBeginEditingNotification
notification with the receiving object and, in the
notification’s dictionary, the text object (with the key
NSFieldEditor) to the default notification center.

– (void)textDidChange:(NSNotification *)notification
Invoked upon a key-down event or paste operation that

changes the receiver’s contents. Default behavior is to
pass this message on to the text delegate. This method
posts the NSControlTextDidChangeNotification
notification with the receiving object and, in the
notification's dictionary, the text object (key
NSFieldEditor) to the default notification center.

– (void)textDidEndEditing: (NSNotification *)notification
Invoked when text editing ends and then forwarded to the

text delegate. This method posts the notification
NSControlTextDidEndEditingNotification with the
receiving object and, in the notification’s dictionary, the
text object (with the key NSFieldEditor) to the default
notification center.

– (BOOL)textShouldBeginEditing:(NSText *)textObject
Invoked to let the NSTextField respond to impending

changes to its text and then forwarded to the text
delegate.

– (BOOL)textShouldEndEditing:(NSText *)textObject
Invoked to let the NSTextField respond to impending loss

of first responder status and then forwarded to the text
delegate.

Setting Tab Key Behavior

– (id)nextText Returns the object to be selected when the user presses Tab
while editing the last text cell.

Classes: NSMatrix 1-139OpenStep Specification—10/19/94

– (id)previousText Returns the object to be selected when the user presses
Shift-Tab while editing the first text cell.

– (void)setNextText:(id)anObject Sets the object to be selected when the user presses Tab
while editing the last text cell.

– (void)setPreviousText:(id)anObject Sets the object to be selected when user presses Shift-Tab
while editing the first text cell.

Assigning a Delegate

– (void)setDelegate:(id)anObject Sets the delegate for messages from the field editor.

– (id)delegate Returns the delegate for messages from the field editor.

Resizing the Matrix and Cells

– (BOOL)autosizesCells Returns whether the matrix resizes its cells automatically.

– (void)setAutosizesCells:(BOOL)flag Sets whether the matrix resizes its cells automatically.

– (void)setValidateSize:(BOOL)flag Sets whether the cell size needs to be recalculated.

– (void)sizeToCells Resizes the matrix to fit its cells exactly.

Scrolling

– (BOOL)isAutoscroll Returns whether the matrix automatically scrolls when
dragged in.

– (void)scrollCellToVisibleAtRow: (int)row Scrolls the matrix so that the cell at row and column is
column:(int)column visible.

– (void)setAutoscroll:(BOOL)flag Sets whether the matrix automatically scrolls when
dragged in.

– (void)setScrollable:(BOOL)flag If flag is YES, makes all the cells scrollable.

Displaying

– (void)drawCellAtRow: (int)row Displays the cell at row and col.
column:(int)column

– (void)highlightCell: (BOOL)flag Highlights (or unhighlights) the cell at row, col.
atRow:(int)row
column:(int)column

OpenStep Specification—10/19/941-140 Chapter 1: Application Kit

Target and Action

– (SEL)doubleAction Returns the action method for double clicks.

– (void)setDoubleAction:(SEL)aSelector Sets the action method used on double-clicks to aSelector.

– (SEL)errorAction Returns the action method for editing errors.

– (BOOL)sendAction Sends the selected cell’s action, or the NSMatrix’s action if
the cell doesn’t have one.

– (void)sendAction:(SEL)aSelector Sends aSelector to anObject, for all cells if flag is YES.
to:(id)anObject
forAllCells: (BOOL)flag

– (void)sendDoubleAction Sends the action corresponding to a double-click.

– (void)setErrorAction: (SEL)aSelector Sets the action method for editing errors to aSelector.

Handling Event and Action Messages

– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent Returns NO only if receiver’s mode is NSListModeMatrix.

– (void)mouseDown:(NSEvent *)theEvent Responds to a mouse-down event. A mouse-down event in
a text cell initials editing mode. A double-click in any
cell type except a text cell sends the double-click action
of the NSMatrix (if there is one) in addition to the
single-click action.

– (int)mouseDownFlags Returns the event flags in effect at start of tracking.

– (BOOL)performKeyEquivalent: (NSEvent *)theEvent
Simulates a mouse click in the appropriate cell.

Managing the Cursor

– (void)resetCursorRects Resets cursor rectangles so that the cursor becomes an
I-beam over text cells.

Classes: NSMenu1-141OpenStep Specification—10/19/94

NSMenu

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSMenu.h

Class Description

This class defines an object that manages an application’s menus. An NSMenu object displays a list of items that a
user can choose from. When an item is clicked, it may either issue a command directly or bring up another menu
(a submenu) that offers further choices. An NSMenu object’s choices are implemented as a column of
NSMenuCells in an NSMatrix.

Each NSMenuCell can be configured to send its action message to a target, or to bring up a submenu. When the
user clicks a submenu item, the submenu is displayed on the screen, attached to its supermenu so that if the user
drags the supermenu, the submenu follows it. A submenu may also be torn away from its supermenu, in which case
it displays a close button.

Exactly one NSMenu created by the application is designated as the main menu for the application (with
NSApplication’s setMainMenu: method). This menu is displayed on top of all other windows whenever the
application is active, and should never display a close button (because the main menu doesn’t have a supermenu).

See the NSMenuCell and NSMatrix class specificiations for more details.

Controlling Allocation Zones

+ (NSZone *)menuZone Returns the zone from which NSMenus should be
allocated, creating one if necessary.

+ (void)setMenuZone:(NSZone *)zone Sets the zone from which NSMenus should be allocated.

Initializing a New NSMenu

– (id)initWithTitle: (NSString *)aTitle Initializes and returns a new NSMenu using aTitle for its
title.

Setting Up the Menu Commands

– (id)addItemWithTitle: (NSString *)aString Adds a new item with title aString, action aSelector, and
action:(SEL)aSelector key equivalent charCode to the end of the NSMenu.
keyEquivalent:(NSString *)charCode Returns the new NSMenuCell.

OpenStep Specification—10/19/941-142 Chapter 1: Application Kit

– (id)insertItemWithTitle: (NSString *)aString Adds a new item at index having the title aString, action
action:(SEL)aSelector aSelector, and key equivalent charCode. Returns the
keyEquivalent:(NSString *)charCode new NSMenuCell.
atIndex:(unsigned int)index

– (NSMatrix *)itemMatrix Returns the NSMatrix of NSMenuCell items.

– (void)setItemMatrix: (NSMatrix *)aMatrix Replaces the current matrix of items with aMatrix.

Finding Menu Items

– (id)cellWithTag: (int)aTag Returns the NSMenuCell that has aTag as its tag.

Building Submenus

– (NSMenuCell *)setSubmenu:(NSMenu *)aMenu Makes aMenu a submenu controlled by aCell.
forItem: (NSMenuCell *)aCell

– (void)submenuAction:(id)sender Activates a submenu attached to sender’s NSMenu.

Managing NSMenu Windows

– (NSMenu *)attachedMenu Returns the NSMenu attached to the receiver or nil if
there’s no such object.

– (BOOL)isAttached Returns YES if the receiver is attached to another menu and
NO otherwise.

– (BOOL)isTornOff Returns NO if the receiver is attached to another menu (or
if it’s the main menu) and YES otherwise.

– (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu
Determines where to display an attached submenu when

it’s brought up.

– (void)sizeToFit Resizes the receiver to exactly fit the command items.

– (NSMenu *)supermenu Returns the receiver’s supermenu.

Displaying the Menu

– (BOOL)autoenablesItems Returns whether the receiver enables and disables its
NSMenuCells. (See the NSMenuActionResponder
informal protocol.)

– (void)setAutoenablesItems:(BOOL)flag Sets whether the receiver enables and disables its
NSMenuCells. (See the NSMenuActionResponder
informal protocol.)

Classes: NSMenuCell1-143OpenStep Specification—10/19/94

NSMenuCell

Inherits From: NSButtonCell : NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSMenuCell.h

Class Description

NSMenuCell is a subclass of NSButtonCell that defines objects that are used in menus. NSMenuCells draw their
text left-justified and show an optional key equivalent or submenu arrow on the right. See the NSMenu class
specification for more information.

Checking for a Submenu

– (BOOL)hasSubmenu Returns YES if the receiver has a submenu.

Managing User Key Equivalents

+ (void)setUsesUserKeyEquivalents:(BOOL)flag If flag is YES, NSMenuCells conform to user preferences
for key equivalents; otherwise, the key equivalents
originally assigned to the NSMenuCells are used.

+ (BOOL)usesUserKeyEquivalents Returns YES if NSMenuCells conform to user preferences
for key equivalents; otherwise, returns NO.

– (NSString *)userKeyEquivalent Returns the user-assigned key equivalent for the
NSMenuCell.

OpenStep Specification—10/19/941-144 Chapter 1: Application Kit

NSOpenPanel

Inherits From: NSSavePanel : NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSOpenPanel.h

Class Description

NSOpenPanel provides the Open panel of the OpenStep user interface. Applications use the Open panel as a
convenient way to query the user for the name of a file to open. The Open panel can only be run modally.

Most of this class’s behavior is defined by its superclass, NSSavePanel. NSOpenPanel adds to this behavior by:

• Letting you specify the types (by file-name extension) of the items that will appear in the panel

• Letting the user select files, directories, or both

• Letting the user select multiple items at a time

Typically, you access an NSOpenPanel by invoking the openPanel method. When the class receives an openPanel
message, it tries to reuse an existing panel rather than create a new one. If a panel is reused, its attributes are reset
to the default values so that the effect is the same as receiving a new panel. Because Open panels may be reused,
you shouldn’t modify the instance returned by openPanel, except through the methods listed below (and those
inherited from its superclass, NSSavePanel). For example, you can set the panel’s title and whether it allows
multiple selection, but not the arrangement of the buttons within the panel. If you must modify the Open panel
substantially, create and manage your own instance using the alloc... and init... methods rather than the openPanel
method.

Accessing the NSOpenPanel

+ (NSOpenPanel *)openPanel Returns an NSOpenPanel object having default
initialization.

Filtering Files

– (BOOL)allowsMultipleSelection Returns YES if the panel allows the user to open multiple
files (and directories) at a time.

– (BOOL)canChooseDirectories Returns YES if the panel allows the user to choose
directories.

– (BOOL)canChooseFiles Returns YES if the panel allows the user to choose files.

Classes: NSOpenPanel1-145OpenStep Specification—10/19/94

– (void)setAllowsMultipleSelection:(BOOL)flag Sets whether the user can open multiple files (and
directories) at a time.

– (void)setCanChooseDirectories:(BOOL)flag Sets whether the user can choose directories.

– (void)setCanChooseFiles:(BOOL)flag Sets whether the user can choose files.

Querying the Chosen Files

– (NSArray *)filenames Returns an array containing the names of the selected files
and directories.

Running the NSOpenPanel

– (int)runModalForTypes: (NSArray *)fileTypes Invokes the runModalForDirectory:file:types: method,
using the last directory from which a file was chosen as
the path argument. Returns the value returned by that
method.

– (int)runModalForDirectory: (NSString *)path Displays the panel and begins its event loop. The panel
file:(NSString *)filename displays the files in path that match the types in
types:(NSArray *)fileTypes fileTypes (an array of NSString objects), with filename

selected. Returns NSOKButton (if the user clicks the
OK button) or NSCancelButton (if the user clicks the
Cancel button).

OpenStep Specification—10/19/941-146 Chapter 1: Application Kit

NSPageLayout

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPageLayout.h

Class Description

NSPageLayout is a type of NSPanel that queries the user for information such as paper type and orientation. This
information is stored in an NSPrintInfo object, and is later used when printing. The NSPageLayout panel is created,
displayed, and run (in a modal loop) when a runPageLayout: message is sent to the NSApplication object. By
default, this message is sent up the responder chain when the user clicks the Page Layout menu item.

Typically, you access an NSPageLayout panel by invoking the pageLayout method. When the class receives a
pageLayout message, it tries to reuse an existing panel rather than create a new one. If a panel is reused, its
attributes are reset to the default values so that the effect is the same as receiving a new panel. Because Page Layout
panels may be reused, you shouldn’t modify the instance returned by pageLayout, except through the methods
listed below. If you must modify the Page Layout panel in other ways than those allowed by its methods, create and
manage your own instance using the alloc... and init... methods rather than the pageLayout method.

You can add your own controls to the Page Layout panel through the setAccessoryView: method. The panel is
automatically resized to accommodate the NSView that you’ve added. Note that you can’t retrieve the
NSPageLayout’s settings through messages to the page layout panel object—NSPageLayout does not have
accessor methods to obtain the state of its controls. If controls you add through an accessory view need to know the
values of the existing controls in the page layout panel (or vice versa), access NSPageLayout’s controls using the
tags defined in AppKit/NSPageLayout.h as arguments to viewWithTag: messages to the page layout panel
object. Controls thus returned can then be queried for their state.

Creating an NSPageLayout Instance

+ (NSPageLayout *)pageLayout Returns a default NSPageLayout object.

Running the Panel

– (int)runModal Displays the panel and begins its event loop. The panel’s
values are recorded in the shared NSPrintInfo object.

– (int)runModalWithPrintInfo: (NSPrintInfo *)pInfo
Displays the panel and begins its event loop. The panel’s

values are recorded in the pInfo, the supplied
NSPrintInfo object.

Classes: NSPageLayout1-147OpenStep Specification—10/19/94

Customizing the Panel

– (NSView *)accessoryView Returns the NSPageLayout’s accessory View.

– (void)setAccessoryView:(NSView *)aView Adds a View to the panel.

Updating the Panel’s Display

– (void)convertOldFactor:(float *)old Returns by reference the ratio between a point and the
newFactor:(float *)new currently chosen unit of measurement. If invoked within

the pickedUnits: method, old refers to the ratio before
the user’s choice and new refers to the new ratio.

– (void)pickedButton:(id)sender Stops the event loop.

– (void)pickedOrientation: (id)sender Updates the panel with the selected orientation.

– (void)pickedPaperSize:(id)sender Updates the panel when a paper size is selected.

– (void)pickedUnits:(id)sender Updates the panel when a new unit is selected.

Communicating with the NSPrintInfo Object

– (NSPrintInfo *)printInfo Returns the NSPrintInfo object that used when the panel is
run.

– (void)readPrintInfo Reads the NSPageLayout’s values from the NSPrintInfo
object.

– (void)writePrintInfo Writes the NSPageLayout’s values to the NSPrintInfo
object.

OpenStep Specification—10/19/941-148 Chapter 1: Application Kit

NSPanel

Inherits From: NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPanel.h

Class Description

The NSPanel class defines objects that manage the panels of the OpenStep user interface. A panel is a window that
serves an auxiliary function within an application. It generally displays controls that the user can act on to give
instructions to the application or to modify the contents of a standard window.

Panels behave differently from standard windows in only a small number of ways, but the ways are important to
the user interface:

• Panels can assume key window—but not main window—status. (The key window receives keyboard events.
The main window is the primary focus of user actions; it might contain the document the user is working on,
for example.)

• On-screen panels are normally removed from the screen list when the user begins to work in another
application, and are restored to the screen when the user returns to the panel’s application.

To aid in their auxiliary role, panels can be assigned special behaviors:

• A panel can be precluded from becoming the key window until the user makes a selection (makes some view
in the panel the first responder) indicating an intention to begin typing. This prevents key window status from
shifting to the panel unnecessarily.

• Palettes and similar panels can be made to float above standard windows and other panels. This prevents
them from being covered and keeps them readily available to the user.

• A panel can be made to work—to receive mouse and keyboard events—even when there’s an attention panel
on-screen. This permits actions within the panel to affect the attention panel.

Classes: NSPanel1-149OpenStep Specification—10/19/94

Determining the Panel Behavior

– (BOOL)becomesKeyOnlyIfNeeded Returns whether the receiver waits to become key window.

– (BOOL)isFloatingPanel Returns whether the receiver floats above other windows.

– (void)setBecomesKeyOnlyIfNeeded:(BOOL)flag Sets whether the receiver waits to become key window.

– (void)setFloatingPanel:(BOOL)flag Sets whether the receiver floats above other windows.

– (void)setWorksWhenModal:(BOOL)flag Sets whether the receiver can operate even when an
attention panel is on-screen.

– (BOOL)worksWhenModal Returns whether the receiver can operate even when an
attention panel is on-screen. The default is NO.

OpenStep Specification—10/19/941-150 Chapter 1: Application Kit

NSPasteboard

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPasteboard.h

Class Description

NSPasteboard objects transfer data to and from the pasteboard server. The server is shared by all running
applications. It contains data that the user has cut or copied and may paste, as well as other data that one application
wants to transfer to another. NSPasteboard objects are an application’s sole interface to the server and to all
pasteboard operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it’s to be used. Each set of data and its
associated name is, in effect, a separate pasteboard, distinct from the others. An application keeps a separate
NSPasteboard object for each named pasteboard that it uses. There are five standard pasteboards in common use:

General pasteboard The pasteboard that’s used for ordinary cut, copy, and paste operations. It holds
the contents of the last selection that’s been cut or copied.

Font pasteboard The pasteboard that holds font and character information and supports the
Copy Font and Paste Font commands.

Ruler pasteboard The pasteboard that holds information about paragraph formats in support of
the Copy Ruler and Paste Ruler commands.

Find pasteboard The pasteboard that holds information about the current state of the active
application’s Find panel. This information permits users to enter a search string
into the Find panel, then switch to another application to conduct the search.

Drag pasteboard The pasteboard that stores data to be manipulated as the result of a drag
operation.

Each standard pasteboard is identified by a unique name (stored in global string objects):

NSGeneralPboard
NSFontPboard
NSRulerPboard
NSFindPboard
NSDragPboard

You can create private pasteboards by asking for an NSPasteboard object with any name other than those listed
above. The name of a private pasteboard can be passed to other applications to allow them to share the data it holds.

Classes: NSPasteboard1-151OpenStep Specification—10/19/94

The NSPasteboard class makes sure there’s never more than one object for each named pasteboard. If you ask for
a new object when one has already been created for the pasteboard with that name, the existing object will be
returned to you.

Data Types

Data can be placed in the pasteboard server in more than one representation. For example, an image might be
provided both in Tag Image File Format (TIFF) and as encapsulated PostScript code (EPS). Multiple
representations give pasting applications the option of choosing which data type to use. In general, an application
taking data from the pasteboard should choose the richest representation it can handle—rich text over plain ASCII,
for example. An application putting data in the pasteboard should promise to supply it in as many data types as
possible, so that as many applications as possible can make use of it.

Data types are identified by string objects containing the full type name. These global variables identify the string
objects for the standard pasteboard types:

Type Description

NSStringPboardType NSString data
NSPostScriptPboardType Encapsulated PostScript code (EPS)
NSTIFFPboardType Tag Image File Format (TIFF)
NSRTFPboardType Rich Text Format (RTF)
NSFilenamesPboardType ASCII text designating one or more file names
NSTabularTextPboardType Tab-separated fields of ASCII text
NSFontPboardType Font and character information
NSRulerPboardType Paragraph formatting information
NSFileContentsPboardType A representation of a file’s contents
NSColorPboardType NSColor data
NSGeneralPboardType Describes a selection
NSDataLinkPboardType Defines a link between documents

Types other than those listed can also be used. For example, your application may keep data in a private format
that’s richer than any of the types listed above. That format can also be used as a pasteboard type.

Reading and Writing Data

Typically, data is written to the pasteboard using setData:forType: and read using dataForType:. However, data
of the type NSFileContentsPboardType, representing the contents of a named file, must be written to the
NSPasteboard object using writeFileContents: and copied from the object to a file using
readFileContentsType:toFile:.

Errors

Except where errors are specifically mentioned in the method descriptions, any communications error with the
pasteboard server raises an NSPasteboardCommunicationException exception.

OpenStep Specification—10/19/941-152 Chapter 1: Application Kit

Creating and Releasing an NSPasteboard Object

+ (NSPasteboard *)generalPasteboard Returns the general NSPasteboard.

+ (NSPasteboard *)pasteboardWithName:(NSString *)name
Returns the NSPasteboard named name.

+ (NSPasteboard *)pasteboardWithUniqueName Returns a uniquely named NSPasteboard.

– (void)releaseGlobally Releases the NSPasteboard and its resources in the
pasteboard server.

Getting Data in Different Formats

+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data
ofType:(NSString *)type Returns an NSPasteboard that contains data of all types

filterable from data of type type.

+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename
Returns an NSPasteboard that contains data of all types

filterable from filename.

+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:(NSPasteboard *)pboard
Returns an NSPasteboard that contains data of all types

filterable from pboard.

+ (NSArray *)typesFilterableTo:(NSString *)type Returns an array specifying all types type can be filtered to.

Referring to a Pasteboard by Name

– (NSString *)name Returns the NSPasteboard’s name.

Writing Data

– (int)addTypes:(NSArray *)newTypes Adds data types to the NSPasteboard and declares a new
owner:(id)newOwner owner. Returns the new change count or 0 in case of

error.

– (int)declareTypes:(NSArray *)newTypes Sets the data types and owner of the NSPasteboard and
owner:(id)newOwner returns the new change count.

– (BOOL)setData:(NSData *)data Writes data of type dataType to the pasteboard server from
forType: (NSString *)dataType data. Returns YES if the data is successfully written;

otherwise returns NO.

– (BOOL)setPropertyList:(id)propertyList Writes data of type dataType to the pasteboard server from
forType: (NSString *)dataType propertyList. Returns YES if the data is successfully

written; otherwise returns NO.

Classes: NSPasteboard1-153OpenStep Specification—10/19/94

– (BOOL)setString:(NSString *)string Writes data of type dataType to the pasteboard server from
forType: (NSString *)dataType string. Returns YES if the data is successfully written;

otherwise returns NO.

– (BOOL)writeFileContents:(NSString *)filename Writes data from filename to the pasteboard server.

Determining Types

– (NSString *)availableTypeFromArray: (NSArray *)types
Returns first type in types that matches a type declared in

the receiver.

– (NSArray *)types Returns an array of the NSPasteboard’s data types.

Reading Data

– (int)changeCount Returns the NSPasteboard’s change count.

– (NSData *)dataForType:(NSString *)dataType Returns NSPasteboard data using the type specified by
dataType.

– (id)propertyListForType: (NSString *)dataType Returns a property list object using the type specified by
dataType.

– (NSString *)readFileContentsType:(NSString *)type
toFile:(NSString *)filename Reads data of type type representing a file’s contents from

the NSPasteboard and writes it to filename. Returns the
actual name of the file that was written.

– (NSString *)stringForType: (NSString *)dataType Returns an NSString using the type specified by dataType.

Methods Implemented by the Owner

– (void)pasteboard:(NSPasteboard *)sender Implemented to write promised data to sender as type.
provideDataForType:(NSString *)type

– (void)pasteboardChangedOwner:(NSPasteboard *)sender
Notifies prior owner that ownership changed.

OpenStep Specification—10/19/941-154 Chapter 1: Application Kit

NSPopUpButton

Inherits From: NSButton : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPopUpButton.h

Class Description

The NSPopUpButton class defines objects that implement the pop-up and pull-down lists of the OpenStep graphical
user interface. When configured to display a pop-up list, an NSPopUpButton contains a number of options and
displays as its title the option that was last selected. A pop-up list is often used for selecting items from a small- to
medium-sized set of options (like the zoom factor for a document window). It’s a useful alternative to a matrix of
radio buttons or an NSBrowser when screen space is at a premium; a zoom factor pop-up can easily fit next to a
scroll bar at the bottom of a window, for example.

When configured to display a pull-down list, an NSPopUpButton is generally used for selecting commands in a
very specific context. You can think of a pull-down list as a compact form of menu. A pull-down list’s title isn’t
affected by the user’s actions, and a pull-down list always displays a title that identifies the type of commands it
contains. When the commands only make sense in the context of a particular display, a pull-down list can be used
in that display to keep the related actions nearby, and to keep them out of the way when that display isn’t visible.

Initializing an NSPopUpButton

– (id)initWithFrame: (NSRect)frameRect Initializes a newly allocated NSPopUpButton, giving it the
pullsDown:(BOOL)flag frame specified by frameRect. If flag is YES, the

receiver is initialized to operate as a pull-down list;
otherwise, it operates as a pop-up list.

Target and Action

– (SEL)action Returns the NSPopUpButton’s action method.

– (void)setAction:(SEL)aSelector Sets the NSPopUpButton’s action method to aSelector.

Adding Items

– (void)addItemWithTitle: (NSString *)title Adds an item with title as its title to the end of the item list.

– (void)addItemsWithTitles: (NSArray *)itemTitles Adds multiple items to the end of the item list. The titles for
the new items are taken from the itemTitles array.

Classes: NSPopUpButton1-155OpenStep Specification—10/19/94

– (void)insertItemWithTitle: (NSString *)title Inserts an item with title as its title at position index.
atIndex:(unsigned int)index

Removing Items

– (void)removeAllItems Removes all items in the receiver’s item list.

– (void)removeItemWithTitle: (NSString *)title Removes the item whose title matches title.

– (void)removeItemAtIndex:(int)index Removes the item at the specified index.

Querying the NSPopUpButton about Its Items

– (int)indexOfItemWithTitle: (NSString *)title Returns the index of the item whose title matches title, or
–1 if no match is found.

– (int)indexOfSelectedItem Returns the index of the item last selected by the user, or –1
if there’s no selected item.

– (int)numberOfItems Returns the number of items in the receiver’s item list.

– (NSMenuCell *)itemAtIndex: (int)index Returns the NSMenuCell for the item at index, or nil if no
such item exists.

– (NSMatrix *)itemMatrix Returns the NSMatrix that holds the receiver’s items.

– (NSString *)itemTitleAtIndex: (int)index Returns the title of the item at index, or the empty string if
no such item exists.

– (NSArray *)itemTitles Returns an NSArray that holds the titles of the receiver’s
items.

– (NSMenuCell *)itemWithTitle: (NSString *)title Returns the NSMenuCell for the item whose title is title, or
nil if no such item exists

– (NSMenuCell *)lastItem Returns the NSMenuCell corresponding to the last item in
the list.

– (NSMenuCell *)selectedItem Returns the NSMenuCell for the selected item.

– (NSString *)titleOfSelectedItem Returns the title of the item last selected by the user, or the
empty string if there’s no such item.

Manipulating the NSPopUpButton

– (NSFont *)font Returns the font used to draw the items.

– (BOOL)pullsDown Returns YES if the receiver is configured as a pull-down
list, and NO if it’s configured as a pop-up list.

OpenStep Specification—10/19/941-156 Chapter 1: Application Kit

– (void)selectItemAtIndex:(int)index Selects the item at index and invokes
synchronizeTitleAndSelectedItem.

– (void)selectItemWithTitle: (NSString *)title Selects the item whose title is title and invokes
synchronizeTitleAndSelectedItem.

– (void)setFont:(NSFont *)fontObject Sets the font used to draw the items.

– (void)setPullsDown:(BOOL)flag If flag is YES, the receiver is configured as a pull-down list.
If flag is NO, the receiver is configured as a pop-up list.

– (void)setTarget:(id)anObject Sets the target for action messages to anObject.

– (void)setTitle:(NSString *)aString Adds a new item (if the receiver doesn’t already have an
item titled aString), makes it the selected item, and
invokes synchronizeTitleAndSelectedItem.

– (NSString *)stringValue Returns the title of the selected item.

– (void)synchronizeTitleAndSelectedItem Ensures that the receiver’s title agrees with the title of the
selected item (see indexOfSelectedItem). If there’s no
selected item, this method selects the first item in the
item list and sets the receiver’s title to match. This
method is useful in subclasses that directly select items
in the item matrix or that override setTitle:.

– (id)target Returns the target for action messages.

Displaying the NSPopUpButton’s Items

– (BOOL)autoenablesItems Returns whether the NSPopUpButton enables and disables
its items. (See the NSMenuActionResponder informal
protocol.)

– (void)setAutoenablesItems:(BOOL)flag Sets whether the NSPopUpButton enables and disables its
items. (See the NSMenuActionResponder informal
protocol.)

Classes: NSPrinter1-157OpenStep Specification—10/19/94

NSPrinter

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrinter.h

Class Description

An NSPrinter object describes a printer’s capabilities, such as whether the printer can print in color and whether it
provides a particular font. An NSPrinter object represents either a particular make or type of printer, or an actual
printer available to the computer.

There are two ways to create an NSPrinter:

• To create an abstract object that provides information about a type of printer rather than an object that
represents an actual printer device, use the printerWithType: class method, passing a printer type (an
NSString) as the argument. The printerTypes class method provides a list of the printer types recognized
by the computer. Printer types are described in files written in PostScript Printer Description (PPD) format.
The location of these files is platform dependent.

• To create or find an NSPrinter that corresponds to an actual printer device, use the printerWithName: class
method, passing the name of a printer. The way you find out what the available printer names are depends
on the platforms you are using.

Once you have an NSPrinter, there’s only one thing you can do with it: Retrieve information regarding the type of
printer or regarding the actual printer the object represents. You can’t change the information in an NSPrinter, nor
can you use an NSPrinter to initiate or control a printing job.

When you create an NSPrinter object, the object reads the file that corresponds to the type of printer you specified
and stores the data it finds there in named tables. Printer types are described in files written in the PostScript Printer
Description (PPD) format. Any piece of information in the PPD tables can be retrieved through the methods
stringForKey:inTable: and stringListForKey:inTable: , as explained later. Commonly needed items, such as
whether a printer is color or the size of the page on which it prints, are available through more direct methods
(methods such as isColor and pageSizeForPaper:).

Note: To understand what the NSPrinter tables contain, you need to be acquainted with the PPD file format. This
is described in PostScript Printer Description File Format Specification, version 4.0, available from Adobe Systems
Incorporated. The rest of this class description assumes a familiarity with the concepts and terminology presented
in the Adobe manual. A brief summary of the PPD format is given below; PPD terms defined in the Adobe manual
are shown in italic.

OpenStep Specification—10/19/941-158 Chapter 1: Application Kit

PPD Format

A PPD file statement, or entry, associates a value with a main keyword:

*mainKeyword: value

The asterisk is literal; it indicates the beginning of a new entry.

For example:

*ModelName: "MMimeo Machine"

*3dDevice: False

A main keyword can be qualified by an option keyword:

*mainKeyword optionKeyword: value

For example:

*PaperDensity Letter: "0.1"

*PaperDensity Legal: "0.2"

*PaperDensity A4: "0.3"

*PaperDensity B5: "0.4"

In addition, any number of entries may have the same main keyword with no option keyword yet give different
values:

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color

*InkName: ProcessCyan/Process Cyan

*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

Option keywords and values can sport translation strings. A translation string is a textual description, appropriate
for display in a user interface, of the option or value. An option or value is separated from its translation string by
a slash:

*Resolution 300dpi/300 dpi: " ... "

*InkName: ProcessBlack/Process Black

In the first example, the 300dpi option would be presented in a user interface as “300 dpi.” The second example
assigns the string “Process Black” as the translation string for the ProcessBlack value.

NSPrinter treats entries that have an *OrderDependency or *UIConstraint main keyword specially. Such entries
take the following forms (the bracketed elements are optional):

*OrderDependency: real section mainKeyword [optionKeyword]
*UIConstraint: mainKeyword1 [optionKeyword1] mainKeyword2 [optionKeyword2]

Classes: NSPrinter1-159OpenStep Specification—10/19/94

There may be more than one UIConstraint entry with the same mainKeyword1 or mainKeyword1/optionKeyword1
value. Below are some examples of *OrderDependency and *UIConstraint entries:

*OrderDependency: 10 AnySetup *Resolution

*UIConstraint: *Option3 None *PageSize Legal

*UIConstraint: *Option3 None *PageRegion Legal

Explaining these entries is beyond the scope of this documentation; however, it’s important to note their forms in
order to understand how they’re represented in the NSPrinter tables.

NSPrinter Tables

NSPrinter defines five key-value tables to store PPD information. The tables are identified by the names given
below:

Name Contents

PPD General information about a printer type. This table contains the values for all
entries in a PPD file except those with the *OrderDependency and
*UIConstraint main keywords. The values in this table don’t include the
translation strings.

PPDOptionTranslation Option keyword translation strings.

PPDArgumentTranslation Value translation strings.

PPDOrderDependency *OrderDependency values.

PPDUIConstraints *UIConstraint values.

There are two principle methods for retrieving data from the NSPrinter tables:

• stringForKey:inTable: returns the value for the first occurrence of a given key in the given table.

• stringListForKey:inTable: returns an array of values, one for each occurrence of the key.

For both methods, the first argument is an NSString that names a key—which part of a PPD file entry the key
corresponds to depends on the table (as explained in the following sections). The second argument names the table
that you want to look in. The values that are returned by these methods, whether singular or in an array, are always
NSStrings, even if the value wasn’t a quoted string in the PPD file.

The NSPrinter tables store data as ASCII text, thus the two methods described above are sufficient for retrieving
any value from any table. NSPrinter provides a number of other methods, such as booleanForKey:inTable: and
intForKey:inTable: , that retrieve single values and coerce them, if possible, into particular data types. The
coercion doesn’t affect the data that’s stored in the table (it remains in ASCII format).

To check the integrity of a table, use the isKey:forTable: and statusForTable: methods. The former returns a
boolean that indicates whether the given key is valid for the given table; the latter returns an error code that
describes the general state of a table (in particular, whether it actually exists).

OpenStep Specification—10/19/941-160 Chapter 1: Application Kit

Retrieving Values from the PPD Table

Keys for the PPD table are strings that name a main keyword or main keyword/option keyword pairing (formatted
as “mainKeyword/optionKeyword”). In both cases, you exclude the main keyword asterisk. The following example
creates an NSPrinter and invokes stringForKey:inTable: to retrieve the value for an un-optioned main keyword:

/* Create an NSPrinter object for a printer type. */

NSPrinter *prType = [NSPrinter

 printerWithType:@"My_Mimeo_Machine"]

 NSString *sValue = [prType stringForKey:@"3dDevice" inTable:@"PPD"];

/* sValue is "False". */

To retrieve the value for a main keyword/option keyword pair, pass the keywords formatted as
“mainKeyword/optionKeyword”:

NSString *sValue = [prType stringForKey:@"PaperDensity/A4"

 inTable:@"PPD"];

/* sValue is "0.3". */

stringForKey:inTable: can determine if a main keyword has options. If you pass a main keyword (only) as the
first argument to the method, and if that keyword has options in the PPD file, the method returns the empty string.
If it doesn’t have options, it returns the value of the first occurrence of the main keyword:

NSString *sValue = [prType stringForKey:@"PaperDensity" inTable:@"PPD"];

/* sValue is empty string*/

NSString *sValue = [prType stringForKey:@"InkName" inTable:@"PPD"];

/* sValue is "ProcessBlack" */

To retrieve the values for all occurrences of an un-optioned main keyword, use the stringListForKey:inTable:
method:

NSArray *sList = [prType stringListForKey:@"InkName" inTable:@"PPD"];

/* [slist objectAtIndex:0] is "ProcessBlack",

 [slist objectAtIndex:1] is "CustomColor",

 [slist objectAtIndex:2] is "ProcessCyan", and so on. */

In addition, stringListForKey:inTable: can be used to retrieve all the options for a main keyword (given that the
main keyword has options):

NSArray *sList = [prType stringListForKey:@"PaperDensity"

 inTable:@"PPD"];

/* [slist objectAtIndex:0] is "Letter",

 [slist objectAtIndex:1] is "Legal",

 [slist objectAtIndex:2] is "A4", and so on. */

Classes: NSPrinter1-161OpenStep Specification—10/19/94

Retrieving Values from the Option and Argument T ranslation Tables

A key to a translation table is like that to the PPD table: It’s a main keyword or main/option keyword pair (again
excluding the asterisk). However, the values that are returned from the translation tables are the translation strings
for the option or argument (value) portions of the PPD file entry. For example:

NSString *sValue = [prType stringForKey:@"Resolution/300dpi"

 inTable:@"PPDOptionTranslation"];

/* sValue is "300 dpi". */

NSArray *sList = [prType stringListForKey:@"InkName"

 inTable:@"PPDArgumentTranslation"];

/* [slist objectAtIndex:0] is "Process Black",

 [slist objectAtIndex:1] is "Custom Color",

 [slist objectAtIndex:2] is "Process Cyan", and so on. */

As with the PPD table, requesting an NSArray of NSStrings for an un-optioned main keyword returns the
keyword’s options (if it has any).

Retrieving Values from the Order Dependency Table

As mentioned earlier, an order dependency entry takes this form:

*OrderDependency: real section mainKeyword [optionKeyword]

These entries are stored in the PPDOrderDependency table. To retrieve a value from this table, always use
stringListForKey:inTable: . The value passed as the key is, again, a main keyword or main keyword/option
keyword pair; however, these values correspond to the mainKeyword and optionKeyword parts of an order
dependency entry’s value. As with the other tables, the main keyword’s asterisk is excluded. The method returns
an NSArray of two NSStrings that correspond to the real and section values for the entry. For example:

NSArray *sList = [prType stringListForKey:@"Resolution"

 inTable:@"PPDOrderDependency"]

/* [slist objectAtIndex:0] = "10", [slist objectAtIndex:1] = "AnySetup" */

Retrieving Values from the UIConstraints Table

Retrieving a value from the PPDUIConstraints table is similar to retrieving a value from the PPDOrderDependency
table: always use stringListForKey:inTable: and the key corresponds to elements in the entry’s value. Given the
following form (as described earlier), the key corresponds to mainKeyword1/optionKeyword1:

*UIConstraint: mainKeyword1 [optionKeyword1] mainKeyword2 [optionKeyword2]

The NSArray that’s returned by stringListForKey:inTable: contains the mainKeyword2 and optionKeyword2
values (with the keywords stored as separate elements in the NSArray) for every *UIConstraints entry that has the
given mainKeyword1/optionKeyword1 value. For example:

NSArray *sList = [prType stringListForKey:@"Option3/None"

 inTable:@"PPDUIConstraints"]

/* [slist objectAtIndex:0] = "PageSize", [slist objectAtIndex:1] = "Legal",

 [slist objectAtIndex:2] = "PageRegion", [slist objectAtIndex:3] = "Legal" */

OpenStep Specification—10/19/941-162 Chapter 1: Application Kit

Note that the main keywords that are returned in the NSArray don’t have asterisks. Also, the NSArray that’s
returned always alternates main and option keywords. If a particular main keyword doesn’t have an option
associated with it, the string for the option will be empty (but the entry in the NSArray for the option will exist).

Finding an NSPrinter

+ (NSPrinter *)printerWithName: (NSString *)name Returns the NSPrinter with the given name.

+ (NSPrinter *)printerWithType: (NSString *)type Returns an NSPrinter object for the given printer type.

+ (NSArray *)printerTypes Returns the recognized printer types.

Printer Attributes

– (NSString *)host Returns the name of the printer’s host computer.

– (NSString *)name Returns the printer’s name.

– (NSString *)note Returns the note associated with the printer.

– (NSString *)type Returns the name of the printer’s type.

Retrieving Specific Information

– (BOOL)acceptsBinary Returns YES if the printer accepts binary PostScript.

– (NSRect)imageRectForPaper:(NSString *)paperName
Returns the printing rectangle for the named paper type.

Possible values for paperName are contained in the
printer’s PPD file. Typical values are Letter and Legal.

– (NSSize)pageSizeForPaper:(NSString *)paperName
Returns the size of the page for the named paper type.

– (BOOL)isColor Returns whether the printer can print color.

– (BOOL)isFontAvailable:(NSString *)fontName Returns whether the named font is available to the printer.

– (int)languageLevel Returns the PostScript Language Level recognized by the
printer.

– (BOOL)isOutputStackInReverseOrder Returns whether the printer outputs pages in reverse page
order.

Classes: NSPrinter1-163OpenStep Specification—10/19/94

Querying the NSPrinter Tables

– (BOOL)booleanForKey:(NSString *)key Returns a boolean value associated with key in table.
inTable:(NSString *)table

– (NSDictionary *)deviceDescription Returns a dictionary of keys and values describing the
device. See NSGraphics.h for possible keys.

– (float)floatForKey: (NSString *)key Returns a floating-point value associated with key in table.
inTable:(NSString *)table

– (int)intForKey: (NSString *)key Returns an integer value associated with key in table.
inTable:(NSString *)table

– (NSRect)rectForKey: (NSString *)key Returns rectangle associated with key in table.
inTable:(NSString *)table

– (NSSize)sizeForKey:(NSString *)key Returns the size associated with key in table.
inTable:(NSString *)table

– (NSString *)stringForKey: (NSString *)key Returns a string associated with key in table.
inTable:(NSString *)table

– (NSArray *)stringListForKey: (NSString *)key Returns an array of strings associated with key in table.
inTable:(NSString *)table

– (NSPrinterTableStatus)statusForTable:(NSString *)table
Returns the status (NSPrinterTableOK,

NSPrinterTableNotFound, NSPrinterTableError) of the
given table.

– (BOOL)isKey:(NSString *)key Returns whether key is a key in table.
inTable:(NSString *)table

OpenStep Specification—10/19/941-164 Chapter 1: Application Kit

NSPrintInfo

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrintInfo.h

Class Description

An NSPrintInfo object stores information that’s used during printing. A shared NSPrintInfo object is automatically
created for an application and is used by default for all printing jobs for that application. You can create any number
of additional NSPrintInfo objects; however, only one can be “active” at a time, as set through the
setSharedPrintInfo: class method. The shared NSPrintInfo object is returned through the sharedPrintInfo class
method.

An NSPrintInfo object is used by the NSPrintOperations class to control printing. If you create special instances of
NSPrintInfo objects for a specific printing task, you must ensure that either the application’s shared NSPrintInfo
object is current, or you must instantiate an NSPrintOperations object using one of its methods that explicitly
designate an NSPrintInfo object.

Although you can set an NSPrintInfo’s attributes through the methods it provides, this is usually the task of other
objects, notably the NSPageLayout and NSPrintPanel objects. The NSView or NSWindow that’s being printed may
also supercede some NSPrintInfo settings. In particular, a NSView or NSWindow can supply the range of pages in
the document and can provide its own pagination mechanism through the knowsPagesFirst:last: and
rect:forPage: methods (see the documentation of these methods in the NSView class for details).

If the printed NSView or NSWindow doesn’t supply a pagination, the NSPrintInfo’s vertical and horizontal
pagination constants are used to trigger built-in pagination mechanisms:

Pagination Constant Meaning

NSAutoPagination The image is diced into equal-sized rectangles and placed in one column of
pages.

NSFitPagination The image is scaled to produce one column or one row of pages.

NSClipPagination The image is clipped to produce one column or row of pages.

Vertical and horizontal pagination needn’t be the same. However, if either dimension is scaled (NSFitPagination),
the other dimension is scaled by the same amount to avoid stretching the image. If both dimensions are scaled, the
scaling factor that produces the smallest image is used. Note that NSPrintInfo’s scaling factor is independent of the
scaling that’s imposed by pagination and is applied after the document has been paginated.

NSPrintInfo uses points as the unit of measurement for paper size and margin width in the methods below. See the
NSFont specification for a discussion of points.

Classes: NSPrintInfo1-165OpenStep Specification—10/19/94

Creating and Initializing an NSPrintInfo Instance

– (id)initWithDictionary: (NSDictionary *)aDict Initializes a newly allocated NSPrintInfo object by
assigning it the parameters specified in aDict. This is
the designated initializer for the class.

Managing the Shared NSPrintInfo Object

+ (void)setSharedPrintInfo:(NSPrintInfo *)printInfo Sets the shared NSPrintInfo object to printInfo.

+ (NSPrintInfo *)sharedPrintInfo Returns the shared NSPrintInfo object.

Managing the Printing Rectangle

+ (NSSize)sizeForPaperName:(NSString *)name Returns the size for the specified type of paper. name
identifies the type of paper, such as “Letter” or “Legal”.
Paper names are implementation specific.

– (float)bottomMargin Returns the height of the bottom margin.

– (float)leftMargin Returns the width of the left margin.

– (NSPrintingOrientation)orientation Returns whether the orientation is Portrait or Landscape.

– (NSString *)paperName Returns the paper type, such as “Letter” or “Legal”. Paper
names are implementation specific.

– (NSSize)paperSize Returns the size of the paper.

– (float)rightMargin Returns the width of the right margin.

– (void)setBottomMargin:(float)value Sets the bottom margin to value.

– (void)setLeftMargin: (float)value Sets the left margin to value.

– (void)setOrientation:(NSPrintingOrientation)mode Sets the orientation as Portrait or Landscape.

– (void)setPaperName:(NSString *)name Sets the paper type. name identifies the type of paper, such
as “Letter” or “Legal”. Paper names are implementation
specific.

– (void)setPaperSize:(NSSize)size Sets the width and height of the paper.

– (void)setRightMargin: (float)value Sets the right margin to value.

– (void)setTopMargin:(float)value Sets the top margin to value.

– (float)topMargin Returns the height of the top margin.

OpenStep Specification—10/19/941-166 Chapter 1: Application Kit

Pagination

– (NSPrintingPaginationMode)horizontalPagination Returns the horizontal pagination mode.

– (void)setHorizontalPagination:(NSPrintingPaginationMode)mode
Sets the horizontal pagination mode.

– (void)setVerticalPagination:(NSPrintingPaginationMode)mode
Sets the vertical pagination mode.

– (NSPrintingPaginationMode)verticalPagination Returns the vertical pagination mode.

Positioning the Image on the Page

– (BOOL)isHorizontallyCentered Returns whether the image is centered horizontally.

– (BOOL)isVerticallyCentered Returns whether the image is centered vertically.

– (void)setHorizontallyCentered:(BOOL)flag Sets whether the image is centered horizontally.

– (void)setVerticallyCentered:(BOOL)flag Sets whether the image is centered vertically.

Specifying the Printer

+ (NSPrinter *)defaultPrinter Returns the user’s default printer.

+ (void)setDefaultPrinter:(NSPrinter *)printer Sets the user’s default printer.

– (NSPrinter *)printer Returns the NSPrinter that’s used for printing.

– (void)setPrinter:(NSPrinter *)aPrinter Sets the printer that’s used in subsequent printing jobs.

Controlling Printing

– (NSString *)jobDisposition Returns the action specified for the job: printing, faxing,
previewing, etc. See setJobDisposition:.

– (void)setJobDisposition:(NSString *)disposition Sets the action specified for the job. disposition can be one
of NSPrintSpoolJob, NSPrintFaxJob,
NSPrintPreviewJob, NSPrintSaveJob,
NSPrintCancelJob.

– (void)setUpPrintOperationDefaultValues Allows the receiver to set any attribute that hasn’t been
previously set.

Accessing the NSPrintInfo Object’s Dictionary

– (NSMutableDictionary *)dictionary Returns the NSPrintInfo object’s dictionary.

Classes: NSPrintOperation1-167OpenStep Specification—10/19/94

NSPrintOperation

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPrintOperation.h

Class Description

NSPrintOperation controls operations that generate Encapsulated PostScript (EPS) code or PostScript print jobs.
Generally, EPS code is used to transfer images between applications, which happens when the user copies and
pastes graphics, uses a Service, or uses ObjectLinks. PostScript print jobs are generated when the user prints and
faxes documents. An NSPrintOperation does not generate PostScript code itself; it just controls the overall process,
relying on an NSView object to generate the actual code.

NSPrintOperation relies mainly on two other objects: an NSPrintInfo object, which specifies how the code should
be generated, and an NSView object, which performs the actual code generation. You specify these two objects in
the method you use to create the NSPrintOperation. If no NSPrintInfo is specified, NSPrintOperation uses the
shared NSPrintInfo, which contains default values. The shared NSPrintInfo works well for applications that are not
document-based. Document-based applications should create an NSPrintInfo for each document that might be
printed or copied and use that object instead.

You should create an NSPrintOperation in any method that is invoked when a user executes a Print command or a
Copy command. That method also must send NSPrintOperation a runOperation message to start the operation. A
print: method for a document-based application might look like this:

- (void)print:sender {

[[NSPrintOperation printOperationWithView:[self myView] printInfo:[document

docPrintInfo]] runOperation];

}

This method creates an NSPrintOperation for a print job that uses the document’s NSPrintInfo. Because this is a
print job, a Print panel (NSPrintPanel object) is displayed to allow the user to select printing options. The
NSPrintOperation copies the NSPrintInfo, updates this copy with information from the Print panel, and uses the
specified NSView to perform the operation.

The information stored in an NSPrintInfo that’s retained between operations is information that’s likely to remain
constant for a document, such as its page size. All information that’s likely to change between operations is set to
a default value in the NSPrintInfo before the operation begins. In this way, even though NSPrintOperation updates
the NSPrintInfo with information from the Print panel for print jobs, that information is reset back to the default
values for each print job. Because NSPrintOperation keeps a copy of the NSPrintInfo it uses, you could duplicate
a specific print job by storing that copy and reusing it.

OpenStep Specification—10/19/941-168 Chapter 1: Application Kit

Creating and Initializing an NSPrintOperation Object

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
insideRect:(NSRect)rect Returns a new NSPrintOperation that controls the
toData:(NSMutableData *)data copying of EPS graphics from the area specified by rect

in aView, using the parameters in the default
NSPrintInfo. The code is written to data. Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
insideRect:(NSRect)rect Returns a new NSPrintOperation that controls the
toData:(NSMutableData *)data copying of EPS graphics from the area specified by rect
printInfo: (NSPrintInfo *)aPrintInfo in aView, using the parameters in aPrintInfo. The code

is written to data. Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
insideRect:(NSRect)rect Returns a new NSPrintOperation that controls the
toPath:(NSString *)path copying of EPS graphics from the area specified by rect
printInfo: (NSPrintInfo *)aPrintInfo in aView, using the parameters in aPrintInfo. The code

is written to path. Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation *)printOperationWithView: (NSView *)aView
Returns a new NSPrintOperation that controls the printing

of aView, using the parameters in the shared
NSPrintInfo object. Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation *)printOperationWithView: (NSView *)aView
printInfo: (NSPrintInfo *)aPrintInfo Returns a new NSPrintOperation that controls the printing

of aView, using the parameters in aPrintInfo. Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

– (id)initEPSOperationWithView: (NSView *)aView Initializes a newly allocated NSPrintOperation to
insideRect:(NSRect)rect control the copying of EPS graphics from the area
toData:(NSMutableData *)data specified by rect in aView, using the parameters in
printInfo: (NSPrintInfo *)aPrintInfo aPrintInfo. The code is written to data.

– (id)initWithView: (NSView *)aView Initializes a newly allocated NSPrintOperation to
printInfo: (NSPrintInfo *)aPrintInfo control the printing of aView, using the parameters in

aPrintInfo.

Classes: NSPrintOperation1-169OpenStep Specification—10/19/94

Setting the Print Operation

+ (NSPrintOperation *)currentOperation Returns the NSPrintOperation that represents the current
operation or nil if there is no such operation.

+ (void)setCurrentOperation:(NSPrintOperation *)operation
Sets the NSPrintOperation that represents the current

operation.

Determining the Type of Operation

– (BOOL)isEPSOperation Returns YES if the receiver controls an EPS operation and
NO if the receiver controls a printing operation.

Controlling the User Inter face

– (NSPrintPanel *)printPanel Returns the NSPrintPanel object that’s used when the
operation is run.

– (BOOL)showPanels Returns whether the Print panel will appear when the
operation is run.

– (void)setPrintPanel:(NSPrintPanel *)panel Sets the NSPrintPanel object that’s used when the
operation is run.

– (void)setShowPanels:(BOOL)flag Sets whether the Print panel appears when the operation is
run.

Managing the DPS Context

– (NSDPSContext *)createContext Used by the NSPrintOperation object to create the DPS
context for output generation, using the current
NSPrintInfo settings.

– (NSDPSContext *)context Returns the DPS context used for the receiver’s operation.

– (void)destroyContext Used by the NSPrintOperation object to destroy the DPS
context at the end of the operation.

Page Information

– (int)currentPage Returns the page number of the page being printed.

– (NSPrintingPageOrder)pageOrder Returns the order in which pages will be printed.

– (void)setPageOrder:(NSPrintingPageOrder)order Sets the order in which pages will be printed.

OpenStep Specification—10/19/941-170 Chapter 1: Application Kit

Running a Print Operation

– (void)cleanUpOperation Invoked at end of an operation’s run to set the current
operation to nil .

– (BOOL)deliverResult Delivers the results generated by runOperation to the
intended destination: the print spooler, preview
application, etc. Returns YES upon successful delivery
and NO otherwise.

– (BOOL)runOperation Causes the operation (copying EPS graphics or printing) to
take place. Returns YES upon successful completion
and NO otherwise.

Getting the NSPrintInfo Object

– (NSPrintInfo *)printInfo Returns the receiver’s NSPrintInfo object.

– (void)setPrintInfo: (NSPrintInfo *)aPrintInfo Sets the receiver’s NSPrintInfo object to aPrintInfo.

Getting the NSView Object

– (NSView *)view Returns the NSView object that performs the operation
controlled by the receiving object.

Classes: NSPrintPanel1-171OpenStep Specification—10/19/94

NSPrintPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPrintPanel.h

Class Description

NSPrintPanel creates a Print panel. The Print panel queries the user for information about a print job, such as which
pages to print and how many copies.

When a print: message is sent to an NSView or NSWindow, an NSPrintOperation object is created to control the
print operation, which includes deciding whether or not to use an NSPrintPanel. The NSPrintPanel will be used
unless the setShowPanels:NO message is sent to the NSPrintOperation. If you’re subclassing NSPrintPanel, send
the setPrintPanel message to the NSPrintOperation object to ensure that an instance of your subclass is the unique
NSPrintPanel for that operation.

Short of subclassing NSPrintPanel, you can augment its display by adding a custom NSView through the
setAccessoryView: method. The panel is automatically resized to accommodate the NSView that you add. Note,
however, that you don’t have to create controls for special printer features. If a printer includes features in the
“OpenUI” field of its PostScript Printer Description (PPD) table, these features will be displayed in a separate panel
that’s brought up when the user clicks the Print panel’s Options button. For more information on a printer’s PPD
table, see the NSPrinter class description.

Typically, you access an NSPrintPanel by invoking the printPanel method. When the class receives a printPanel
message, it tries to reuse an existing panel rather than create a new one. When a panel is reused, its attributes are
reset to the default values so that the effect is the same as receiving a new panel. Because a Print panel may be
reused, you shouldn’t modify the instance returned by printPanel, except through the methods listed below. For
example, you can set the accessory view, but not the arrangement of the buttons within the panel. If you must
modify the Print panel substantially, create and manage your own instance using the alloc... and init... methods
rather than the printPanel method.

An application stores printing information in an NSPrintInfo object. NSPrintPanel’s updateFromPrintInfo reads
the NSPrintInfo object’s information into the Print panel. finalWritePrintInfo updates the NSPrintInfo object if
the user changes the information on the Print panel. When the NSPrintOperation object is created, an NSPrintInfo
object is also selected for the operation. The NSPrintOperation creates a copy of the NSPrintInfo.
finalWritePrintInfo actually writes to that copy.

OpenStep Specification—10/19/941-172 Chapter 1: Application Kit

Creating an NSPrintPanel

+ (NSPrintPanel *)printPanel Returns a default NSPrintPanel object.

Customizing the Panel

– (void)setAccessoryView:(NSView *)aView Adds an NSView to the panel.

– (NSView *)accessoryView Returns the accessory NSView.

Running the Panel

– (int)runModal Displays the Print panel and begins its event loop. If it is
necessary to resize the panel in order to accommodate
the list of printers, this method posts the notification
NSWindowDidResizeNotification with the receiving
object to the default notification center.

– (void)pickedButton:(id)sender Stops the event loop.

Updating the Panel’s Display

– (void)pickedAllPages:(id)sender Updates the panel when the user chooses all pages.

– (void)pickedLayoutList: (id)sender Updates the panel when the user chooses a new layout.

Communicating with the NSPrintInfo Object

– (void)updateFromPrintInfo Reads NSPrintPanel’s values from the NSPrintInfo object.

– (void)finalWritePrintInfo Writes NSPrintPanel’s values to the NSPrintInfo object.

Classes: NSResponder1-173OpenStep Specification—10/19/94

NSResponder

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSResponder.h

Class Description

NSResponder is an abstract class that forms the basis of command and event processing in the Application Kit.
Most Application Kit classes inherit from NSResponder. When an NSResponder receives an event or action
message that it can’t respond to—that it doesn’t have a method for—the message is sent to its next responder. For
an NSView, the next responder is usually its superview; the content view’s next responder is the NSWindow. Each
NSWindow, therefore, has its own responder chain. Messages are passed up the chain until they reach an object
that can respond.

Action messages and keyboard event messages are sent first to the first responder, the object that displays the
current selection and is expected to handle most user actions within a window. Each NSWindow has its own first
responder. Messages the first responder can’t handle work their way up the responder chain.

This class defines the methods that pass event and action messages along the responder chain.

Managing the Next Responder

– (NSResponder *)nextResponder Returns the receiver’s next responder.

– (void)setNextResponder:(NSResponder *)aResponder
Makes aResponder the receiver’s next responder.

Determining the First Responder

– (BOOL)acceptsFirstResponder Subclasses override to accept or reject first responder
status. NSResponder’s implementation simply returns
NO.

– (BOOL)becomeFirstResponder Notifies the receiver that it’s the first responder.

– (BOOL)resignFirstResponder Notifies the receiver that it’s not the first responder.

OpenStep Specification—10/19/941-174 Chapter 1: Application Kit

Aiding Event Processing

– (BOOL)performKeyEquivalent: (NSEvent *)theEvent
Subclasses override to respond to keyboard input.

NSResponder’s implementation simply returns NO to
indicate theEvent isn’t handled.

– (BOOL)tryToPerform: (SEL)anAction Aids in dispatching action messages. Returns YES if an
with: (id)anObject responder in the responder chain can perform the

anAction method, which takes the single argument
anObject.

Forwarding Event Messages

– (void)flagsChanged:(NSEvent *)theEvent Subclasses override to handle flags-changed events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)helpRequested:(NSEvent *)theEvent Causes the Help panel to display the help attached to the
receiver. If there’s no attached help, passes the message
to the receiver’s next responder.

– (void)keyDown:(NSEvent *)theEvent Subclasses override to handle key-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder. If the first responder
changes, this method posts the notification
NSTextDidEndEditingNotification with the current
object and, in the notification’s dictionary, the key
NSTextMovement to the default notification center.

– (void)keyUp:(NSEvent *)theEvent Subclasses override to handle key-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)mouseDown:(NSEvent *)theEvent Subclasses override to handle mouse-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)mouseDragged:(NSEvent *)theEvent Subclasses override to handle mouse-dragged events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)mouseEntered:(NSEvent *)theEvent Subclasses override to handle mouse-entered events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)mouseExited:(NSEvent *)theEvent Subclasses override to handle mouse-exited events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Classes: NSResponder1-175OpenStep Specification—10/19/94

– (void)mouseMoved:(NSEvent *)theEvent Subclasses override to handle mouse-moved events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)mouseUp:(NSEvent *)theEvent Subclasses override to handle mouse-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)noResponderFor:(SEL)eventSelector Responds to an event message that has reached the end of
the responder chain without finding an object that can
respond. When the event is a key down, generates a
beep.

– (void)rightMouseDown:(NSEvent *)theEvent Subclasses override to handle right mouse-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)rightMouseDragged:(NSEvent *)theEvent Subclasses override to handle right mouse-dragged events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

– (void)rightMouseUp:(NSEvent *)theEvent Subclasses override to handle right mouse-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Services Menu Support

– (id)validRequestorForSendType:(NSString *)typeSent
returnType: (NSString *)typeReturned Subclasses override to determine which Services menu

items are enabled at a given time. Returning self enables
services that can receive typeSent pasteboard types and
can return typeReturned pasteboard types. Returning nil
disables them. NSResponder’s implementation passes
the message to the receiver’s next responder.

OpenStep Specification—10/19/941-176 Chapter 1: Application Kit

NSSavePanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSavePanel.h

Class Description

NSSavePanel creates a Save panel. The Save panel provides a simple way for a user to specify a file to use when
saving a document or other data. It can restrict the user to files of a certain type, as specified by a file name
extension.

When the user decides on a file name, the message panel:isValidFilename: is sent to the NSSavePanel’s delegate
(if it responds to that message). The delegate can then determine whether that file name can be used; it returns YES
if the file name is valid, or NO if the Save panel should stay up and wait for the user to type in a different file name.

Typically, you access an NSSavePanel by invoking the savePanel method. When the class receives a savePanel
message, it tries to reuse an existing panel rather than create a new one. When a panel is reused, its attributes are
reset to the default values so that the effect is the same as receiving a new panel. Because a Save panel may be
reused, you shouldn't modify the instance returned by savePanel, except through the methods listed below. For
example, you can set the panel’s title and required file type, but not the arrangement of the buttons within the panel.
If you must modify the Save panel substantially, create and manage your own instance using the alloc... and init...
methods rather than the savePanel method.

Creating an NSSavePanel

+(NSSavePanel *)savePanel Returns an NSSavePanel object, creating it if necessary.

Customizing the NSSavePanel

– (void)setAccessoryView:(NSView *)aView Adds an application-customized view to the save panel.

– (NSView *)accessoryView Returns the application-customized view object.

– (void)setTitle:(NSString *)title Sets the title of the NSSavePanel to title.

– (NSString *)title Returns the title of the NSSavePanel.

– (void)setPrompt:(NSString *)prompt Sets the title of the form field for the path to prompt.

– (NSString *)prompt Returns the title of the form field for the path.

Classes: NSSavePanel1-177OpenStep Specification—10/19/94

Setting Directory and File Type

– (NSString *)requiredFileType Gets the required file type (if any).

– (void)setDirectory:(NSString *)path Sets the current directory of the NSSavePanel.

– (void)setRequiredFileType:(NSString *)type Sets the required file type (if any). An empty string
indicates that the user can save to any ASCII file.

– (void)setTreatsFilePackagesAsDirectories:(BOOL)flag
Sets whether the NSSavePanel object treats file packages as

directories by showing their contents in the browser.

– (BOOL)treatsFilePackagesAsDirectories Returns YES if the NSSavePanel treats file packages as
directories, thereby allowing users to browse the
contents of file packages.

Running the NSSavePanel

– (int)runModalForDirectory: (NSString *)path Displays the NSSavePanel and begins its event loop,
file:(NSString *)filename showing path in the browser and selecting filename.

– (int)runModal Displays the NSSavePanel and begins its event loop.

Reading Save Information

– (NSString *)directory Returns the directory that the chosen file resides in.

– (NSString *)filename Returns the absolute path name of the file to be saved.

Target and Action Methods

– (void)ok:(id)sender Method invoked by the OK button.

– (void)cancel:(id)sender Method invoked by the Cancel button.

Responding to User Input

– (void)selectText:(id)sender Invoked when users press Tab, Shift-Tab, or an arrow key.

Setting the Delegate

– (void)setDelegate:(id)anObject Makes anObject the NSSavePanel’s delegate.

OpenStep Specification—10/19/941-178 Chapter 1: Application Kit

Methods Implemented by the Delegate

– (NSComparisonResult)panel:(id)sender Returns NSOrderedDescending if filename1 precedes
compareFilename:(NSString *)filename1 filename2, NSOrderedAscending in the opposite case,
with: (NSString *)filename2 NSOrderedSame if the two are equivalent.
caseSensitive:(BOOL)caseSensitive

– (BOOL)panel:(id)sender Returns YES if filename should be displayed in the
shouldShowFilename:(NSString *)filename browser.

– (BOOL)panel:(id)sender Returns YES if filename is acceptable to the delegate.
isValidFilename:(NSString*)filename

Classes: NSScreen1-179OpenStep Specification—10/19/94

NSScreen

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSScreen.h

Class Description

An NSScreen object describes the attributes of a computer’s monitor, or screen. An application may use an
NSScreen object to retrieve information about a screen and use this information to decide what to display upon that
screen. For example, an application may use the deepestScreen method to find out which of the available screens
can best represent color and then may choose to display all of its windows on that screen.

The two main attributes of a screen are its depth and its dimensions. The depth method describes the screen depth
(such as two-bit, eight-bit, or twelve-bit) and tells you if the screen can display color. The frame method gives the
screen’s dimensions and location as an NSRect.

The device description dictionary contains more complete information about the screen. Use NSScreen’s
deviceDescription method to access the dictionary, and use these keys to retrieve information about a screen:

Dictionary Key Returns

NSDeviceResolution An NSValue describing the screen’s resolution in dots per inch (dpi).

NSDeviceColorSpaceName The screen’s color space name. See NSGraphics.h for a list of possible values.

NSDeviceBitsPerSample The bit depth of screen images (2-bit, 8-bit, etc.).

NSDeviceIsScreen YES, indicating the device is a screen.

NSDeviceSize An NSValue describing the screen’s size in points.

The device description dictionary contains information about not only screens, but all other system devices such as
printers and windows. There are other keys into the dictionary that you would use to obtain information about these
other devices. For a complete list of device dictionary keys, see NSGraphics.h.

Creating NSScreen Instances

+ (NSScreen *)mainScreen Returns an NSScreen object representing the main screen.
The main screen is the screen with the key window.

+ (NSScreen *)deepestScreen Returns an NSScreen object representing the screen that
can best represent color. This method always returns an
object, even if there is only one screen and it is not a
color screen.

OpenStep Specification—10/19/941-180 Chapter 1: Application Kit

+ (NSArray *)screens Returns an array of NSScreen objects representing all of
the screens available on the system. Raises
NSWindowServerCommunicationException if the
screens information can’t be obtained from the window
system.

Reading Screen Information

– (NSWindowDepth)depth Returns the screen’s depth, including whether the screen
can display color.

– (NSRect)frame Returns the dimensions and location of the screen in an
NSRect.

– (NSDictionary *)deviceDescription Returns the device dictionary as described in the class
description.

Classes: NSScroller1-181OpenStep Specification—10/19/94

NSScroller

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScroller.h

Class Description

The NSScroller class defines a control that’s used by an NSScrollView object to position a document that’s too large
to be displayed in its entirety within an NSView. An NSScroller is typically represented on the screen by a bar, a
knob, and two scroll buttons, although it may contain only some of these. The knob indicates both the position
within the document and the amount displayed relative to the size of the document. The bar is the rectangular region
that the knob slides within. The scroll buttons allow the user to scroll in small increments by clicking, or in large
increments by Alternate-clicking. In discussions of the NSScroller class, a small increment is referred to as a “line
increment” (even if the NSScroller is oriented horizontally), and a large increment is referred to as a “page
increment,” although a page increment actually advances the document by one windowful. When you create an
NSScroller, you can specify either a vertical or a horizontal orientation.

As an NSControl, an NSScroller handles mouse events and sends action messages to its target (usually its parent
NSScrollView) to implement user-controlled scrolling. The NSScroller must also respond to messages from an
NSScrollView to represent changes in document positioning.

NSScroller is a public class primarily for programmers who decide not to use an NSScrollView but want to present
a consistent user interface. Its use is not encouraged except in cases where the porting of an existing application is
made more straightforward. In these situations, you initialize a newly created NSScroller by calling
initWithFrame: . Then, you use setTarget: (NSControl) to set the object that will receive messages from the
NSScroller, and you use setAction: (NSControl) to specify the message that will be sent to the target by the
NSScroller. When your target receives a message from the NSScroller, it will probably need to query the
NSScroller using the hitPart and floatValue (NSControl) methods to determine what action to take.

The NSScroller class has several constants referring to the parts of an NSScroller. A scroll button with an up arrow
(or left arrow, if the NSScroller is oriented horizontally) is known as a “decrement line” button if it receives a
normal click, and as a “decrement page” button if it receives an Alternate-click. Similarly, a scroll button with a
down or right arrow functions as both an “increment line” button and an “increment page” button. The constants
defining the parts of an NSScroller are as follows:

OpenStep Specification—10/19/941-182 Chapter 1: Application Kit

Constant Refers To

NSScrollerNoPart No part of the NSScroller
NSScrollerKnob The knob
NSScrollerDecrementPage The button that decrements a windowful (up or left arrow)
NSScrollerIncrementPage The button that increments a windowful (down or right arrow)
NSScrollerDecrementLine The button that decrements a windowful (up or left arrow)
NSScrollerIncrementLine The button that increments a windowful (down or right arrow)
NSScrollerKnobSlot The bar

The following constants are used in the setArrowsPosition: method to set the position of the scroll buttons within
the scroller:

Constant Meaning

NSScrollerArrowsMaxEnd Scroll buttons are placed at the bottom or right end of the scroller.
NSScrollerArrowsMinEnd Scroll buttons are placed at the top or left part of the scroller.
NSScrollerArrowsNone The scroller doesn’t have scroll buttons.

An NSScroller can be made too small for all its parts to be displayed. The usableParts method returns one of the
following constants to indicate whether such a condition is present:

Constant Meaning

NSNoScrollerParts Scroller has no usable parts, only the bar.
NSOnlyScrollerArrows Scroller has only scroll buttons.
NSAllScrollerParts Scroller has all parts.

The following constants are used as values for the first argument of the drawArrow:highlight: method, to indicate
which scroll button is to be drawn:

Constant Meaning

NSScrollerIncrementArrow The scroll button that scrolls forward.
NSScrollerDecrementArrow The scroll button that scrolls backward.

Laying out the NSScroller

+ (float)scrollerWidth Returns the width of the scoller, a constant value.

– (NSScrollArrowPosition)arrowsPosition Returns the position of scroll arrows in the NSScroller.

– (void)checkSpaceForParts Checks for room for knob and scroll buttons.

– (NSRect)rectForPart: (NSScrollerPart)partCode Gets the rectangle that encloses partCode.

– (void)setArrowsPosition:(NSScrollArrowPosition)where
Sets position of scroll arrows in the NSScroller.

– (NSUsableScrollerParts)usableParts Indicates which parts of the scroller can be displayed, given
the NSScroller’s current size.

Classes: NSScroller1-183OpenStep Specification—10/19/94

Setting the NSScroller’s Values

– (float)knobProportion Returns the ratio of the knob’s length to the NSScroller’s
length.

– (void)setFloatValue:(float)aFloat Sets the NSScroller’s value, repositioning the
knobProportion: (float)ratio knob according to aFloat and resizing it according to

ratio. Both arguments are clipped to the range from 0.0
to 1.0, inclusive.

Displaying

– (void)drawArrow: (NSScrollerArrow)whichButton
highlight: (BOOL)flag Draws highlighted and unhighlighted arrows.

– (void)drawKnob Draws the knob.

– (void)drawParts Caches bitmaps for knob and scroll arrows.

– (void)highlight: (BOOL)flag Highlights scroll button that’s under mouse.

Handling Events

– (NSScrollerPart)hitPart Returns the part of the NSScroller object that received
mouse-down.

– (NSScrollerPart)testPart:(NSPoint)thePoint Returns the part of the NSScroller that’s under thePoint.

– (void)trackKnob: (NSEvent *)theEvent Invoked in response to mouse-down events on the knob.

– (void)trackScrollButtons: (NSEvent *)theEvent Invoked in response to mouse-down events on buttons.

OpenStep Specification—10/19/941-184 Chapter 1: Application Kit

NSScrollView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScrollView.h

Class Description

An NSScrollView object lets the user interact with a document that’s too large to be shown in its entirety within an
NSView and must therefore be scrolled. The responsibility of an NSScrollView is to coordinate scrolling behavior
between NSScroller objects and a NSClipView object. Thus, the user may drag the knob of an NSScroller and the
NSScrollView will send a message to its NSClipView to ensure that the viewed portion of the document reflects
the position of the knob. Similarly, the application can change the viewed position within a document and the
NSScrollView will send a message to the NSScrollers advising them of this change.

The NSScrollView has at least one subview (an NSClipView object), which is called the content view. The content
view in turn has a subview called the document view, which is the view to be scrolled. When an NSScrollView is
created, it has neither a vertical nor a horizontal scroller. If NSScrollers are required, the application must send
setHasHorizontalScroller:YES and setHasVerticalScroller:YES messages to the NSScrollView; the content
view is resized to fill the area of the NSScrollView not occupied by the NSScrollers.

When the application modifies the scroll position within the document, it should send a reflectScrolledClipView:
message to the NSScrollView, which will then query the content view and set the NSScroller(s) accordingly. The
reflectScrolledClipView: message may also cause the NSScrollView to enable or disable the NSScrollers as
required.

Determining Component Sizes

– (NSSize)contentSize Gets the content view’s size.

– (NSRect)documentVisibleRect Gets the visible portion of the document view.

Classes: NSScrollView1-185OpenStep Specification—10/19/94

Laying Out the NSScrollView

+ (NSSize)contentSizeForFrameSize:(NSSize)size Gets the content view size for the given NSScrollView
hasHorizontalScroller:(BOOL)horizFlag frame size.
hasVerticalScroller:(BOOL)vertFlag
borderType:(NSBorderType)aType

+ (NSSize)frameSizeForContentSize:(NSSize)size Gets the NSScrollView frame size for the given content
hasHorizontalScroller:(BOOL)horizFlag view size.
hasVerticalScroller:(BOOL)vertFlag
borderType:(NSBorderType)aType

– (void)setHasHorizontalScroller:(BOOL)flag Instructs the NSScrollView whether to create and use a
horizontal scroller.

– (BOOL)hasHorizontalScroller Returns YES if the NSScrollView object has a horizontal
scroller.

– (void)setHasVerticalScroller:(BOOL)flag Instructs the NSScrollView whether to create and use a
vertical scroller.

– (BOOL)hasVerticalScroller Returns YES if the NSScrollView object has a vertical
scroller.

– (void)tile Retiles the scrollers and content view.

– (void)toggleRuler:(id)sender Makes the ruler visible or invisible, whichever is the
opposite of its current state.

– (BOOL)isRulerVisible Returns whether the ruler is visible in the NSScrollView.

Managing Component Views

– (void)setDocumentView:(NSView *)aView Makes aView the NSScrollView’s document view.

– (id)documentView Returns the current document view.

– (void)setHorizontalScroller:(NSScroller *)anObject
Sets the horizontal NSScroller object.

– (NSScroller *)horizontalScroller Returns the horizontal NSScroller object.

– (void)setVerticalScroller:(NSScroller *)anObject Sets the vertical NSScroller object.

– (NSScroller *)verticalScroller Returns the vertical NSScroller object.

– (void)reflectScrolledClipView:(NSClipView *)cView
Moves the scrollers to reflect change in the coordinates of

the clip view.

OpenStep Specification—10/19/941-186 Chapter 1: Application Kit

Modifying Graphic Attributes

– (void)setBorderType:(NSBorderType)aType Sets the border type of the NSScrollView.

– (NSBorderType)borderType Returns the border type.

– (void)setBackgroundColor:(NSColor *)color Sets the NSScrollView’s background color.

– (NSColor *)backgroundColor Returns the NSScrollView’s background color.

Setting Scrolling Behavior

– (float)lineScroll Returns the amount scrolled when scrolling a line. (The
return value is expressed in units of the NSScrollView’s
coordinate system.)

– (float)pageScroll Returns the amount scrolled when scrolling a page. (The
return value is expressed in units of the NSScrollView’s
coordinate system.)

– (void)setScrollsDynamically:(BOOL)flag Sets how the document view is displayed during scrolling.

– (BOOL)scrollsDynamically Returns whether the NSScrollView scrolls dynamically.

– (void)setLineScroll:(float)value Sets the amount to scroll when scrolling a line.

– (void)setPageScroll:(float)value Sets the amount of overlap for a page scroll.

Managing the Cursor

– (void)setDocumentCursor:(NSCursor *)anObject Sets the cursor for the document view.

Classes: NSSelection1-187OpenStep Specification—10/19/94

NSSelection

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSSelection.h

Class Description

The NSSelection class defines an object that describes a selection within a document. An NSSelection, or simply,
selection, is an immutable description; it may be held by the system or other documents, and it cannot change over
time. Selections are typically used by NSDataLink objects to represent the source and destination of a link.

Because a selection description can’t be changed once it’s been exported, it’s a good idea to construct general
descriptions that can survive changes to a document and don’t require selection-specific information to be stored
in the document. This description may be simple or complex, depending upon the application. For example, a
painting application might describe a selection in an image as a simple rectangle. This description doesn’t require
that any information be stored in the image’s file, and the description can be expected to remain valid through the
life of the image. An object-based drawing application might describe a selection as a list of object identifiers
(though not ids), where an object identifier is unique throughout the life of the document. Based on this list, a
selection could be meaningfully reconstructed, even if new objects are added to the document or selected objects
are deleted. Such a scheme doesn’t require that any selection-specific information be stored in the document’s file,
with the benefit that links can be made to read-only documents.

Maintaining a character-range selection in a text document is more problematic. A possible solution is to insert
selection-begin and selection-end markers that define a specific selection into the text stream. A selection
description would then refer to a specific selection marker. This solution requires that selection state information
be stored and maintained within the document. Furthermore, this information generally shouldn’t be purged from
the document, because the document can’t know how many references to the selection exist. (References to the
selection could be stored with documents on removable media, like floppy disks.) This selection-state information
should be maintained as long as it refers to any meaningful data. For this reason, it’s desirable to describe selection
in a manner that doesn’t require that selection-state information be maintained in the document whenever possible.

Three well-known selection descriptions can apply to any document: the empty selection, the entire document, and
the abstract concept of the current selection. NSSelection objects for these selections are returned by the
emptySelection, allSelection, and currentSelection class methods.

Since an NSSelection may be used in a document that is read by machines with different architectures, care should
be taken to write machine-independent descriptions. For example, using a binary structure as a selection description
will fail on a machine where an identically defined structure has a different size or is kept in memory with different
byte ordering. Exporting (and then parsing) ASCII descriptions is often a good solution. If binary descriptions must
be used, it’s prudent to preface the description with a token specifying the description’s byte ordering.

OpenStep Specification—10/19/941-188 Chapter 1: Application Kit

It may also be prudent to version-stamp selection descriptions, so that old selections can be accurately read by
updated versions of an application.

Returning Special Selection Shared Instances

+ (NSSelection *)allSelection Returns the shared instance of the well-known selection
representing the entire document.

+ (NSSelection *)currentSelection Returns the shared instance of the well-known selection
representing the abstract concept of the current
selection. The current selection never describes a
specific selection; it describes a selection that may
change frequently.

+ (NSSelection *)emptySelection Returns the shared instance of the well-known selection
representing no data.

Creating and Initializing a Selection

+ (NSSelection *)selectionWithDescriptionData:(NSData *)data
Creates and returns an NSSelection object that records data

as the description of the selection.

– (id)initWithDescriptionData: (NSData *)newData Initializes a newly allocated NSSelection object that
records data as the description of the selection. Returns
the initialized object.

– (id)initWithPasteboard: (NSPasteboard *)pasteboard
Initializes a newly allocated NSSelection object that takes

its description of the selection from pasteboard.
Returns the initialized object.

Describing a Selection

– (NSData *)descriptionData Returns the data that describes the selection as set by
selectionWithDescriptionData: or
initWithDescriptionData: .

– (BOOL)isWellKnownSelection Returns YES if the receiver is one of the well-known
selection types (those representing the entire document,
current selection, or empty selection) and NO
otherwise.

Classes: NSSelection1-189OpenStep Specification—10/19/94

Writing a Selection to the Pasteboard

– (void)writeToPasteboard:(NSPasteboard *)pasteboard
Writes the selection data to the pasteboard pasteboard. A

copy of the selection can then be retrieved by
initializing a new NSSelection from the pasteboard
using initWithPasteboard: .

OpenStep Specification—10/19/941-190 Chapter 1: Application Kit

NSSlider

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSlider.h

Class Description

NSSlider is a type of NSControl with a sliding knob that can be moved to represent a value between a minimum
and a maximum setting. A slider may be either horizontal or vertical, but its minimum value is always at the left or
bottom end of the bar, and the maximum at the right or top. By default, an NSSlider is a continuous NSControl: It
sends its action message to its target continuously while the user drags its knob. To configure an NSSlider to send
its action only when the mouse is released, send setContinuous: (an NSControl method) with an argument of NO.

An NSSlider can be configured to display an image, a title, or both, in the area behind its knob. An NSSlider's title
can be drawn in any gray level or color, and in any font available. An NSSlider's value can be set programmatically
with any of the standard NSControl value-setting methods, such as setFloatValue:.

For more information, see the method descriptions in the NSSliderCell class specification.

Setting the Cell Class

+ (Class)cellClass Returns the class last set in a setCellClass: message, or the
NSSliderCell class if setCellClass: has never been
called.

+ (void)setCellClass:(Class)classId Sets the class of NSCell used in the NSSlider.

Modifying an NSSlider’s Appearance

– (NSImage *)image Returns the image within the NSSlider.

– (int)isVertical Returns 1 if the NSSlider is vertical, 0 if horizontal, -1 if
unknown.

– (float)knobThickness Returns the knob’s thickness as a float value (width if
horizontal slider, height if vertical slider).

– (void)setImage:(NSImage *)backgroundImage Sets the image within the NSSlider to backgroundImage.

Classes: NSSlider1-191OpenStep Specification—10/19/94

– (void)setKnobThickness:(float)aFloat Sets the knob’s thickness (its width if the slider is
horizontal, height if vertical) to aFloat, expressed in
units of the NSSlider’s coordinate system.

– (void)setTitle:(NSString *)aString Sets the title within the NSSlider to a copy of aString.

– (void)setTitleCell:(NSCell *)aCell Sets the NSCell (or subclass thereof) object used to draw
the title within the NSSlider. The cell object should
ideally be an instance of NSTextFieldCell or one of its
subclasses.

– (void)setTitleColor:(NSColor *)aColor Sets the color of text in the title to aColor.

– (void)setTitleFont:(NSFont *)fontObject Sets the NSFont object used for the title within the
NSSlider.

– (NSString *)title Returns the title within the NSSlider.

– (id)titleCell Returns the NSCell (or subclass thereof) object used to
draw the title within the NSSlider.

– (NSColor *)titleColor Returns the color of text in the title.

– (NSFont *)titleFont Returns the NSFont object used in drawing the title within
the NSSlider.

Setting and Getting V alue Limits

– (double)maxValue Returns theNSSlider’s maximum value.

– (double)minValue Returns the NSSlider’s minimum value.

– (void)setMaxValue:(double)aDouble Sets the NSSlider’s maximum value to aDouble.

– (void)setMinValue:(double)aDouble Sets the NSSlider’s minimum value to aDouble.

Handling Events

– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent Returns YES by default, since NSSliders always accept a
mouse-down event that activates a window, whether or
not the NSSlider is enabled. Override this if you want
different behavior.

OpenStep Specification—10/19/941-192 Chapter 1: Application Kit

NSSliderCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSSliderCell.h

Class Description

NSSliderCell is a type of NSCell used to assist the NSSlider class, and to build matrices of sliders. The
NSSliderCell encompasses all the visible portions of the NSSlider—the knob, the area along which the knob slides,
and the optional title within this area. See the NSSlider class specification for an overview of how NSSliderCells
work.

Determining Component Sizes

– (NSSize)cellSizeForBounds:(NSRect)aRect Returns the minimum width and height needed to draw the
NSSliderCell in aRect. If aRect too small to fit the knob
and bezel, the width and height of theSize are set to 0.0.

– (NSRect)knobRectFlipped:(BOOL)flipped Gets the rectangle the knob will be drawn in. flipped
indicates whether the NSSliderCell's view has a flipped
coordinate system.

Setting Value Limits

– (double)maxValue Returns the NSSliderCell’s maximum value.

– (double)minValue Returns the NSSliderCell’s minimum value.

– (void)setMaxValue:(double)aDouble Sets the maximum value of the NSSliderCell to aDouble.

– (void)setMinValue:(double)aDouble Sets the NSSliderCell’s minimum value to aDouble.

Modifying Graphic Attributes

– (int)isVertical Returns 1 if the NSSliderCell is vertical, 0 if horizontal, -1
if unknown.

– (float)knobThickness Returns the knob’s thickness as a float value.

– (void)setKnobThickness:(float)aFloat Sets the knob’s thickness to aFloat (width if a horizontal
slider, height if vertical).

Classes: NSSliderCell1-193OpenStep Specification—10/19/94

– (void)setTitle:(NSString *)aString Sets the title within the NSSliderCell to a copy of aString.

– (void)setTitleCell:(NSCell *)aCell Sets the NSCell (or subclass thereof) object used to draw
the title within the NSSliderCell. The cell object should
ideally be an instance of NSTextFieldCell or one of its
subclasses.

– (void)setTitleColor:(NSColor *)aColor Sets the color of text in the title to aColor.

– (void)setTitleFont:(NSFont *)fontObject Sets the NSFont object used to draw the title within the
NSSliderCell.

– (NSString *)title Returns the title within the NSSliderCell.

– (id)titleCell Returns the NSCell (or subclass thereof) object used to
draw the title within the NSSliderCell.

– (NSFont *)titleFont Returns the NSFont object used in drawing the title within
the NSSliderCell.

– (NSColor *)titleColor Returns the color of text in the title.

Displaying the NSSliderCell

– (void)drawBarInside: (NSRect)aRect Draws the NSSliderCell’s background bar (but not the
flipped:(BOOL)flipped bezel around it or the knob) in aRect. flipped indicates

whether the NSView’s coordinate system is flipped.

– (void)drawKnob Draws the NSSliderCell’s knob after calculating the
drawing rectangle.

– (void)drawKnob: (NSRect)knobRect Draws the NSSliderCell’s knob in knobRect.

Modifying Behavior

– (double)altIncrementValue Returns the increment by which the NSSliderCell modifies
its value when its knob is Alternate-dragged one pixel.

– (void)setAltIncrementValue:(double)incValue Sets the amount by which the NSSliderCell modifies its
value when the knob is dragged one pixel with the
Alternate key held down.

OpenStep Specification—10/19/941-194 Chapter 1: Application Kit

Tracking the Mouse

+ (BOOL)prefersTrackingUntilMouseUp Returns YES to allow NSSliderCell objects to track even
when the mouse leaves their bounds. Override this
method to return NO if you want the NSSliderCell to
stop tracking once the mouse leaves its bounds.

– (NSRect)trackRect Returns the rectangle used in tracking the mouse (only
valid while tracking).

Classes: NSSpellChecker1-195OpenStep Specification—10/19/94

NSSpellChecker

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSSpellChecker.h

Class Description

The NSSpellChecker class gives any application an interface to the OpenStep spell-checking service. To handle all
its spell checking, an application needs only one instance of NSSpellChecker. It provides a panel in which the user
can specify decisions about words that are suspect. To check the spelling of a piece of text, the application:

• Includes in its user interface a menu item (or a button or command) by which the user will request spell
checking.

• Makes the text available by way of an NSString object.

• Creates an instance of the NSSpellChecker class and sends it a checkSpellingOfString:startingAt:
message.

For example, you might use the following statement to create an NSSpellChecker:

range = [[NSSpellChecker sharedSpellChecker] checkSpellingOfString:aString startingAt:0];

The checkSpellingOfString:startingAt: method checks the spelling of the words in the specified string beginning
at the specified offset (this example uses 0 to start at the beginning of the string) until it finds a word that is
misspelled. Then it returns an NSRange to indicate the location of the misspelled word.

In a graphical application, whenever a misspelled word is found, you’ll probably want to highlight the word in the
document, using the NSRange that checkSpellingOfString:startingAt: returned to determine the text to highlight.
Then you should show the misspelled word in the Spelling panel’s misspelled-word field by calling
updateSpellingPanelWithMisspelledWord:. If checkSpellingOfString:startingAt: does not find a misspelled
word, you should call updateSpellingPanelWithMisspelledWord: with the empty string. This causes the system
to beep, letting the user know that the spell check is complete and no misspelled words were found. None of these
steps is required, but if you do one, you should do them all.

The object that provides the string being checked should adopt the following protocols:

NSChangeSpelling A message in this protocol (changeSpelling:) is sent down the responder chain
when the user presses the Correct button.

NSIgnoreMisspelledWords When the object being checked responds to this protocol, the spell server keeps
a list of words that are acceptable in the document and enables the Ignore
button in the Spelling panel.

OpenStep Specification—10/19/941-196 Chapter 1: Application Kit

The application may choose to split a document’s text into segments and check them separately. This will be
necessary when the text has segments in different languages. Spell checking is invoked for one language at a time,
so a document that contains portions in three languages will require at least three checks.

Dictionaries and Word Lists

The process of checking spelling makes use of three references:

• A dictionary registered with the system’s spell-checking service. When the Spelling panel first appears, by
default it shows the dictionary for the user’s preferred language. The user may select a different dictionary
from the list in the Spelling panel.

• The user’s “ learn” list of correctly-spelled words in the current language. The NSSpellChecker updates the
list when the user presses the Learn or Forget buttons in the Spelling panel.

• The document’s list of words to be ignored while checking it (if the first responder conforms to the
NSIgnoreMisspelledWords protocol). The NSSpellChecker updates its copy of this list when the user
presses the Ignore button in the Spelling panel.

A word is considered to be misspelled if none of these three accepts it.

Matching a List of Ignored Words with the Document It Belongs To

The NSString being checked isn’t the same as the document. In the course of processing a document, an
application might run several checks based on different parts or different versions of the text. But they’d all belong
to the same document. The NSSpellChecker keeps a separate “ ignored words” list for each document that it checks.
To help match “ ignored words” lists to documents, you should call uniqueSpellDocumentTag once for each
document. This method returns a unique arbitrary integer that will serve to distinguish one document from the
others being checked and to match each “ ignored words” list to a document. When searching for misspelled words,
pass the tag as the fourth argument of
checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount:. (The
convenience method checkSpellingOfString:startingAt: takes no tag. This method is suitable when the first
responder does not conform to the NSIgnoreMisspelledWords protocol.)

When the application saves a document, it may choose to retrieve the “ ignored words” list and save it along with
the document. To get back the right list, it must send the NSSpellChecker an
ignoredWordsInSpellDocumentWithTag: message. When the application has closed a document, it should
notify the NSSpellChecker that the document’s “ ignored words” list can now be discarded, by sending it a
closeSpellDocumentWithTag: message. When the application reopens the document, it should restore the
“ignored words” list with the message setIgnoredWords:inSpellDocumentWithTag:.

Making a Checker available

+ (NSSpellChecker *)sharedSpellChecker Returns the NSSpellChecker (one per application).

+ (BOOL)sharedSpellCheckerExists Returns whether the application’s NSSpellChecker has
already been created.

Classes: NSSpellChecker1-197OpenStep Specification—10/19/94

Managing the Spelling Panel

– (NSView *)accessoryView Returns the Spelling panel’s accessory NSView object.

– (void)setAccessoryView:(NSView *)aView Makes an NSView object an accessory of the Spelling
panel by making it a subview of the panel’s content
view. This method posts the notification
NSWindowDidResizeNotification with the Spelling
panel object to the default notification center.

– (NSPanel *)spellingPanel Returns the NSSpellChecker’s panel.

Checking Spelling

– (int)countWordsInString: (NSString *)aString Returns the number of words in string. The language
language:(NSString *)language argument specifies the language used in the string. If

language is the empty string, the current selection in the
Spelling panel’s pop-up menu is used.

– (NSRange)checkSpellingOfString:(NSString *)stringToCheck
startingAt: (int)startingOffset Starts the search for a misspelled word in stringToCheck

starting at startingOffset within the string object.
Returns the range of the first misspelled word.
Wrapping occurs but no ignored-words dictionary is
used.

– (NSRange)checkSpellingOfString:(NSString *)stringToCheck
startingAt: (int)startingOffset Starts the search for a misspelled word in stringToCheck
language:(NSString *)language starting at startingOffset within the string object.
wrap: (BOOL)wrapFlag Returns the range of the first misspelled word and
inSpellDocumentWithTag:(int)tag optionally the word count by reference. tag is an
wordCount: (int *)wordCount identifier unique within the application used to inform

the spell check which document (actually, a dictionary)
of ignored words to use. wrapFlag determines whether
spell checking continues at the beginning of the string
when the end is reached. language is the language used
in the string. If language is the empty string, the current
selection in the Spelling panel’s pop-up menu is used.

Setting the Language

– (NSString *)language Returns the current language used in spell-checking.

– (BOOL)setLanguage:(NSString *)aLanguage Sets the language to use in spell-checking to aLanguage.
Returns whether the Language pop-up list in the
Spelling panel lists aLanguage.

OpenStep Specification—10/19/941-198 Chapter 1: Application Kit

Managing the Spelling Process

+ (int)uniqueSpellDocumentTag Returns a guaranteed unique tag to use as the
spell-document tag for a document. Use this method to
generate tags to avoid collisions with other objects that
can be spell-checked.

– (void)closeSpellDocumentWithTag:(int)tag Notifies the NSSpellChecker that the user has finished with
the ignored-word document identified by tag, causing it
to throw that dictionary away.

– (void)ignoreWord: (NSString *)wordToIgnore Instructs the NSSpellChecker to ignore all future
inSpellDocumentWithTag:(int)tag occurrences of wordToIgnore in the document

identified by tag. You should call this method from
within your implementation of the
NSIgnoreMisspelledWords protocol’s ignoreSpelling:.

– (NSArray *)ignoredWordsInSpellDocumentWithTag:(int)tag
Returns the array of ignored words for a document

identified by tag. Invoke this before
closeSpellDocument: if you want to store the ignored
words.

– (void)setIgnoredWords:(NSArray *)someWords Initializes the ignored-words document (i.e., dictionary
inSpellDocumentWithTag:(int)tag identified by tag with someWords, an array of words to

ignore.

– (void)setWordFieldStringValue:(NSString *)aString
Sets the string that appears in the misspelled word field,

using the string object aString.

– (void)updateSpellingPanelWithMisspelledWord:(NSString *)word
Causes NSSpellChecker to update the Spelling panel’s

misspelled-word field to reflect word. You are
responsible for highlighting word in the document and
for extracting it from the document using the range
returned by the checkSpelling:... methods. Pass the
empty string as word to have the system beep,
indicating no misspelled words were found.

Classes: NSSpellServer1-199OpenStep Specification—10/19/94

NSSpellServer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSSpellServer.h

Class Description

The NSSpellServer class gives you a way to make your particular spelling checker a service that’s available to any
application. A service is an application that declares its availability in a standard way, so that any other applications
that wish to use it can do so. If you build a spelling checker that makes use of the NSSpellServer class and list it as
an available service, then users of any application that makes use of NSSpellChecker or includes a Services menu
will see your spelling checker as one of the available dictionaries.

To make use of NSSpellServer, you write a small program that creates an NSSpellServer instance and a delegate
that responds to messages asking it to find a misspelled word and to suggest guesses for a misspelled word. Send
the NSSpellServer registerLanguage:byVendor: messages to tell it the languages your delegate can handle.

The program that runs your spelling checker should not be built as an Application Kit application, but as a simple
program. Suppose you supply spelling checkers under the vendor name “Acme.” Suppose the file containing the
code for your delegate is called AcmeEnglishSpellChecker. Then the following might be your program’s main:

void main()

{

 NSSpellServer *aServer = [[NSSpellServer alloc] init];

 if ([aServer registerLanguage:@"English" byVendor:@"Acme"]) {

 [aServer setDelegate:[AcmeEnglishSpellChecker alloc] init]];

 [aServer run];

 fprintf(stderr, "Unexpected death of Acme SpellChecker!\n");

 } else {

 fprintf(stderr, "Unable to check in Acme SpellChecker.\n");

 }

}

Your delegate is an instance of a custom subclass. (It’s simplest to make it a subclass of NSObject, but that’s not a
requirement.) Given an NSString, your delegate must be able to find a misspelled word by implementing the
method spellServer:findMisspelledWordInString:language:wordCount:countOnly:. Usually, this method also
reports the number of words it has scanned, but that isn’t mandatory.

Optionally, the delegate may also suggest corrections for misspelled words. It does so by implementing the method
spellServer:suggestGuessesForWord:inLanguage:

OpenStep Specification—10/19/941-200 Chapter 1: Application Kit

Service Availability Notice

When there’s more than one spelling checker available, the user selects the one desired. The application that
requests a spelling check uses an NSSpellChecker object, and it provides a Spelling panel; in the panel there’s a
pop-up list of available spelling checkers. Your spelling checker appears in that list if it has a service descriptor.

A service descriptor is an entry in a text file called services. Usually it’s located within the bundle that also contains
your spelling checker’s executable file. The bundle (or directory) that contains the services file must have a name
ending in “.service” or “.app”. The system looks for service bundles in a standard set of directories.

A spell checker service availability notice has a standard format, illustrated in the following example for the Acme
spelling checker:

Spell Checker: Acme

Language: French

Language: English

Executable: franglais.daemon

The first line identifies the type of service; for a spelling checker, it must say “Spell Checker:” followed by your
vendor name. The next line contains the English name of a language your spelling checker is prepared to check.
(The language must be one your system recognizes.) If your program can check more than one language, use an
additional line for each additional language. The last line of a descriptor gives the name of the service’s executable
file. (It requires a complete path if it’s in a different directory.)

If there’s a service descriptor for your Acme spelling checker and also a service descriptor for the English checker
provided by a vendor named Consolidated, a user looking at the Spelling panel’s pop-up list would see:

English (Acme)

English (Consolidated)

French (Acme)

Illustrative Sequence of Messages to an NSSpellServer

The act of checking spelling usually involves the interplay of objects in two classes: the user application’s
NSSpellChecker (which responds to interactions with the user) and your spelling checker’s NSSpellServer (which
provides the application interface for your spelling checker). You can see the interaction between the two in the
following list of steps involved in finding a misspelled word.

• The user of an application selects a menu item to request a spelling check. The application sends a message
to its NSSpellChecker object. The NSSpellChecker in turn sends a corresponding message to the appropriate
NSSpellServer.

• The NSSpellServer receives the message asking it to check the spelling of an NSString. It forwards the
message to its delegate.

• The delegate searches for a misspelled word. If it finds one, it returns an NSRange identifying the word’s
location in the string.

• The NSSpellServer receives a message asking it to suggest guesses for the correct spelling of a misspelled
word, and forwards the message to its delegate.

Classes: NSSpellServer1-201OpenStep Specification—10/19/94

• The delegate returns a list of possible corrections, which the NSSpellServer in turn returns to the
NSSpellChecker that initiated the request.

• The NSSpellServer doesn’t know what the user does with the errors its delegate has found or with the
guesses its delegate has proposed. (Perhaps the user corrects the document, perhaps by selecting a correction
from the NSSpellChecker’s display of guesses; but that’s not the NSSpellServer’s responsibility.) However,
if the user presses the Learn or Forget buttons (thereby causing the NSSpellChecker to revise the user’s word
list), the NSSpellServer receives a notification of the word thus learned or forgotten. It’s up to you whether
your spell checker acts on this information. If the user presses the Ignore button, the delegate is not notified
(but the next time that word occurs in the text, the method isWordInUserDictionaries:caseSensitive: will
report YES rather than NO).

• Once the NSSpellServer delegate has reported a misspelled word, it has completed its search. Of course, it’s
likely that the user’s application will then send a new message, this time asking the NSSpellServer to check
a string containing the part of the text it didn’t get to earlier.

Checking in Your Service

– (BOOL)registerLanguage:(NSString *)language Registers a spelling server for language by vendor.
byVendor:(NSString *)vendor

Assigning a Delegate

– (id)delegate Returns the NSSpellServer’s delegate.

– (void)setDelegate:(id)anObject Sets the delegate of the NSSpellServer.

Running the Service

– (void)run Makes the NSSpellServer start listening for spell-checking
requests. This method should not return.

Checking User Dictionaries

– (BOOL)isWordInUserDictionaries:(NSString *)word
caseSensitive:(BOOL)flag Returns whether word is in any open user dictionary; the

search is case-sensitive if flag is YES.

OpenStep Specification—10/19/941-202 Chapter 1: Application Kit

Methods Implemented by the Delegate

– (NSRange)spellServer:(NSSpellServer *)sender Search for a misspelled word in stringToCheck, using
findMisspelledWordInString: language, and marking the first misspelled word found

(NSString *)stringToCheck by returning its range within the string object. In
language:(NSString *)language wordCount return by reference the number of words
wordCount: (int *)wordCount from the beginning of the string object until the
countOnly:(BOOL)countOnly misspelled word (or the end-of-string). If countOnly is

YES, just count the words in the string object; do not
spell-check. Send
isWordInUserDictionaries:caseSensitive: to the
spelling server to determine if word exists in the user’s
language dictionaries.

– (NSArray *)spellServer:(NSSpellServer *)sender Search for alternatives to the misspelled word in
suggestGuessesForWord:(NSString *)word language. Return guesses as an array of string objects.
inLanguage:(NSString *)language

– (void)spellServer:(NSSpellServer *)sender Notifies the delegate of a word added to the user’s hidden
didLearnWord: (NSString *)word word list.
inLanguage:(NSString *)language

– (void)spellServer:(NSSpellServer *)sender Notifies the delegate of a word removed from the user’s
didForgetWord: (NSString *)word hidden word list.
inLanguage:(NSString *)language

Classes: NSSplitView1-203OpenStep Specification—10/19/94

NSSplitView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSplitView.h

Class Description

An NSSplitView object lets several views share a region within a window. The NSSplitView resizes its subviews
so that each subview is the same width as the NSSplitView, and the total of the subviews’ heights is equal to the
height of the NSSplitView. The NSSplitView positions its subviews so that the first subview is at the top of the
NSSplitView, and each successive subview is positioned below the previous one. The user can set the height of two
subviews by moving a horizontal bar called the divider, which makes one subview smaller and the other larger.

To add a view to an NSSplitView, you use the NSView method addSubview:. When the NSSplitView is displayed,
it checks to see if its subviews are properly tiled. If not, it invokes the delegate method
splitView:resizeSubviewsWithOldSize:, allowing the delegate to specify the heights of specific subviews. If the
delegate doesn’t implement this method, the NSSplitView sends adjustSubviews to itself to yield the default tiling
behavior.

When a mouse-down occurs in an NSSplitView’s divider, the NSSplitView determines the limits of the divider’s
travel and tracks the mouse to allow the user to drag the divider within these limits. With the following mouse-up,
the NSSplitView resizes the two affected subviews, informs the delegate that the subviews were resized, and
displays the affected views and divider. The NSSplitView’s delegate can constrain the travel of specific dividers by
implementing the method splitView:constrainMinCoordinate:maxCoordinate:ofSubviewAt: .

Managing Component V iews

– (void)adjustSubviews Adjusts the heights of the subviews.

– (float)dividerThickness Returns the thickness of the divider.

– (void)drawDividerInRect: (NSRect)aRect Draws the divider in aRect.

Assigning a Delegate

– (id)delegate Returns the NSSplitView’s delegate.

– (void)setDelegate:(id)anObject Sets the NSSplitView’s delegate.

OpenStep Specification—10/19/941-204 Chapter 1: Application Kit

Implemented by the Delegate

– (void)splitView: (NSSplitView *)splitView Sent directly by splitView to the delegate. Allows the
constrainMinCoordinate: (float *)min delegate to constrain further min and max
maxCoordinate:(float *)max vertical travel of a divider. offset is an index that
ofSubviewAt:(int)offset identifies the dividers in a NSSplitView from top to

bottom starting with divider 0.

– (void)splitView: (NSSplitView *)sender Sent directly by splitView to the delegate. Allows the
resizeSubviewsWithOldSize:(NSSize)oldSize delegate to add custom resizing behavior after users

resize an NSSplitView. oldSize is the size of the
NSSplitView before the user resized it.

– (void)splitViewDidResizeSubviews:(NSNotification *)notification
Sent by the default notification center to the delegate;

aNotification is always
NSSplitViewDidResizeSubviewsNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

– (void)splitViewWillResizeSubviews:(NSNotification *)notification
Sent by the default notification center to the delegate;

aNotification is always
NSSplitViewWillResizeSubviewsNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

Classes: NSText1-205OpenStep Specification—10/19/94

NSText

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling, NSIgnoreMisspelledWords
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTextView.h

Class Description

The NSText class declares the programmatic interface to objects that manage text. NSText objects are used by the
Application Kit wherever text appears in interface objects: An NSText object draws the title of a window, the
commands in a menu, the title of a button, and the items in a browser. Your application inherits these uses of the
NSText class when it incorporates any of these objects into its interface. Your application can also create NSText
objects for its own purposes.

The NSText class is unlike most other classes in the Application Kit in its complexity and range of features. One
of its design goals is to provide a comprehensive set of text-handling features so that you’ll rarely need to create a
subclass. An NSText object can (among other things):

• Control the color of its text and background.

• Control the font and layout characteristics of its text.

• Control whether text is editable.

• Wrap text on a word or character basis.

• Display graphic images within its text.

• Write text to or read text from files in the form of RTFD—Rich Text Format files that contain TIFF or EPS
images.

• Let another object, the delegate, dynamically control its properties.

• Let the user copy and paste text within and between applications.

• Let the user copy and paste font and format information between NSText objects.

• Let the user check the spelling of words in its text.

• Let the user control the format of paragraphs by manipulating a ruler.

OpenStep Specification—10/19/941-206 Chapter 1: Application Kit

Graphical user-interface building tools (such as Interface Builder) may give you access to NSText objects in several
different configurations, such as those found in the NSTextField, NSForm, and NSScrollView objects. These
classes configure an NSText object for their own specific purposes. Additionally, all NSTextFields, NSForms,
NSButtons within the same window—in short, all objects that access an NSText object through associated Cells—
share the same NSText object, reducing the memory demands of an application. Thus, it’s generally best to use one
of these classes whenever it meets your needs, rather than create NSText objects yourself. If one of these classes
doesn’t provide enough flexibility for your purposes, you can create NSText objects programatically.

Plain and Rich NSText Objects

When you create an NSText object directly, by default it allows only one font, line height, text color, and paragraph
format for the entire text. Once an NSText object is created, you can alter its global settings using methods such as
setFont: and setTextColor:. For convenience, such an NSText object will be called a plain NSText object.

To allow multiple values for attributes such as font and color, you must send the NSText object a setRichText:YES
message. An NSText object that allows multiple fonts also allows multiple paragraph formats, line heights, and so
on. For convenience, such an NSText object will be called a rich NSText object.

A rich NSText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words are
supported: On input, an NSText object ignores any control word it doesn’t recognize; some of those it can read and
interpret it doesn’t write out. These are the RTF control words that an NSText object recognizes.

Classes: NSText1-207OpenStep Specification—10/19/94

Control Word Read Write

\ansi yes yes

\b yes yes

\cb yes yes

\cf yes yes

\colortbl yes yes

\dnn yes yes

\fin yes yes

\fn yes yes

\fonttbl yes yes

\fsn yes yes

\i yes yes

\lin yes yes

\margrn yes yes

\paperwn yes yes

\mac yes no

\margln yes yes

\par yes yes

\pard yes no

\pca yes no

\qc yes yes

\ql yes yes

\qr yes yes

\sn yes no

\tab yes yes

\upn yes yes

NSText objects are designed to work closely with various other objects. Some of these—such as the delegate or an
embedded graphic object—require a degree of programming on your part. Others—such as the Font panel, spelling
checker, or ruler—take no effort other than deciding whether the service should be enabled or disabled. The
following sections discuss these interrelationships.

OpenStep Specification—10/19/941-208 Chapter 1: Application Kit

Notifying the NSText Object's Delegate

Many of an NSText object’s actions can be controlled through an associated object, the NSText object’s delegate.
If it implements any of the following methods, the delegate receives the corresponding message at the appropriate
time:

textDidBeginEditing:
textDidChange:
textDidEndEditing:
textShouldBeginEditing:
textShouldEndEditing:

So, for example, if the delegate implements the textDidBeginEditing: method, it will receive notification upon the
user’s first attempt to change the text. Moreover, depending on the method’s return value, the delegate can either
allow or prohibit changes to the text. See “Methods Implemented by the Delegate”. The delegate can be any object
you choose, and one delegate can control multiple NSText objects.

Adding Graphics to the Text

A rich NSText object allows graphics to be embedded in the text. Each graphic is treated as a single (possibly large)
“character”: The text’s line height and character placement are adjusted to accommodate the graphic “character.”
Graphics are embedded in the text in either of two ways: programmatically or directly through user actions. In the
programmatic approach, graphic objects are added using the replaceRange:WithRTFD: method.

An alternate means of adding an image to the text is for the user to drag an EPS or TIFF file icon directly into an
NSText object. The NSText object automatically creates a graphic object to manage the display of the image. This
feature requires a rich NSText object that has been configured to receive dragged images—see the
setImportsGraphics: method.

Images that have been imported in this way can be written as RTFD documents. Programmatic creation of RTFD
documents is not supported in this version of OpenStep. RTFD documents use a file package, or directory, to store
the components of the document (the “D” stands for “directory”). The file package has the name of the document
plus a “.rtfd” extension. The file package always contains a file called TXT.rtf for the text of the document, and one
or more TIFF or EPS files for the images. An NSText object can transfer information in an RTFD document to a
file and read it from a file—see the writeRTFDToFile:atomically: and readRTFDFromFile: methods.

Cooperating with Other Objects and Ser vices

NSText objects are designed to work with the Application Kit’s font conversion system. By default, an NSText
object keeps the Font panel updated with the font of the current selection. It also changes the font of the selection
(for a rich NSText object) or of the entire text (for a default NSText object) to reflect the user’s choices in the Font
panel or menu. To disconnect an NSText object from this service, send it a setUsesFontPanel:NO message.

If an NSText object is a subview of an NSScrollView, it can cooperate with the NSScrollView to display and update
a ruler that displays formatting information. The NSScrollView retiles its subviews to make room for the ruler, and
the NSText object updates the ruler with the format information of the paragraph containing the selection. The
toggleRuler: method controls the display of this ruler. Users can modify paragraph formats by manipulating the
components of the ruler.

Classes: NSText1-209OpenStep Specification—10/19/94

Coordinates and sizes mentioned in the method descriptions below are in PostScript units—1/72 of an inch.

Getting and Setting Contents

– (void)replaceRange:(NSRange)range Replaces the characters within the specified range of
withRTF: (NSData *)rtfData text with the RTF data rtfData.

– (void)replaceRange:(NSRange)range Replaces the characters within the specified range of
withRTFD: (NSData *)rtfdData text with the RTFD data rtfdData.

– (NSData *)RTFDFromRange:(NSRange)range Extracts the specified range of RTFD text from the NSText
object and returns an data object initialized with that
text.

– (NSData *)RTFFromRange:(NSRange)range Extracts the specified range of RTF text from the NSText
object and returns a data object initialized with that text.
This data is formatted according to the RTF file format.

– (void)setText:(NSString *)string Sets the contents of the NSText object to be string.

– (void)setText:(NSString *)string Replaces the characters in the specified range of text in the
range:(NSRange)range NSText object to be string.

– (NSString *)text Returns the contents of the NSText object as a immutable
string object.

Managing Global Characteristics

– (NSTextAlignment)alignment Returns how text in the NSText object is aligned between
the margins.

– (BOOL)drawsBackground Returns whether the NSText object draws its own
background.

– (BOOL)importsGraphics Returns whether the NSText object can accept images.

– (BOOL)isEditable Returns whether users can edit the NSText object.

– (BOOL)isRichText Returns whether the text in the NSText object is RTF.

– (BOOL)isSelectable Returns whether users can select text in the NSText object.

– (void)setAlignment:(NSTextAlignment)mode Sets how the text in the NSText object is aligned between
the margins.

– (void)setDrawsBackground:(BOOL)flag Sets whether the NSText object draws its own background.

– (void)setEditable:(BOOL)flag Sets whether users can edit text in the NSText object.

– (void)setImportsGraphics:(BOOL)flag Sets whether the NSText object can accept images.

OpenStep Specification—10/19/941-210 Chapter 1: Application Kit

– (void)setRichText:(BOOL)flag Sets whether the text in the NSText object allows for
multiple values of attributes, such as color and font (i.e.
RTF).

– (void)setSelectable:(BOOL)flag Sets whether users can select text in the NSText object.

Managing Font and Color

– (NSColor *)backgroundColor Returns the background color for the NSText object.

– (void)changeFont:(id)sender Initiates a font-change session.

– (NSFont *)font Returns the default NSFont object for the NSText object.

– (void)setBackgroundColor:(NSColor *)color Sets the background color for the NSText object.

– (void)setColor:(NSColor *)color Sets the color for the specified range of text in the
ofRange:(NSRange)range NSText object to color.

– (void)setFont:(NSFont *)obj Sets the default NSFont object for the NSText object.

– (void)setFont:(NSFont *)font Sets the font for the specified range of text in the
ofRange:(NSRange)range NSText object to font.

– (void)setTextColor:(NSColor *)color Sets the textual color for the NSText object.

– (void)setUsesFontPanel:(BOOL)flag Sets whether the NSText object uses the font panel.

– (NSColor *)textColor Returns the textual color for the NSText object.

– (BOOL)usesFontPanel Returns whether the NSText object uses the font panel

Managing the Selection

– (NSRange)selectedRange Returns the range of the selected text in the NSText object.

– (void)setSelectedRange:(NSRange)range Sets the range of selected text in the NSText object.

Sizing the Frame Rectangle

– (BOOL)isHorizontallyResizable Returns whether the frame width can change.

– (BOOL)isVerticallyResizable Returns whether the frame height can change.

– (NSSize)maxSize Gets the maximum size of the NSTextView’s frame.

– (NSSize)minSize Gets the minimum size of the NSTextView’s frame.

– (void)setHorizontallyResizable:(BOOL)flag Sets whether the frame’s width can change.

Classes: NSText1-211OpenStep Specification—10/19/94

– (void)setMaxSize:(NSSize)newMaxSize Sets the maximum size of the NSText object to
newMaxSize.

– (void)setMinSize:(NSSize)newMinSize Sets the minimum size of the NSText object to newMinSize.

– (void)setVerticallyResizable:(BOOL)flag Sets whether the frame’s height can change.

– (void)sizeToFit Resizes the frame to fit just around the text.

Responding to Editing Commands

– (void)alignCenter:(id)sender Centers the selected text between the margins.

– (void)alignLeft: (id)sender Aligns selected text to the left margin.

– (void)alignRight: (id)sender Aligns selected text the right margin.

– (void)copy:(id)sender Copies the selected text to the pasteboard.

– (void)copyFont:(id)sender Copies the selected text’s font to the pasteboard.

– (void)copyRuler:(id)sender Copies the selected text’s ruler to the pasteboard.

– (void)cut:(id)sender Deletes the selected text and copies it to the pasteboard.

– (void)delete:(id)sender Deletes the selected text. This method posts the notification
NSTextDidChangeNotification with the receiving
object to the default notification center and may post the
NSTextDidBeginEditing notification as well.
(NSTextDidEndEditingNotification gets posted when
the first responder changes.)

– (void)paste:(id)sender Replaces the selected text with the contents of the
pasteboard. This method posts the notification
NSTextDidChangeNotification with the receiving
object to the default notification center and may post the
NSTextDidBeginEditing notification as well.

– (void)pasteFont:(id)sender Replaces the selection’s font with the pasteboard contents.
This method posts the NSTextDidChangeNotification
notification with the receiving object to the default
notification center and may post the
NSTextDidBeginEditing notification as well.

– (void)pasteRuler:(id)sender Replaces the selection’s ruler with the pasteboard contents.

– (void)selectAll:(id)sender Selects all text in the NSText object.

– (void)subscript:(id)sender Subscripts the current selection.

– (void)superscript:(id)sender Superscripts the current selection.

OpenStep Specification—10/19/941-212 Chapter 1: Application Kit

– (void)underline:(id)sender Underlines the selected text.

– (void)unscript: (id)sender Removes superscript or subscript in the current selection.

Managing the Ruler

– (BOOL)isRulerVisible Returns whether the ruler is visible.

– (void)toggleRuler:(id)sender Displays the ruler if it’s not visible, and removes it if it is
visible.

Spelling

– (void)checkSpelling:(id)sender Initiates a spell-checking session.

– (void)showGuessPanel:(id)sender Displays the spell-checker’s Show Guess panel.

Scrolling

– (void)scrollRangeToVisible:(NSRange)range Scrolls the NSText object so that the range of text is visible.

Reading and Writing RTFD Files

– (BOOL)readRTFDFromFile: (NSString *)path Reads RTFD data from the file package specified by path
and initializes an NSText object with it; returns whether
the operation succeeded.

– (BOOL)writeRTFDToFile: (NSString *)path Writes RTFD data from the receiving NSText object
atomically:(BOOL)flag to the file package specified by path. flag determines

whether writing occurs atomically. Returns whether the
operation succeeded.

Managing the Field Editor

– (BOOL)isFieldEditor Returns whether the receiving NSText object gives up First
Responder status on tab, carriage return, etc.

– (void)setFieldEditor:(BOOL)flag Sets whether the receiving NSText object is to be used as a
field editor. flag indicates whether to end on carriage
return, tab, or other terminating character.

Managing the Delegate

– (id)delegate Returns the delegate of the NSText object.

– (void)setDelegate:(id)anObject Makes anObject the NSText object’s delegate.

Classes: NSText1-213OpenStep Specification—10/19/94

Implemented by the Delegate

– (void)textDidBeginEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSTextDidBeginEditingNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (void)textDidChange:(NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always NSTextDidChangeNotification.
If the delegate implements this method, it’s
automatically registered to receive this notification.

– (void)textDidEndEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;

aNotification is always
NSTextDidEndEditingNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (BOOL)textShouldBeginEditing:(NSText *)textObject
Sent directly by textObject to the delegate. Informs

delegate of an impending textual change. YES means
go ahead and make the change.

– (BOOL)textShouldEndEditing:(NSText *)textObject
Sent directly by textObject to the delegate. Warns delegate

of the impending loss of First Responder status. YES
means go ahead and change status.

OpenStep Specification—10/19/941-214 Chapter 1: Application Kit

NSTextField

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTextField.h

Class Description

An NSTextField is an NSControl object that can display a piece of text that a user can select or edit, and which
sends an action message to its target if the user hits the Return key while editing. An NSTextField can also be linked
to other NSTextFields, so that when the user presses Tab or Shift-Tab, the object assigned as the “next” or
“previous” field gets a message to select its text.

An NSTextField is a good alternative to an NSText object for small regions of editable text, since the display of the
NSTextField is achieved by using a global NSText object shared by objects all over your application, which saves
on memory usage. Each NSWindow also has an NSText object used for editing of NSTextFields (and
NSTextFieldCells in NSMatrices). An NSWindow’s global NSText object is called a field editor, since it’s attached
as needed to an NSTextField to perform its editing. NSTextField allows you to specify an object to act as an indirect
delegate to the field editor; the NSTextField itself acts as the NSText delegate if it needs to, then passes the delegate
method on to its own NSText delegate.

Setting User Access to Text

– (BOOL)isEditable Returns whether the NSTextField’s text is editable.

– (BOOL)isSelectable Returns whether the NSTextField’s text is selectable.

– (void)setEditable:(BOOL)flag Sets whether the NSTextField’s text is editable.

– (void)setSelectable:(BOOL)flag Sets whether the NSTextField's text is selectable.

Editing Text

– (void)selectText:(id)sender Selects all of the text if it’s selectable or editable.

Setting Tab Key Behavior

– (id)nextText Gets the object selected when the user presses Tab.

– (id)previousText Gets the object selected when the user presses Shift-Tab.

– (void)setNextText:(id)anObject Sets the object selected when the user presses Tab.

Classes: NSTextField1-215OpenStep Specification—10/19/94

– (void)setPreviousText:(id)anObject Sets the object selected when the user presses Shift-Tab.

Assigning a Delegate

– (void)setDelegate:(id)anObject Sets the delegate for messages from the field editor to
anObject.

– (id)delegate Returns the delegate for messages from the field editor.

Modifying Graphic Attributes

– (NSColor *)backgroundColor Returns the color of the background.

– (BOOL)drawsBackground Returns whether the NSTextField draws its own
background.

– (BOOL)isBezeled Returns whether the NSTextField has a bezeled border.

– (BOOL)isBordered Returns whether the NSTextField has a plain border.

– (void)setBackgroundColor:(NSColor *)aColor Sets the color of the background to aColor.

– (void)setBezeled:(BOOL)flag Sets whether the NSTextField has a bezeled border.

– (void)setBordered:(BOOL)flag Sets whether the NSTextField has a plain border.

– (void)setDrawsBackground:(BOOL)flag Sets whether the NSTextField draws its own background
color.

– (void)setTextColor:(NSColor *)aColor Sets the color of the NSTextField’s text to aColor.

– (NSColor *)textColor Returns the color of the NSTextField’s text.

Target and Action

– (SEL)errorAction Returns the action method sent for an invalid value.

– (void)setErrorAction: (SEL)aSelector Sets the action method sent (aSelector) for an invalid value
entered.

Handling Events

– (BOOL)acceptsFirstResponder Return YES if text is editable or selectable.

OpenStep Specification—10/19/941-216 Chapter 1: Application Kit

– (void)textDidBeginEditing: (NSNotification *)notification
Invoked when there’s a change in the text after the receiver

gains first responder status. The default behavior is to
pass this message on to the text delegate by posting the
notification NSControlTextDidEndEditingNotification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

– (void)textDidChange:(NSNotification *)notification
Invoked upon a key-down event or paste operation that

changes the receiver’s contents. The default behavior is
to pass this message on to the text delegate by posting
the NSControlTextDidChangeNotification notification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

– (void)textDidEndEditing: (NSNotification *)notification
Invoked when text editing ends. The default behavior is to

pass this message on to the text delegate by posting the
notification NSControlTextDidEndEditingNotification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

– (BOOL)textShouldBeginEditing:(NSText *)textObject
Invoked to let the NSTextField respond to impending

changes to its text and then forwarded to the text
delegate.

– (BOOL)textShouldEndEditing:(NSText *)textObject
Invoked to let the NSTextField respond to impending loss

of first responder status and then forwarded to the text
delegate.

Classes: NSTextFieldCell1-217OpenStep Specification—10/19/94

NSTextFieldCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSTextFieldCell.h

Class Description

NSCells display text or images—an NSTextFieldCell is simply an NSCell that displays text and that keeps track of
its background and text colors. Normally, the NSCell class assumes white as the background when bezeled, and
light gray otherwise, and the text is always black. With NSTextFieldCell, you can specify those colors.

Modifying Graphic Attributes

– (NSColor *)backgroundColor Returns the color of the background.

– (BOOL)drawsBackground Returns whether the NSTextFieldCell draws its own
background.

– (void)setBackgroundColor:(NSColor *)aColor Sets the color of the background to aColor.

– (void)setDrawsBackground:(BOOL)flag Sets whether the NSTextFieldCell draws its own
background.

– (void)setTextColor:(NSColor *)aColor Sets the color of the text to aColor.

– (id)setUpFieldEditorAttributes: (id)textObject Sets text attributes of the field editor to be the same as
those of textObject. Used to set the attributes of text
such as color and background color, for which there are
no explicit methods.

– (NSColor *)textColor Returns the color of the text.

OpenStep Specification—10/19/941-218 Chapter 1: Application Kit

NSView

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSView.h
AppKit/NSClipView.h

Class Description

NSView is an abstract class that provides its subclasses with a structure for drawing and for handling events. Any
application that needs to display, print, or receive events must use NSView objects.

To be displayed, a view must be placed in a window (represented by an NSWindow object). All the views within a
window are arranged in a hierarchy, with each view having a single superview and zero or more subviews. Each
view has its own area to draw in and its own coordinate system, expressed as a transformation of its superview’s
coordinate system. An NSView object can scale, translate, or rotate its coordinates, or flip the polarity of its y-axis.

An NSView keeps track of its size and location in two ways: as a frame rectangle (expressed in its superview’s
coordinate system) and as a bounds rectangle (expressed in its own coordinate system). Both are represented by
NSRect structures.

Subclasses of NSView typically override drawRect: to implement an object’s distinctive appearance. They also
frequently override one or more of NSView’s or NSResponder’s event-handling methods, to react to the user’s
manipulations of the mouse and keyboard.

Initializing NSView Objects

– (id)initWithFrame: (NSRect)frameRect Initializes a new NSView object to the location and
dimensions of frameRect.

Managing the NSView Hierarchy

– (void)addSubview:(NSView *)aView Makes aView a subview of the receiving view object.

– (void)addSubview:(NSView *)aView Makes aView a subview of the receiving view object.
positioned:(NSWindowOrderingMode)place It is positioned relative to otherView according to
relativeTo:(NSView *)otherView place.

Classes: NSView1-219OpenStep Specification—10/19/94

– (NSView *)ancestorSharedWithView:(NSView *)aView
Returns the ancestor view shared by aView and the

receiver; self if aView is the receiving view or if the
receiving view is the ancestor of aView; aView if it is the
superview of the receiving view; or nil in any other
case.

– (BOOL)isDescendantOf:(NSView *)aView Returns whether aView is an ancestor of the receiver.

– (NSView *)opaqueAncestor Returns the receiver’s nearest opaque ancestor.

– (void)removeFromSuperview Removes the receiver from the view hierarchy.

– (void)replaceSubview:(NSView *)oldView Replaces oldView with newView.
with: (NSView *)newView

– (void)sortSubviewsUsingFunction:(int (*)(id ,id ,void *))compare
context:(void *)context Sorts the receiving view’s subviews using the sorting

function compare and the context context. The first two
arguments of the function are the views to be compared.

– (NSArray *)subviews Returns a mutable array of the receiving view object’s
subviews.

– (NSView *)superview Returns the receiving view object’s superview.

– (NSWindow *)window Returns the window in which the view is displayed.

– (void)viewWillMoveToWindow: (NSWindow *)newWindow
Notifies the view that it will move to a new window.

Modifying the Frame Rectangle

– (float)frameRotation Returns the angle of the frame rectangle’s rotation.

– (NSRect)frame Gets the view’s frame rectangle.

– (void)rotateByAngle:(float)angle Rotates the view’s frame rectangle by angle. This method
posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

– (void)setFrame:(NSRect)frameRect Assigns the view a new frame rectangle.

– (void)setFrameOrigin:(NSPoint)newOrigin Sets the origin of the view’s frame to newOrigin. This
method posts the NSViewFrameChangedNotification
and NSViewFocusChangedNotification notifications
with the receiving object to the default notification
center.

OpenStep Specification—10/19/941-220 Chapter 1: Application Kit

– (void)setFrameRotation:(float)angle Rotates the view’s frame to angle. This method posts the
NSViewFocusChangedNotification notification with
the receiving object to the default notification center.

– (void)setFrameSize:(NSSize)newSize Resizes the view’s frame to newSize. This method posts the
NSViewFrameChangedNotification and
NSViewFocusChangedNotification notifications with
the receiving object to the default notification center.

Modifying the Coordinate System

– (float)boundsRotation Returns the rotation of the view’s coordinate system.

– (NSRect)bounds Gets the view’s bounds rectangle.

– (BOOL)isFlipped Returns whether the view is flipped.

– (BOOL)isRotatedFromBase Returns whether the view is rotated.

– (BOOL)isRotatedOrScaledFromBase Returns whether the view is rotated or scaled.

– (void)scaleUnitSquareToSize:(NSSize)newSize Scales the NSView’s coordinate system unit size to
newSize. This method posts the notification
NSViewFocusChangedNotification with the receiving
object to the default notification center.

– (void)setBounds:(NSRect)aRect Sets the NSView’s bounds rectangle to aRect.

– (void)setBoundsOrigin:(NSPoint)newOrigin Sets the NSView’s drawing origin to newOrigin. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

– (void)setBoundsRotation:(float)angle Rotates the NSView’s coordinate system to angle. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

– (void)setBoundsSize:(NSSize)newSize Resizes the NSView’s coordinate system to newSize. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

– (void)translateOriginToPoint: (NSPoint)point Shifts the NSView’s coordinate system to point. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

Classes: NSView1-221OpenStep Specification—10/19/94

Converting Coordinates

– (NSRect)centerScanRect:(NSRect)aRect Converts the rectangle aRect to lie on centers of pixels.

– (NSPoint)convertPoint:(NSPoint)aPoint Converts aPoint in aView to the receiver’s coordinates.
fromView: (NSView *)aView

– (NSPoint)convertPoint:(NSPoint)aPoint Converts aPoint in the receiver to aView’s coordinates.
toView:(NSView *)aView

– (NSRect)convertRect:(NSRect)aRect Converts the rectangle aRect in aView to the receiver’s
fromView: (NSView *)aView coordinates.

– (NSRect)convertRect:(NSRect)aRect Converts the rectangle aRect in the receiver to aView’s
toView:(NSView *)aView coordinates.

– (NSSize)convertSize:(NSSize)aSize Converts aSize in aView to the receiver’s coordinates.
fromView: (NSView *)aView

– (NSSize)convertSize:(NSSize)aSize Converts aSize in the receiver to aView’s coordinates.
toView:(NSView *)aView

Notifying Ancestor Views

– (BOOL)postsFrameChangedNotifications Returns whether notifications of frame changes to
ancestors are activated.

– (void)setPostsFrameChangedNotifications:(BOOL)flag
Sets whether to activate ancestor notifications.

Resizing Subviews

– (void)resizeSubviewsWithOldSize:(NSSize)oldSize
Initiates superviewSizeChanged: messages to subviews.

– (void)setAutoresizesSubviews:(BOOL)flag Sets whether to notify subviews of resizing.

– (BOOL)autoresizesSubviews Returns whether the NSView notifies subviews of resizing.

– (void)setAutoresizingMask:(unsigned int)mask Determines automatic resizing behavior.

– (unsigned int)autoresizingMask Returns the NSView’s autosizing mask.

– (void)resizeWithOldSuperviewSize:(NSSize)oldSize
Notifies subviews that the superview changed size.

OpenStep Specification—10/19/941-222 Chapter 1: Application Kit

Graphics State Objects

– (void)allocateGState Allocates a graphics state object.

– (void)releaseGState Release the NSView’s graphics state object.

– (int)gState Returns the NSView’s graphics state object.

– (void)renewGState Marks the NSView’s graphics state object as needing
initialization.

– (void)setUpGState Sets up the NSView’s graphics state object.

Focusing

+ (NSView *)focusView Returns the currently focused view.

– (void)lockFocus Brings the receiving view into focus.

– (void)unlockFocus Unfocuses the receiving view.

Displaying

– (BOOL)canDraw Returns whether the view object can draw.

– (void)display Displays the receiving view and its subviews.

– (void)displayIfNeeded Conditionally displays the receiving view and its subviews
(if opaque).

– (void)displayIfNeededIgnoringOpacity Conditionally displays the receiving view and its subviews,
regardless of opacity.

– (void)displayRect:(NSRect)aRect Displays the receiving view and its subviews (if opaque)
within aRect.

– (void)displayRectIgnoringOpacity:(NSRect)aRectDisplays the receiving view and its subviews (regardless of
opacity) within aRect.

– (void)drawRect:(NSRect)rect Implemented by subclasses to supply drawing instructions.

– (NSRect)visibleRect Gets the receiving view’s visible portion.

– (BOOL)isOpaque Returns whether the view is opaque.

– (BOOL)needsDisplay Returns whether the view needs to be redisplayed.

– (void)setNeedsDisplay:(BOOL)flag If flag is YES, marks the view as changed, needing
redisplay.

Classes: NSView1-223OpenStep Specification—10/19/94

– (void)setNeedsDisplayInRect:(NSRect)invalidRectMarks the view as changed, needing redisplay in rectangle
invalidRect.

– (BOOL)shouldDrawColor Returns whether the view should be drawn in color.

Scrolling

– (NSRect)adjustScroll:(NSRect)newVisible Lets the view object adjust the visible rectangle.

– (BOOL)autoscroll:(NSEvent *)theEvent Scrolls in response to a mouse-dragged event.

– (void)reflectScrolledClipView:(NSClipView *)aClipView
Reflects scrolling within clip view aClipView.

– (void)scrollClipView: (NSClipView *)aClipView Scrolls the clip view aClipView to aPoint.
toPoint:(NSPoint)aPoint

– (void)scrollPoint:(NSPoint)aPoint Aligns aPoint with the content view’s origin.

– (void)scrollRect:(NSRect)aRect Shifts the rectangle aRect by delta.
by:(NSSize)delta

– (BOOL)scrollRectToVisible:(NSRect)aRect Scrolls the view so the rectangle aRect is visible.

Managing the Cursor

– (void)addCursorRect:(NSRect)aRect Adds a cursor rectangle aRect for cursor anObject to the
cursor:(NSCursor *)anObject NSView.

– (void)discardCursorRects Removes all cursor rectangles in the view.

– (void)removeCursorRect:(NSRect)aRect Removes cursor rectangle aRect for cursor anObject from
cursor:(NSCursor *)anObject the view.

– (void)resetCursorRects Implemented by subclasses to reset their cursor rectangles.

Assigning a Tag

– (int)tag Returns the view object’s tag.

– (id)viewWithTag: (int)aTag Returns the subview object with aTag as its tag.

Aiding Event Handling

– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent Returns whether the view object accepts first mouse-down
events.

– (NSView *)hitTest:(NSPoint)aPoint Returns the lowest subview containing the point aPoint.

– (BOOL)mouse:(NSPoint)aPoint Returns whether the point aPoint lies inside the aRect.
inRect:(NSRect)aRect

OpenStep Specification—10/19/941-224 Chapter 1: Application Kit

– (BOOL)performKeyEquivalent: (NSEvent *)theEvent
Implemented by subclasses to perform key-equivalent

commands. Returns whether a subview handled
theEvent.

- (void)removeTrackingRect:(NSTrackingRectTag)tag
Removes the tracking rectangle identified by tag from the

view. (tag is an unique identifier returned from the
addTractingRect:owner:assumeInside: method.)

– (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *)anEvent
Returns whether the view’s window is brought forward

normally (mouse-down) or delayed (mouse-up).

– (NSTrackingRectTag)addTrackingRect:(NSRect)aRect
owner:(id)anObject Adds a tracking rectangle (aRect) owned by anObject to
userData:(void *)data the receiving NSView.
assumeInside:(BOOL)flag flag indicates whether the tracking rectangle will be

only inside the NSView. Returns a unique tag that
identifies the tracking rectangle.

Dragging

– (BOOL)dragFile:(NSString *)filename Initiates a file-dragging session, dragging file indicated
fromRect:(NSRect)rect by path filename. rect describes the position of the icon
slideBack:(BOOL)slideFlag in the View's coordinates. slideFlag determines
event:(NSEvent *)event whether the NSImage should slide back if rejected

– (void)dragImage:(NSImage *)anImage Initiates an image-dragging session, dragging anImage
at:(NSPoint)viewLocation from viewLocation. initialOffset is the difference in
offset:(NSSize)initialOffset the mouse location from the mouse-down.
event:(NSEvent *)event pboard is the pasteboard holding the data.
pasteboard:(NSPasteboard *)pboard sourceObject is the object receiving
source:(id)sourceObject NSDraggingSource messages. slideFlag determines
slideBack:(BOOL)slideFlag whether the NSImage should slide back if rejected.

– (void)registerForDraggedTypes:(NSArray *)newTypes
Registers the pasteboard types that the window will accept

in an image-dragging session.

– (void)unregisterDraggedTypes Unregisters the window as a recipient of dragged images.

Classes: NSView1-225OpenStep Specification—10/19/94

Printing

– (NSData *)dataWithEPSInsideRect:(NSRect)aRect
Returns a data object initialized with the EPS data within

aRect in the receiving view.

– (void)fax:(id)sender Faxes the view and its subviews.

– (void)print: (id)sender Prints the view and its subviews.

– (void)writeEPSInsideRect:(NSRect)rect Places PostScript code for the rectangle rect on the
toPasteboard:(NSPasteboard *)pasteboard pasteboard.

Pagination

– (void)adjustPageHeightNew:(float *)newBottom Assists automatic pagination of the view object.
top:(float)oldTop
bottom:(float)oldBottom
limit: (float)bottomLimit

– (void)adjustPageWidthNew:(float *)newRight Assists automatic pagination of the view object.
left: (float)oldLeft
right: (float)oldRight
limit: (float)rightLimit

– (float)heightAdjustLimit Returns how much of a page can go on the next page.

– (BOOL)knowsPagesFirst:(int *)firstPageNum Returns whether the view paginates itself.
last:(int *) lastPageNum

– (NSPoint)locationOfPrintRect: (NSRect)aRect Locates the printing rectangle on the page.

– (NSRect)rectForPage:(int)page Provides how much of the view will print on page.

– (float)widthAdjustLimit Returns how much of a page can go on the next page.

Writing Conforming PostScript

– (void)addToPageSetup Allows you to adjust for differences in the graphics state
between the screen and the printer.

– (void)beginPage:(int)ordinalNum Writes a page separator.
label:(NSString *)aString
bBox:(NSRect)pageRect
fonts:(NSString *)fontNames

– (void)beginPageSetupRect:(NSRect)aRect Writes the beginning of a page setup section.
placement:(NSPoint)location

OpenStep Specification—10/19/941-226 Chapter 1: Application Kit

– (void)beginPrologueBBox:(NSRect)boundingBox Writes the header for a print job.
creationDate:(NSString *)dateCreated
createdBy:(NSString *)anApplication
fonts:(NSString *)fontNames
forWhom: (NSString *)user
pages:(int)numPages
title: (NSString *)aTitle

– (void)beginSetup Writes the beginning of the job setup section.

– (void)beginTrailer Writes the beginning of the trailer for the print job.

– (void)drawPageBorderWithSize:(NSSize)borderSize
Implemented by subclasses to draw in margins (e.g.,

borders, numbering). borderSize is the size of the
border.

– (void)drawSheetBorderWithSize:(NSSize)borderSize
Implemented by subclasses to draw in margins (e.g.,

borders, numbering). borderSize is the size of the
border.

– (void)endHeaderComments Writes the end of the header.

– (void)endPrologue Writes the end of the prologue.

– (void)endSetup Writes the end of the job setup section.

– (void)endPageSetup Writes the end of a page setup section.

– (void)endPage Writes the end of a page.

– (void)endTrailer Writes the end of the trailer.

Classes: NSWindow1-227OpenStep Specification—10/19/94

NSWindow

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSWindow.h

Class Description

The NSWindow class defines objects that manage and coordinate the windows that an application displays on the
screen. A single NSWindow object corresponds to, at most, one window. The two principle functions of an
NSWindow are to provide an area in which views can be placed, and to accept and distribute, to the appropriate
NSViews, events that the user instigates by manipulating the mouse and keyboard.

Rectangles, Views, and the V iew Hierarchy

An NSWindow is defined by a frame rectangle that encloses the entire window, including its title bar, resize bar,
and border, and by a content rectangle that encloses just its content area. Both rectangles are specified in the screen
coordinate system. The frame rectangle establishes the NSWindow’s base coordinate system. This coordinate
system is always aligned with and is measured in the same increments as the screen coordinate system (in other
words, the base coordinate system can’t be rotated or scaled). The origin of a base coordinate system is the bottom
left corner of the window’s frame rectangle.

You create an NSWindow (through one of the init:... methods) by specifying, among other attributes, the size and
location of its content rectangle. The frame rectangle is derived from the dimensions of the content rectangle.

When it’s created, an NSWindow automatically creates two NSViews: an opaque frame view and a transparent
content view that fills the content area. The frame view is a private object that your application can’t access directly.
The content view is the “highest” accessible view in the window; you can replace the content view with an NSView
of your own creation through NSWindow’s setContentView: method.

You add other views to the window by declaring each to be a subview of the content view, or a subview of one of
the content view’s subviews, and so on, through NSView’s addSubview: method. This tree of views is called the
window’s view hierarchy. When an NSWindow is told to display itself, it does so by sending view-displaying
messages to each object in its view hierarchy. Because displaying is carried out in a determined order, the content
view (which is drawn first) may be wholly or partially obscured by its subviews, and these subviews may be
obscured by their subviews (and so on).

OpenStep Specification—10/19/941-228 Chapter 1: Application Kit

Event Handling

The window system and the NSApplication object forward mouse and keyboard events to the appropriate
NSWindow object. The NSWindow that’s currently designated to receive keyboard events is known as the key
window. If the mouse or keyboard event affects the window directly—resizing or moving it, for example—the
NSWindow performs the appropriate operation itself and sends messages to its delegate informing it of its
intentions, thus allowing your application to intercede. Events that are directed at specific views within the window
are forwarded by the NSWindow to the NSView.

The NSWindow keeps track of the object that was last selected to handle keyboard events as its first responder. The
first responder is typically the NSView that displays the current selection. In addition to keyboard events, the first
responder is sent action messages that have a user-selected target (a nil target in program code). The NSWindow
continually updates the first responder in response to the user’s mouse actions.

Each NSWindow provides a field editor, an NSText object that handles small-scale text-editing chores. The field
editor can be used by the NSWindow’s first responder to edit the text that it displays. The fieldEditor:forObject:
method returns the NSWindow’s field editor. (You can make this method instead return an alternative NSText
object, appropriate for the object specified the second argument, by implementing the delegate method
windowWillReturnFieldEditor:toObject: .)

Initializing and Getting a New NSWindow Object

– (id)initWithContentRect: (NSRect)contentRect Initializes the new window object with a location and
styleMask:(unsigned int)aStyle size for content of contentRect, a window style and
backing:(NSBackingStoreType)bufferingType buttons as indicated in the bitmap mask aStyle, drawing
defer:(BOOL)flag buffering as indicated by bufferingType. If flag is YES,

 the window system defers creating the window until it’s
needed.

– (id)initWithContentRect: (NSRect)contentRect Initializes the new window object for a screen as specified
styleMask:(unsigned int)aStyle by aScreen, with a location and size for content of
backing:(NSBackingStoreType)bufferingType contentRect, a window style and buttons as indicated in
defer:(BOOL)flag the bitmap mask aStyle, drawing buffering as indicated
screen:(NSScreen *)aScreen by bufferingType. If flag is YES,the window system

defers creating the window until it’s needed.

Computing Frame and Content Rectangles

+ (NSRect)contentRectForFrameRect:(NSRect)aRect
styleMask:(unsigned int)aStyle Gets the content rectangle for frame rectangle aRect in a

window of type aStyle.

+ (NSRect)frameRectForContentRect:(NSRect)aRect
styleMask:(unsigned int)aStyle Gets the frame rectangle for content rectangle aRect in a

window of type aStyle.

Classes: NSWindow1-229OpenStep Specification—10/19/94

+ (float)minFrameWidthWithTitle: (NSString *)aTitle
styleMask:(unsigned int)aStyle Returns the minimum frame width needed for aTitle in a

window of type aStyle.

Accessing the Content View

– (id)contentView Returns the NSWindow’s content view.

– (void)setContentView:(NSView *)aView Makes aView the NSWindow’s content view.

Window Graphics

– (NSColor *)backgroundColor Returns the window’s background color.

– (NSString *)representedFilename Returns the filename associated with this window
(regardless of the title string).

– (void)setBackgroundColor:(NSColor *)color Sets the window’s background color to color.

– (void)setRepresentedFilename:(NSString *)aString
 Alters aString by formatting it as a path and filename, then

sets the filename associated with this window to the
result. If filename doesn’t include a path to the file, the
current working directory is used. This method doesn’t
affect the title string.

– (void)setTitle:(NSString *)aString Makes aString the window’s title.

– (void)setTitleWithRepresentedFilename:(NSString *)aString
Invokes setRepresentedFilename: and makes the

resultant string the window’s title.

– (unsigned int)styleMask Returns the window’s border and title-bar style.

– (NSString *)title Returns the window’s title string.

Window Device Attributes

– (NSBackingStoreType)backingType Returns the type of the window device’s backing store.

– (NSDictionary *)deviceDescription Returns the window device’s attributes as key/value pairs.

– (int)gState Returns the graphics-state object for the window object.

– (BOOL)isOneShot Returns whether backing-store memory for the window is
freed when the window is ordered off-screen.

– (void)setBackingType:(NSBackingStoreType)type Sets the type of window-device backing store.

OpenStep Specification—10/19/941-230 Chapter 1: Application Kit

– (void)setOneShot:(BOOL)flag Sets whether backing-store memory for the window should
be freed when the window is ordered off-screen.

– (int)windowNumber Returns the window number.

The Miniwindow

– (NSImage *)miniwindowImage Returns the image that’s displayed in the miniwindow.

– (NSString *)miniwindowTitle Returns the title that’s displayed in the miniwindow.

– (void)setMiniwindowImage:(NSImage *)image Sets the image that’s displayed in the miniwindow.

– (void)setMiniwindowTitle: (NSString *)title Sets the title that’s displayed in the miniwindow.

The Field Editor

– (void)endEditingFor: (id)anObject Ends the field editor’s editing assignment for anObject.

– (NSText *)fieldEditor: (BOOL)createFlag Returns the window object’s field editor for anObject.
forObject: (id)anObject If the field editor does not exist and createFlag is YES,

creates a field editor.

Window Status and Ordering

– (void)becomeKeyWindow Records the window’s new status as the key window. This
method posts the notification
NSWindowDidBecomeKeyNotification with the
receiving object to the default notification center.

– (void)becomeMainWindow Records the window’s new status as the main window. This
method posts the notification
NSWindowDidBecomeMainNotification with the
receiving object to the default notification center.

– (BOOL)canBecomeKeyWindow Returns whether the receiving window object can be the
key window.

– (BOOL)canBecomeMainWindow Returns whether the receiving window object can be the
main window.

– (BOOL)hidesOnDeactivate Returns whether deactivation hides the window.

– (BOOL)isKeyWindow Returns whether the receiving window object is the key
window.

– (BOOL)isMainWindow Returns whether the receiving window object is the main
window.

Classes: NSWindow1-231OpenStep Specification—10/19/94

– (BOOL)isMiniaturized Returns whether the window is hidden (and the
miniwindow displayed).

– (BOOL)isVisible Returns whether the window object is in the screen list (and
thus visible).

– (int)level Returns the current window level.

– (void)makeKeyAndOrderFront: (id)sender Makes the receiving window object the key window and
brings it forward.

– (void)makeKeyWindow Makes the receiving window object the key window.

– (void)makeMainWindow Makes the receiving window object the main window.

– (void)orderBack:(id)sender Puts the window object at the back of its tier.

– (void)orderFront: (id)sender Puts the window object at the front of its tier.

– (void)orderFrontRegardless Puts the window object at the front even if the application
is inactive. If the window is currently miniaturized, this
method posts the notification
NSWindowDidDeminiaturizeNotification with the
window object to the default notification center.

– (void)orderOut: (id)sender Removes the window object from the screen list.

– (void)orderWindow: (NSWindowOrderingMode)place
relativeTo:(int)otherWin Repositions the window object in the screen list in position

place relative to another window. If the window is
currently miniaturized, this method posts the
NSWindowDidDeminiaturizeNotification notification
with that window object to the default notification
center.

– (void)resignKeyWindow Records that the window object is no longer the key
window. This method posts the notification
NSWindowDidResignKeyNotification with the
receiving object to the default notification center.

– (void)resignMainWindow Records that the window object is no longer the main
window. This method posts the notification
NSWindowDidResignMainNotification with the
receiving object to the default notification center.

– (void)setHidesOnDeactivate:(BOOL)flag Sets whether deactivation hides the window.

– (void)setLevel:(int)newLevel Resets the window level to newLevel.

OpenStep Specification—10/19/941-232 Chapter 1: Application Kit

Moving and Resizing the Window

– (NSPoint)cascadeTopLeftFromPoint:(NSPoint)topLeftPoint
When successively invoked, tiles windows by offsetting

them slightly to the right and down from the previous
window. Returns the top left point of the placed
window, which is typically used for topLeftPoint in the
next invocation. If you specify (0,0), places the window
as is, and returns its top left point.

– (void)center Centers the window on the screen.

– (NSRect)constrainFrameRect:(NSRect)frameRect
toScreen:(NSScreen *)screen Constrains the window’s frame rectangle frameRect to

screen. Returns the frame rectangle.

– (NSRect)frame Returns the window’s frame rectangle

– (NSSize)minSize Returns the window’s minimum size.

– (NSSize)maxSize Returns the window’s maximum size

– (void)setContentSize:(NSSize)aSize Resizes the window’s content area to aSize.

– (void)setFrame:(NSRect)frameRect Moves and/or resizes the window frame to frameRect. flag
display:(BOOL)flag determines whether the window is displayed. This

method posts the NSWindowDidResizeNotification
notification with the receiving object to the default
notification center.

– (void)setFrameOrigin:(NSPoint)aPoint Moves the window by changing its frame origin to aPoint.

– (void)setFrameTopLeftPoint:(NSPoint)aPoint Moves the window by changing its top-left corner to
aPoint.

– (void)setMinSize:(NSSize)aSize Sets the window’s minimum size.

– (void)setMaxSize:(NSSize)aSize Sets the window’s maximum size.

Converting Coordinates

– (NSPoint)convertBaseToScreen:(NSPoint)aPoint
Converts aPoint from base to screen coordinates.

– (NSPoint)convertScreenToBase:(NSPoint)aPoint
Converts aPoint from screen to base coordinates.

Classes: NSWindow1-233OpenStep Specification—10/19/94

Managing the Display

– (void)display Displays all the window’s views.

– (void)disableFlushWindow Disables flushing for a buffered window.

– (void)displayIfNeeded Displays all the window’s views that need to be redrawn.

– (void)enableFlushWindow Enables flushing for a buffered window.

– (void)flushWindow Flushes the window’s buffer to the screen.

– (void)flushWindowIfNeeded Conditionally flushes the window’s buffer to the screen.

– (BOOL)isAutodisplay Returns whether the window displays all views requiring
redrawing when update is invoked.

– (BOOL)isFlushWindowDisabled Returns whether flushing is disabled.

– (void)setAutodisplay:(BOOL)flag Sets whether the window displays all views requiring
redrawing when update is invoked.

– (void)setViewsNeedDisplay:(BOOL)flag Sets whether some views of the receiving window object
should be redrawn.

– (void)update Update’s the window’s display and cursor rectangles. This
method is invoked after every event. When it
successfully completes, it posts the
NSWindowDidUpdateNotification notification.

– (void)useOptimizedDrawing:(BOOL)flag Sets whether the window’s views should optimize drawing.

– (BOOL)viewsNeedDisplay Returns whether some views of the receiving NSWindow
object should be redrawn.

Screens and Window Depths

+ (NSWindowDepth)defaultDepthLimit Returns the default depth limit for all windows.

– (BOOL)canStoreColor Returns whether the window is deep enough to store colors.

– (NSScreen *)deepestScreen Returns the deepest screen that the window is on.

– (NSWindowDepth)depthLimit Returns the window’s depth limit.

– (BOOL)hasDynamicDepthLimit Returns whether the depth limit depends on the screen.

– (NSScreen *)screen Returns the screen that (most of) the window is on.

– (void)setDepthLimit: (NSWindowDepth)limit Sets the window’s depth limit to limit

– (void)setDynamicDepthLimit:(BOOL)flag Sets whether the depth limit will depend on the screen.

OpenStep Specification—10/19/941-234 Chapter 1: Application Kit

Cursor Management

– (BOOL)areCursorRectsEnabled Returns whether cursor rectangles are enabled.

– (void)disableCursorRects Disables all cursor rectangles in the window object.

– (void)discardCursorRects Removes all cursor rectangles in the window object.

– (void)enableCursorRects Enables cursor rectangles in the window object.

– (void)invalidateCursorRectsForView:(NSView *)aView
Marks cursor rectangles invalid for aView.

– (void)resetCursorRects Resets cursor rectangles for the window object.

Handling User Actions and Events

– (void)close Closes the window. When this method begins, it posts the
notification NSWindowWillCloseNotification with the
receiving object to the default notification center.

– (void)deminiaturize:(id)sender Hides the miniwindow and redisplays the window.

– (BOOL)isDocumentEdited Returns whether the window’s document has been edited.

– (BOOL)isReleasedWhenClosed Returns whether the window object is released when it is
closed.

– (void)miniaturize: (id)sender Hides the window and displays its miniwindow. When this
method begins, it posts the notification
NSWindowWillMiniaturizeNotification with the
receiving object to the default notification center. When
it completes successfully, it posts
NSWindowDidMiniaturizeNotification.

– (void)performClose:(id)sender Simulates user clicking the close button.

– (void)performMiniaturize: (id)sender Simulates user clicking the miniaturize button.

– (int)resizeFlags Returns the event modifier flags during resizing.

– (void)setDocumentEdited:(BOOL)flag Sets whether the window’s document has been edited.

– (void)setReleasedWhenClosed:(BOOL)flag Sets whether closing the window object also releases it.

Aiding Event Handling

– (BOOL)acceptsMouseMovedEvents Returns whether the NSWindow accepts mouse-moved
events.

– (NSEvent *)currentEvent Returns the current event object for the application.

Classes: NSWindow1-235OpenStep Specification—10/19/94

– (void)discardEventsMatchingMask:(unsigned int)mask
beforeEvent:(NSEvent *)lastEvent Discards any events in the event queue that have a type

indicated by bitmap mask until the method encounters
the event lastEvent.

– (NSResponder *)firstResponder Returns the first responder to user events.

– (void)keyDown:(NSEvent *)theEvent Handles key-down events.

– (BOOL)makeFirstResponder:(NSResponder *)aResponder
Makes aResponder the first responder to user events.

– (NSPoint)mouseLocationOutsideOfEventStream Provides current location of the cursor.

– (NSEvent *)nextEventMatchingMask:(unsigned int)mask
Returns the next event object for the application that

matches the events indicated by event mask mask.

– (NSEvent *)nextEventMatchingMask:(unsigned int)mask
untilDate: (NSDate *)expiration Returns the next event object for the application that
inMode:(NSString *)mode matches the events indicated by event mask mask, and
dequeue:(BOOL)deqFlag that occurs before time expiration; until expiration, the

run loop runs in mode.

– (void)postEvent:(NSEvent *)event
atStart: (BOOL)flag Post an event for the application; if atStart is YES, the

event goes to the beginning of the event queue.

– (void)setAcceptsMouseMovedEvents:(BOOL)flag
Sets whether the NSWindow accepts mouse-moved events.

– (void)sendEvent:(NSEvent *)theEvent Dispatches mouse and keyboard events. If this method is
dispatching a window exposed event, it posts the
NSWindowDidExposeNotification notification with the
receiving object and, in the notification’s dictionary, a
rectangle describing the exposed area (with the key
NSExposedRect) to the default notification center. If it
is dispatching a screen changed event, it posts
NSWindowDidChangeScreenNotification with the
receiving object. If it is dispatching a window moved
event, it posts NSWindowDidMoveNotification.

– (BOOL)tryToPerform: (SEL)anAction Aids in dispatching action messages (anAction) to
with: (id)anObject anObject.

– (BOOL)worksWhenModal Override to return whether the window object accepts
events when a modal panel is being run. Default is NO.

OpenStep Specification—10/19/941-236 Chapter 1: Application Kit

Dragging

– (void)dragImage:(NSImage *)anImage Initiates an image-dragging session. NSView invokes this
at:(NSPoint)baseLocation method inside its implementation of mouseDown:.
offset:(NSSize)initialOffset
event:(NSEvent *)event
pasteboard:(NSPasteboard *)pboard
source:(id)sourceObject
slideBack:(BOOL)slideFlag

– (void)registerForDraggedTypes:(NSArray *)newTypes
Registers the NSPasteboard types (newTypes) that the

window object accepts in an image-dragging session.

– (void)unregisterDraggedTypes Unregisters the window object as a recipient of dragged
images.

Services and Windows Menu Suppor t

– (BOOL)isExcludedFromWindowsMenu Returns whether the receiving window object is omitted
from the Windows menu.

– (void)setExcludedFromWindowsMenu:(BOOL)flag
Sets whether the receiving window object is omitted from

the Windows menu.

– (id)validRequestorForSendType:(NSString *)sendType
returnType: (NSString *)returnType Returns whether the window can respond to a service with

send and receive types sendType and returnType.

Saving and Restoring the Frame

+ (void)removeFrameUsingName:(NSString *)name
Removes the named frame rectangle from the system

defaults.

– (NSString *)frameAutosaveName Returns the name that’s used to autosave the frame
rectangle as a system default.

– (void)saveFrameUsingName:(NSString *)name Saves the frame rectangle as a system default.

– (BOOL)setFrameAutosaveName:(NSString *)name
Sets the name that’s used to autosave the frame rectangle as

a system default.

– (void)setFrameFromString:(NSString *)string Sets the frame rectangle from string, which encodes the
position and dimensions of the frame rectangle and the
position and dimensions of the screen.

Classes: NSWindow1-237OpenStep Specification—10/19/94

– (BOOL)setFrameUsingName:(NSString *)name Sets the frame rectangle from the named default.

– (NSString *)stringWithSavedFrame Returns a string encoding the position and dimensions of
the frame rectangle and the position and dimensions of
the screen.

Printing and PostScript

– (NSData *)dataWithEPSInsideRect:(NSRect)rect Returns the encapsulated PostScript inside rect as a data
object.

– (void)fax:(id)sender Faxes all the window’s views.

– (void)print: (id)sender Prints all the window’s views.

Assigning a Delegate

– (id)delegate Returns the window object’s delegate.

– (void)setDelegate:(id)anObject Makes anObject the window object’s delegate.

Implemented by the Delegate

– (BOOL)windowShouldClose:(id)sender Notifies delegate that the window is about to close.

– (NSSize)windowWillResize:(NSWindow *)sender
toSize:(NSSize)frameSize Lets delegate constrain resizing to frameSize.

– (id)windowWillReturnFieldEditor: (NSWindow *)sender
toObject:(id)client Lets delegate provide another text object for field editor.

– (void)windowDidBecomeKey:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window is the key window. aNotification is
always NSWindowDidBecomeKeyNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)windowDidBecomeMain:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window is the main window. aNotification is
always NSWindowDidBecomeMainNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

OpenStep Specification—10/19/941-238 Chapter 1: Application Kit

– (void)windowDidChangeScreen:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window changed screens. aNotification is
always NSWindowDidChangeScreenNotification. If
the delegate implements this method, it’s automatically
registered to receive this notification.

– (void)windowDidDeminiaturize: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window was restored to screen. aNotification is
always NSWindowDidDeminiaturizeNotification. If
the delegate implements this method, it’s automatically
registered to receive this notification.

– (void)windowDidExpose:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window was exposed. aNotification is always
NSWindowDidExposeNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (void)windowDidMiniaturize: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window was miniaturized. aNotification is
always NSWindowDidMiniaturizeNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)windowDidMove:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window did move. aNotification is always
NSWindowDidMoveNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (void)windowDidResignKey:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window isn’t the key window. aNotification is
always NSWindowDidResignKeyNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)windowDidResignMain:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window isn’t the main window. aNotification is
always NSWindowDidResignMainNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

Classes: NSWindow1-239OpenStep Specification—10/19/94

– (void)windowDidResize:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window was resized. aNotification is always
NSWindowDidResizeNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (void)windowDidUpdate:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window was updated. aNotification is always
NSWindowDidUpdateNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (void)windowWillClose:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window will close. aNotification is always
NSWindowWillCloseNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

– (void)windowWillMiniaturize: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window will be miniaturized. aNotification is
always NSWindowWillMiniaturizeNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

– (void)windowWillMove: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate

that the window will move. aNotification is always
NSWindowWillMoveNotification. If the delegate
implements this method, it’s automatically registered to
receive this notification.

OpenStep Specification—10/19/941-240 Chapter 1: Application Kit

NSWorkspace

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSWorkspace.h

Class Description

An NSWorkspace object responds to application requests to perform a variety of services:

• Opening, manipulating, and obtaining information about files and devices

• Tracking changes to the file system, devices, and the user database

• Launching applications

• Miscellaneous services such as animating an image and requesting additional time before power off

An NSWorkspace object is made available through the sharedWorkspace method. For example, the following
statement uses an NSWorkspace object to request that a file be opened in the Edit application:

[[NSWorkspace sharedWorkspace] openFile:@"/Myfiles/README" withApplication:@"Edit"];

Creating a Workspace

+ (NSWorkspace *)sharedWorkspace Returns a shared workspace.

Opening Files

– (BOOL)openFile:(NSString *)fullPath Instructs Workspace Manager to open the file specified by
fullPath using the default application for its type;
returns YES if file was successfully opened and NO
otherwise.

– (BOOL)openFile:(NSString *)fullPath Instructs Workspace Manager to open the file specified by
fromImage:(NSImage *)anImage fullPath using the default application for its type. To
at:(NSPoint)point provide animation prior to the open, anImage should
inView: (NSView *)aView contain the file’s icon, and its image should be displayed

at point, using aView’s coordinates. Returns YES if file
was successfully opened and NO otherwise.

Classes: NSWorkspace1-241OpenStep Specification—10/19/94

– (BOOL)openFile:(NSString *)fullPath Instructs Workspace Manager to open the file specified by
withApplication: (NSString *)appName fullPath using the appName application; returns YES if

file was successfully opened and NO otherwise.

– (BOOL)openFile:(NSString *)fullPath Instructs Workspace Manager to open the file specified by
withApplication: (NSString *)appName fullPath using the appName application where flag
andDeactivate:(BOOL)flag indicates if sending application should be deactivated

before the request is sent; returns YES if file was
successfully opened and NO otherwise.

– (BOOL)openTempFile:(NSString *)fullPath Instructs Workspace Manager to open the temporary file
specified by fullPath using the default application for its
type; returns YES if file was successfully opened and
NO otherwise.

Manipulating Files

– (BOOL)performFileOperation: (NSString *)operation
source:(NSString *)source Requests the Workspace Manager to perform a file
destination:(NSString *)destination operation on a set of files in the source directory
files:(NSArray *)files specifying the destination directory if needed using tag
tag:(int *)tag as an identifier for asynchronous operations; returns

YES if operation succeeded and NO otherwise.

– (BOOL)selectFile:(NSString *)fullPath
inFileViewerRootedAtPath:(NSString *)rootFullpath

Instructs Workspace Manager to select the file specified by
fullPath opening a new file viewer if a path is specified
by rootFullpath; returns YES if file was successfully
selected and NO otherwise.

Requesting Information about Files

– (NSString *)fullPathForApplication: (NSString *)appName
Returns the full path for the application appName.

– (BOOL)getFileSystemInfoForPath:(NSString *)fullPath
isRemovable:(BOOL *)removableFlag Describes the file system at fullPath in description and
isWritable: (BOOL *)writableFlag fileSystemType, sets the Flags appropriately, and returns
isUnmountable:(BOOL *)unmountableFlag YES if fullPath is a file system mount point, or NO if it
description:(NSString **)description isn’t.
type:(NSString **)fileSystemType

OpenStep Specification—10/19/941-242 Chapter 1: Application Kit

– (BOOL)getInfoForFile: (NSString *)fullPath Retrieves information about the file specified by fullPath,
application:(NSString **)appName sets appName to the application the Workspace
type:(NSString **)type Manager would use to open fullPath, sets type to a value

or file name extension indicating the file’s type, and
returns YES upon success and NO otherwise.

– (NSImage *)iconForFile:(NSString *)fullPath Returns an NSImage with the icon for the single file
specified by fullPath.

- (NSImage *)iconForFiles:(NSArray *)pathArray Returns an NSImage with the icon for the files specified in
pathArray, an array of NSStrings. If pathArray specifies
one file, its icon is returned. If pathArray specifies more
than one file, an icon representing the multiple selection
is returned.

– (NSImage *)iconForFileType:(NSString *)fileType Returns an NSImage the icon for the file type specified by
fileType.

Tracking Changes to the File System

– (BOOL)fileSystemChanged Returns whether a change to the file system has been
registered with a noteFileSystemChanged message
since the last fileSystemChanged message.

– (void)noteFileSystemChanged Informs Workspace Manager that the file system has
changed.

Updating Registered Services and File Types

– (void)findApplications Instructs Workspace Manager to examine all applications
in the normal places and update its records of registered
services and file types.

Launching and Manipulating Applications

– (void)hideOtherApplications Hides all applications other than the sender.

– (BOOL)launchApplication: (NSString *)appName Instructs Workspace Manager to launch the application
appName and returns YES if application was
successfully launched and NO otherwise.

– (BOOL)launchApplication: (NSString *)appName Instructs Workspace Manager to launch the application
showIcon:(BOOL)showIcon appName displaying the application’s icon if showIcon
autolaunch:(BOOL)autolaunch is YES and using the dock autolaunching defaults if

autolaunch is YES; returns YES if application was
successfully launched and NO otherwise.

Classes: NSWorkspace1-243OpenStep Specification—10/19/94

Unmounting a Device

– (BOOL)unmountAndEjectDeviceAtPath:(NSString *)path
Unmounts and ejects the device at path and returns YES if

unmount succeeded and NO otherwise.

Tracking Status Changes for Devices

– (void)checkForRemovableMedia Causes the Workspace Manager to poll the system’s drives
for any disks that have been inserted but not yet
mounted. Asks the Workspace Manager to mount the
disk asynchronously and returns immediately.

– (NSArray *)mountNewRemovableMedia Causes the Workspace Manager to poll the system’s drives
for any disks that have been inserted but not yet
mounted, waits until the new disks have been mounted,
and returns a list of full pathnames to all newly mounted
disks.

– (NSArray *)mountedRemovableMedia Returns a list of the pathnames of all currently mounted
removable disks.

Notification Center

– (NSNotificationCenter *)notificationCenter Returns the notification center for WorkSpace
notifications.

Tracking Changes to the User Defaults Database

– (void)noteUserDefaultsChanged Informs Workspace Manager that the defaults database has
changed.

– (BOOL)userDefaultsChanged Returns whether a change to the defaults database has been
registered with a noteUserDefaultsChanged message
since the last userDefaultsChanged message.

Animating an Image

– (void)slideImage:(NSImage *)image Instructs Workspace Manager to animate a sliding image of
from: (NSPoint)fromPoint image from fromPoint to toPoint, specified in screen
to:(NSPoint)toPoint coordinates.

OpenStep Specification—10/19/941-244 Chapter 1: Application Kit

Requesting Additional Time before Power Off or Logout

– (int)extendPowerOffBy:(int)requested Requests more time before the power goes off or the user
logs out; returns the granted number of additional
milliseconds.

Protocols: NSChangeSpelling1-245OpenStep Specification—10/19/94

Protocols

NSChangeSpelling

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

An object in the responder chain that can correct a misspelled word implements this protocol. See the description
of the NSSpellChecker class for more information.

Changing Spelling

– (void)changeSpelling:(id)sender Implement to replace the selected word in the receiver with
a corrected version from the Spelling panel. This
message is sent by the NSSpellChecker instance to the
object whose text is being checked. To get the corrected
spelling, the receiver asks the sender for the string value
of its selected cell.

OpenStep Specification—10/19/941-246 Chapter 1: Application Kit

NSColorPickingCustom

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

Together with the NSColorPickingDefault protocol, NSColorPickingCustom provides a way to add color pickers—
custom user interfaces for color selection—to an application's NSColorPanel. The NSColorPickingDefault
protocol provides basic behavior for a color picker. The NSColorPicker class adopts the NSColorPickingDefault
protocol. The easiest way to implement a color picker is to create a subclass of NSColorPicker and use it as a base
upon which to add the NSColorPickingCustom protocol.

See also: NSColorPickingDefault, NSColorPicker (class)

Getting the Mode

– (int)currentMode Returns the color picker’s current mode (or submode, if
applicable). The returned value should be unique to
your color picker. (NSColorPanel.h. defines unique
values for the standard color pickers used by the
Application Kit.)

– (BOOL)supportsMode:(int)mode Returns YES if the receiver supports the specified picking
mode.

Getting the V iew

– (NSView *)provideNewView:(BOOL)firstRequest Returns the view containing the color picker’s user
interface. This message is sent to the color picker
whenever the color panel attempts to display it; the
argument indicates whether this is the first time the
message has been sent. If firstRequest is YES, the
method should perform any initialization required (such
as lazily loading a nib file).

Setting the Current Color

– (void)setColor:(NSColor *)aColor Adjusts the color picker to make aColor the currently
selected color.

Protocols: NSColorPickingDefault1-247OpenStep Specification—10/19/94

NSColorPickingDefault

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides an interface for
adding color pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSColorPickingCustom protocol
provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement your
own color picker is to create a subclass of NSColorPicker, implementing the NSColorPickingCustom protocol in
that subclass. However, it’s possible to create a subclass of another class, such as NSView, and use it as a base upon
which to add the methods of both NSColorPickingDefault and NSColorPickingCustom.

Color Picker Bundles

A class that implements the NSColorPickingDefault and NSColorPickingCustom protocols needs to be compiled
and linked in an application’s object file. However, your application need not explicitly create an instance of this
class. Instead, your application’s file package should include a directory named ColorPickers; within this directory
you should place a directory MyPickerClass.bundle for each custom color picker your application implements.
This bundle should contain all resources required for your color picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a bundle is found in the ColorPickers
directory. The class name is assumed to be the bundle directory name minus the .bundle extension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from a matrix of NSButtonCells. This protocol includes methods
for providing and manipulating the image that gets displayed on the button.

See also: NSColorPickingCustom, NSColorPicker (class), NSColorPanel (class)

OpenStep Specification—10/19/941-248 Chapter 1: Application Kit

Initializing a Color Picker

– (id)initWithPickerMask: (int)mask Initializes the receiver for the specified mask and color
colorPanel:(NSColorPanel *)colorPanel panel. This method is sent by the NSColorPanel to all

implementors of the color picking protocols when the
application’s color panel is first initialized. If the color
picker responds to any of the modes represented in
mask, it should perform its initialization (if desired) and
return self; otherwise it should do nothing and return
nil . However, a custom color picker can instead delay
initialization until it receives a provideNewView:
message.

Adding Button Images

– (void)insertNewButtonImage:(NSImage *)newImage
in: (NSButtonCell *)newButtonCell Sets newImage as newButtonCell’s image. newButtonCell

is the NSButtonCell object that lets the user choose the
picker from the color panel. This method should
perform application-specific manipulation of the image
before it’s inserted and displayed by the button cell.

– (NSImage *)provideNewButtonImage Returns the image for the mode button that the user uses to
select this picker in the color panel. (This is the same
image that the color panel uses as an argument when
sending the insertNewButtonImage:in: message.)

Setting the Mode

– (void)setMode:(int)mode Sets the color picker’s mode. This method is invoked by
NSColorPanel's setMode: method to ensure that the
color picker reflects the current mode. Most color
pickers have only one mode, and thus don't need to do
any work in this method. Others, like the standard
sliders picker, have multiple modes.

Using Color Lists

– (void)attachColorList: (NSColorList *)aColorList Attaches the given color list to the receiver, if it isn’t
already displaying the list. This method is invoked
automatically by the NSColorPanel when its
attachColorList: method is invoked. Since
NSColorPanel's list mode manages NSColorLists, this
method need only be implemented by a custom color
picker that manages NSColorLists itself.

Protocols: NSColorPickingDefault1-249OpenStep Specification—10/19/94

– (void)detachColorList:(NSColorList *)aColorList Removes the given color list from the receiver, unless the
receiver isn’t displaying the list. This method is invoked
automatically by the NSColorPanel when its
detachColorList: method is invoked. Since
NSColorPanel's list mode manages NSColorLists, this
method need only be implemented by a custom color
picker that manages NSColorLists itself.

Showing Opacity Controls

– (void)alphaControlAddedOrRemoved:(id)sender Sent by the color panel when the opacity controls have been
hidden or displayed. If the color picker has its own
opacity controls, it should hide or display them,
depending on whether the sender’s showsAlpha
method returns NO or YES.

Responding to a Resized View

– (void)viewSizeChanged:(id)sender Sent when the color picker’s superview has been resized in
a way that might affect the color picker. sender is the
NSColorPanel that contains the color picker.

OpenStep Specification—10/19/941-250 Chapter 1: Application Kit

NSDraggingDestination
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingDestination protocol declares methods that the destination (or recipient) of a dragged image must
implement. The destination automatically receives NSDraggingDestination messages as an image enters, moves
around inside, and then exits or is released within the destination’s boundaries.

Note: In the text here and in the other dragging protocol descriptions, the term dragging session is the entire
process during which an image is selected, dragged, released, and is absorbed or rejected by the destination. A
dragging operation is the action that the destination takes in absorbing the image when it’s released. The dragging
source is the object that “owns” the image that’s being dragged. It’s specified as an argument to the dragImage:...
message, sent to a NSWindow or NSView, that instigated the dragging session.

The Dragged Image

The image that’s dragged in an image-dragging session is an NSImage object that represents data that’s put on the
pasteboard. Although a dragging destination can access the NSImage (through a method described in the
NSDraggingInfo protocol), its primary concern is with the pasteboard data that the NSImage represents—the
dragging operation that a destination ultimately performs is on the pasteboard data, not on the image itself.

Valid Destinations

Dragging is a visual phenomenon. To be an image-dragging destination, an object must represent a portion of
screen real estate; thus, only NSWindows and NSViews can be destinations. Furthermore, you must announce the
destination-candidacy of an NSWindow or NSView by sending it a registerForDraggedTypes: message. This
method, defined in both classes, registers the pasteboard types that the object will accept. During a dragging
session, a candidate destination will only receive NSDraggingDestination messages if the pasteboard types for
which it is registered matches a type that’s represented by the image that’s being dragged.

Although NSDraggingDestination is declared as a protocol, the NSView and NSWindow subclasses that you create
to adopt the protocol need only implement those methods that are pertinent. (The NSView and NSWindow classes
provide private implementations for all of the methods.) In addition, an NSWindow or its delegate may implement
these methods; the delegate’s implementation takes precedent.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argument: sender, the object that invoked the method.
Within its implementations of the NSDraggingDestination methods, the destination can send NSDraggingInfo
messages to sender to get more information on the current dragging session.

Protocols: NSDraggingDestination1-251OpenStep Specification—10/19/94

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

• As the image is dragged into the destination’s boundaries, the destination is sent a draggingEntered:
message.

• While the image remains within the destination, a series of draggingUpdated: messages are sent.

• If the image is dragged out of the destination, draggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

• When the image is released, it either slides back to its source (and breaks the sequence) or a
prepareForDragOperation: message is sent to the destination, depending on the value that was returned
by the most recent invocation of draggingEntered: or draggingUpdated:.

• If the prepareForDragOperation: message returned YES, a performDragOperation: message is sent.

• Finally, if performDragOperation: returned YES, concludeDragOperation: is sent.

Before the Image is Released

– (NSDragOperation)draggingEntered:(id <NSDraggingInfo>)sender
Invoked when the dragged image enters the destination.

– (NSDragOperation)draggingUpdated:(id <NSDraggingInfo>)sender
Invoked periodically while the image is over the

destination.

– (void)draggingExited:(id <NSDraggingInfo>)sender
Invoked when the dragged image exits the destination.

After the Image is Released

– (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender
Invoked when the image is released.

 – (BOOL)performDragOperation: (id <NSDraggingInfo>)sender
Gives the destination an opportunity to perform the

dragging operation.

– (void)concludeDragOperation:(id <NSDraggingInfo>)sender
Invoked when the dragging operation is complete.

OpenStep Specification—10/19/941-252 Chapter 1: Application Kit

NSDraggingInfo

Adopted By: no OpenStep classes

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingInfo protocol declares methods that supply information about a dragging session (see the
NSDraggingDestination protocol, an informal protocol of NSObject, for definitions of dragging terms). A view or
window first registers dragging types; it may then send NSDraggingInfo protocol messages while dragging occurs
to get details about that dragging session.

NSDraggingInfo methods are designed to be invoked from within an object’s implementation of the
NSDraggingDestination protocol methods. An object that conforms to NSDraggingInfo is passed as the argument
to each of the methods defined by NSDraggingDestination; NSDraggingInfo messages should be sent to this
conforming object. The Application Kit supplies an NSDraggingInfo object automatically so that you never need
to create a class that implements this protocol.

Dragging-Session Information

– (NSWindow *)draggingDestinationWindow Returns the destination’s Window.

– (NSPoint)draggingLocation Returns the current location of the cursor’s hot spot,
reckoned in the base coordinate system of the
destination object’s Window.

– (NSPasteboard *)draggingPasteboard Returns the Pasteboard that holds the dragged data.

– (int)draggingSequenceNumber Returns a number that uniquely identifies the dragging
session.

– (id)draggingSource Returns the source, or “owner,” of the dragged image.
Returns nil if the source isn’t in the same application as
the destination.

– (NSDragOperation)draggingSourceOperationMask
Returns the operation mask declared by the source.

Image Information

– (NSImage *)draggedImage Returns the image object that’s being dragged. Don’t
invoke this method after the user has released the image,
and don’t release the object that this method returns.

Protocols: NSDraggingInfo1-253OpenStep Specification—10/19/94

– (NSPoint)draggedImageLocation Returns the current location of the dragged image’s origin.
The image moves in lockstep with the cursor (the
position of which is given by draggingLocation) but
may be positioned at some offset. The point that’s
returned is reckoned in the base coordinate system of
the destination object’s Window.

Sliding the Image

– (void)slideDraggedImageTo:(NSPoint)screenPoint
Slides the image to the given location in the screen

coordinate system. This method should only be invoked
after the user has released the image but before it’s
removed from the screen.

OpenStep Specification—10/19/941-254 Chapter 1: Application Kit

NSDraggingSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Protocol Description

NSDraggingSource declares methods that can (or must) be implemented by the source object in a dragging session.
(See the NSDraggingDestination protocol for definitions of dragging terms.) This dragging source is specified as
an argument to the dragImage:... message, sent to a NSWindow or NSView, that instigated the dragging session.

Of the methods declared below, only the draggingSourceOperationMaskForLocal: method must be
implemented. The other methods are invoked only if the dragging source implements them. All four methods are
invoked automatically during a dragging session—you never send an NSDraggingSource message directly to an
object.

Querying the Source

– (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)isLocal
Returns a mask giving the operations that can be performed

on the dragged image’s data.

– (BOOL)ignoreModifierKeysWhileDragging Returns YES if modifier keys should have no effect on the
type of operation performed.

Informing the Source

– (void)draggedImage:(NSImage *)image Invoked when the dragged image is displayed but before it
beganAt:(NSPoint)screenPoint starts following the mouse.

– (void)draggedImage:(NSImage *)image Invoked after the dragged image has been released and the
endedAt:(NSPoint)screenPoint dragging destination has been given a chance to operate.
deposited:(BOOL)didDeposit

Protocols: NSIgnoreMisspelledWords1-255OpenStep Specification—10/19/94

NSIgnoreMisspelledWords

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button allows
the user to accept a word that the spelling checker believes is misspelled. In order for this action to update the
“ignored words” list for the document being checked, the NSIgnoreMisspelledWords protocol must be
implemented.

This protocol is necessary because a list of ignored words is useful only if it pertains to the entire document being
checked, but the spelling checker (NSSpellChecker object) does not check the entire document for spelling at once.
The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a subset of the document at
any one time. The user usually wants to check the entire document, and so usually several spelling checks are run
in succession until no misspelled words are found. This protocol allows the list of ignored words to be maintained
per-document, even though the spelling checks are not run per-document.

The NSIgnoreMisspelledWords protocol specifies a method, ignoreSpelling:, which should be implemented like
this:

– (void)ignoreSpelling:(id)sender

{

[[NSSpellChecker sharedSpellChecker] ignoreWord:[[sender selectedCell] stringValue]

inSpellDocumentWithTag:myDocumentTag];

}

The second argument to the NSSpellChecker method ignoreWord:inSpellDocumentWithTag: is a tag that the
NSSpellChecker can use to distinguish the documents being checked. (See the discussion of “Matching a List of
Ignored Words With the Document It Belongs To” in the description of the NSSpellChecker class.) Once the
NSSpellChecker has a way to distinguish the various documents, it can append new ignored words to the
appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with the
document. See the NSSpellChecker class description for more information.

OpenStep Specification—10/19/941-256 Chapter 1: Application Kit

Identifying the Source

– (void)ignoreSpelling:(id)sender Implement to allow an application to ignore misspelled
words on a document-by-document basis. This message
is sent by the NSSpellChecker instance to the object
whose text is being checked. To inform the
NSSpellChecker that a particular spelling should be
ignored, the receiver asks the NSSpellChecker for the
string value of its selected cell. It then sends the
NSSpellChecker an
ignoreWord:inSpellDocumentWithTag: message.

Protocols: NSMenuActionResponder1-257OpenStep Specification—10/19/94

NSMenuActionResponder
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSMenu.h

Protocol Description

This informal protocol allows your application to update the enabled or disabled status of an NSMenuCell. It
declares only one method, validateCell:. By default, every time a user event occurs, NSMenu automatically
enables and disables each visible menu cell based on criteria described later in this specification. Implement
validateCell: in cases where you want to override NSMenu’s default enabling scheme. This is described in more
detail later.

There are two ways that NSMenuCells can be enabled or disabled: Explicitly, by sending the setEnabled: message,
or automatically, as described below. NSMenuCells are updated automatically unless you send the message
setAutoenablesItems:NO to the NSMenu object. You should never mix the two. That is, never use setEnabled:
unless you have disabled the automatic updating.

Automatic Updating of NSMenuCells

Whenever a user event occurs, the NSMenu object updates the status of every visible menu cell. To update the status
of a menu cell, NSMenu tries to find the object that responds to the NSMenuCell’s action message. It searches the
following objects in the following order until it finds one that responds to the action message.

• the NSMenuCell’s target

• the key window’s first responder

• the key window’s delegate

• the main window’s first responder

• the main window’s delegate

• the NSApplication object

• the NSApplication’s delegate

• the NSMenu’s delegate

If none of these objects responds to the action message, the menu cell is disabled. If NSMenu finds an object that
responds to the action message, it then checks to see if that object responds to the validateCell: message (the
method defined in this informal protocol). If validateCell: is not implemented in that object, the menu cell is
enabled. If it is implemented, the return value of validateCell: indicates whether the menu cell should be enabled
or disabled.

OpenStep Specification—10/19/941-258 Chapter 1: Application Kit

For example, the NSText object implements the copy: method. If your application has a Copy menu cell that sends
the copy: action message to the first responder, that menu cell is automatically enabled any time an NSText object
is the first responder of the key or main window. If you have an object that might become the first responder and
that object could allow users to select something that they aren’t allowed to copy, you can implement the
validateCell: method in that object. validateCell: can return NO if the forbidden items are selected and YES if
they aren’t. By implementing validateCell:, you can have the Copy menu item disabled even though its target
object implements the copy: method. If instead your object never permits copying, then you would simply not
implement copy: in that object, and the cell would be disabled automatically whenever the object is first responder.

If you send a setEnabled: message to enable or disable a menu cell when the automatic updating is turned on, other
objects might reverse what you have done after another user event occurs. Using setEnabled:, you can never be
sure that a menu cell is enabled or disabled or will remain that way. If your application must use setEnabled:, you
must turn off the automatic enabling of menu cells (by sending setAutoEnablesItems:NO to NSMenu) in order to
get predictable results.

Updating NSMenuCells

– (BOOL)validateCell:(id)aCell Implemented to override the default action of updating an
NSMenuCell. Return YES to enable the NSMenuCell,
NO to disable it.

Protocols: NSNibAwaking1-259OpenStep Specification—10/19/94

NSNibAwaking
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

Protocol Description

This informal protocol consists of a single method, awakeFromNib. It’s implemented to receive a notification
message that’s sent after objects have been loaded from an Interface Builder archive.

When loadNibFile:owner: or a related method loads an Interface Builder archive into an application, each custom
object from the archive is first initialized with an init message (initFrame: if the object is a kind of View). Outlets
are initialized via any setVariable: methods that are available (where variable is the name of an instance variable).
(These methods are optional; the Objective C run time system automatically initializes outlets.) Finally, after all the
objects are fully initialized, they each receive an awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it's possible for a setVariable:
message to be sent to an object before its companion objects have been unarchived. For this reason, setVariable:
methods should not send messages to other objects in the archive. However, messages to other objects can safely
be sent from within awakeFromNib—by this point it's assured that all the objects are unarchived and fully
initialized.

Typically, awakeFromNib is implemented for only one object in the archive, the controlling or “owner” object for
the other objects that are archived with it. For example, suppose that a nib file contained two Views that must be
positioned relative to each other at run time. Trying to position them when either one of the Views is initialized (in
a setVariable: method) might fail, since the other View might not be unarchived and initialized yet. However, it can
be done in an awakeFromNib method:

- awakeFromNib

{

 NSRect viewFrame;

 [firstView getFrame:&viewFrame];

 [secondView moveTo:viewFrame.origin.x + someVariable

 :viewFrame.origin.y];

 return self;

}

There's no default awakeFromNib method; an awakeFromNib message is only sent if an object implements it.
The Application Kit declares a prototype for this method, but doesn't implement it.

OpenStep Specification—10/19/941-260 Chapter 1: Application Kit

Notification of Loading

– (void)awakeFromNib Implemented to prepare an object for service after it has
been loaded from an Interface Builder archive—a
so-called “nib file”. An awakeFromNib message is
sent to each object loaded from the archive, but only if
it can respond to the message, and only after all the
objects in the archive have been loaded and initialized.
When an object receives an awakeFromNib message,
it’s already guaranteed to have all its outlet instance
variables set. There’s no default awakeFromNib
method.

Protocols: NSServicesRequests1-261OpenStep Specification—10/19/94

NSServicesRequests
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSApplication.h

Protocol Description

This informal protocol consists of two methods, writeSelectionToPasteboard:types: and
readSelectionFromPasteboard:. The first is implemented to provide data to a remote service, and the second to
receive any data the remote service might send back. Both respond to messages that are generated when the user
chooses a command from the Services menu.

Pasteboard Read/Write

– (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard
Implemented to replace the current selection (that is, the

text or objects that are currently selected) with data
from pboard.

– (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
types:(NSArray *)types Implemented to write the current selection to pboard as

types data.

OpenStep Specification—10/19/941-262 Chapter 1: Application Kit

Application Kit Functions

Rectangle Drawing Functions

Optimize Drawing

void NSEraseRect(NSRect aRect) Erases the rectangle by filling it with white. (This does not
alter the current drawing color.)

void NSHighlightRect(NSRect aRect) Highlights or unhighlights a rectangle by switching light
gray for white and vice versa, when drawing on the
screen. If not drawing to the screen, the rectangle is
filled with light gray.

void NSRectClip(NSRect aRect) Intersects the current clipping path with the rectangle
aRect, to determine a new clipping path.

void NSRectClipList(const NSRect *rects, Takes an array of count number of rectangles and intersects
int count) the current clipping path with each of them. Thus, the

new clipping path is the graphic intersection of all the
rectangles and the original clipping path.

void NSRectFill(NSRect aRect) Fills the rectangle referred to by aRect with the current
color.

void NSRectFillList(const NSRect *rects,
int count) Fills an array of count rectangles with the current color.

void NSRectFillListWithGrays(const NSRect *rects,
const float *grays, int count) Fills each rectangle in the array rects with the gray whose

value is stored at the corresponding location in the array
grays. Both arrays must be count elements long. Avoid
rectangles that overlap, because the order in which
they’ll be filled can’t be guaranteed.

Draw a Bordered Rectangle

void NSDrawButton(NSRect aRect, Draws the bordered light gray rectangle whose appearance
NSRect clipRect) signifies a button in the OpenStep user interface. aRect

is the bounds for the button, but only the area where
aRect intersects clipRect is drawn.

Application Kit Functions 1-263OpenStep Specification—10/19/94

void NSDrawGrayBezel(NSRect aRect, Draws a bordered light gray rectangle with the appearance
NSRect clipRect) of a pushed-in button, clipped by intersecting with

clipRect.

void NSDrawGroove(NSRect aRect, Draws a light gray rectangle whose border is a groove,
NSRect clipRect) giving the appearance of a typical box in the OpenStep

user interface.

NSRect NSDrawTiledRects(NSRect boundsRect, Draws an unfilled rectangle, clipped by clipRect, whose
NSRect clipRect, border is defined by the parallel arrays sides and grays,
const NSRectEdge *sides, both of length count. Each element of sides specifies an
const float *grays, edge of the rectangle, which is drawn with a width of
int count) 1.0 using the corresponding gray level from grays. If the

edges array contains recurrences of the same edge, each
is inset within the previous edge.

void NSDrawWhiteBezel(NSRect aRect, Draws a white rectangle with a bezeled border. Only the
NSRect clipRect) area that intersects clipRect is drawn.

void NSFrameRect(NSRect aRect) Draws a frame of width 1.0 around the inside of a rectangle,
using the current color.

void NSFrameRectWithWidth(NSRect aRect, Draws a frame of width frameWidth around the inside of a
float frameWidth) rectangle, using the current color.

Color Functions

Get Information About Color Space and Window Depth

const NSWindowDepth *NSAvailableWindowDepths(void)
Returns a zero-terminated list of available window depths.

NSWindowDepth NSBestDepth(NSString *colorSpace,
int bitsPerSample, int bitsPerPixel, Returns a window depth deep enough for the given number
BOOL planar, BOOL *exactMatch) of colors, bits per sample, bits per pixel, and if planar.

Upon return, the variable pointed to by exactMatch is
YES if the window depth can accommodate all of the
values given for all of the parameters, NO if not.

int NSBitsPerPixelFromDepth(NSWindowDepth depth)
Returns the number of bits per pixel for the given window

depth.

OpenStep Specification—10/19/941-264 Chapter 1: Application Kit

int NSBitsPerSampleFromDepth(NSWindowDepth depth)
Returns the number of bits per sample (bits per pixel in

each color component) for the given window depth.

NSString *NSColorSpaceFromDepth(NSWindowDepth depth)
Returns the name of the color space that matches the given

window depth.

int NSNumberOfColorComponents(NSString *colorSpaceName)
Returns the number of color components in the named

color space.

BOOL NSPlanarFromDepth(NSWindowDepth depth)
Returns YES if the given window depth is planar, NO if

not.

Read the Color at a Screen Position

NSColor *NSReadPixel(NSPoint location) Returns the color of the pixel at the given location, which
must be specified in the current view’s coordinate
system.

Text Functions

Filter Characters Entered into a Text Object

unsigned short NSEditorFilter(unsigned short theChar,
int flags, Identical to NSFieldFilter() except that it passes on values
NSStringEncoding theEncoding) corresponding to Return, Tab, and Shift-Tab directly to

the NSText object.

unsigned short NSFieldFilter(unsigned short theChar,
int flags, Checks each character the user types into an NSText
NSStringEncoding theEncoding) object’s text, allowing the user to move the selection

among text fields by pressing Return, Tab, or Shift-Tab.
Alphanumeric characters are passed to the NSText
object for display. The function returns either the ASCII
value of the character typed, 0 (for illegal characters or
ones entered while a Command key is held down), or a
constant that the Text object interprets as a movement
command.

Application Kit Functions 1-265OpenStep Specification—10/19/94

Calculate or Draw a Line of Text (in Text Object)

int NSDrawALine(id self, Draws a line of text, using the global variables set by
NSLayInfo *layInfo) NSScanALine(). The return value has no significance.

int NSScanALine(id self, Determines the placement of characters in a line of text. self
NSLayInfo *layInfo) refers to the NSText object calling the function, and

* layInfo is an NSLayInfo struct. The function returns 1
if a word’s length exceeds the width of a line and the
NSText’s charWrap instance variable is NO. Otherwise,
it returns 0.

Calculate Font Ascender, Descender, and Line Height (in Text Object)

void NSTextFontInfo(id fid, Calculates, and returns by reference, the ascender,
float *ascender, float *descender, descender, and line height values for the NSFont given
float *lineHeight) by font.

Access Text Object’s Word Tables

NSData * NSDataWithWordTable(const unsigned char *smartLeft,
const unsigned char*smartRight, Given pointers to word table structures, records the
const unsigned char *charClasses, structures in the returned NSData object. The
const NSFSM*wrapBreaks, arguments are similar to those of
int wrapBreaksCount, NSReadWordTable().
const NSFSM*clickBreaks,
int clickBreaksCount,
BOOL charWrap)

void NSReadWordTable(NSZone *zone, Given data, creates word tables in the memory zone
NSData *data, specified by zone, returning (in the subsequent
unsigned char **smartLeft, arguments) pointers to the various tables. The integer
unsigned char **smartRight, pointer arguments return the length of the preceding
unsigned char **charClasses, array, and charWrap indicates whether words whose
NSFSM **wrapBreaks, length exceeds the NSText object’s line length should
int *wrapBreaksCount, be wrapped on a character-by-character basis.
NSFSM **clickBreaks,
int *clickBreaksCount,
BOOL *charWrap)

OpenStep Specification—10/19/941-266 Chapter 1: Application Kit

Array Allocation Functions for Use by the NSText Class

NSTextChunk *NSChunkCopy(NSTextChunk *pc, Copies the array pc to the array dpc and returns a pointer to
NSTextChunk *dpc) the copy.

NSTextChunk *NSChunkGrow(NSTextChunk *pc, Increases the array identified by the pointer pc to a size of
int newUsed) newUsed bytes.

NSTextChunk *NSChunkMalloc(int growBy, Allocates initial memory for a structure whose first field is
int initUsed) an NSTextChunk structure and whose subsequent field

is a variable-sized array. The amount of memory
allocated is equal to initUsed. If initUsed is 0, growBy
bytes are allocated. growBy specifies how much
memory should be allocated when the chunk grows.

NSTextChunk *NSChunkRealloc(NSTextChunk *pc)
Increases the amount of memory available for the array

identified by the pointer pc, as determined by the array’s
NSTextChunk.

NSTextChunk *NSChunkZoneCopy(NSTextChunk *pc,
NSTextChunk *dpc, Like NSChunkCopy(), but uses the specified zone of
NSZone *zone) memory.

NSTextChunk *NSChunkZoneGrow(NSTextChunk *pc,
int newUsed, Like NSChunkGrow(), but uses the specified zone of
NSZone *zone) memory.

NSTextChunk *NSChunkZoneMalloc(int growBy, Like NSChunkMalloc(), but uses the specified zone of
int initUsed, memory.
NSZone *zone)

NSTextChunk *NSChunkZoneRealloc(NSTextChunk *pc,
NSZone *zone) Like NSChunkRealloc(), but uses the specified zone of

memory.

Imaging Functions

Copy an image

void NSCopyBitmapFromGState(int srcGstate, Copies the pixels in the rectangle srcRect to the rectangle
NSRect srcRect, destRect. The source rectangle is defined in the
NSRect destRect) graphics state designated by srcGstate, and the

destination is defined in the current graphics state.

Application Kit Functions 1-267OpenStep Specification—10/19/94

void NSCopyBits(int srcGstate, Copies the pixels in the rectangle srcRect to the location
NSRect srcRect, destPoint. The source rectangle is defined in the current
NSPoint destPoint) graphics state if srcGstate is NSNullObject; otherwise,

in the graphics state designated by srcGstate. The
destPoint destination is defined in the current graphics
state.

Render Bitmap Images

void NSDrawBitmap(NSRect rect, Renders an image from a bitmap. rect is the rectangle in
int pixelsWide, which the image is drawn, and data is the bitmap data,
int pixelsHigh, stored in up to 5 channels unless isPlanar is NO (in
int bitsPerSample, which case the channels are interleaved in a single
int samplesPerPixel, array).
int bitsPerPixel,
int bytesPerRow,
BOOL isPlanar,
BOOL hasAlpha,
NSString *colorSpaceName,
const unsigned char *const data[5])

Attention Panel Functions

Create an Attention Panel without Running It Yet

id NSGetAlertPanel(NSString *title, Returns an NSPanel object that you can use in a modal
NSString *msg, session. Unlike NSRunAlertPanel(), no button is
NSString *defaultButton, displayed if defaultButton is NULL.
NSString *alternateButton,
NSString *otherButton, ...)

OpenStep Specification—10/19/941-268 Chapter 1: Application Kit

Create and Run an Attention Panel

int NSRunAlertPanel(NSString *title, Creates an attention panel that alerts the user to some
NSString *msg, consequence of a requested action, and runs the panel in
NSString *defaultButton, a modal event loop. title is the panel’s title (by default,
NSString *alternateButton, “Alert”); msg is the printf() -style message that’s
NSString *otherButton, ...) displayed in the panel; defaultButton (by default, “OK”)

is the title for the main button, also activated by Return;
alternateButton and otherButton give two more
choices, which are displayed only if the corresponding
argument isn’t NULL. The trailing arguments are a
variable number of printf() -style arguments to msg.

int NSRunLocalizedAlertPanel(NSString *table, Similar to NSRunAlertPanel(), but preferred, as it makes
NSString *title, use of OpenStep’s localization feature for languages of
NSString *msg, different countries.
NSString *defaultButton,
NSString *alternateButton,
NSString *otherButton, ...)

Release an Attention Panel

void NSReleaseAlertPanel(id panel) Releases the specified alert panel.

Services Menu Functions

Determine Whether an Item Is Included in Services Menus

int NSSetShowsServicesMenuItem(NSString *item,
BOOL showService) Determines (based on the value of showService) whether

the item command will be included in other
applications’ Services menus. item describes a service
provided by this application, and should be the same
string entered in the “Menu Item:” field of the services
file. The function returns 0 upon success.

BOOL NSShowsServicesMenuItem(NSString *item)
Returns YES if item is currently shown in Services menus.

Application Kit Functions 1-269OpenStep Specification—10/19/94

Programmatically Invoke a Service

BOOL NSPerformService(NSString *item, Invokes a service found in the application’s Services menu.
NSPasteboard *pboard) item is the name of a Services menu item, in any

language; a slash in this name represents a submenu.
pboard must contain the data required by the service,
and when the function returns, pboard will contain the
data supplied by the service provider.

Force Services Menu to Update Based on New Ser vices

void NSUpdateDynamicServices(void) Re-registers the services the application is willing to
provide, by reading the file with the extension
“.service” in the application path or in the standard path
for services.

Other Application Kit Functions

Play the System Beep

void NSBeep(void) Plays the system beep.

Return File-related Pasteboard Types

NSString *NSCreateFileContentsPboardType(NSString *fileType)
Returns a string naming a pasteboard type that represents a

file’s contents, based on the supplied string fileType.
fileType should generally be the extension part of a file
name. The conversion from a named file type to a
pasteboard type is simple; no mapping to standard
pasteboard types is attempted.

NSString *NSCreateFilenamePboardType(NSString *filename)
Returns a string naming a pasteboard type that represents a

a file name, based on the supplied string filename.

NSString *NSGetFileType(NSString *pboardType) Returns the extension or file name from which the
pasteboard type pboardType was derived. nil is returned
if pboardType isn’t a pasteboard type created by
NSCreateFileContentsPboardType() or
NSCreateFilenamePboardType().

OpenStep Specification—10/19/941-270 Chapter 1: Application Kit

NSArray *NSGetFileTypes(NSArray *pboardTypes)
Accepts an array of pasteboard types and returns an array

of the unique extensions and file names from the
file-content and file-name types found in the input array.
It returns nil if the input array contains no file-content
or file-name types.

Draw a Distinctive Outline around Linked Data

void NSFrameLinkRect(NSRect aRect, Draws a distinctive link outline just outside the rectangle
BOOL isDestination) aRect. To draw an outline around a destination link,

isDestination should be YES, otherwise NO.

float NSLinkFrameThickness(void) Returns the thickness of the link outline so that the outline
can be properly erased by the application, or for other
purposes.

Convert an Event Mask Type to a Mask

unsigned int NSEventMaskFromType(NSEventType type)
Returns the event mask corresponding to type (which is an

enumeration constant). The returned mask equals 1
left-shifted by type bits.

Types and Constants1-271OpenStep Specification—10/19/94

Types and Constants

Application

id NSApp; Represents the application’s NSApplication object.

typedef struct _NSModalSession *NSModalSession; This structure stores information used by the system during
a modal session.

enum { Predefined return values for runModalFor: and
NSRunStoppedResponse, runModalSession:.
NSRunAbortedResponse,
NSRunContinuesResponse

};

NSString *NSModalPanelRunLoopMode; Input-filter modes passed to NSRunLoop.

NSString *NSEventTrackingRunLoopMode;

Box

typedef enum _NSTitlePosition { This type’s constants represent the locations where an
NSNoTitle, NSBox’s title is placed in relation to the border
NSAboveTop, (setTitlePosition: and titlePosition).
NSAtTop,
NSBelowTop,
NSAboveBottom,
NSAtBottom,
NSBelowBottom

} NSTitlePosition;

OpenStep Specification—10/19/941-272 Chapter 1: Application Kit

Buttons

typedef enum _NSButtonType { The constants of NSButtonType indicate the way
NSMomentaryPushButton, NSButtons and NSButtonCells behave when
NSPushOnPushOffButton, pressed, and how they display their state. They are
NSToggleButton, used in NSButton’s setType: method.
NSSwitchButton,
NSRadioButton,
NSMomentaryChangeButton,
NSOnOffButton

} NSButtonType;

Cells and Button Cells

typedef enum _NSCellType { Represent different types of NSCell objects.
NSNullCellType, No display.
NSTextCellType, Displays text.
NSImageCellType Displays an image.

} NSCellType; Returned from type and set via setType:.

typedef enum _NSCellImagePosition { Represent the position of an NSButtonCell relative to its
NSNoImage, title. Returned from imagePosition and set through
NSImageOnly, setImagePosition:.
NSImageLeft,
NSImageRight,
NSImageBelow,
NSImageAbove,
NSImageOverlaps

} NSCellImagePosition;

Types and Constants1-273OpenStep Specification—10/19/94

typedef enum _NSCellAttribute { The constant values of NSCellAttribute represent
NSCellDisabled, parameters that you can set and access through
NSCellState, NSCell’s and NSButtonCell’s setParameter:to: and
NSPushInCell, getParameter: methods. Only the first five constants
NSCellEditable, are used by NSCell; the others apply to NSButtonCells
NSChangeGrayCell, only.
NSCellHighlighted,
NSCellLightsByContents,
NSCellLightsByGray,
NSChangeBackgroundCell,
NSCellLightsByBackground,
NSCellIsBordered,
NSCellHasOverlappingImage,
NSCellHasImageHorizontal,
NSCellHasImageOnLeftOrBottom,
NSCellChangesContents,
NSCellIsInsetButton

} NSCellAttribute ;

enum { Numeric data types that an NSCell can accept. Used as
NSAnyType, the argument for setEntryType:.
NSIntType,
NSPositiveIntType,
NSFloatType,
NSPositiveFloatType,
NSDateType,
NSDoubleType,
NSPositiveDoubleType

};

enum { NSButtonCell uses these values to determine how to
NSNoCellMask, highlight a button cell or show an ON state
NSContentsCellMask, (returned/passed in showsStateBy/setShowsStateBy
NSPushInCellMask, and highlightsBy/setHighlightsBy).
NSChangeGrayCellMask,
NSChangeBackgroundCellMask

};

OpenStep Specification—10/19/941-274 Chapter 1: Application Kit

Color

enum { Tags that identify modes (or views) in the color panel.
NSGrayModeColorPanel,
NSRGBModeColorPanel,
NSCMYKModeColorPanel,
NSHSBModeColorPanel,
NSCustomPaletteModeColorPanel,
NSColorListModeColorPanel,
NSWheelModeColorPanel

};

enum { Bit masks for determining the current mode (or view) of the
NSColorPanelGrayModeMask, color panel.
NSColorPanelRGBModeMask,
NSColorPanelCMYKModeMask,
NSColorPanelHSBModeMask,
NSColorPanelCustomPaletteModeMask,
NSColorPanelColorListModeMask,
NSColorPanelWheelModeMask,
NSColorPanelAllModesMask

};

Data Link

typedef int NSDataLinkNumber; Returned by NSDataLink’s linkNumber method as a
persistent identifier of a destination link.

NSString *NSDataLinkFileNameExtension; The file name suffix to be used when data links are saved.
The default is objlink .

typedef enum _NSDataLinkDisposition { Returned by NSDataLink’s disposition method to identify
 NSLinkInDestination , a link as a destination link, a source link, or a broken
 NSLinkInSource, link.
 NSLinkBroken

} NSDataLinkDisposition;

typedef enum _NSDataLinkUpdateMode { Identifies when a link’s data is to be updated. Set through
 NSUpdateContinuously, the setUpdateMode: method and returned by
 NSUpdateWhenSourceSaved, updateMode.
 NSUpdateManually,
 NSUpdateNever

} NSDataLinkUpdateMode;

Types and Constants1-275OpenStep Specification—10/19/94

Drag Operation

typedef enum _NSDragOperation { The constants of this type identify different kinds of
NSDragOperationNone, dragging operations. NSDragOperationNone implies
NSDragOperationCopy, that the operation is rejected.
NSDragOperationLink , NSDragOperationPrivate means that the system
NSDragOperationGeneric, leaves the cursor alone.
NSDragOperationPrivate,
NSDragOperationAll

} NSDragOperation;

OpenStep Specification—10/19/941-276 Chapter 1: Application Kit

Event Handling

typedef enum _NSEventType { Each constant of NSEventType identifies an event type.
NSLeftMouseDown, (See the NSEvent class description.)
NSLeftMouseUp,
NSRightMouseDown,
NSRightMouseUp,
NSMouseMoved,
NSLeftMouseDragged,
NSRightMouseDragged,
NSMouseEntered,
NSMouseExited,
NSKeyDown,
NSKeyUp,
NSFlagsChanged,
NSPeriodic,
NSCursorUpdate

} NSEventType;

enum { Unicodes that identify function keys on the keyboard,
NSUpArrowFunctionKey = 0xF700, OpenStep reserves the range 0xF700-0xF8FF for
NSDownArrowFunctionKey = 0xF701, this purpose. The availability of some keys is
NSLeftArrowFunctionKey = 0xF702, system-dependent.
NSRightArrowFunctionKey = 0xF703,
NSF1FunctionKey = 0xF704,
NSF2FunctionKey = 0xF705,
NSF3FunctionKey = 0xF706,
NSF4FunctionKey = 0xF707,
NSF5FunctionKey = 0xF708,
NSF6FunctionKey = 0xF709,
NSF7FunctionKey = 0xF70A,
NSF8FunctionKey = 0xF70B,
NSF9FunctionKey = 0xF70C,
NSF10FunctionKey = 0xF70D,
NSF11FunctionKey = 0xF70E,
NSF12FunctionKey = 0xF70F,
NSF13FunctionKey = 0xF710,
NSF14FunctionKey = 0xF711,
NSF15FunctionKey = 0xF712,
NSF16FunctionKey = 0xF713,
NSF17FunctionKey = 0xF714,
NSF18FunctionKey = 0xF715,
NSF19FunctionKey = 0xF716,
NSF20FunctionKey = 0xF717,
NSF21FunctionKey = 0xF718,

Types and Constants1-277OpenStep Specification—10/19/94

NSF22FunctionKey = 0xF719,
NSF23FunctionKey = 0xF71A,
NSF24FunctionKey = 0xF71B,
NSF25FunctionKey = 0xF71C,
NSF26FunctionKey = 0xF71D,
NSF27FunctionKey = 0xF71E,
NSF28FunctionKey = 0xF71F,
NSF29FunctionKey = 0xF720,
NSF30FunctionKey = 0xF721,
NSF31FunctionKey = 0xF722,
NSF32FunctionKey = 0xF723,
NSF33FunctionKey = 0xF724,
NSF34FunctionKey = 0xF725,
NSF35FunctionKey = 0xF726,
NSInsertFunctionKey = 0xF727,
NSDeleteFunctionKey = 0xF728,
NSHomeFunctionKey = 0xF729,
NSBeginFunctionKey = 0xF72A,
NSEndFunctionKey = 0xF72B,
NSPageUpFunctionKey = 0xF72C,
NSPageDownFunctionKey = 0xF72D,
NSPrintScreenFunctionKey = 0xF72E,
NSScrollLockFunctionKey = 0xF72F,
NSPauseFunctionKey = 0xF730,
NSSysReqFunctionKey = 0xF731,
NSBreakFunctionKey = 0xF732,
NSResetFunctionKey = 0xF733,
NSStopFunctionKey = 0xF734,
NSMenuFunctionKey = 0xF735,
NSUserFunctionKey = 0xF736,
NSSystemFunctionKey = 0xF737,
NSPrintFunctionKey = 0xF738,
NSClearLineFunctionKey = 0xF739,
NSClearDisplayFunctionKey = 0xF73A,
NSInsertLineFunctionKey = 0xF73B,
NSDeleteLineFunctionKey = 0xF73C,
NSInsertCharFunctionKey = 0xF73D,
NSDeleteCharFunctionKey = 0xF73E,
NSPrevFunctionKey = 0xF73F,
NSNextFunctionKey = 0xF740,
NSSelectFunctionKey = 0xF741,
NSExecuteFunctionKey = 0xF742,
NSUndoFunctionKey = 0xF743,
NSRedoFunctionKey = 0xF744,
NSFindFunctionKey = 0xF745,
NSHelpFunctionKey = 0xF746,

OpenStep Specification—10/19/941-278 Chapter 1: Application Kit

NSModeSwitchFunctionKey = 0xF747
};

enum { Device-independent bit masks for evaluating event-
NSAlphaShiftKeyMask, modifier flags to determine which modifier key (if any)
NSShiftKeyMask, was pressed.
NSControlKeyMask,
NSAlternateKeyMask,
NSCommandKeyMask,
NSNumericPadKeyMask,
NSHelpKeyMask,
NSFunctionKeyMask

};

enum { Bit masks for determining the type of events.
NSLeftMouseDownMask,
NSLeftMouseUpMask,
NSRightMouseDownMask,
NSRightMouseUpMask,
NSMouseMovedMask,
NSLeftMouseDraggedMask,
NSRightMouseDraggedMask,
NSMouseEnteredMask,
NSMouseExitedMask,
NSKeyDownMask,
NSKeyUpMask,
NSFlagsChangedMask,
NSPeriodicMask,
NSCursorUpdateMask,
NSAnyEventMask

};

Exceptions

Global Exception Strings

The following global strings identify the exceptions returned by various operations in the Application Kit. They are
defined in NSErrors.h.

NSString *NSAbortModalException;

NSString *NSAbortPrintingException ;

NSString *NSAppKitIgnoredException;

Types and Constants1-279OpenStep Specification—10/19/94

NSString *NSAppKitVirtualMemoryException ;

NSString *NSBadBitmapParametersException;

NSString *NSBadComparisonException;

NSString *NSBadRTFColorTableException;

NSString *NSBadRTFDirectiveException;

NSString *NSBadRTFFontTableException;

NSString *NSBadRTFStyleSheetException;

NSString *NSBrowserIllegalDelegateException;

NSString *NSColorListIOException;

NSString *NSColorListNotEditableException;

NSString *NSDraggingException;

NSString *NSFontUnavailableException;

NSString *NSIllegalSelectorException;

NSString *NSImageCacheException;

NSString *NSNibLoadingException;

NSString *NSPPDIncludeNotFoundException;

NSString *NSPPDIncludeStackOverflowException;

NSString *NSPPDIncludeStackUnderflowException;

NSString *NSPPDParseException;

NSString *NSPasteboardCommunicationException;

NSString *NSPrintOperationExistsException; (Defined in NSPrintOperation.h.)

NSString *NSPrintPackageException;

NSString *NSPrintingCommunicationException;

NSString *NSRTFPropertyStackOverflowException;

NSString *NSTIFFException;

NSString *NSTextLineTooLongException;

NSString *NSTextNoSelectionException;

NSString *NSTextReadException;

OpenStep Specification—10/19/941-280 Chapter 1: Application Kit

NSString *NSTextWriteException;

NSString *NSTypedStreamVersionException;

NSString *NSWindowServerCommunicationException;

NSString *NSWordTablesReadException;

NSString *NSWordTablesWriteException;

Fonts

typedef unsigned int NSFontTraitMask ; Characterizes one or more of a font’s traits. It’s used as an
argument type for several of the methods in the
NSFontManager class. You build a mask by OR’ing
together the following enumeration constants.

enum { Values used by NSFontManager to identify font traits.
NSItalicFontMask,
NSBoldFontMask,
NSUnboldFontMask,
NSNonStandardCharacterSetFontMask,
NSNarrowFontMask,
NSExpandedFontMask,
NSCondensedFontMask,
NSSmallCapsFontMask,
NSPosterFontMask,
NSCompressedFontMask,
NSUnitalicFontMask

};

typedef unsigned int NSGlyph; A type for numbers identifying font glyphs. It’s used as the
argument type for several of the methods in NSFont.

enum { Tags identifying views in the font panel.
NSFPPreviewButton ,
NSFPRevertButton,
NSFPSetButton,
NSFPPreviewField,
NSFPSizeField,
NSFPSizeTitle,
NSFPCurrentField

};

Types and Constants1-281OpenStep Specification—10/19/94

const float *NSFontIdentityMatrix ; Identifies a font matrix that’s used for fonts displayed in an
NSView object that has an unflipped coordinate system.

NSString *NSAFMAscender; Global keys to access the values available in the AFM
NSString *NSAFMCapHeight; dictionary. You can convert the appropriate
NSString *NSAFMCharacterSet; values (e.g., ascender, cap height) to floating point
NSString *NSAFMDescender; values by using NSString’s floatValue method.
NSString *NSAFMEncodingScheme;
NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMItalicAngle ;
NSString *NSAFMMappingScheme;
NSString *NSAFMNotice;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMXHeight ;

Graphics

typedef int NSWindowDepth This type gives the window-depth limit. Use the
NSAvailableWindowDepths() function to get a list of
available window depths. Use the functions
NSBitsPerSampleFromDepth(),
NSBitsPerPixelFromDepth(), NSPlanarFromDepth,
and NSColorSpaceFromDepth() to extract
information from a window depth. The
NSWindowDepth type is also used as an argument type
of methods in NSScreen and NSWindow.

typedef enum _NSTIFFCompression { The constants defined in this type represent the various
NSTIFFCompressionNone = 1, TIFF (tag image file format) data compression
NSTIFFCompressionCCITTFAX3 = 3, schemes. They are defined in NSBitMapImageRep and
NSTIFFCompressionCCITTFAX4 = 4, used in several methods of that class as well as in
NSTIFFCompressionLZW = 5, the TIFFRepresentationUsingCompression:factor:
NSTIFFCompressionJPEG = 6, method of NSImage.
NSTIFFCompressionNEXT = 32766,
NSTIFFCompressionPackBits = 32773,
NSTIFFCompressionOldJPEG = 32865

} NSTIFFCompression;

OpenStep Specification—10/19/941-282 Chapter 1: Application Kit

enum { NSImageRepMatchesDevice indicates that the value
NSImageRepMatchesDevice varies according to the output device. It can be

}; passed in (or received back) as the value of
NSImageRep’s bitsPerSample, pixelsWide, and
pixelsHigh.

Colorspace Names

Predefined colorspace names. Used as arguments in NSDrawBitMap() and NSNumberOfColorComponents();
value returned from NSColorSpaceFromDepth().

NSString *NSCalibratedWhiteColorSpace;

NSString *NSCalibratedBlackColorSpace;

NSString *NSCalibratedRGBColorSpace;

NSString *NSDeviceWhiteColorSpace;

NSString *NSDeviceBlackColorSpace;

NSString *NSDeviceRGBColorSpace;

NSString *NSDeviceCMYKColorSpace;

NSString *NSNamedColorSpace;

NSString *NSCustomColorSpace;

Gray Values

Standard gray values for the 2-bit deep grayscale colorspace.

const float NSBlack;

const float NSDarkGray;

const float NSWhite;

const float NSLightGray ;

Device Dictionary Keys

Keys to get designated values from device dictionaries.

NSString *NSDeviceResolution;

NSString *NSDeviceColorSpaceName

NSString *NSDeviceBitsPerSample;

NSString *NSDeviceIsScreen;

Types and Constants1-283OpenStep Specification—10/19/94

NSString *NSDeviceIsPrinter;

NSString *NSDeviceSize;

Matrix

typedef enum _NSMatrixMode { The constants in this type represent the modes of operation
NSRadioModeMatrix, of an NSMatrix.
NSHighlightModeMatrix ,
NSListModeMatrix ,
NSTrackModeMatrix

} NSMatrixMode ;

Notifications

Notifications are posted to all interested observers of a specific condition to alert them that the condition has
occurred. Global strings contain the actual text of the notification. In the Application Kit, these are defined per class.
See the Foundation’s NSNotification and NSNotificationCenter for details.

NSString *NSApplicationDidBecomeActiveNotification; NSApplication

NSString *NSApplicationDidFinishLaunchingNotification ;

NSString *NSApplicationDidHideNotification ;

NSString *NSApplicationDidResignActiveNotification;

NSString *NSApplicationDidUnhideNotification;

NSString *NSApplicationDidUpdateNotification;

NSString *NSApplicationWillBecomeActiveNotification;

NSString *NSApplicationWillFinishLaunchingNotification ;

NSString *NSApplicationWillHideNotification ;

NSString *NSApplicationWillResignActiveNotification;

NSString *NSApplicationWillUnhideNotification ;

NSString *NSApplicationWillUpdateNotification ;

OpenStep Specification—10/19/941-284 Chapter 1: Application Kit

NSString *NSColorListChangedNotification; NSColorList

NSString *NSColorPanelColorChangedNotification; NSColorPanel

NSString *NSControlTextDidBeginEditingNotification ; NSControl

NSString *NSControlTextDidEndEditingNotification ;

NSString *NSControlTextDidChangeNotification;

NSString *NSImageRepRegistryChangedNotification; NSImageRep

NSString *NSSplitViewDidResizeSubviewsNotification; NSSplitView

NSString *NSSplitViewWillResizeSubviewsNotification;

NSString *NSTextDidBeginEditingNotification; NSText

NSString *NSTextDidEndEditingNotification;

NSString *NSTextDidChangeNotification;

NSString *NSViewFrameChangedNotification; NSView

NSString *NSViewFocusChangedNotification;

NSString *NSWindowDidBecomeKeyNotification; NSWindow

NSString *NSWindowDidBecomeMainNotification;

NSString *NSWindowDidChangeScreenNotification;

NSString *NSWindowDidDeminiaturizeNotification;

NSString *NSWindowDidExposeNotification;

NSString *NSWindowDidMiniaturizeNotification ;

NSString *NSWindowDidMoveNotification;

NSString *NSWindowDidResignKeyNotification;

NSString *NSWindowDidResignMainNotification;

Types and Constants1-285OpenStep Specification—10/19/94

NSString *NSWindowDidResizeNotification;

NSString *NSWindowDidUpdateNotification;

NSString *NSWindowWillCloseNotification;

NSString *NSWindowWillMiniaturizeNotification ;

NSString *NSWindowWillMoveNotification ;

NSString *NSWorkspaceDidLaunchApplicationNotification; NSWorkspace

NSString *NSWorkspaceDidMountNotification;

NSString *NSWorkspaceDidPerformFileOperationNotification;

NSString *NSWorkspaceDidTerminateApplicationNotification;

NSString *NSWorkspaceDidUnmountNotification;

NSString *NSWorkspaceWillLaunchApplicationNotification ;

NSString *NSWorkspaceWillPowerOffNotification;

NSString *NSWorkspaceWillUnmountNotification;

Panel

enum { Values returned by the standard panel buttons,
NSOKButton = 1, OK and Cancel.
NSCancelButton = 0

};

enum { Values returned by the NSRunAlertPanel() function and
NSAlertDefaultReturn = 1, by runModalSession: when the modal session is run
NSAlertAlternateReturn = 0, with a Panel provided by NSGetAlertPanel().
NSAlertOtherReturn = –1,
NSAlertErrorReturn = –2

};

OpenStep Specification—10/19/941-286 Chapter 1: Application Kit

Page Layout

enum { Tags that identify buttons, fields, and other views of the
NSPLImageButton, Page Layout panel.
NSPLTitleField,
NSPLPaperNameButton,
NSPLUnitsButton,
NSPLWidthForm ,
NSPLHeightForm,
NSPLOrientationMatrix ,
NSPLCancelButton,
NSPLOKButton

};

Pasteboard

Pasteboard Type Globals

Identifies the standard pasteboard types. These are used in a variety of NSPasteboard methods and functions.

NSString *NSStringPboardType;

NSString *NSColorPboardType;

NSString *NSFileContentsPboardType;

NSString *NSFilenamesPboardType;

NSString *NSFontPboardType;

NSString *NSRulerPboardType;

NSString *NSPostScriptPboardType;

NSString *NSTabularTextPboardType;

NSString *NSRTFPboardType;

NSString *NSTIFFPboardType;

NSString *NSDataLinkPboardType; (Defined in NSDataLink.h.)

NSString *NSGeneralPboardType; (Defined in NSSelection.h.)

Types and Constants1-287OpenStep Specification—10/19/94

Pasteboard Name Globals

Identifies the standard pasteboard names. Used in class method pasteboardWithName: to get a pasteboard by
name.

NSString *NSDragPboard;

NSString *NSFindPboard;

NSString *NSFontPboard;

NSString *NSGeneralPboard;

NSString *NSRulerPboard;

Printing

typedef enum _NSPrinterTableStatus { These constants describe the state of a printer-information
NSPrinterTableOK , table stored by an NSPrinter object. It is the argument
NSPrinterTableNotFound, type of the return value of statusForTable:.
NSPrinterTableError

} NSPrinterTableStatus;

typedef enum _NSPrintingOrientation { These constants represent the way a page is oriented for
NSPortraitOrientation , printing.
NSLandscapeOrientation

} NSPrintingOrientation ;

typedef enum _NSPrintingPageOrder { These constants describe the order in which pages are
NSDescendingPageOrder, spooled for printing. NSSpecialPageOrder tells the
NSSpecialPageOrder, spooler not to rearrange pages. Set through
NSAscendingPageOrder, NSPrintingOperation’s setPageOrder: method and
NSUnknownPageOrder returned by its pageOrder method.

} NSPrintingPageOrder;

typedef enum _NSPrintingPaginationMode { These constants represent the different ways an image is
NSAutoPagination, divided into pages during pagination. Pagination can
NSFitPagination, occur automatically, the image can be forced onto a
NSClipPagination page, or it can be clipped to a page.

} NSPrintingPaginationMode;

OpenStep Specification—10/19/941-288 Chapter 1: Application Kit

enum { Tags that identify text fields, controls, and other views in
NSPPSaveButton, the Print Panel.
NSPPPreviewButton,
NSFaxButton,
NSPPTitleField,
NSPPImageButton,
NSPPNameTitle,
NSPPNameField,
NSPPNoteTitle,
NSPPNoteField,
NSPPStatusTitle,
NSPPStatusField,
NSPPCopiesField,
NSPPPageChoiceMatrix,
NSPPPageRangeFrom,
NSPPPageRangeTo,
NSPPScaleField,
NSPPOptionsButton,
NSPPPaperFeedButton,
NSPPLayoutButton

};

Printing Information Dictionary Keys

The keys in the mutable dictionary associated with NSPrintingInfo. See NSPrintingInfo.h for types and
descriptions of values.

NSString *NSPrintAllPages;

NSString *NSPrintBottomMargin ;

NSString *NSPrintCopies;

NSString *NSPrintFaxCoverSheetName;

NSString *NSPrintFaxHighResolution;

NSString *NSPrintFaxModem;

NSString *NSPrintFaxReceiverNames;

NSString *NSPrintFaxReceiverNumbers;

NSString *NSPrintFaxReturnReceipt;

NSString *NSPrintFaxSendTime;

NSString *NSPrintFaxTrimPageEnds;

NSString *NSPrintFaxUseCoverSheet;

Types and Constants1-289OpenStep Specification—10/19/94

NSString *NSPrintFirstPage;

NSString *NSPrintHorizonalPagination;

NSString *NSPrintHorizontallyCentered;

NSString *NSPrintJobDisposition;

NSString *NSPrintJobFeatures;

NSString *NSPrintLastPage;

NSString *NSPrintLeftMargin ;

NSString *NSPrintManualFeed;

NSString *NSPrintOrientation ;

NSString *NSPrintPackageException;

NSString *NSPrintPagesPerSheet;

NSString *NSPrintPaperFeed;

NSString *NSPrintPaperName;

NSString *NSPrintPaperSize;

NSString *NSPrintPrinter ;

NSString *NSPrintReversePageOrder;

NSString *NSPrintRightMargin ;

NSString *NSPrintSavePath;

NSString *NSPrintScalingFactor;

NSString *NSPrintTopMargin ;

NSString *NSPrintVerticalPagination;

NSString *NSPrintVerticallyCentered;

Print Job Disposition Values

These global constants define the disposition of a print job. See NSPrintInfo’s setJobDisposition: and
jobDisposition.

NSString *NSPrintCancelJob;

NSString *NSPrintFaxJob;

NSString *NSPrintPreviewJob;

OpenStep Specification—10/19/941-290 Chapter 1: Application Kit

NSString *NSPrintSaveJob;

NSString *NSPrintSpoolJob;

Save Panel

enum { Tags that identify buttons, fields, and other views in the
NSFileHandlingPanelImageButton, Save Panel.
NSFileHandlingPanelTitleField,
NSFileHandlingPanelBrowser,
NSFileHandlingPanelCancelButton,
NSFileHandlingPanelOKButton,
NSFileHandlingPanelForm,
NSFileHandlingPanelHomeButton,
NSFileHandlingPanelDiskButton,
NSFileHandlingPanelDiskEjectButton

};

Scroller

typedef enum _NSScrollArrowPosition { NSScroller uses these constants in its setArrowPosition:
NSScrollerArrowsMaxEnd, method to set the position of the arrows within the
NSScrollerArrowsMinEnd , scroller.
NSScrollerArrowsNone

} NSScrollArrowPosition;

typedef enum _NSScrollerPart { NSScroller uses these constants in its hitPart method to
NSScrollerNoPart, identify the part of the scroller specified in a mouse
NSScrollerDecrementPage, event.
NSScrollerKnob,
NSScrollerIncrementPage,
NSScrollerDecrementLine,
NSScrollerIncrementLine,
NSScrollerKnobSlot

} NSScrollerPart;

typedef enum _NSScrollerUsablePart { These constants define the usable parts of an NSScroller
NSNoScrollerParts, object.
NSOnlyScrollerArrows,
NSAllScrollerParts

} NSUsableScrollerParts;

Types and Constants1-291OpenStep Specification—10/19/94

typedef enum _NSScrollerArrow { These constants indicate the two types of scroller arrow.
NSScrollerIncrementArrow, NSScroller’s drawArrow:highlight: method takes an
NSScrollerDecrementArrow NSScrollerArrow as the first argument.

} NSScrollerArrow ;

const float NSScrollerWidth; Identifies the default width of a vertical NSScroller object
and the default height of a horizontal NSScroller object.

Text

typedef struct _NSBreakArray { Holds line-break information for an NSText object. It’s
NSTextChunk chunk; mainly an array of line descriptors.
NSLineDesc breaks[1];

} NSBreakArray ;

typedef struct _NSCharArray { Holds the character array for the current line in the NSText
NSTextChunk chunk; object.
unsigned char text[1];

} NSCharArray ;

typedef unsigned short (*NSCharFilterFunc) (The character filter function analyzes each character the
unsigned short charCode, user enters in the NSText object.
int flags,
NSStringEncoding theEncoding);

typedef struct _NSFSM { A word definition finite-state machine structure used by an
const struct _NSFSM *next; NSText object.
short delta;
short token;

} NSFSM;

typedef struct _NSHeightChange { Associates line descriptors and line-height information in
NSLineDesc lineDesc; an NSText object.
NSHeightInfo heightInfo;

} NSHeightChange;

typedef struct _NSHeightInfo { Stores height information for each line of text in an NSText
float newHeight; object.
float oldHeight;
NSLineDesc lineDesc;

} NSHeightInfo;

OpenStep Specification—10/19/941-292 Chapter 1: Application Kit

typedef struct _NSLay { Represents a single sequence of text in a line and records
float x; everything needed to select or draw that piece.
float y;
short offset;
short chars;
id font;
void *paraStyle;
NSRun *run ;
NSLayFlags lFlags;

} NSLay;

typedef struct _NSLayArray { Holds the layout for the current line. Since the structure’s
NSTextChunk chunk; first field is an NSTextChunk structure, NSLayArray s
NSLay lays[1]; can be manipulated by the functions that manage

} NSLayArray ; variable-sized arrays of records.

typedef struct { Records whether a text lay in an NSText object needs
unsigned int mustMove:1; special treatment (e.g., because of non-printing
unsigned int isMoveChar:1; characters).
unsigned int RESERVED:14;

} NSLayFlags;

typedef struct _NSLayInfo { NSText’s scanning and drawing functions use this
NSRect rect; structure to communicate information about lines of
float descent; text.
float width ;
float left;
float right ;
float rightIndent ;
NSLayArray *lays;
NSWidthArray *widths;
NSCharArray *chars;
NSTextCache cache;
NSRect *textClipRect;
struct _lFlags {

unsigned int horizCanGrow:1;
unsigned int vertCanGrow:1;
unsigned int erase:1;
unsigned int ping:1;
unsigned int endsParagraph:1;
unsigned int resetCache:1;
unsigned int RESERVED:10;

} lFlags;
} NSLayInfo;

typedef short NSLineDesc; Used to identify lines of text in the NSText object.

Types and Constants1-293OpenStep Specification—10/19/94

typedef enum _NSParagraphProperty { The constants of this type identify specific
NSLeftAlignedParagraph, paragraph properties for selected text.
NSRightAlignedParagraph, NSText’s setSelProp: method takes this
NSCenterAlignedParagraph, argument type.
NSJustificationAlignedParagraph,
NSFirstIndentParagraph,
NSIndentParagraph,
NSAddTabParagraph,
NSRemoveTabParagraph,
NSLeftMarginParagraph ,
NSRightMarginParagraph

} NSParagraphProperty;

typedef struct _NSRun { In an NSText object, this structure represents a single
id font; sequence of text with a given format.
int chars;
void *paraStyle;
int textRGBColor;
unsigned char superscript;
unsigned char subscript;
id info;
NSRunFlags rFlags;

} NSRun;

typedef struct _NSRunArray { This structure holds the array of text runs in an NSText
NSTextChunk chunk; object. Since the first field is an NSTextChunk structure
NSRun runs[1]; you can manipulate the items in the array with the

} NSRunArray ; functions that manage variable-sized arrays of records.

typedef struct { The fields of this structure record whether a run in an
unsigned int underline:1; NSText object contains graphics, is underlined, or
unsigned int dummy:1; if an alternate character forced the use of a symbol.
unsigned int subclassWantsRTF:1;
unsigned int graphic:1;
unsigned int forcedSymbol:1;
unsigned int RESERVED:11;

} NSRunFlags;

typedef struct _NSSelPt { Represents one end of a selection in an NSText object.
int cp; Character position.
int line; Offset of LineDesc in break table.
float x; x coordinate.
float y; y coordinate.
int c1st; Character position of first character in the line.
float ht; Line height.

} NSSelPt;

OpenStep Specification—10/19/941-294 Chapter 1: Application Kit

typedef struct _NSTabStop { This structure describes an NSText object’s tab stops.
short kind ;
float x;

} NSTabStop;

typedef struct _NSTextBlock { A structure holds text characters in blocks no bigger than
struct _NSTextBlock *next; NSTextBlockSize (see below). A linked list of these
struct _NSTextBlock *prior ; text blocks comprises the text for an NSText
struct _tbFlags { object.
 unsigned int malloced:1;
 unsigned int PAD:15;
} tbFlags;
short chars;
unsigned char *text;

} NSTextBlock;

typedef struct _NSTextCache { This structure describes the current text block and run, and
int curPos; the cursor position in the text.
NSRun *curRun;
int runFirstPos;
NSTextBlock *curBlock;
int blockFirstPos;

} NSTextCache;

typedef struct _NSTextChunk { NSText uses this structure to implement variable-sized
short growby; arrays of records.
int allocated;
int used;

} NSTextChunk;

typedef char *(*NSTextFilterFunc) (A text filter function implements autoindenting and other
id self, features in an NSText object.
unsigned char * insertText,
int *insertLength,
int position);

typedef int (*NSTextFunc) (This is the type for an NSText object’s scanning and
id self, drawing function, as set through the setScanFunc:
NSLayInfo *layInfo); and setDrawFunc: methods.

typedef enum _NSTextAlignment { The constants of this type determine text alignment. Used
NSLeftTextAlignment, by methods of NSCell, NSControl, NSForm,
NSRightTextAlignment, NSFormCell, and NSText. NSNaturalTextAlignment
NSCenterTextAlignment, indicates the default alignment for the text.
NSJustifiedTextAlignment,
NSNaturalTextAlignment

} NSTextAlignment;

Types and Constants1-295OpenStep Specification—10/19/94

typedef struct _NSTextStyle { NSText uses this structure to describe text layout and tab
float indent1st; stops.
float indent2nd;
float lineHt ;
float descentLine;
NSTextAlignment alignment;
short numTabs;
NSTabStop *tabs;

} NSTextStyle;

typedef struct _NSWidthArray { Holds the character widths for the current line.
NSTextChunk chunk; Since the first field is an NSTextChunk structure
float widths[1]; you can manipulate the items in the array with the

} NSWidthArray ; functions that manage variable-sized arrays of records.

enum { This constant is used by the NSText
NSLeftTab object’s tab functions.

};

enum { These character-code constants are used by the NSText
NSBackspaceKey = 8, object’s character filter function.
NSCarriageReturnKey = 13,
NSDeleteKey= 0x7f,
NSBacktabKey = 25

};

enum {
NSIllegalTextMovement = 0,
NSReturnTextMovement = 0x10,
NSTabTextMovement = 0x11,
NSBacktabTextMovement = 0x12,
NSLeftTextMovement = 0x13,
NSRightTextMovement = 0x14,
NSUpTextMovement = 0x15,
NSDownTextMovement = 0x16

}; Movement codes describing types of movement between
text fields. Passed in to NSText delegates as the last
argument of textDidEnd:endChar: .

enum { The size, in bytes, of a text block.
NSTextBlockSize = 512

};

OpenStep Specification—10/19/941-296 Chapter 1: Application Kit

Break Tables

These tables (with their associated sizes) are finite-state machines that determine word wrapping in an NSText
object.

const NSFSM *NSCBreakTable;

int NSCBreakTableSize;

const NSFSM *NSEnglishBreakTable;

int NSEnglishBreakTableSize;

const NSFSM *NSEnglishNoBreakTable;

int NSEnglishNoBreakTableSize;

Character Category Tables

These tables define the character classes used in an NSText object’s break and click tables.

const unsigned char *NSCCharCatTable;

const unsigned char *NSEnglishCharCatTable;

Click Tables

NSText objects use these tables as finite-state machines that determine which characters are selected when the user
double-clicks.

const NSFSM *NSCClickTable;

int NSCClickTableSize;

const NSFSM *NSEnglishClickTable;

int NSEnglishClickTableSize;

Smart Cut and Paste Tables

These tables are suitable as arguments for the NSText methods setPreSelSmartable: and setPostSelSmartTable:.
When users paste text into an NSText object, if the character to the left (right) side of the new word is not in the left
(right) table, an extra space is added to that side.

const unsigned char *NSCSmartLeftChars;

const unsigned char *NSCSmartRightChars;

const unsigned char *NSEnglishSmartLeftChars;

const unsigned char *NSEnglishSmartRightChars;

Types and Constants1-297OpenStep Specification—10/19/94

NSCStringText Internal State Structure

This is the structure returned by the cStringTextInternalState method of NSCStringText, for use only by
applications that need to access the internal state of an NSCStringText object.

typedef struct _NSCStringTextInternalState {
const NSFSM *breakTable; Pointer to state table that specifies word and line breaks
const NSFSM *clickTable; Pointer to state table that defines word boundaries for

double-click selection
const unsigned char *preSelSmartTable; Pointer to table that specifies which characters on the left

end of a selection are treated as equivalent to a space
const unsigned char *postSelSmartTable; Pointer to table that specifies which characters on the right

end of a selection are treated as equivalent to a space
const unsigned char *charCategoryTable; Pointer to table that maps ASCII characters to character

classes.
char delegateMethods; Record of notification methods the delegate implements
NSCharFilterFunc charFilterFunc ; Function to check each character as it’s typed into the text
NSTextFilterFunc textFilterFunc ; Function to check text that’s being added to the

NSCStringText object
NSString *_string; Reserved for internal use
NSTextFunc scanFunc; Function that calculates the line of text
NSTextFunc drawFunc; Function that draws the line of text
id delegate; Object that’s notified when the NSCStringText object is

modified
int tag; Integer the delegate uses to identify the NSCStringText

object
void *cursorTE ; Timed entry number for the vertical bar that marks the

insertion point
NSTextBlock *firstTextBlock ; Pointer to first record in a linked list of text blocks
NSTextBlock *lastTextBlock; Pointer to last record in a linked list of text blocks
NSRunArray *theRuns; Pointer to array of format runs. By default, theRuns points

to a single run of the default font
NSRun typingRun; Format run to use for the next characters entered
NSBreakArray *theBreaks; Pointer to the array of line breaks
int growLine; Line containing the end of the growing selection
int textLength; Number of characters in the NSCStringText object
float maxY; Bottom of the last line of text, relative to the origin of

bodyRect
float maxX; Widest line of text. Only accurate after calcLine method is

invoked
NSRect bodyRect; Rectangle in which the NSCStringText object draws
float borderWidth ; Reserved for internal use
char clickCount; Number of clicks that created the selection
NSSelPt sp0; Starting position of the selection
NSSelPt spN; Ending position of the selection
NSSelPt anchorL; Left anchor position
NSSelPt anchorR; Right anchor position
NSSize maxSize; Maximum size of the frame rectangle

OpenStep Specification—10/19/941-298 Chapter 1: Application Kit

NSSize minSize; Minimum size of the frame rectangle
struct _tFlags {
#ifdef __BIG_ENDIAN__

unsigned int _editMode:2; Reserved for internal use
unsigned int _selectMode:2; Reserved for internal use
unsigned int _caretState:2; Reserved for internal use
unsigned int changeState:1; True if any changes have been made to the text since the

NSCStringText object became first responder
unsigned int charWrap :1; True if the NSCStringText object wraps words whose

length exceeds the line length on a character basis. False
if such words are truncated at end of line

unsigned int haveDown:1; True if the left mouse button (or any button if button
functions are not differentiated) is down

unsigned int anchorIs0:1; True if the anchor’s position is at sp0
unsigned int horizResizable:1; True if the NSCStringText object’s width can grow or

shrink
unsigned int vertResizable:1; True if the NSCStringText object’s height can grow or

shrink
unsigned int overstrikeDiacriticals:1; Reserved for internal use
unsigned int monoFont:1; True if the NSCStringText object uses one font for all its

text
unsigned int disableFontPanel:1; True if the NSCStringText object doesn’t update the font

panel automatically
unsigned int inClipView :1; True if the NSCStringText object is a subview of an

NSClipView
#else

unsigned int inClipView :1;
unsigned int disableFontPanel:1;
unsigned int monoFont:1;
unsigned int overstrikeDiacriticals:1;
unsigned int vertResizable:1;
unsigned int horizResizable:1;
unsigned int anchorIs0:1;
unsigned int haveDown:1;
unsigned int charWrap :1;
unsigned int changeState:1;
unsigned int _caretState:2;
unsigned int _selectMode:2;
unsigned int _editMode:2;

#endif
} tFlags;

 void *_info; Reserved for internal use
 void *_textStr; Reserved for internal use
} NSCStringTextInternalState;

Types and Constants1-299OpenStep Specification—10/19/94

View

typedef int NSTrackingRectTag; A unique identifier of a tracking rectangle assigned by
NSView. (See addTrackingRectangle:owner:
assumeInside:.)

typedef enum _NSBorderType { Constants representing the four types of borders that can
NSNoBorder, appear around NSView objects.
NSLineBorder,
NSBezelBorder,
NSGrooveBorder

} NSBorderType;

enum { NSView uses these autoresize constants to describe
NSViewNotSizable, the parts of a view (or its margins) that are resized
NSViewMinXMargin , when the view’s superview is resized.
NSViewWidthSizable,
NSViewMaxXMargin ,
NSViewMinYMargin ,
NSViewHeightSizable,
NSViewMaxYMargin

};

Window

enum { These constants list the window-device tiers that the
NSNormalWindowLevel = 0, Application Kit uses. Windows are ordered (or
NSFloatingWindowLevel = 3, “layered”) within tiers: The uppermost window in one
NSDockWindowLevel = 5, tier can still be obscured by the lowest window in
NSSubmenuWindowLevel = 10, the next higher tier.
NSMainMenuWindowLevel = 20

};

enum { Bitmap masks to determine certain window styles.
NSBorderlessWindowMask,
NSTitledWindowMask,
NSClosableWindowMask,
NSMiniaturizableWindowMask ,
NSResizableWindowMask

};

1-300

Size Globals

These global constants give the dimensions of an icon and contained.

NSSize NSIconSize;

NSSize NSTokenSize:

Workspace

Workspace File Type Globals

Identifies the type of file queried by the method getInfoForFile:application:type: (passed back by reference in
last argument).

NSString *NSPlainFileType;

NSString *NSDirectoryFileType;

NSString *NSApplicationFileType;

NSString *NSFilesystemFileType;

NSString *NSShellCommandFileType;

Workspace File Operation Globals

Used as file-operation arguments in the performFileOperation:source:destination:files:options: method (first
argument).

NSString *NSWorkspaceCompressOperation;

NSString *NSWorkspaceCopyOperation;

NSString *NSWorkspaceDecompressOperation;

NSString *NSWorkspaceDecryptOperation;

NSString *NSWorkspaceDestroyOperation;

NSString *NSWorkspaceDuplicateOperation;

NSString *NSWorkspaceEncryptOperation;

NSString *NSWorkspaceLinkOperation;

NSString *NSWorkspaceMoveOperation;

Types and Constants1-301OpenStep Specification—10/19/94

NSString *NSWorkspaceRecycleOperation;

OpenStep Specification—10/19/941-302 Chapter 1: Application Kit

Introduction: Foundation Kit 2-1OpenStep Specification—10/19/94

2 Foundation Kit

Introduction

The Foundation Kit defines a base layer of Objective C classes for OpenStep. In addition to providing a set of
useful primitive object classes, it introduces several paradigms that define functionality not covered by the
Objective C language. The Foundation Kit is designed with these goals in mind:

• To provide a set of basic utility classes

• To make software development easier by introducing consistent conventions for things such as deallocation

• To support Unicode strings, object persistence, and object distribution

• To provide a level of operating system independence, enhancing application portability

OpenStep Specification—10/19/942-2 Chapter 2: Foundation Kit

Classes

The Foundation Kit includes the root class for almost all OpenStep classes, classes representing basic data types
such as strings and byte arrays, collections of other objects, and classes representing system information such as
dates. The following diagram shows the inheritance relationship among these classes. After the diagram, the
specifications for these classes are arranged in alphabetical order.

Classes: Foundation Kit 2-3OpenStep Specification—10/19/94

Figure 2-1 . Foundation Kit Classes

NSObject

NSArray

NSAssertionHandler

NSAutoreleasePool

NSBTreeBlock

NSBTreeCursor

NSBundle

NSByteStore

NSCharacterSet

NSCoder

NSConditionLock

NSConnection

NSData

NSDate

NSDeserializer

NSDictionary

NSException

NSInvocation

NSLock

NSMethodSignature

NSNotification

NSEnumerator

OpenStep
Foundation Kit Classes

NSByteStoreFile

NSMutableCharacterSet

NSArchiver

NSUnarchiver

NSMutableData

NSCalendarDate

NSMutableDictionary

NSNotificationCenter

NSProcessInfo

NSRecursiveLock

NSRunLoop

NSScanner

NSSerializer

NSSet

NSString

NSThread

NSTimeZone

NSTimer

NSUserDefaults

NSValue

NSMutableSet NSCountedSet

NSMutableString

NSTimeZoneDetail

NSNumber

NSProxy NSDistantObject

NSMutableArray

NSNotificationQueue

OpenStep Specification—10/19/942-4 Chapter 2: Foundation Kit

NSArchiver

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSArchiver.h

Class Description

NSArchiver, a concrete subclass of NSCoder, defines an object that encodes Objective C objects into an
architecture-independent format that can be stored in a file. When objects are archived, their class information and
the values of their instance variables are written to the archive. NSArchiver’s companion class, NSUnarchiver, takes
an archive file and decodes its contents into a set of objects equivalent to the original one.

Archiving is typically initiated by sending an NSArchiver an encodeRootObject: or archiveRootObject:toFile:
message. These messages specify a single object that is the starting point for archiving. The root object receives an
encodeWithCoder: message (see the NSCoding protocol) that allows it to begin archiving itself and the other
objects that it’s connected to. An object responds to an encodeWithCoder: message by writing its instance
variables to the archiver.

An object doesn’t have to archive the values of each of its instance variables. Some values may not be important to
reestablish and others may be derivable from related state upon unarchiving. Other instance variables should be
written to the archive only under certain conditions, as explained below.

NSArchiver overrides the inherited encodeRootObject: and encodeConditionalObject: methods to support the
conditional archiving of members of a graph of objects. When an object receives an encodeWithCoder: message,
it should respond by unconditionally archiving instance variables that are intrinsic to its nature (with the exceptions
noted above) and conditionally archiving those that are not. For example, an NSView unconditionally archives its
array of subviews (using encodeObject:, or the like) but conditionally archives its superview (using
encodeConditionalObject:). The archiving system notes each reference to a conditional object, but doesn’t
actually archive the object unless some other object in the graph requests the object to be archived unconditionally.
This ensures that an object is only archived once despite multiple references to it in the object graph. When the
objects are extracted from the archive, the multiple references to objects are resolved, and an equivalent graph of
objects is reestablished.

Initializing an NSArchiver

– (id)initForWritingWithMutableData: (NSMutableData *)mdata
Initializes an archiver, encoding stream and version

information into mutable data mdata. Raises
NSInvalidArgumentException if the mdata argument is
nil .

Classes: NSArchiver 2-5OpenStep Specification—10/19/94

Archiving Data

+ (NSData *)archivedDataWithRootObject:(id)rootObject
Creates and returns a data object after initializing an

archiver with that object and encoding the archiver with
rootObject.

+ (BOOL)archiveRootObject:(id)rootObject Archives rootObject by encoding it as a data object in
toFile:(NSString *)path an archiver and writing that data object to file path.

Returns YES upon success.

– (void)encodeArrayOfObjCType:(const char *)type Encodes an array of count data elements of the same
count:(unsigned int)count Objective C data type.
at:(const void *)array

– (void)encodeConditionalObject:(id)object Encodes into the linearized data a conditional object that
points back toward a root object. If nil is specified for
object, it encodes it as nil unconditionally. Raises an
NSInvalidArgumentException if no root object has
been encoded.

– (void)encodeRootObject:(id)rootObject Encodes the rootObject at the start of the linearized data
representing the object graph. Raises an
NSInvalidArgumentException if the root object has
already been encoded.

Getting Data from the NSArchiver

– (NSMutableData *)archiverData Returns the data object, in mutable form, that is associated
with the receiving NSArchiver.

Substituting One Class for Another

– (NSString *)classNameEncodedForTrueClassName:(NSString *)trueName
Returns the class name used to archive instances of the

class trueName. See
encodeClassName:intoClassName.

– (void)encodeClassName:(NSString *)trueName Encodes in the archive a substitute class name
intoClassName:(NSString *)inArchiveName) for the real class name (trueName).

OpenStep Specification—10/19/942-6 Chapter 2: Foundation Kit

NSArray

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class Description

The NSArray class declares the programmatic interface to an object that manages an immutable array of objects.
(The complementary class NSMutableArray manages modifiable arrays of objects.) NSArray’s two primitive
methods—count and objectAtIndex:—provide the basis for all the other methods in its interface. The count
method returns the number of elements in the array. objectAtIndex: gives you access to the array elements by
index, with index values starting at 0.

The methods objectEnumerator and reverseObjectEnumerator also permit sequential access of the elements of
the array, differing only in the direction of travel through the elements. These methods are provided so that array
objects can be traversed in a manner similar to that used for objects of other collection classes, such as
NSDictionary.

Generally, you instantiate an NSArray by sending one of the array... messages to the NSArray class object. These
methods return an NSArray containing the elements you pass in as arguments. (Note that arrays can’t contain nil
objects.) These objects aren’t copied; rather, each object receives a retain message before it’s added to the array.
When an object is removed from an array, it’s sent a release message.

NSArray provides methods for querying the elements of the array. indexOfObject: searches the array for the object
that matches its argument. To determine whether the search is successful, each element of the array is sent an
isEqual: message, as declared in the NSObject protocol. Another method, indexOfObjectIdenticalTo: , is
provided for the less common case of determining whether a specific object is present in the array.
indexOfObjectIdenticalTo: tests each element in the array to see whether its id matches that of the argument.

NSArray’s makeObjectsPerform: and makeObjectsPerform:withObject: methods let you act on the individual
objects in the array by sending them messages. To act on the array as a whole, a variety of methods are defined.
You can create a sorted version of the array (sortedArrayUsingSelector: and
sortedArrayUsingFunction:context:), extract a subset of the array (subarrayWithRange:), or concatenate the
elements of an array of NSString objects into a single string (componentsJoinedByString:). In addition, you can
compare two array objects using the isEqualToArray: and firstObjectCommonWithArray: methods.

Classes: NSArray 2-7OpenStep Specification—10/19/94

Allocating and Initializing an Array

+ (id)allocWithZone:(NSZone *)zone Returns an uninitialized array object in zone.

+ (id)array Returns an empty array object

+ (id)arrayWithObject: (id)anObject Returns an NSArray containing the single element
anObject. Raises an NSInvalidArgumentException if
anObject is nil .

+ (id)arrayWithObjects: (id)firstObj,... Returns an NSArray containing the objects in the argument
list. The object list is comma-separated and ends with
nil .

– (NSArray *)arrayByAddingObject: (id)anObject Returns an NSArray containing the receiver’s elements
plus anObject.

– (NSArray *)arrayByAddingObjectsFromArray: (NSArray *)anotherArray
Returns an NSArray containing the receiver’s elements

plus the elements from anotherArray.

– (id)initWithArray: (NSArray *)anotherArray Initializes a newly allocated array object by placing in it the
objects contained in anotherArray.

– (id)initWithObjects: (id)firstObj,... Initializes a newly allocated array object by placing in it the
objects in the argument list. The object list is
comma-separated and ends with nil . Raises an
NSInvalidArgumentException if any object in the list of
objects is nil .

– (id)initWithObjects: (id *)objects Initializes a newly allocated array object by placing in
count:(unsigned int)count it count objects from the objects array

Querying the Array

– (BOOL)containsObject:(id)anObject Returns YES if anObject is present in the array.

– (unsigned int)count Returns the number of objects currently in the array.

– (unsigned int)indexOfObject:(id)anObject Returns the index of anObject, if found; otherwise, returns
NSNotFound. This method checks the elements in the
array from last to first by sending them an isEqual:
message.

– (unsigned int)indexOfObjectIdenticalTo: (id)anObject
Returns the index of anObject, if found; otherwise, returns

NSNotFound. This method checks the elements in the
array from last to first by comparing their ids.

– (id)lastObject Returns the last object in the array.

OpenStep Specification—10/19/942-8 Chapter 2: Foundation Kit

– (id)objectAtIndex: (unsigned int)index Returns the object located at index. An array’s index starts
at 0. Raises an NSRangeException if index is beyond
the end of the array.

– (NSEnumerator *)objectEnumerator Returns an enumerator object that lets you access each
object in the array, starting with the first element.

– (NSEnumerator *)reverseObjectEnumerator Returns an enumerator object that lets you access each
object in the array, from the last element to the first.

Sending Messages to Elements

– (void)makeObjectsPerform:(SEL)aSelector Sends an aSelector message to each object in the array.

– (void)makeObjectsPerform:(SEL)aSelector Sends an aSelector message to each object in the
withObject: (id)anObject array, with anObject as an argument.

Comparing Arrays

– (id)firstObjectCommonWithArray: (NSArray *)otherArray
Returns the first object from the receiver’s array that’s

equal to an object in otherArray.

– (BOOL)isEqualToArray: (NSArray *)otherArray Compares the receiving array object to otherArray.

Deriving New Arrays

– (NSArray *)sortedArrayUsingFunction:(int(*)(id element1, id element2, void *userData))comparator
context:(void *)context Returns an array listing the receiver’s elements in

ascending order as defined by the comparison function
comparator. context is passed to the comparator
function as its third argument.

– (NSArray *)sortedArrayUsingSelector:(SEL)comparator
Returns an array listing the receiver’s elements in

ascending order, as determined by the comparison
method specified by the selector comparator.

– (NSArray *)subarrayWithRange:(NSRange)range Returns an array containing the receiver’s elements that fall
within the limits specified by range.

Joining String Elements

– (NSString *)componentsJoinedByString:(NSString *)separator
Returns a string that’s the result of interposing separator

between the elements of the receiver’s array.

Classes: NSArray 2-9OpenStep Specification—10/19/94

Creating a String Description of the Array

– (NSString *)description Returns a string object that represents the contents of the
receiver.

– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary
Returns a string representation of the NSArray object.

Included are the key and values that represent the locale
data from localeDictionary.

– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary
indent:(unsigned int)level Returns a string representation of the NSArray object.

Included are the key and values that represent the locale
data from localeDictionary. Elements of the array are
indented from the left margin by level + 1 multiples of
four spaces, to make the output more readable.

OpenStep Specification—10/19/942-10 Chapter 2: Foundation Kit

NSAssertionHandler

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSExceptions.h

Class Description

An assertion is a statement about conditions during the execution of program code, such as the relationship between
variables, the state of a boolean variable, the value of an expression, and so on. If the statement about the conditions
proves false, the assertion is said to have failed, and usually some action must be taken to report the failed assertion.
Application programmers wishing to provide more detailed control over assertion failures than provided by the
macros defined below would use the methods of NSAssertionHandler to report assertion failures.

NSAssertionHandler provides a mechanism whereby each distinct thread of execution can have a separate handler
to deal with failed assertions in code. The fileName and line arguments to the methods described below can be
obtained by using the __FILE__ and __LINE__ macros that are pre-defined in the C pre-processor.

The Foundation/NSExceptions.h header file contains a collection of macros that can be used to state assertions
within methods, and contains a parallel collection of macros that can be used to state assertions within regular C
functions. If the condition tested in any of these macros fails, the current assertion handler is invoked with one of
the methods defined below, depending on whether the macro is one of the NSAssertN or one of the NSCAssertN
macros. Separate macros have from 1 to 5 arguments. Macros for dealing with assertion failures within methods
are:

NSAssert1(condition, description, argument1);

NSAssert2(condition, description, argument1, argument2);

NSAssert3(condition, description, argument1, argument2, argument3);

NSAssert4(condition, description, argument1, argument2, argument3, argument4);

NSAssert5(condition, description, argument1, argument2, argument3, argument4, argument5);

In each case, condition is the statement to be tested (for example, index < length), description is a description of
the reason for the failure (in the form of a printf-style format NSString), and each argN is an argument to be
formatted according to the description string.

The parallel set of macros for dealing with failed assertions from within C functions have names of the form
NSCAssertN instead of NSAssertN. The arguments are otherwise the same as the NSAssertN macros.

Getting the Current Handler

+ (NSAssertionHandler *)currentHandler Returns the assertion handler for the current thread.

Classes: NSAssertionHandler2-11OpenStep Specification—10/19/94

Handling Failures

– (void)handleFailureInFunction: (NSString *)functionName
file:(NSString *)fileName Logs an error message that includes functionName;
lineNumber:(int)line the source file fileName and the line number where
description:(NSString *)format,... the failure occured; and a short description of the

failure, described by format. It then raises an
NSInternalInconsistencyException.

– (void)handleFailureInMethod: (SEL)selector Logs an error message that includes the method (selector)
object:(id)object and object associated with the failure;
file:(NSString *)fileName the source file fileName and
lineNumber:(int)line line number in that file where the failure occured;
description:(NSString *)format,... and a short description of the failure, described by

format. It then raises an
NSInternalInconsistencyException.

OpenStep Specification—10/19/942-12 Chapter 2: Foundation Kit

NSAutoreleasePool

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSAutoreleasePool.h

Class Description

The Foundation Kit uses the NSAutoreleasePool class to implement NSObject’s autorelease method. An
autorelease pool simply contains other objects, and when deallocated, sends a release message to each of those
objects. An object can be put into the same pool several times, and receives a release message for each time it was
put into the pool.

You use autorelease pools to limit the time an object remains valid after it’s been “autoreleased” (that is, after it’s
been sent an autorelease message or has otherwise been added to an autorelease pool). Autorelease pools are
created using the usual alloc and init messages, and disposed of with release. An autorelease pool should always
be released in the same context (invocation of a method or function, or body of a loop) that it was created. You
should never send retain or autorelease messages to an autorelease pool.

Autorelease pools are automatically created and destroyed in OpenStep applications, so your code normally doesn’t
have to worry about them. There are two cases, though, where you should explicitly create and destroy your own
autorelease pools. If you’re writing a program that’s not based on the Application Kit, such as a UNIX tool, there’s
no built-in support for autorelease pools; you must create and destroy them yourself. Also, if you need to write a
loop that creates many temporary objects, you should create an autorelease pool in the loop to prevent too long a
delay in the disposal of those objects.

Enabling the autorelease feature in a program that’s not based on the Application Kit is easy. Many programs have
a top-level loop where they do most of their work. To enable the autorelease feature you create an autorelease pool
at the beginning of this loop and release it at the end. An autorelease message sent in the body of the loop
automatically puts its receiver into this pool. The main() function might look like this:

Classes: NSAutoreleasePool2-13OpenStep Specification—10/19/94

int main(int argc, char *argv[])

{

 int i;

 /* Do whatever setup is needed. */

 for (i = 0; i < argc; i++) {

 NSAutoreleasePool *pool;

 NSString *fileContents;

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 fileContents = [[[NSString alloc] initWithContentsOfFile:argv[i]] autorelease];

 processFile(fileContents);

 [pool release];

 }

 /* Do whatever cleanup is needed. */

 exit(EXIT_SUCCESS);

}

Any object autoreleased inside the for loop, such as the fileContents string object, is added to pool, and when pool
is released at the end of the loop those objects are also released.

Note that autoreleasing doesn’t work outside of the loop. This isn’t a problem, since the program terminates shortly
after the loop ends, and memory leaks aren’t usually serious at that stage of execution. Your cleanup code shouldn’t
refer to any objects created inside the loop, though, since they may be autoreleased in the loop and therefore
released as soon as it ends.

Nesting Autorelease Pools

You may need to manually create and destroy autorelease pools even in an application that uses the Application Kit
if you write loops that create many temporary objects. For example, if you write a loop that iterates 1000 times and
invokes a method that creates 15 temporary objects, those 15,000 objects will remain until the application’s
autorelease pool is deallocated, possibly well after they’re no longer needed.

You can create your own autorelease pools within the loop to prevent these unwanted objects from remaining
around. Autorelease pools nest themselves on a per-thread basis, so that if you create your own pool, it adds itself
to the application’s default pool, forming a stack of autorelease pools. Likewise, if you create another pool (within
a nested loop, perhaps), it adds itself to the first pool you created. autorelease automatically adds its receiver to the
last pool created, creating a nesting of autorelease contexts. The implications of this are described below.

OpenStep Specification—10/19/942-14 Chapter 2: Foundation Kit

A method that creates autorelease pools looks much like the main() function given above:

- (void)processString:(NSString *)aString

{

 int i;

 for (i = 0; i < 1000; i++) {

 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

 NSString *thisLine;

 thisLine = [self lineNumbered:i fromString:aString];

 /* Do some work with thisLine. */

 [subpool release];

 }

 return;

}

If you assume that lineNumbered:fromString: returns a string object that’s been autoreleased while subpool is in
effect, that object is released with subpool at the end of the loop. The work involving thisLine may create other
temporary objects, which are also released at the end of the loop. None of these objects remains outside of this loop
or the processString: method (unless they’ve been retained).

Note that because an autorelease pool adds itself to the previous pool when created, it doesn’t cause a memory leak
in the face of an exception or other sudden transfer out of the current context. If an exception occurs in the above
loop, or if the work in the loop involves immediately returning or breaking out of the loop, the sub-pool is released
by the application’s default pool (or whatever pool was in effect before the sub-pool was created), “unwinding” the
autorelease-pool stack up to the one that’s supposed to be active.

Guaranteeing the Foundation Ownership Policy

By manually creating an autorelease pool, you reduce the potential lifetime of temporary objects to the lifetime of
that pool. After an autorelease pool is deallocated, you should regard as “disposed of” any object that was
autoreleased while that pool was in effect, and not send a message to that object or return it to the invoker of your
method. This method, for example, is incorrect:

– findMatchingObject:anObject

{

 id match = nil;

 while (match == nil) {

 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

 /* Do some searching that creates a lot of temporary objects.*/

 match = [self expensiveSearchForObject:anObject];

 [subpool release];

 }

 /* Danger!! The match object may not exist at this point! */

 [match setIsMatch:YES forObject:anObject];

 return match;

}

Classes: NSAutoreleasePool2-15OpenStep Specification—10/19/94

expensiveSearchForObject: is invoked while subpool is in effect, which means that match, which may have been
autoreleased, is released at the bottom of the loop. Sending setIsMatch:forObject: after the loop could cause the
application to crash. Similarly, returning match allows the sender of findMatchingObject: to send a message to
it, also causing your application to crash.

If you must pull a temporary object out of a nested autorelease context, you can do so by retaining the object within
the context and then autoreleasing it after the pool has been released. Here’s a correct implementation of
findMatchingObject: :

– findMatchingObject:anObject

{

 id match = nil;

 while (match == nil) {

 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

 /* Do a search that creates a lot of temporary objects. */

 match = [self expensiveSearchForObject:anObject];

 if (match != nil) [match retain]; /* Keep match around. */

 [subpool release];

 }

 [match setIsMatch:YES forObject:anObject];

 return [match autorelease]; /* Let match go and return it. */

}

By retaining match while subpool is in effect and autoreleasing it after the subpool has been released, match is
effectively moved from subpool to the pool that was previously in effect. This gives it a longer lifetime and allows
it to be sent messages outside the loop and to be returned to the invoker of findMatchingObject: .

General Exception Conditions

An NSInvalidArgumentException is raised on any attempt to send either retain or autorelease messages to an
autorelease pool object.

Adding an Object to the Current Pool

+ (void)addObject:(id)anObject Adds anObject to the active autorelease pool in the current
thread.

Adding an Object to a Pool

– (void)addObject:(id)anObject Adds anObject to the receiver.

OpenStep Specification—10/19/942-16 Chapter 2: Foundation Kit

NSBTreeBlock

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSByteStore.h

Class Description

An NSBTreeBlock provides ordered, associative storage and retrieval of untyped data. It identifies and orders data
items, called values, by key, using a comparator function. A companion class, NSBTreeCursor, actually
manipulates the contents of the NSBTreeBlock; NSBTreeBlock only provides the mechanisms for storing and
sorting the key/value pairs.

Setting Up an NSBTreeBlock

An NSBTreeBlock can be used with either a memory-based NSByteStore or an NSByteStoreFile. The
NSByteStore holds the contents of the NSBTreeBlock. Use NSBTreeBlock with NSByteStoreFile to build
persistent databases. An NSBTreeBlock is initialized as a new client of an NSByteStore using the method
initWithStore: or initWithStore:block: . The NSBTreeBlock takes up one block in the NSByteStore per key/value
pair and one block for each node in the tree. An NSBTreeBlock will always take up at least one block in the
NSByteStore.

After the NSBTreeBlock has been initialized, it must have its comparator function set with the
setComparator:context:. A comparator function takes as arguments two pieces of arbitrary data and their lengths
and returns an integer indicating their ordering relative to one another. A comparator function is of type
(NSBTreeComparator *), which has the form:

typedef int NSBTreeComparator(NSData * data1, NSData * data2, const void * context)

where data1 and data2 are pointers to data and context is a pointer to blind data that may be used by the comparator
function. The comparator function returns a number less than 0 if data1 is considered less than data2, greater than
0 if data1 is considered greater than data2, and equal to 0 if data1 and data2 are considered equal. By default,
NSBTreeBlocks compare keys as strings.

Getting Data Into and Out of an NSBT reeBlock

As stated above, NSBTreeBlock simply provides the capacity for associative storage. An NSBTreeCursor is needed
to take advantage of that capacity. An NSBTreeCursor is like a pointer into the NSBTreeBlock: It can move to
specific positions within the key space and perform operations on the values stored at those locations, independent
of other cursors. See the NSBTreeCursor class description for more information.

Classes: NSBTreeBlock2-17OpenStep Specification—10/19/94

Multiple NSBTreeCursors may independently access a single NSBTreeBlock. The actions of one cursor don’t
affect any of the other cursors in the NSBTreeBlock, except to the extent that they modify the contents of the
NSBTreeBlock. It is both safe and meaningful to remove a record that another NSBTreeCursor has just located, as
long as the code using the other NSBTreeCursor anticipates this possibility, as described below.

In the case of one cursor removing a value that another cursor has just located, the second cursor will have received
an indication from a key-locating method (for example, moveCursorToKey:) that it has found a key. When it tries
to access the value associated with that key, however, the key may no longer exist. The cursor will detect the
deletion and slide forward to the next available key if asked to read the value, or it will raise an exception if asked
to remove or write the value. If your code allows multiple cursors to be concurrently active in a single
NSBTreeBlock, it must anticipate this behavior by handling the exceptions that may be raised and by comparing
the key against the expected value after invoking cursorKey. If one cursor is pointed at a key and a second cursor
removes or adds a key at a different location, it does not change the position of the first cursor.

Working With the NSByteStore

Since NSBTreeBlock is an NSByteStore client, the transaction model of NSByteStore applies to changes made to
the contents of an NSBTreeBlock. In particular, you must send the commitTransaction message to the
NSByteStore to have changes to the NSBTreeBlock take effect (and be flushed to disk for a file-based store). If an
NSBTreeBlock is used on a strictly read-only basis, transaction management can be ignored.

After an abortTransaction, a cursor may be pointing to a key that no longer exists. Therefore, you must reposition
each cursor using one of the moveCursor... methods after an abortTransaction.

Creating and Initializing a New NSBTreeBlock Instance

+ (NSBTreeBlock *)btreeBlockWithStore:(NSByteStore *)aStore
Returns a new NSBTreeBlock instance in the designated

NSByteStore.

+ (NSBTreeBlock *)btreeBlockWithStore:(NSByteStore *)aStore
block:(unsigned)aBlock Returns a new NSBTreeBlock instance in the designated

NSByteStore with aBlock as the root block of the
NSBTreeBlock. If aBlock does not exist or is invalid,
the NSBTreeInitException is raised.

– (id)initWithStore: (NSByteStore *)aStore
Initializes a newly allocated NSBTreeBlock instance in the

designated NSByteStore.

– (id)initWithStore: (NSByteStore *)aStore
block:(unsigned)aBlock Initializes a newly allocated NSBTreeBlock instance in the

designated NSByteStore with aBlock as the root block
of the NSBTreeBlock. If aBlock does not exist or is
invalid, the NSBTreeInitException is raised.

OpenStep Specification—10/19/942-18 Chapter 2: Foundation Kit

Accessing Information About the NSByteStore

– (NSByteStore *)byteStore Returns the NSByteStore associated with the
NSBTreeBlock.

– (unsigned)storeBlock Returns the number of the NSByteStore block that contains
the root of the NSBTreeBlock.

Setting the Comparator

– (void)setComparator:(NSBTreeComparator *)comparator
context:(const void *)context Sets the comparison method. The default is string

comparison. When a value is inserted in the
NSBTreeBlock, the comparator function decides where
to put it. For more information, see the class
description.

Accessing NSBTreeBlock information

– (unsigned)count Returns the number of key/value pairs stored in the
NSBTreeBlock.

Affecting NSBTreeBlock Contents

– (void)removeAllObjects Removes all key/value pairs from the NSBTreeBlock.

Classes: NSBTreeCursor2-19OpenStep Specification—10/19/94

NSBTreeCursor

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSByteStore.h

Class Description

An NSBTreeCursor provides access to the keys and values stored in an NSBTreeBlock. It’s essentially a pointer
into the NSBTreeBlock’s key space, and may be positioned by key to perform operations on the value stored at a
given location.

An NSBTreeCursor works with a single NSBTreeBlock, but several NSBTreeCursors may access the same
NSBTreeBlock and be positioned independently without conflict. See the NSBTreeBlock class specification for
more information on concurrent access with multiple NSBTreeCursors.

Positioning the Cursor and Accessing Data

NSBTreeCursor contains methods that walk through the key/value pairs in the NSBTreeBlock. The method
moveCursorToFirstKey will point the cursor to the first key in the key space, and you can use
moveCursorToNextKey to essentially walk through all of the keys in the NSBTreeBlock. To point the cursor at a
specific key/value pair, use moveCursorToKey:. This method returns YES if it finds the key and NO if it does not.
If moveCursorToKey: returns NO, it still points the cursor at that key. For example, suppose the keys into the key
space are integer IDs divisible by 10, and you call moveCursorToKey: with 54 as the key. (In reality, keys must
be NSData objects, but to make this example more clear, it uses integers.) There is no key 54, so
moveCursorToKey: returns NO, but the cursor points to where key 54 would be if it existed. A subsequent call to
moveCursorToNextKey would point the cursor at key 60. The method isOnKey tells you if the cursor is pointing
to a valid key.

To insert a key/value pair into the NSBTreeBlock, you take advantage of the moveCursorToKey: method’s return
value. Send moveCursorToKey: with the key you want to insert. If if returns NO, send writeValue: with the value
you want to insert. The key/value pair will be inserted.

A cursor at a position with no key can’t access a value there. If the cursor is asked to access a value anyway, it has
two options: try to find a value or indicate that it can’t access one. Where it makes sense, a cursor should try to find
a value by sliding forward in the key space to the next actual key. When this isn’t possible or desirable, the cursor
should indicate that it can’t find or access a value, by raising the NSBTreeNoValueException exception. In the
previous example, if the cursor is asked to retrieve the information at key 54, the cursor will slide forward and return
the information at key 60. At this point, you can use the cursorKey method to find out which key the cursor is
pointing to. cursorKey will return 60 to let you know that the cursor has slid forward.

OpenStep Specification—10/19/942-20 Chapter 2: Foundation Kit

A cursor cannot write inside (with the method writeValue:range:) or remove the value (with the method
removeValue) at a location where there is no key. Since there is no value, and since writing into part of a value or
removing it would change data that the programmer probably doesn’t want altered (namely, the value for the next
actual key), the NSBTreeCursor will indicate that there is no value to write into by raising the
NSBTreeNoValueException exception.

Working With the NSByteStore

Since NSBTreeBlock is an NSByteStore client, the transaction model of NSByteStore applies to changes made to
the contents of an NSBTreeBlock. In particular, you must send the commitTransaction message to the
NSByteStore to have changes to the NSBTreeBlock take effect (and be flushed to disk for a file-based store). If an
NSBTreeBlock is used on a strictly read-only basis, transaction management can be ignored.

After an abortTransaction, a cursor may be pointing to a key that no longer exists. Therefore, you must reposition
each cursor using one of the moveCursor... methods after an abortTransaction.

Creating and Initializing a New NSBTreeCursor Instance

+ (NSBTreeCursor *)bTreeCursorWithBTree: (NSBTreeBlock *)aBTree
Returns a new NSBTreeCursor instance and associates it

with the aBTree object.

– (id)initWithBTree: (NSBTreeBlock *)aBTree Initializes a newly allocated NSBTreeCursor instance and
associates it with the aBTree object.

Obtaining Information about the NSBTreeBlock

– (NSBTreeBlock *)btree Returns the NSBTreeBlock with which the
NSBTreeCursor is associated.

Positioning the Cursor

– (BOOL)moveCursorToFirstKey Positions the cursor at the first key in the key space.

– (BOOL)moveCursorToLastKey Positions the cursor at the last key in the key space.

– (BOOL)moveCursorToNextKey Positions the cursor at the next key in the key space. If the
cursor is at the last key, it does not move.

– (BOOL)moveCursorToPreviousKey Positions the cursor at the previous key in the key space. If
the cursor is at the first key, it does not move.

– (BOOL)moveCursorToKey:(NSData *)key Positions the cursor at key.

–(BOOL)isOnKey Returns YES if the cursor matched a key on the last
operation.

Classes: NSBTreeCursor2-21OpenStep Specification—10/19/94

Accessing the Data

– (NSData *)cursorKey Returns the key that the cursor is pointing to.

– (NSData *)cursorValue Returns the value associated with the key that the cursor is
pointing to.

– (NSData *)cursorValueWithRange:(NSRange)range
Returns a portion, specified by range, of the value

associated with the key that the cursor is pointing to.

Changing the Data in the NSBTreeBlock

– (BOOL)writeValue: (NSData *)value Replaces the value associated with the key that the cursor
is pointing to, if the key exists. If the key does not exist,
it creates a new key/value pair using the key that the
cursor is currently pointing to and value as the value.
This method returns YES if it inserted a new key/value
pair and NO if it overwrote an existing value.

– (void)writeValue: (NSData *)value Replaces a portion, starting at index, of the value associated
atIndex:(unsigned)index with the key that the cursor is pointing to. If the key

does not exist, the NSBTreeNoValueException
exception is raised.

– (void)removeValue Deletes the key/value pair from the NSBTreeBlock. If the
key/value pair already does not exist, the
NSBTreeNoValueException exception is raised.

OpenStep Specification—10/19/942-22 Chapter 2: Foundation Kit

NSBundle

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSBundle.h

Class Description

A bundle is a mechanism for grouping application resources into convenient chunks. A typical (but by no means
the only) application of a bundle is to group executable code together with the resources used by that executable
code. A major use of bundles is to handle localization issues, as described below in “Localized Resources”.

An NSBundle is an object that corresponds to a directory (or folder in the terminology of some operating systems)
where application resources are stored. The directory, in essence, “bundles” a set of resources used by an
application, and the NSBundle object makes those resources available to the application. NSBundle is able to find
requested resources in the directory and, in some cases, dynamically load executable code. The term “bundle” is
used both for the object and for the directory it represents.

Bundled resources might include such things as:

• Images—TIFF or EPS (for instance) images used by an application’s user interface components

• Sounds

• Localized character strings

• Executable code

• User Interface resources—files describing the layout of user interface objects and their relationships with
other objects

Each resource within a bundle usually resides in a separate file.

Localized Resources

If an application is to be used in more than one part of the world, its resources may need to be customized, or
“localized”, for language, country, or cultural region. An application may need, for example, to have separate
Japanese, English, French, Hindi, and Swedish versions of the character strings that label menu commands.

Classes: NSBundle 2-23OpenStep Specification—10/19/94

Resource files specific to a particular language are grouped together in a subdirectory of the bundle directory. The
subdirectory has the name of the language (in English) followed by a “.lproj” extension (for “language project”).
The application mentioned above, for example, would have Japanese.lproj, English.lproj , French.lproj ,
Hindi.lproj , and Swedish.lproj subdirectories.

Each “.lproj” subdirectory in a bundle has the same set of files; all versions of a resource file must have the same
name.

The Main Bundle

Every application is considered to have at least one bundle—its main bundle—the directory where its executable
file is located. If the application is organized into a file package marked by a “.app” extension, the file package is
the main bundle.

Other Bundles

An application can be organized into any number of other bundles in addition to the main bundle. For example, an
application for managing PostScript printers may have a bundle full of PostScript code to be downloaded to
printers.These other bundles usually reside inside the application file package, but they can be located anywhere in
the file system. Each bundle directory is represented in the application by a separate NSBundle object.

By convention, bundle directories other than the main bundle end in a “.bundle” extension.

Dynamically Loadable Classes

Any bundle directory can contain a file with executable code. For the main bundle, that file is the application
executable that's loaded into memory when the application is launched. The executable in the main bundle includes
the main() function and other code necessary to start up the application.

Executable files in other bundle directories hold class (and category) definitions that the Bundle object can
dynamically load while the application runs. When asked, the Bundle returns class objects for the classes (and
categories) stored in the file. It waits to load the file until those classes are needed.

By using a number of separate bundles, you can split an application into smaller, more manageable pieces. Each
piece is loaded into memory only when the code being executed requires it, so the application can start up faster
than it otherwise would. And, assuming users will rarely exercise every part of an application, the application will
also consume less memory as it runs.

The file that contains dynamically loadable code must have the same name as the bundle directory, but without the
“.bundle” extension.

Since each bundle can have only one executable file, that file should be kept free of localizable content. Anything
that needs to be localized should be segregated into separate resource files and stored in “.lproj” subdirectories.

OpenStep Specification—10/19/942-24 Chapter 2: Foundation Kit

Working with Bundles

Generally, you instantiate a bundle object by sending one of the bundleForClass:, bundleWithPath: , or
mainBundle methods to the NSBundle class object. mainBundle gives you the NSBundle object corresponding
to the directory containing the application’s executable.

Initializing an NSBundle

– (id)initWithPath: (NSString *)path Initializes a newly allocated NSBundle object to make it
the NSBundle for the path directory.

Getting an NSBundle

+ (NSBundle *)bundleForClass:(Class)aClass Returns the NSBundle object that dynamically loaded
aClass, or the main bundle object if aClass wasn’t
dynamically loaded.

+ (NSBundle *)bundleWithPath: (NSString *)path Returns an NSBundle object that’s initialized for the path
directory.

+ (NSBundle *)mainBundle Returns the NSBundle object that corresponds to the
directory where the application executable is located.

Getting a Bundled Class

– (Class)classNamed:(NSString *)className Returns the class object for the className class, or nil if
className isn’t one of the classes associated with the
receiver.

– (Class)principalClass Returns the class object for the first class that’s dynamically
loaded by the NSBundle, or nil if the NSBundle can’t
dynamically load any classes.

Finding a Resource

+ (NSString *)pathForResource:(NSString *)name Returns the path for the resource identified by name,
ofType:(NSString *)ext having the specified filename ext,
inDirectory: (NSString *)bundlePath residing in bundlePath,
withVersion: (int)version and having version number version.

– (NSString *)pathForResource:(NSString *)name Returns the path for the resource identified by name
ofType:(NSString *)ext having the specified filename extension ext.

Classes: NSBundle 2-25OpenStep Specification—10/19/94

Getting the Bundle Directory

– (NSString *)bundlePath Returns a string containing the full pathname of the
receiver’s bundle directory.

Stripping Symbols

+ (void)stripAfterLoading: (BOOL)flag Sets whether symbols are stripped when modules are
loaded. The default is YES. You would usually set flag
to NO for debugging purposes.

Managing Localized Resources

– (NSString *)localizedStringForKey:(NSString *)key
value:(NSString *)value Returns a localized version of the string designated by
table:(NSString *)tableName key. tableName specifies the string table to search; if

tableName is NULL, the file Localizable.strings is
used. value specifies the value to return if the key or
table can’t be found (or if key is NULL).

Setting the V ersion

– (unsigned)bundleVersion Returns the version last set by the setBundleVersion:
method, or 0 if no version has been set.

– (void)setBundleVersion:(unsigned)version Sets the version that the NSBundle will use when searching
“.lproj” subdirectories for resource files.

OpenStep Specification—10/19/942-26 Chapter 2: Foundation Kit

NSByteStore

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSByteStore.h

Class Description

An NSByteStore object manages a single memory-based heap. Use NSByteStore to allocate storage in
data-intensive applications. Its main feature is transaction management, which makes compound operations atomic
and ensures data integrity.

You address the blocks of storage that an NSByteStore manages through unsigned integers called block numbers.
To gain access to the contents of a block, you first must open the block for reading or writing. When you open a
block, the NSByteStore resolves the block number into a pointer. While a block is open, you can address its
contents using the pointer and can safely assume that the block won’t move. Once you close the block, however,
the NSByteStore is free to move it in order to compact storage; so the pointer may become invalid.

The contents of an NSByteStore are relocatable to and from other instances of NSByteStore and its subclasses.
Although the address of a block becomes invalid when the block is relocated, its block number remains constant.
Since block numbers are indirect references to data, it’s possible to retrieve the contents of an NSByteStore without
invalidating block number-based referential data structures residing in the NSByteStore, like linked lists or trees.
This makes it easy to copy complex structures or to quickly save them to a file.

A subclass of NSByteStore, NSByteStoreFile, stores data in a file so that you can retain data created and changed
by your application. For more information, see its class description.

Transactions

NSByteStore implements transactions, allowing several operations to be grouped together in such a way that either
all of them take effect, or none of them do. Transactions help to ensure semantic integrity by making compound
operations atomic, and they provide a convenient way to undo a series of changes. If you use NSByteStoreFile, the
use of transactions also ensures data integrity against process and system crashes. This means that if a system loses
power, the NSByteStoreFile’s contents can be recovered intact on power up, in the state they were in after the last
transaction that actually finished.

Transactions are either enabled or disabled for an object. Most likely, you will want to disable transactions for
NSByteStores (unless you want the undo capability) and enable them for NSByteStoreFiles. When transactions are
enabled, NSByteStore copies blocks that your application opens for writing. Thus, updates are slower when
transactions are enabled. If you are using NSByteStore directly, its contents are always destroyed by a system crash,
so the only advantage to using transactions is the undo capability. If you are using NSByteStoreFile, enabling
transactions may save some of the changes made before a system crash. Therefore, you should always use
transactions with NSByteStoreFile except if it contains data that can be easily reconstructed, such as an index.

Classes: NSByteStore2-27OpenStep Specification—10/19/94

Using Transactions

A single transaction begins with a startTransaction message and ends with either a commitTransaction or
abortTransaction message. startTransaction enables transactions if they are disabled. Sending
commitTransaction means you want the changes made by this transaction to take effect. abortTransaction means
you want to cancel the changes made by this transaction.

You can check whether transactions have been enabled with areTransactionsEnabled. You may want to do this if
your code is invoked by higher level methods that determine the transaction management policy for the application.
For example, NSByteStore uses areTransactionsEnabled to determine whether or not to invoke startTransaction
before responding to an empty message.

You can nest transactions. The first startTransaction message (or the first message that opens a block after
enableTransactions) starts transaction 1. If you send startTransaction again before ending transaction 1, it begins
transaction 2, which is nested inside transaction 1. The nestingLevel method returns the current nesting level of
transactions. startTransaction also returns the nesting level as the transaction’s ID.

The trick with nesting transactions is: the changes a transaction makes aren’t really made until the nesting level
returns to 0. In other words, changes don’t actually take effect until the top-level transaction is committed. This
means that any blocks that any of the transactions have opened for writing will not be available until the all of the
transactions are finished. So, if you start a transaction at nesting level 2, make some changes to blocks 3, 5, and 7,
and then you send commitTransaction, all that commitTransaction really does is set the nesting level to 1 and
tell transaction 1 about the changes to blocks 3, 5, and 7. If you then send commitTransaction at transaction 1,
commitTransaction sets the nesting level to 0. Because the nesting level is now 0, the changes can take place.
Blocks 3, 5, and 7 are overwritten with the changes made during transaction 2 and are made available. If instead
you decide to abort transaction 1 (by sending abortTransaction), the changes transaction 2 made to blocks 3, 5,
and 7 are cancelled, as well as any changes transaction 1 made to any blocks. In this way, the parent of a transaction
can undo changes made by their children, but the children cannot undo the changes made by their parents.

Note that if your code makes changes outside any transaction while transactions are enabled, an enclosing
transaction is started automatically. The next invocation of startTransaction, if any, before an intervening abort or
commit, simply picks up this enclosing transaction and reports a nesting level of 1. Thus, if nesting isn’t needed,
your code can simply enable transactions initially with a pair of startTransaction/commitTransaction messages,
and thereafter use only commitTransaction to mark transaction boundaries. New transactions implicitly begin
with the first modification following each commit.

Any modifications that haven’t been committed are aborted when an NSByteStore is freed.

Opening Blocks for Reading or Writing

When you open a block for reading or writing, that block is unavailable until you specify that you are finished.

When you are finished reading a block, you send closeBlock:. Any method that accesses information about a block
opens it for reading. This means not only does readBlock:range: open a block for reading, but so does
sizeOfBlock:, which returns the block’s size. The copyBlock: method opens the block for reading, but it also closes
it when finished (unless you already had that block opened for reading). Even if you commit a transaction before
you send closeBlock:, the block remains open for reading.

OpenStep Specification—10/19/942-28 Chapter 2: Foundation Kit

Any method that changes a block’s contents opens the block for writing. This means not only does
openBlock:range: open a block for writing, but so do the methods copyBytes:toBlock:range:,
createBlockOfSize:, and freeBlock:. You indicate that you are finished with a block you have open for writing by
having its changes take effect. Closing the block with closeBlock: does not make your changes take effect, even if
transactions are disabled. Regardless of whether transactions are enabled or disabled, you must send
commitTransaction to have your changes actually be made.

If transactions are disabled, commitTransaction commits all the changes made to blocks since that last
commitTransaction or abortTransaction message was sent. abortTransaction cancels all the changes made
since the last commitTransaction.

Creating an NSByteStore

+ (NSByteStore *)byteStore Returns a new NSByteStore with transactions disabled.

Managing the NSByteStore

– (unsigned)count Returns the number of blocks in the NSByteStore at
transaction level 0. That is, if you have created or freed
some blocks but those changes have not been
committed at transaction level 0, count will not reflect
those changes.

– (void)empty Frees all blocks of memory in the NSByteStore. If
transactions are enabled, this method starts and
commits a new transaction.

– (void)getBlocks:(unsigned *)blocks Returns in blocks a C-style array of block numbers at
transaction level 0. The caller must free the returned
array.

– (unsigned)rootBlock Returns the number of the root block, which by convention
is used as a table of contents or a directory.

Creating, Copying, and Freeing Blocks

– (unsigned)createBlockOfSize:(unsigned)size Returns a block number for a new block of size bytes with
the contents initialized to zero. Creating a block with
size 0 is allowed.

– (unsigned)copyBlock:(unsigned)aBlock Returns a block number for a new block whose size and
range:(NSRange)range contents are identical to the memory region in block

aBlock specified by range.

– (void)freeBlock:(unsigned)aBlock Removes and frees the block aBlock.

Classes: NSByteStore2-29OpenStep Specification—10/19/94

Opening and Closing Blocks

– (void *)openBlock:(unsigned)aBlock Opens for writing the memory region in block aBlock
range:(NSRange)range specified by range. A pointer to the region is returned.

– (const void *)readBlock:(unsigned)aBlock Opens for reading the memory region in block aBlock.
range:(NSRange)range specified by range. A pointer to the region is returned.

– (void)closeBlock:(unsigned)aBlock Closes the block aBlock.

Managing Block Sizes

– (void)resizeBlock:(unsigned)aBlock Resizes the block aBlock to size bytes. This
toSize:(unsigned)size method may change the location of the block as well.

– (unsigned)sizeOfBlock:(unsigned)aBlock Returns the size in bytes of the block aBlock.

Using Transactions

– (unsigned)startTransaction Begins a new transaction, enabling transactions if
necessary, for the current context. This transaction will
be aborted or committed before all other outstanding
transactions. Returns a number that both identifies the
new transaction and indicates the number of
transactions outstanding.

– (void)abortTransaction Reverts the NSByteStore to the state it was in before the
last startTransaction message or the last
commitTransaction message. Any blocks that had
been opened are made available to other store contexts.

– (void)commitTransaction Commits all changes made to blocks opened since the last
startTransaction or the last commitTransaction and
closes those blocks. If transactions are disabled or the
nesting level becomes 0, this method makes all of the
changed blocks available to other contexts.

– (BOOL)areTransactionsEnabled Returns YES if transactions are enabled for the
NSByteStore, NO if not. Transactions are enabled by
the method startTransaction.

– (unsigned)nestingLevel Returns the number of transactions pending against the
NSByteStore.

– (unsigned)changeCount Returns the number of changes made to the NSByteStore’s
contents since it was initialized. This number equals the
number of commitTransaction and abortTransaction
messages the NSByteStore has received.

OpenStep Specification—10/19/942-30 Chapter 2: Foundation Kit

Changing the Contents

– (void)copyBytes:(const void *)newData Copies the series of bytes pointed to by newData into the
toBlock:(unsigned)aBlock memory region in block aBlock specified by range. This
range:(NSRange)range method will expand the block’s size if the data will not

fit in the location specified by range.

– (NSData *)contentsAsData Creates a virtual memory image of the NSByteStore.

– (void)replaceContentsWithData:(NSData *)data Replaces the contents of the NSByteStore with virtual
memory image data. This method ignores and erases
any pending writes to the NSByteStore.

Classes: NSByteStoreFile2-31OpenStep Specification—10/19/94

NSByteStoreFile

Inherits From: NSByteStore : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSByteStore.h

Class Description

NSByteStoreFile is a subclass of NSByteStore that keeps its storage in a file. NSByteStoreFile guarantees the
integrity of stored data against process and system crashes when protected by transactions (described in the
NSByteStore class specification), provided that the physical media remains intact.

When you create an NSByteStoreFile, you specify a storage file and open it for reading only or for both reading
and writing. The methods you use to access the contents of the file are implemented in NSByteStore.

To support the use of preconfigured files, a process using an NSByteStoreFile opened for reading only may freely
modify the NSByteStoreFile; all modified pages are reflected only in the address space of the process. The
modifications are never written to the file and are discarded when the NSByteStoreFile is freed.

Creating and Initializing an NSByteStoreFile Instance

+ (NSByteStore *)byteStoreFile:(NSString*)path Creates and initializes an NSByteStoreFile with path as its
transactionsEnabled:(BOOL)enable storage file. If enable is YES, transactions are enabled.
create:(BOOL)create If create is YES, the file path is created. If readOnly is
readOnly:(BOOL)readOnly YES, path is opened for reading. If readOnly is NO,

path is opened for reading and writing.

– (id)initWithPath: (NSString*)path Initializes a newly allocated NSByteStoreFile with path as
transactionsEnabled:(BOOL)enable its storage file. If enable is YES, transactions are
create:(BOOL)create enabled. If create is YES, the file path is created. If
readOnly:(BOOL)readOnly readOnly is YES, path is opened for reading. If

readOnly is NO, path is opened for reading and writing.

Accessing the Storage File

– (NSString *)storePath Returns the path of the storage file.

OpenStep Specification—10/19/942-32 Chapter 2: Foundation Kit

Reducing Memory Consumption

– (void)compactUntilDate:(NSDate *)limitDate Removes free space by relocating blocks toward the origin
of the virtual address space defined by the
NSByteStoreFile. limitDate sets a time limit on this
operation. No limitDate allows the compaction to run to
completion.

Classes: NSCalendarDate2-33OpenStep Specification—10/19/94

NSCalendarDate

Inherits From: NSDate : NSObject

Conforms To: NSCoding, NSCopying (NSDate)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSCalendarDate is a public subclass of NSDate that defines concrete date objects. These objects have time zones
and format strings bound to them and are especially suited for representing and manipulating dates according to
western calendrical systems.

By drawing on the behavior of the NSTimeZone class, NSCalendarDate objects adjust their visible representations
to reflect their associated time zones. Because of this, you can track an NSCalendarDate object across different time
zones. You can also present date information from time-zone viewpoints other than the one for the current locale.

Each NSCalendarDate object also has a calendar format string bound to it. This format string contains
date-conversion specifiers that are very similar to those used in the standard C library function strftime() . By
reference to this format string, NSCalendarDate can interpret dates that are represented as strings conforming to
the format. Several methods allow you to specify formats other than the one bound to the object, and
setCalendarFormat: lets you change the default format string for an NSCalendarDate object.

NSCalendarDate provides both class and instance methods for obtaining initialized objects. Some of these methods
allow you to initialize date objects from strings while others initialize objects from sets of integers corresponding
the standard time values (months, hours, seconds, etc.). As always, you are responsible for deallocating any objects
obtained through an alloc... or copy... method.

To retrieve conventional elements of a date, use the methods of the form dayOfWeek, monthOfYear, and so on.
For example, dayOfWeek returns a number that indicates the day of the week (0 is Sunday). The monthOfYear
method returns a number from 1 to 12 that indicates the month.

NSCalendarDate provides several methods for representing dates as strings. These methods—description,
descriptionWithLocale:, descriptionWithCalendarFormat :, and
descriptionWithCalendarFormat:timeZone:—take an implicit or explicit format string.

NSCalendarDate performs date computations based on western calendar systems, primarily the Gregorian. (The
algorithms are derived from public domain software described in “Calendrical Calculations,” a two-part series by
Nachum Dershowitz and Edward M. Reingold in Software—Practice and Experience).

OpenStep Specification—10/19/942-34 Chapter 2: Foundation Kit

General Exceptions

NSCalendarDate will raise NSInvalidArgumentException in the general case where numeric character strings to
specify years, months, days, and so on, are not valid numbers.

Getting and Initializing an NSCalendar Date

+ (NSCalendarDate *)calendarDate Returns an NSCalendarDate initialized to the current date
and time.

+ (NSCalendarDate *)dateWithString: (NSString *)description
calendarFormat:(NSString *)format Returns an NSCalendarDate object initialized with the

date specified in description and interpreted according
the the conversion specifiers in format. Raises
NSInvalidArgumentException if the description and
format do not correspond exactly.

+ (NSCalendarDate *)dateWithString: (NSString *)description
calendarFormat:(NSString *)format Returns an NSCalendarDate object initialized with the date
locale:(NSDictionary *)dictionary date specified in description and interpreted according

the the conversion specifiers in format. String
components of the date are fetched from the locale
dictionary. Raises NSInvalidArgumentException if the
description and format do not correspond exactly.

+ (NSCalendarDate *)dateWithYear: (int)year Returns an NSCalendarDate object initialized with integers
month:(unsigned int)month that specify a year (which must include the
day:(unsigned int)day century), month, day, hour, minute, and second. Also
hour: (unsigned int)hour include a time-zone object or time-zone detail object
minute:(unsigned int)minute (aTimeZone) to have the date adjusted to a particular
second:(unsigned int)second locale. If you specify nil for a time zone,
timeZone:(NSTimeZone *)aTimeZone NSInvalidArgumentException is raised. (See

"Retrieving Date Elements," below, for the proper
ranges of the date and time integers.)

– (id)initWithString: (NSString *)description Initializes and returns an NSCalendarDate object specified
by description in the international format for date
representation (YYYY-MM-DD HH:MM:SS
± HHMM, where ± HHMM is an offset from GMT).

– (id)initWithString: (NSString *)description Initializes and returns an NSCalendarDate object specified
calendarFormat:(NSString *)format as a string object in description and interpreted

according to the extended strftime() date-conversion
specifiers in format. Raises
NSInvalidArgumentException if the description and
format do not correspond exactly.

Classes: NSCalendarDate2-35OpenStep Specification—10/19/94

– (id)initWithString: (NSString *)description Initializes and returns an NSCalendarDate object specified
calendarFormat:(NSString *)format as a string object in description and interpreted
locale:(NSDictionary *)dictionary according to the extended strftime date-conversion

specifiers in format. String components of the date are
fetched from the locale dictionary. Raises an
NSInvalidArgumentException if the description and
format do not correspond exactly.

– (id)initWithYear: (int)year Returns an NSCalendarDate object initialized with integers
month:(unsigned int)month that specify a year (which must include the
day:(unsigned int)day century), month, day, hour, minute, and second. Also
hour: (unsigned int)hour include a time-zone object (aTimeZone) to have the
minute:(unsigned int)minute date adjusted for a particular locale. Raises an
second:(unsigned int)second NSInvalidArgumentException if you specify nil for a
timeZone:(NSTimeZone *)aTimeZone time zone. (See "RetrievingDate Elements," below, for

the proper ranges of the date and time integers.)

Retrieving Date Elements

– (int)dayOfCommonEra Returns the number of days since the beginning of the
Common Era.

– (int)dayOfMonth Returns the day of the month (1 through 31) of the
NSCalendarDate object.

– (int)dayOfWeek Returns a number indicating the day of the week (0 [Sun]
through 6 [Sat]) of the NSCalendarDate object.

– (int)dayOfYear Returns a number indicating the day of the year (1 through
366) of the NSCalendarDate object.

– (int)hourOfDay Returns a number indicating the hour of the day (0 through
23) of the NSCalendarDate object.

– (int)minuteOfHour Returns a number indicating the minute of the hour (0
through 59) of the NSCalendarDate object.

– (int)monthOfYear Returns a number indicating the month of the year (1
through 12) of the NSCalendarDate object.

– (int)secondOfMinute Returns a number indicating the second of the minute (0
through 59) of the NSCalendarDate object.

– (int)yearOfCommonEra Returns a number indicating the year, including the
century, of the NSCalendarDate object.

OpenStep Specification—10/19/942-36 Chapter 2: Foundation Kit

Providing Adjusted Dates

– (NSCalendarDate *)addYear:(int)year Returns an NSCalendarDate objects with the year, month,
month:(int)month day, hour, minute, and second offsets specified as
day:(int)day arguments and the correct time-zone detail object for
hour: (int)hour the computed date. These offsets are relative to the
minute:(int)minute object and can be positive or negative. This method
second:(int)second preserves “clock time” during transitions to and from

Daylight Savings Time and on leap years.

Getting String Descriptions of Dates

– (NSString *)description Returns a string description of the receiver’s date using the
default format string (%Y-%m-%d %H:%M:%S %z)
and the locale and time-zone information associated
with the receiver.

– (NSString *)descriptionWithCalendarFormat: (NSString *)format
Returns a string description of the receiver’s date that is

formatted according to the conversion specifiers in
format and using the locale and time-zone detail
information associated with the receiver.

– (NSString *)descriptionWithCalendarFormat: (NSString *)format
locale:(NSDictionary *)locale Returns a string description of the receiver’s date that is

formatted according to the conversion specifiers in
format, represented according to the locale information
in locale, and adjusted according to the time-zone detail
information associated with the receiver.

– (NSString *)descriptionWithLocale:(NSDictionary *)locale
Returns a string description of the receiver’s date using the

default format string (%Y-%m-%d %H:%M:%S %z),
with information localized according to the locale
information in locale, and using the time zone
information associated with the receiver.

Getting and Setting Calendar Formats

– (NSString *)calendarFormat Returns the calendar format (a string of date-conversion
specifiers) for the receiving object. The default calendar
format is “%Y-%m-%d %H:%M:%S %z”.

– (void)setCalendarFormat:(NSString *)format Sets the calendar format for the receiving object to format.

Classes: NSCalendarDate2-37OpenStep Specification—10/19/94

Getting and Setting T ime Zones

– (void)setTimeZone:(NSTimeZone *)aTimeZone Sets the time-zone object associated with the
NSCalendarDate object to aTimeZone.

– (NSTimeZoneDetail *)timeZoneDetail Returns the NSTimeZoneDetail object associated with the
receiver.

OpenStep Specification—10/19/942-38 Chapter 2: Foundation Kit

NSCharacterSet

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSCharacterSet class declares the programmatic interface to objects that construct immutable descriptions of
character sets in the Unicode character encoding. Using NSCharacterSet objects, you can determine if a given
Unicode character belongs to a specified set. See NSMutableCharacterSet for a class that constructs descriptions
of character sets that can be modified dynamically. NSCharacterSet’s primitive methods are characterIsMember:
and bitmapRepresentation. Subclasses of NSCharacterSet must implement these two methods.

NSCharacterSet objects can be thought of as loosely analogous to the is… macros (such as isupper())available in
the ctype collection of most standard C libraries. NSCharacterSet objects, however, offer much greater flexibility
in that you can dynamically construct your own custom character sets against which you can test characters.

The term “bitmap” in the descriptions below does not refer to “bitmap characters” in the sense of screen fonts for
display. The “bitmaps” referred to here are compact ordered bit set representations of Unicode character positions
or ranges of Unicode characters.

You create “standard” character sets—such as a set of alphanumerics, or a set of decimal digits—by invoking the
NSCharacterSet class object with one of the methods described in “Creating a Standard Character Set”. These
methods provide convenient means to create a standard set without needing to specify the character positons
explicitly.

You can also create your own “custom” character sets by using one of the methods described under “Creating a
Custom Character Set”. To create a character set with multiple disjoint ranges, see the add… methods described in
NSMutableCharacterSet.

Creating a Standard Character Set

+ (NSCharacterSet *)alphanumericCharacterSet Returns a character set containing the uppercase and
lowercase alphabetic characters (a–z, A–Z, other
alphabetic characters such as é, É, ç, Ç, and so on) and
the decimal digit characters (0–9).

+ (NSCharacterSet *)controlCharacterSet Returns a character set containing the control characters
(characters with decimal Unicode values 0 to 31 and
127 to 159).

Classes: NSCharacterSet2-39OpenStep Specification—10/19/94

+ (NSCharacterSet *)decimalDigitCharacterSet Returns a character set containing only decimal digit
characters (0–9).

+ (NSCharacterSet *)decomposableCharacterSet Returns a character set containing all individual Unicode
characters that can also be represented as composed
character sequences.

+ (NSCharacterSet *)illegalCharacterSet Returns a character set containing the illegal Unicode
values.

+ (NSCharacterSet *)letterCharacterSet Returns a character set containing the uppercase and
lowercase alphabetic characters (a–z, A–Z, other
alphabetic characters such as é, É, ç, Ç, and so on).

+ (NSCharacterSet *)lowercaseLetterCharacterSet
Returns a character set containing only lowercase

alphabetic characters (a–z, other alphabetic characters
such as é, ç, and so on).

+ (NSCharacterSet *)nonBaseCharacterSet Returns a set containing all characters which are not
defined to be base characters for purposes of dynamic
character composition.

+ (NSCharacterSet *)uppercaseLetterCharacterSet
Returns a character set containing only uppercase

alphabetic characters (A–Z, other alphabetic characters
such as É, Ç, and so on).

+ (NSCharacterSet *)whitespaceAndNewlineCharacterSet
Returns a character set containing only whitespace

characters (space and tab) and the newline character.

+ (NSCharacterSet *)whitespaceCharacterSet Returns a character set containing only in-line whitespace
characters (space and tab). This set doesn’t contain the
newline or carriage return characters.

Creating a Custom Character Set

+ (NSCharacterSet *)characterSetWithBitmapRepresentation:(NSData *)data
Returns a character set containing characters determined

by the bitmap representation data.

+ (NSCharacterSet *)characterSetWithCharactersInString:(NSString *)aString
Returns a character set containing the characters in aString.

If aString is empty, an empty character set is returned.
aString must not be nil .

OpenStep Specification—10/19/942-40 Chapter 2: Foundation Kit

+ (NSCharacterSet *)characterSetWithRange:(NSRange)aRange
Returns a character set containing characters whose

Unicode values are given by aRange.

Getting a Binary Representation

– (NSData *)bitmapRepresentation Returns an NSData object encoding the receiving character
set in binary format. This format is suitable for saving
to a file or otherwise transmitting or archiving.

Testing Set Membership

– (BOOL)characterIsMember:(unichar)aCharacter Returns YES if aCharacter is in the receiving character set,
NO if it isn’t.

Inverting a Character Set

– (NSCharacterSet *)invertedSet Returns a character set containing only characters that
don’t exist in the receiver.

Classes: NSCoder 2-41OpenStep Specification—10/19/94

NSCoder

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSCoder.h
Foundation/NSGeometry.h

Class Description

NSCoder is an abstract class that declares the interface used by subclasses to take objects from dynamic memory
and code them into and out of some other format. This capability provides the basis for archiving (where objects
and other structures are stored on disk) and distribution (where objects are copied to different address spaces). See
the NSArchiver and NSUnarchiver class specifications for more information on archiving.

NSCoder operates on the basic C and Objective C types—int , float, id, and so on (but excluding void * and
union)—as well as on user-defined structures and pointers to these types.

NSCoder declares methods that a subclass can override if it wants:

• To encode or decode an object only under certain conditions, such as it being an intrinsic part of a larger
structure (encodeRootObject: and encodeConditionalObject:).

• To allow decoded objects to be allocated from a specific memory zone (setObjectZone:).

• To allow system versioning (systemVersion).

NSCoder differs from the NSSerializer and NSDeserializer classes in that NSCoders aren’t restricted to operating
on property list objects (objects of the NSData, NSString, NSArray, and NSDictionary classes). Also, unlike
NSSerializers, NSCoders store type information along with the data. Thus, an object decoded from a stream of
bytes will be of the same class as the object that was originally encoded into the stream.

Encoding and Decoding Objects

In OpenStep, coding is facilitated by methods declared in several places, most notably the NSCoder class, the
NSObject class, and the NSCoding protocol.

The NSCoding protocol declares the two methods (encodeWithCoder: and initWithCoder:) that a class must
implement so that objects of that class can be encoded and decoded. When an object receives an
encodeWithCoder: message, it should send a message to super to encode inherited instance variables before it
encodes the instance variables that it’s class declares. For example, a fictitious MapView class that displays a legend
and a map at various magnifications, might implement encodeWithCoder: like this:

OpenStep Specification—10/19/942-42 Chapter 2: Foundation Kit

- (void)encodeWithCoder:(NSCoder *)coder

{

 [super encodeWithCoder:coder];

 [coder encodeValuesOfObjCTypes:"si@", &mapName, &magnification, &legendView];

}

Objects are decoded in two steps. First, an object of the appropriate class is allocated and then it’s sent an
initWithCoder: messages to allow it to initialize its instance variables. Again, the object should first send a
message to super to initialized inherited instance variables, and then it should initialize its own. MapView’s
implementation of this method looks like this:

- (id)initWithCoder:(NSCoder *)coder

{

 self = [super initWithCoder:coder];

 [coder decodeValuesOfObjCTypes:"si@", &mapName, &magnification, &legendView];

 return self;

}

Note the assignment of the return value of initWithCoder: to self in the example above. This is done in the subclass
because the superclass, in its implementation of initWithCoder: , may decide to return a object other than itself.

There are other methods that allow an object to customize its response to encoding or decoding. NSObject declares
these methods:

Method Typical Use

classForCoder: Allows an object, when being encoded, to substitute a class other than its own.
For example, the private subclasses of a class cluster substitute the name of
their public superclass when being archived.

replacementObjectForCoder: Allows an object, when being encoded, to substitute another object for itself.
For example, an object might encode itself into an archive, but encode a proxy
for itself if it’s being encoded for distribution.

awakeAfterUsingCoder: Allows an object, when being decoded, to substitute another object for itself.
For example, an object that represents a font might, upon being decoded,
release itself and return an existing object having the same font description as
itself. In this way, redundant objects can be eliminated.

See the NSObject class specification for more information.

Classes: NSCoder 2-43OpenStep Specification—10/19/94

Encoding Data

– (void)encodeArrayOfObjCType:(const char *)types
count:(unsigned int)count Encodes data of Objective C types listed in types having
at:(const void *)array count elements residing at address array.

– (void)encodeBycopyObject:(id)anObject Overridden by subclasses to encode the supplied Objective
C object so that a copy rather than a proxy of anObject
is created upon decoding. NSCoder’s implementation
simply invokes encodeObject:.

– (void)encodeConditionalObject:(id)anObject Overridden by subclasses to conditionally encode the
supplied Objective C object. The object should be
encoded only if it is an intrinsic member of the larger
data structure. NSCoder’s implementation simply
invokes encodeObject:.

– (void)encodeDataObject:(NSData *)data Encodes the NSData object data.

– (void)encodeObject:(id)anObject Encodes the supplied Objective C object.

– (void)encodePropertyList:(id)aPropertyList Encodes the supplied property list (NSData, NSArray,
NSDictionary, or NSString objects).

– (void)encodePoint:(NSPoint)point Encodes the supplied point structure.

– (void)encodeRect:(NSRect)rect Encodes the supplied rectangle structure.

– (void)encodeRootObject:(id)rootObject Overridden by subclasses to start encoding an
interconnected group of Objective C objects, starting
with rootObject. NSCoder’s implementation simply
invokes encodeObject:.

– (void)encodeSize:(NSSize)size Encodes the supplied size structure.

– (void)encodeValueOfObjCType:(const char *)type Encodes data of the specified Objective C type
at:(const void *)address residing at address.

– (void)encodeValuesOfObjCTypes:(const char *)types,...
Encodes values corresponding to the Objective C types

listed in types argument list.

Decoding Data

– (void)decodeArrayOfObjCType:(const char *)types
count:(unsigned)count Decodes data of Objective C types listed in type having
at:(void *)address count elements residing at address.

– (NSData *)decodeDataObject Decodes and returns an NSData object.

– (id)decodeObject Decodes an Objective C object.

OpenStep Specification—10/19/942-44 Chapter 2: Foundation Kit

– (id)decodePropertyList Decodes a property list (NSData, NSArray, NSDictionary,
or NSString objects).

– (NSPoint)decodePoint Decodes a point structure.

– (NSRect)decodeRect Decodes a rectangle structure.

– (NSSize)decodeSize Decodes a size structure.

– (void)decodeValueOfObjCType:(const char *)type
at:(void *)address Decodes data of the specified Objective C type residing at

address. You are responsible for releasing the resulting
objects.

– (void)decodeValuesOfObjCTypes:(const char *)types,...
Decodes values corresponding to the Objective C types

listed in types argument list. You are responsible for
releasing the resulting objects.

Managing Zones

– (NSZone *)objectZone Returns the memory zone used by decoded objects. For
instances of NSCoder, this is the default memory zone,
the one returned by NSDefaultMallocZone().

– (void)setObjectZone:(NSZone *)zone Sets the memory zone used by decoded objects. Instances
of NSCoder always use the default memory zone, the
one returned by NSDefaultMallocZone(), and so
ignore this method.

Getting a Version

– (unsigned int)systemVersion Returns the system version number as of the time the
archive was created.

– (unsigned int)versionForClassName:(NSString *)className
Returns the version number of the class className as of

the time it was archived.

Classes: NSConditionLock2-45OpenStep Specification—10/19/94

NSConditionLock

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h

Class Description

NSConditionLock objects are used to lock and unlock threads when specified conditions occur.

The user of an NSConditionLock object can lock when a process enters a particular state and can set the state to
something else when releasing the lock. The states are defined by the lock’s user. NSConditionLock is well suited
to synchronizing different modules such as a producer and a consumer where the two modules must share data, but
the consumer must sleep until a condition is met such as more data being available.

The NSConditionLock class provides four ways of locking its objects (lock, lockWhenCondition:, tryLock , and
tryLockWhenCondition) and two ways of unlocking (unlock and unlockWithCondition:). Any combination of
locking method and unlocking method is legal.

The following example shows how the producer-consumer problem might be handled using condition locks. The
producer need not wait for a condition, but must wait for the lock to be made available so it can safely create shared
data. For example, a producer could use a lock this way:

/* create the lock only once */

id condLock = [NSConditionLock new];

[condLock lock];

/* Manipulate global data... */

[condLock unlockWithCondition:HAS_DATA];

Multiple consumer threads can then lock until there’s data available and everyone is out of locked critical sections.
In the following code sample, the consumer sleeps until the producer invokes unlockWithCondition: with the
parameter HAS_DATA:

[condLock lockWhenCondition:HAS_DATA];

/* Manipulate global data if necessary... */

[condLock unlockWithCondition:(moreData ? HAS_DATA : NO_DATA)];

An NSConditionLock object doesn’t busy-wait, so it can be used to lock time-consuming operations without
degrading system performance.

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the NSLocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

OpenStep Specification—10/19/942-46 Chapter 2: Foundation Kit

Initializing an NSConditionLock

– (id)initWithCondition: (int)condition Initializes a newly created NSConditionLock and sets its
condition to condition.

Returning the Condition

– (int)condition Returns the receiver’s condition, the state that must be
achieved before a conditional lock can be acquired or
released.

Acquiring and Releasing a Lock

– (void)lockWhenCondition:(int)condition Attempts to acquire a lock when condition is met. Blocks
until condition is met.

– (void)unlockWithCondition: (int)condition Releases the lock and sets lock state to condition.

– (BOOL)tryLock Attempts to acquire a lock. Returns YES if successful and
NO otherwise.

– (BOOL)tryLockWhenCondition: (int)condition Attempts to acquire a lock when condition is met. Returns
YES if successful and NO otherwise.

Classes: NSConnection2-47OpenStep Specification—10/19/94

NSConnection

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSConnection.h

Class Description

The NSConnection class declares the programmatic interface to objects that manage a connection such that objects
in one thread can send messages to objects in another thread (typically, in another process, and it defines instances
that manage each side of such a connection.

Each distinct thread of execution has one default connection defined. Any given thread can have as many
connections as desired, but a given connection can be served by only one thread.

To set up a connection, some object in your application must be established as what is known as a “root” object and
registered with a name in the Network Name Server. Such root objects can then be connected to by other threads,
and can receive messages sent to them from other threads. An easy way to establish an object as a root object is to
send the defaultConnection method to the NSConnection class object to obtain a connection object. Then use
setRootObject: to establish the desired object as the object that will be registered, followed by registerName: to
make that object available to the Network Name Server under the specified name.

To obtain a connection to an object registered elsewhere, you will generally send the
rootProxyForConnectionWithRegisteredName:host: method to the NSConnection class object. This method
returns a proxy to the remote object. You should then inform the proxy of the protocol(s) the remote object responds
to using setProtocolForProxy:. To obtain the actual connection object instead of the proxy, use the
connectionWithRegisteredName:host: method.

If the string @"*" is used where a hostname is required, it implies a lookup for any server registered with the
specified name on the local subnet. If nil is supplied where a hostname is required, the name lookup occurs only
on the local host.

When an NSConnection object is deallocated, the notification NSConnectionDeath is posted to the default
notification center with that NSConnection object.

Exceptions

NSConnection can raise NSInternalInconsistencyException for a variety of reasons when it detects “impossible”
situations. In addition, NSConnection can raise NSInvalidArgumentException when a remote method invocation
sends an unknown selector.

OpenStep Specification—10/19/942-48 Chapter 2: Foundation Kit

Initializing a Connection

– (id)init Initialize a newly allocated NSConnection suitable for a
new registry and new name.

Establishing a Connection

+ (NSConnection *)connectionWithRegisteredName:(NSString *)name
host:(NSString *)hostName Registers and returns a connection with name on

hostName.

+ (NSConnection *)defaultConnection Establishes and returns a default per-thread connection.

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name
host:(NSString *)hostName Registers a connection with name on hostName and returns

its root proxy.

Determining Connections

+ (NSArray *)allConnections Returns an array describing all existing valid connections.

– (BOOL)isValid Identifies that the receiver is a valid connection.

Registering a Connection

– (BOOL)registerName:(NSString *)name Registers the connection with name on the local system and
returns YES if the registration was successful, NO
otherwise.

Assigning a Delegate

– (id)delegate Returns the connection’s delegate.

– (void)setDelegate:(id)anObject Sets the connection’s delegate.

Getting and Setting the Root Object

– (id)rootObject Returns the root object served.

– (NSDistantObject *)rootProxy Returns an NSDistantObject proxy to the root object served
by this connection.

Classes: NSConnection2-49OpenStep Specification—10/19/94

– (void)setRootObject:(id)anObject Sets the root object being served to anObject; if the root
object already exists, replaces it with anObject. Be
aware that if the root object is replaced while a
connection is active, existing root proxies on the client
side of the connection will continue to communicate
with the previous root object, while new proxies will
communicate with the newly established root object.

Request Mode

– (NSString *)requestMode Returns the mode in which requests are honored.

– (void)setRequestMode:(NSString *)mode Sets the mode in which requests are honored to mode.

OpenStep Specification—10/19/942-50 Chapter 2: Foundation Kit

Conversation Queueing

–(BOOL)independentConversationQueueing Returns conversationQueuing mode. The default value is
NO.

–(void)setIndependentConversationQueueing:(BOOL)flag
If flag is YES, unrelated requests are queued for later

processing. This allows a server to use distributed
objects freely in its implementation without concern for
the consistency of its internal state. Note that this can
cause deadlocks among peers.

Timeouts

– (NSTimeInterval)replyTimeout Returns the reply timeout time interval.

– (NSTimeInterval)requestTimeout Returns the request timeout time interval.

– (void)setReplyTimeout:(NSTimeInterval)interval Sets the reply timeout to the time interval interval.

– (void)setRequestTimeout:(NSTimeInterval)interval Sets the request timeout to the time interval interval.

Get Statistics

– (NSDictionary *)statistics Returns statistics for this connection.

Implemented by the Delegate

– (BOOL)makeNewConnection:(NSConnection *)connection
sender:(NSConnection *)ancestor Asks permission to create a new connection connection

where ancestor is the ancestral connection; returns YES
if connection allowed.

Classes: NSCountedSet2-51OpenStep Specification—10/19/94

NSCountedSet

Inherits From: NSMutableSet : NSSet : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class Description

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of objects.
NSCountedSet provides support for the mathematical concept of a counted set. A counted set, both in its
mathematical sense and in the OpenStep implementation of NSCountedSet, is an unordered collection of elements,
just as in a regular set, but the elements of the set aren’t necessarily distinct. In the literature, a counted set is also
knownas a bag.

Each new—that is, distinct—object inserted into an NSCountedSet object has a counter associated with it.
NSCountedSet keeps track of the number of times objects are inserted and requires that objects are removed the
same number of times. OpenStep also provides the NSSet class for sets whose elements are distinct—that is, there
is only one instance of an object in an NSSet even if the object has been added to the set multiple times.

Use set objects as an alternative to array objects when the order of elements is not important, but performance in
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respond to hash and isEqual: methods. See the NSObject protocol for details on hash and
isEqual:. Each new distinct object must provide a unique hash value.

Generally, you instantiate an NSCountedSet object by sending one of the set… methods to the NSCountedSet class
object, as described in NSSet. These methods return an NSCountedSet object containing the elements (if any) you
pass in as arguments. Newly created instances of NSCountedSet created by invoking the set method can be
populated with objects using any of the init… methods. initWithObjects:: is the designated initializer for this
class.

You add or remove objects from a counted set using the addObject: and removeObject: methods.

An NSCountedSet may be queried using the objectEnumerator method, which provides for traversing elements
of the set one by one. The countForObject: method returns the number of times the specified object has been added
to this set.

OpenStep Specification—10/19/942-52 Chapter 2: Foundation Kit

Initializing an NSCountedSet

– (id)initWithArray: (NSArray *)anArray Initializes a newly allocated set object by placing in it the
objects contained in anArray.

– (id)initWithCapacity: (unsigned int)numItems Initializes a newly allocated set object, giving it enough
memory to hold numItems objects.

– (id)initWithSet: (NSSet *)anotherSet Initializes a newly allocated set object by placing in it the
objects contained in anotherSet.

Adding Objects

– (void)addObject:(id)anObject Adds anObject to the set, unless anObject is equal to some
object already in the set. In either case, the counter
that’s returned by countForObject: is incremented.

Removing Objects

– (void)removeObject:(id)anObject Decrements the counter for the object, if the set contains an
object that’s equal to anObject. If this causes the
counter to reach zero, the object that’s equal to anObject
is removed from the set.

Querying the NSCountedSet

– (unsigned int)countForObject:(id)anObject Returns the number of times that an object equal to
anObject has ostensibly been added to the set. (This
number is incremented by addObject: and
decremented by removeObject:.)

– (NSEnumerator *)objectEnumerator Returns an enumerator object that will access each object
in the set only once, regardless of its count.

Classes: NSData 2-53OpenStep Specification—10/19/94

NSData

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSData.h

Class Description

The NSData class declares the programmatic interface to objects that contain data in the form of bytes. NSData
objects hold a static collection of bytes; NSData’s subclass, NSMutableData, defines objects that hold modifiable
data. These two classes provide an object-oriented approach to memory allocation, a facility that in procedural
programming is accessed through functions like malloc(). Furthermore, these classes take advantage of operating
system primitives when allocating large blocks of memory.

NSData’s two primitive methods—bytes and length—provide the basis for all the other methods in its interface.
The bytes method returns a pointer to the bytes contained in the data object. length returns the number of bytes
contained in the data object.

NSData and NSMutableData objects are commonly used to hold the contents of a file. The methods
dataWithContentsOfFile: and dataWithContentsOfMappedFile: return objects that represent a file’s contents.
The writeToFile:atomically: method enables you to write the contents of a data object to a file.

NSData provides access methods for copying bytes from a data object into a buffer. Use getBytes: to copy the entire
contents of the object or getBytes:length: to copy a subset, starting with the first byte. getBytes:range: copies a
range of bytes from a starting point within the bytes themselves. You can also return a data object that contains a
subset of the bytes in another data object by using the subdataWithRange: method. Or, you can use the
description method to return an NSString representation of the bytes in a data object.

For determining if two data objects are equal, NSData provides the isEqualToData: method, which does a
byte-for-byte comparison.

Allocating and Initializing an NSData Object

+ (id)allocWithZone:(NSZone *)zone Creates and returns an uninitialized object from zone.

+ (id)data Creates and returns an empty object. This method is
declared primarily for mutable subclasses of NSData.

+ (id)dataWithBytes:(const void *)bytes Creates and returns an object containing length bytes
length:(unsigned int)length of data copied from the buffer bytes.

+ (id)dataWithBytesNoCopy:(void *)bytes Creates and returns an object containing length bytes
length:(unsigned int)length from the buffer bytes.

OpenStep Specification—10/19/942-54 Chapter 2: Foundation Kit

+ (id)dataWithContentsOfFile:(NSString *)path Creates and returns an object by reading data from the file
specified by path.

+ (id)dataWithContentsOfMappedFile:(NSString *)path
Creates and returns an object whose contents come from

the mapped file path, assuming mapped files are
available on the underlying operating system. If
mapped files are not available, this method is identical
to dataWithContentsOfFile:.

– (id)initWithBytes: (const void *)bytes Initializes a newly allocated NSData object by putting in it
length:(unsigned int)length length bytes of data copied from the buffer bytes.

– (id)initWithBytesNoCopy: (void *)bytes Initializes a newly allocated NSData object by putting in it
length:(unsigned int)length length bytes of data from the buffer bytes.

– (id)initWithContentsOfFile: (NSString *)path Initializes a newly allocated NSData object by reading into
it the data from the file specified by path.

– (id)initWithContentsOfMappedFile: (NSString *)path
Initializes a newly allocated NSData object to contain the

data residing in the mapped file path, assuming mapped
files are available on the underlying operating system. If
mapped files are not available, this method is identical
to initWithContentsOfFile: .

– (id)initWithData: (NSData *)data Initializes a newly allocated NSData object by placing in it
the contents of another NSData object, data.

Accessing Data

– (const void *)bytes Returns a pointer to the object’s contents. This method
returns read-only access to the data.

– (NSString *)description Returns an NSString object that contains a hexadecimal
representation of the the receiver’s contents.

– (void)getBytes:(void *)buffer Copies the receiver’s contents into buffer.

– (void)getBytes:(void *)buffer Copies length bytes of the receiver’s contents into buffer.
length:(unsigned int)length

– (void)getBytes:(void *)buffer Copies into buffer the portion of the receiver’s contents
range:(NSRange)aRange within aRange. Raises an NSRangeException if

aRange is not within the range of the receiver’s data.

– (NSData *)subdataWithRange:(NSRange)aRangeReturns an object containing a copy of the receiver’s bytes
that fall within the limits specified by aRange. Raises an
NSRangeException if aRange is not within the range of
the receiver’s data.

Classes: NSData 2-55OpenStep Specification—10/19/94

Querying a Data Object

– (BOOL)isEqualToData:(NSData *)other Compares the receiving object to other. If the contents of
other are equal to the contents of the receiver, this
method returns YES. If not, it returns NO.

– (unsigned int)length Returns the number of bytes contained in the receiver.

Storing Data

– (BOOL)writeToFile: (NSString *)path Writes the bytes in the receiving object to the file specified
atomically:(BOOL)useAuxiliaryFile by path. If useAuxiliaryFile is YES, the data is written

to a backup file and then, assuming no errors occur, the
backup file is renamed atomically to the intended file
name.

Deserializing Data

– (unsigned int)deserializeAlignedBytesLengthAtCursor:(unsigned int*)cursor
Returns the length of the serialized bytes at the location

referenced by cursor. If the bytes have been
page-aligned, it also obtains the relevant “hole”
information and adjusts the cursor. An invocation of this
method must have a corresponding
serializeAlignedBytesLength: invocation.

– (void)deserializeBytes:(void *)buffer Deserializes bytes number of bytes in the buffer pointed
length:(unsigned int)bytes at by buffer, places them internally starting at cursor,
atCursor: (unsigned int*)cursor and advances the cursor.

– (void)deserializeDataAt:(void *)data Deserializes the data pointed at by cursor, interpreting it
ofObjCType: (const char *)type by the Objective C type specifier type and writing it
atCursor: (unsigned int*)cursor to the memory location referenced by data. If the data
context:(id <NSObjCTypeSerializationCallBack>) element is an object other than an instance of

 callback NSDictionary, NSArray, NSString, or NSData, a
callback from object callback can provide further
definition of the object. All Objective C types are
currently supported except union and void *. Pointers
refer to a single item.

OpenStep Specification—10/19/942-56 Chapter 2: Foundation Kit

– (int)deserializeIntAtCursor: (unsigned int*)cursor Deserializes and returns the integer encoded at cursor. Also
advances the cursor.

– (int)deserializeIntAtIndex:(unsigned int)index Deserializes and returns the integer encoded at offset index.
Does not advance the cursor.

– (void)deserializeInts:(int *) intBuffer Deserializes numInts integers encoded at the location
count:(unsigned int)numInts referenced by cursor and puts them in the buffer
atCursor: (unsigned int*)cursor intBuffer. Also advances the cursor.

– (void)deserializeInts:(int *) intBuffer Deserializes numInts integers encoded at offset index
count:(unsigned int)numInts and puts them in the buffer intBuffer. Does not advance
atIndex:(unsigned int)index the cursor.

Classes: NSDate 2-57OpenStep Specification—10/19/94

NSDate

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing time intervals, and similar functionality. It presents a programmatic interface through which suitable
date objects are requested and returned. NSDate objects are lightweight and immutable since they represent a
invariant point in time. This class is designed to provide the foundation for arbitrary calendrical representations. Its
subclass NSCalendarDate offers date objects that are suitable for representing dates according to western
calendrical systems.

“Date” as used above implies clock time as well. The standard unit of time for date objects is a value typed as
NSTimeInterval (a double) and expressed as seconds. The NSTimeInterval type makes possible a wide and
fine-grained range of date and time values, giving accuracy within milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as seconds relative to an absolute reference date. This reference date is
the first instant of January 1, 2001. NSDate converts all date and time representations to and from NSTimeInterval
values that are relative to this absolute reference date. A positive interval relative to a date represents a point in the
future, a negative interval represents a time in the past.

Note: Conventional UNIX systems implement time according to the Network Time Protocol (NTP) standard,
which is based on Coordinated Universal Time. The private implementation of NSDate follows the NTP standard.
However, this standard doesn’t account for leap seconds and therefore isn’t synchronized with International Atomic
Time (the most accurate).

Like various other Foundation classes, NSDate lets you obtain operating-system functionality (dates and times)
without depending on operating-system internals. It also provides a basis for the NSRunLoop and NSTimer classes,
which use concrete date objects to implement local event loops and timers.

NSDate’s sole primitive method, timeIntervalSinceReferenceDate, provides the basis for all the other methods in
the NSDate interface. It returns a time value relative to an absolute reference date.

Using NSDate

The date objects dispensed by NSDate give you a diverse range of date and time functionality. To obtain dates, send
one of the date... messages to the NSDate class object. One of the most useful is date itself, which returns a date
object representing the current date and time. You can get new date objects with date and time values adjusted from
existing date objects by sending addTimeInterval: .

OpenStep Specification—10/19/942-58 Chapter 2: Foundation Kit

You can obtain relative date information by sending the timeInterval... messges to a date object. For instance,
timeIntervalSinceNow gives you the time, in seconds, between the current time and the receiving date object.
Compare dates with the isEqual:, compare:, laterDate:, and earlierDate: methods and use the description
method to obtain a string object that represents the date in a standard international format.

Creating an NSDate Object

+ (id)allocWithZone:(NSZone *)zone Allocates an unitialized NSDate in zone. Returns nil if
allocation fails.

+ (NSDate *)date Creates and returns an NSDate set to the current date and
time.

+ (NSDate *)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds
Creates and returns an NSDate set to seconds seconds from

the current date and time.

+ (NSDate *)dateWithTimeIntervalSince1970:(NSTimeInterval)seconds
Creates and returns an NSDate set to to seconds seconds

from the reference date used by UNIX systems. Use a
negative argument value to specify a date and time
before the reference date.

+ (NSDate *)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds
Creates and returns an NSDate set to seconds seconds from

the absolute reference date (the first instant of 1 January,
2001). Use a negative argument value to specify a date
and time before the reference date.

+ (NSDate *)distantFuture Creates and returns an NSDate that represents a date in the
distant future (in terms of centuries). You can use this
object in your code as a control date, a guaranteed outer
temporal limit.

+ (NSDate *)distantPast Creates and returns an NSDate that represents a date in the
distant past (in terms of centuries). You can use this
object in your code as a control date, a guaranteed
temporal boundary.

– (id)init Initializes a newly allocated NSDate to the current date and
time.

– (id)initWithString: (NSString *)description Returns an NSDate with a date and time value specified by
the international string-representation format:
YYYY-MM-DD HH:MM:SS ±HHMM, where
±HHMM is a time zone offset in hours and minutes
from Greenwich Mean Time.

Classes: NSDate 2-59OpenStep Specification—10/19/94

– (NSDate *)initWithTimeInterval: (NSTimeInterval)seconds
sinceDate:(NSDate *)anotherDate Returns an NSDate initialized relative to another date

object by seconds (plus or minus).

– (NSDate *)initWithTimeIntervalSinceNow: (NSTimeInterval)seconds
Returns an NSDate initialized relative to the current date

and time by seconds (plus or minus).

– (id)initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds
Returns an NSDate initialized relative to the reference date

and time by seconds (plus or minus).

Converting to an NSCalendar Object

– (NSCalendarDate *)dateWithCalendarFormat: (NSString *)formatString
timeZone:(NSTimeZone *)timeZone Returns an NSCalendarDate object bound to the format

string formatString and the time zone timeZone. If you
specify nil after either or both of these arguments, the
default format string and time zone are assumed.

Representing Dates

– (NSString *)description Returns a string representation of the receiver. The
representation conforms to the international format
YYYY-MM-DD HH:MM:SS ±HHMM, where
±HHMM represents the time-zone offset in hours and
minutes from Greenwich Mean Time (GMT).

– (NSString *)descriptionWithCalendarFormat: (NSString *)formatString
timeZone:(NSTimeZone *)aTimeZone Returns a string representation of the receiver. The
locale:(NSDictionary *)localeDictionary representation conforms to formatString (a

strftime -style date-conversion string) and is adjusted to
aTimeZone. Included are the keys and values that
represent the locale data from localeDictionary.

– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary
Returns a string representation of receiver (see

description). Included are the key and values that
represent the locale data from localeDictionary.

OpenStep Specification—10/19/942-60 Chapter 2: Foundation Kit

Adding and Getting Intervals

+ (NSTimeInterval)timeIntervalSinceReferenceDate
Returns the interval between the system’s absolute

reference date and the current date and time. This value
is less than zero until the first instant of 1 January 2001.

– addTimeInterval: (NSTimeInterval)seconds Returns an NSDate that’s set to a specified number of
seconds relative to the receiver.

– (NSTimeInterval)timeIntervalSince1970 Returns the interval between the receiver and the reference
date used by UNIX systems.

– (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate
Returns the interval between the receiver and anotherDate.

– (NSTimeInterval)timeIntervalSinceNow Returns the interval between the receiver and the current
date and time.

– (NSTimeInterval)timeIntervalSinceReferenceDate
Returns the interval between the receiver and the system’s

absolute reference date. This value is less than zero until
the first instant of 1 January 2001.

Comparing Dates

– (NSComparisonResult)compare:(NSDate *)anotherDate
Compares the receiver’s date to that of anotherDate and

returns NSOrderedDescending if the receiver is
temporally later, NSOrderedAscending if it’s
temporally earlier, and NSOrderedSame if they are
equal.

– (NSDate *)earlierDate:(NSDate *)anotherDate Compares the receiver’s date to anotherDate and returns
the one that’s temporally earlier.

– (BOOL)isEqual:(id)anotherDate Returns YES if anotherDate and the receiver are within
one second of each other; otherwise, returns NO.

– (NSDate *)laterDate:(NSDate *)anotherDate Compares the receiver’s date to anotherDate and returns
the one that’s temporally later.

Classes: NSDeserializer2-61OpenStep Specification—10/19/94

NSDeserializer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSSerialization.h

Class Description

The NSDeserializer class declares methods that convert an abstract representation of a property list (as contained
in an NSData object) into a graph of property list objects in memory. The NSDeserializer class object itself provides
these methods; you don’t create instances of NSDeserializer. Options to these methods allow you to specify that
container objects (arrays or dictionaries) in the resulting graph be mutable or immutable; that deserialization begin
at the start of the data or from some position within it; or that deserialization occur lazily, so that a property list is
deserialized only if it is actually going to be accessed. See the NSSerializer specification for more information on
serialization.

Deserialization Into Property Lists

+ (id)deserializePropertyListFromData:(NSData *)data
atCursor: (unsigned int*)cursor Returns a property list object corresponding to the abstract
mutableContainers:(BOOL)mutable representation in data at the location cursor. If mutable

is YES and the object is a dictionary or an array, the
re-composed object is made mutable. Returns nil if the
object is not a valid one for property lists.

+ (id)deserializePropertyListFromData:(NSData *)data
mutableContainers:(BOOL)mutable Returns a property list object corresponding to the abstract

representation in data or nil if data doesn’t represent a
property list. If mutable is YES and the object is a
dictionary or an array, the re-composed object is made
mutable.

+ (id)deserializePropertyListLazilyFromData:(NSData *)data
atCursor: (unsigned int*)cursor Returns a property list from data at location cursor or nil if
length:(unsigned int)length data doesn’t represent a property list. The
mutableContainers:(BOOL)mutable deserialization proceeds lazily. That is, if data at cursor

has a length greater than length, a proxy is substituted
for the actual property list as long as the constituent
objects of that property list are not being accessed. If
mutable is YES and the object is a dictionary or an
array, the re-composed object is made mutable.

OpenStep Specification—10/19/942-62 Chapter 2: Foundation Kit

NSDictionary

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

Class Description

The NSDictionary class declares the programmatic interface to objects that manage immutable associations of keys
and values. You use this class when you need a convenient and efficient way to retrieve data associated
with an arbitrary key.

A key-value pair within an NSDictionary is called an entry. Each entry consists of an string object that represents
the key and another object (of any class) that is that key’s value. You establish the entries when the NSDictionary
is created, and thereafter the entries can’t be modified. (The complementary class NSMutableDictionary defines
objects that manage modifiable collections of entries. See the NSMutableDictionary class specification for more
information.)

Internally, an NSDictionary uses a hash table to organize its storage and to provide rapid access to a value given the
corresponding key. However, the methods defined for this class insulate you from the complexities of working with
hash tables, hashing functions, or the hashed value of keys. These methods take key values directly, not their hashed
form.

Generally, you instantiate an NSDictionary by sending one of the dictionary... messages to the class object. These
methods return an NSDictionary containing the associations specified as arguments to the method. Each key
argument is copied and the copy is added to the NSDictionary. Each corresponding value object receives a retain
message to ensure that it won’t be deallocated prematurely.

NSDictionary’s three primitive methods—count and objectForKey: and keyEnumerator—provide the basis for
all the other methods in its interface. The count method returns the number of entries in the object, objectForKey:
returns the value associated with the given key, and keyEnumerator returns an object that lets you step through
entries in the dictionary.

The other methods declared here operate by invoking one or more of these primitives. The non-primitive methods
provide convenient ways of accessing multiple entries at once. The description... methods and the
writeToFile:atomically: method cause an NSDictionary to generate a description of itself and store it in a string
object or a file.

Exceptions

NSSet implements the encodeWithCoder: method, which raises NSInternalInconsistencyException if the number
of objects enumerated for encoding turns out to be unequal to the number of objects in the set.

Classes: NSDictionary 2-63OpenStep Specification—10/19/94

Creating and Initializing an NSDictionary

+ (id)allocWithZone:(NSZone *)zone Creates and returns an uninitialized NSDictionary in zone.

+ (id)dictionary Creates and returns an empty NSDictionary.

+ (id)dictionaryWithContentsOfFile: (NSString *)path
Creates and returns an NSDictionary from the keys and

values found in the file specified by path.

+ (id)dictionaryWithObjects: (NSArray *)objects Creates and returns an NSDictionary that associates
forKeys:(NSArray *)keys objects from the objects array with keys from the keys

array. Keys must be strings. Raises
NSInvalidArgumentException if the number of objects
is not equal to the number of keys.

+ (id)dictionaryWithObjects: (id *)objects Creates and returns an NSDictionary containing count
forKeys:(id *)keys objects from the objects array. The objects are
count:(unsigned int)count associated with count keys taken from the keys array.

+ (id)dictionaryWithObjectsAndKeys: (id)firstObject, ...
Creates and returns an NSDictionary that associates objects

and keys from the argument list. The list must be in
form: object1, key1, object2, key2, ..., nil . Raises
NSInvalidArgumentException if any of the keys are nil,
or if any of the keys are not of the NSString class.

– (id)initWithContentsOfFile: (NSString *)path Initializes a newly allocated NSDictionary using the keys
and values found in filename.

– (id)initWithDictionary: (NSDictionary *)dictionary
Initializes a newly allocated NSDictionary by placing in it

the keys and values contained in otherDictionary.

– (id)initWithObjectsAndKeys: (id)firstObject,... Initializes a newly allocated NSDictionary by placing in it
the objects and keys from the argument list. The list
must be in form: object1, key1, object2, key2, ..., nil .
Raises NSInvalidArgumentException if any of the keys
are nil, or if any of the keys are not of the NSString
class.

– (id)initWithObjects: (NSArray *)objects Initializes a newly allocated NSDictionary by associating
forKeys:(NSArray *)keys objects from the objects array with keys from the keys

array. Keys must be strings. Raises
NSInvalidArgumentException if the number of objects
is not equal to the number of keys.

OpenStep Specification—10/19/942-64 Chapter 2: Foundation Kit

– (id)initWithObjects: (id *)objects Initializes a newly allocated NSDictionary by associating
forKeys:(id *)keys count objects from the objects array with an equal
count:(unsigned)count number of keys from the keys array. Raises

NSInvalidArgumentException if any of the objects or
keys are nil .

Accessing Keys and Values

– (NSArray *)allKeys Returns an NSArray containing the receiver’s keys or an
empty array if the receiver has no entries.

– (NSArray *)allKeysForObject:(id)object Finds all occurrences of the value anObject in the receiver
and returns an array with the corresponding keys.

– (NSArray *)allValues Returns an NSArray containing the dictionary’s values, or
an empty array if the dictionary has no entries.

– (NSEnumerator *)keyEnumerator Returns an NSEnumerator that lets you access each of the
receiver’s keys.

– (NSEnumerator *)objectEnumerator Returns an NSEnumerator that lets you access each the
receiver’s values.

– (id)objectForKey:(id)aKey Returns an entry’s value given its key, or nil if no value is
associated with aKey.

Counting Entries

– (unsigned)count Returns the number of entries in the receiver.

Comparing Dictionaries

– (BOOL)isEqualToDictionary: (NSDictionary *)other
Compares the receiver to otherDictionary. If the contents

of otherDictionary are equal to the contents of the
receiver, this method returns YES. If not, it returns NO.

Storing Dictionaries

– (NSString *)description Returns a string that represents the contents of the receiver.

– (NSString *)descriptionInStringsFileFormat Returns a string that represents the contents of the receiver.
Key-value pairs are represented in a appropriate for use
in “.strings” files

Classes: NSDictionary 2-65OpenStep Specification—10/19/94

– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary
Returns a string representation of the NSDictionary object.

Included are the key and values that represent the locale
data from localeDictionary.

– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary
indent:(unsigned int)level Returns a string representation of the NSDictionary object.

Included are the key and values that represent the locale
data from localeDictionary. Elements are indented from
the left margin by level + 1 multiples of four spaces, to
make the output more readable.

– (BOOL)writeToFile: (NSString *)path Writes a textual description of the contents of the
atomically:(BOOL)useAuxiliaryFile receiver to filename. If useAuxiliaryFile is YES, the

data is written to a backup file and then, assuming no
errors occur, the backup file is renamed to the intended
file name.

OpenStep Specification—10/19/942-66 Chapter 2: Foundation Kit

NSDistantObject

Inherits From: NSProxy

Conforms To: NSCoding
NSObject (NSProxy)

Declared In: Foundation/NSDistantObject.h

Class Description

The NSDistantObject class declares the programmatic interface to objects that serve as proxies to remote real
objects.

Your application does not in general need to explicitly create NSDistantObject objects—they are created
automatically when you create NSConnection objects for a remote object.

Exceptions

NSDistantObject raises an NSInternalInconsistencyException for a variety of exceptions resulting from internal
consistency failures.

Building a Proxy

+ (NSDistantObject *)proxyWithLocal: (id)target Builds and returns a local proxy for a local object target,
connection:(NSConnection *)connection forming a remote proxy on the other side of connection.

+ (NSDistantObject *)proxyWithTarget: (id)target Builds and returns a remote proxy where target is an object
connection:(NSConnection *)connection on the other side of connection.

Initializing a Proxy

– (id)initWithLocal: (id)target Builds a local proxy for a local object target, forming a
connection:(NSConnection *)connection remote proxy on the other side of connection. You may

not retain or otherwise use this proxy.

– (id)initWithTarget: (id)target Builds a remote proxy where target is an object on the other
connection:(NSConnection *)connection side of connection. It may deallocate and return nil if

this target is already known on the connection. This is
the designated initializer for subclasses.

Classes: NSDistantObject2-67OpenStep Specification—10/19/94

Specifying a Protocol

– (void)setProtocolForProxy:(Protocol *)proto Sets the proxy’s protocol to proto for efficiency.

Returning the Proxy’s Connection

– (NSConnection *)connectionForProxy Returns the NSConnection instance used by the proxy.

OpenStep Specification—10/19/942-68 Chapter 2: Foundation Kit

NSEnumerator

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSUtilities.h

Class Description

NSEnumerator is a simple abstract class whose instances enumerate collections of other objects. Collection
objects—such as NSSets, NSArrays, and NSDictionaries—provide NSEnumerator objects that can traverse their
contents. You send nextObject repeatedly to an NSEnumerator to have it return the next object in the collection.
When there are no more objects to return, nextObject returns nil .

Collection classes include methods that return an enumerator appropriate to the type of collection. NSArray has
two methods that return an NSEnumerator object, objectEnumerator and reverseObjectEnumerator (the former
traverses the array starting at its first object, while the latter starts with the last object and continues backward
through the array to the first object). NSSet’s objectEnumerator provides an enumerator for sets. NSDictionary
has two enumerator-providing methods: keyEnumerator and objectEnumerator.

Note: Collections shouldn’t be modified during enumeration. NSEnumerator imposes this restriction to improve
enumeration speed.

Traversing a Collection

– (id)nextObject Returns the next object in the collection being enumerated
(for example, an NSArray or NSDictionary). Returns
nil when the collection has been traversed.

Classes: NSException 2-69OpenStep Specification—10/19/94

NSException

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSException.h

Class Description

The NSException class provides an object-oriented way for applications to announce and react to exceptional
conditions.

An exceptional condition is one that interrupts the normal flow of program execution. Each application can interpret
different types of conditions as exceptional. For example, one application might view as exceptional the attempt to
save a file in a directory that’s write-protected. In this sense, an exceptional condition can be equivalent to an error.
Another application might interpret the user’s keypress as an exceptional condition—an indication that a
long-running process should be aborted.

Raising an Exception

Once an exceptional condition is detected, it must be propagated to the routine or routines that will handle it, a
process referred to as “raising an exception.” In the OpenStep exception handling system, exceptions are raised by
instantiating an exception object and sending it a raise message.

Exception objects encapsulate:

• a name. A short NSString that is used to uniquely identify the exception

• a reason. A longer NSString that contains a “human-readable” reason for the exception. This reason object
is printed when the exception object is printed using the “%@” format.

• userInfo. An NSDictionary object that you can use to supply application-specific data to the exception
handler. For example, if a function’s return value caused the exception to be raised, you could pass the return
value to the exception handler through the userInfo dictionary. Or, if the exception handler displays a panel
in response to the exception, userInfo could contain the text string to be displayed in the panel.

Handling an Exception

Sending a raise message to an exception object initiates the propagation of the exception and passes data about it.
Where and how the exception is handled depends on where you send the message from. Let’s first look at a simple
case.

In general, a raise message is sent to an exception object within the domain of an exception handler. An exception
handler is a control structure created by the macros NS_DURING, NS_HANDLER, and NS_ENDHANDLER.

OpenStep Specification—10/19/942-70 Chapter 2: Foundation Kit

Figure 2-2. Exception Handling Domain and Handler

The section of code between NS_DURING and NS_HANDLER is the exception handling domain; the section
between NS_HANDLER and NS_ENDHANDLER is the local exception handler. The normal flow of program
execution is marked by the gray arrow; the code within the local exception handler is executed only if an exception
is raised. Sending a raise message to an exception object causes program control to jump to the first executable line
following NS_HANDLER, as indicated by the black arrow.

An exception can be raised directly within the exception handling domain, or indirectly from one of the methods
or functions invoked from the domain. No matter how deeply in a call sequence an exception is raised, execution
jumps to the local exception handler (assuming there are no intervening exception handlers, as discussed in the next
section). In this way, exceptions raised at a low level can be caught at a high level.

If an exception is raised and execution begins within the local exception handler, it either continues until all
appropriate statements are executed or the exception is raised again to invoke the services of an encompassing
exception handler, as described in the next section.

If the exception isn’t raised again, execution within the local exception handler continues until it leaves the local
handler by:

• “Falling off the end”

• Calling NS_VALUERETURN()

• Calling NS_VOIDRETURN

Note: A simple return from the exception-handling domain is not permitted.

if (/*error*/) {

NS_HANDLER

NS_ENDHANDLER

NS_DURING

[NSException raise...];
}

return;

Function()

. . .

. . .

. . .

. . .

. . .

exception handling
domain

local exception
handler

Classes: NSException 2-71OpenStep Specification—10/19/94

“Falling off the end” is simply the normal execution pathway introduced above. After all appropriate statements
within the domain are executed (and no exception is raised), execution continues on the line following
NS_ENDHANDLER. Alternatively, you can return control to the caller from within the domain by calling
NS_VALUERETURN() or NS_VOIDRETURN, depending on whether you need to return a value.

You can’t use goto or return() to exit an exception handling domain—errors will result. Nor can you use setjmp()
and longjmp() if the jump entails crossing an NS_DURING statement. Since in many cases you won’t know if the
code that your program calls has exception handling domains within it, it’s generally not recommended that you
use setjmp() and longjmp() in your application.

Nested Exception Handlers

Exception handlers can be nested so that an exception raised in an inner domain can be treated by the local
exception handler and any number of encompassing exception handlers. The following diagram illustrates the use
of nested exception handlers, and is discussed in the text that follows.

Figure 2-3. Nested Exception Handlers

An exception raised within Function3’s domain causes execution to jump to its local exception handler. In a typical
application, this exception handler checks the values contained the NSException object to determine the nature of
the exception. For exception types that it recognizes, the local handler responds and then sends a raise message to
the exception object to pass notification of the exception to the handler above it (in this case, the handler in

NS_HANDLER

NS_ENDHANDLER

NS_DURING

Function2();

. . .

. . .

. . .

. . .

Function1()

top-level exception handler

return;

. . .

Function3()

Function2()

[NSException raise...];
NS_HANDLER

NS_ENDHANDLER

NS_DURING

Function3();

. . .

. . .

. . .

. . .

return;

. . .

[NSException raise...];
NS_HANDLER

NS_ENDHANDLER

NS_DURING

. . .

. . .

. . .

. . .

return;

. . .

[NSException raise...];

[NSException raise...];

OpenStep Specification—10/19/942-72 Chapter 2: Foundation Kit

Function2). Function2’s exception handler does the same and then raises the exception to Function1’s handler.
Finally, Function1’s handler re-raises the exception. Since there’s no exception handling domain above Function1,
the exception is transferred to a default top-level error handler. For applications based on the Application Kit, this
top-level handler invokes NSApplication’s reportException: method, which writes an error message to the
console.

An exception that’s re-raised appears to the next higher handler just as if the initial exception had been raised within
its own exception handling domain.

Raising an Exception Outside of an Exception Handler

If an exception is raised outside of any exception handler, it’s intercepted by the uncaught exception handler, a
function set by NSSetUncaughtExceptionHandler() and returned by NSUncaughtExceptionHandler(). You can
change the way uncaught exceptions are handled by using NSSetUncaughtExceptionHandler() to establish a
different procedure as the handler. However, because of the design of the Application Kit, it’s rare for an exception
to be raised outside of an exception handling domain. The NSApplication object’s event loop itself is within an
exception handling domain. On each cycle of the loop, the NSApplication object retrieves an event and sends an
event message to the appropriate object in the application. Thus, the code you write for custom objects (as well as
the code for Application Kit objects) is executed within the context of the event loop’s exception handler.

Predefined Exceptions

OpenStep predefines a number of exception names. These exceptions are listed in NSException.h; for example:

extern NSString *NSGenericException;

extern NSString *NSRangeException;

extern NSString *NSInvalidArgumentException;

For a complete list of global exception names, see the “Types and Constants” sections of this manual. You can catch
any of these exceptions from within your exception handler by comparing the exception’s name with these
predefined exception names.

Creating and Raising Exceptions

+ (NSException *)exceptionWithName:(NSString *)name
reason:(NSString *)reason Creates an exception object, assigning it name as its name,
userInfo:(NSDictionary *)userInfo reason as its human-readable explanation, and userInfo

as arbitrary data that will accompany the exception.

+ (volatile void)raise:(NSString *)name Creates and raises an exception with name name and
format: (NSString *)format,... a reason constructed from format and the following

arguments in the manner of printf() . The user-defined
information is nil . Invokes raise as part of its
implementation.

Classes: NSException 2-73OpenStep Specification—10/19/94

+ (volatile void)raise:(NSString *)name Creates and raises an exception with name name and
format: (NSString *)format a reason constructed from format and the arguments in
arguments:(va_list)argList argList, in the manner of vprintf() . The user-defined

information is nil . Invokes raise as part of its
implementation.

– (id)initWithName: (NSString *)name Initializes a newly allocated exception object, assigning it
reason:(NSString *)reason name as its name, reason as its human-readable
userInfo:(NSDictionary *)userInfo explanation, and userInfo as arbitrary data that will

accompany the exception.

– (volatile void)raise Raises the exception, causing program flow to jump to the
enclosing error handler.

Querying Exceptions

– (NSString *)name Returns the exception’s name. See
exceptionWithName:reason:userInfo:.

– (NSString *)reason Returns the exception’s reason. See
exceptionWithName:reason:userInfo:.

– (NSDictionary *)userInfo Returns the exception’s user-defined data. See
exceptionWithName:reason:userInfo:.

OpenStep Specification—10/19/942-74 Chapter 2: Foundation Kit

NSInvocation

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: Foundation/NSInvocation.h

Class Description

Objects of the NSInvocation class provide a system-independent means to construct message calls to other objects.
An NSInvocation object constructs a target object to which a message can be sent, a selector for that method, an
argument list for the selector, and a return value. NSInvocation objects provide great flexibility in that the methods,
method arguments, and targets of the methods may be constructed dynamically.

The final sending of the message to the target object can be performed at any time, independent of constructing the
invocation. For example, methods could be dispatched based on timer events. In addition, return values from the
methods are stored in the NSInvocation object and can be retrieved at any later stage in processing.

Also see NSMethodSignature for a description of how to construct method signatures.

The Foundation/NSInvocation.h header file defines two macros that may be used as constructors for
invocations:

NSInvocation *invocation = NS_MESSAGE(target, message)
builds an invocation containing a message to a known

target object. target is an object id. message consists of
a selector followed by any arguments, just like an
Objective-C message.

NSInvocation *invocation = NS_INVOCATION(class, message)
builds an invocation containing a message to the untargeted

class object class. message consists of a selector
followed by any arguments, just like an Objective-C
message.

Creating Invocations

+ (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)sig
Returns an invocation object able to construct calls to

objects using method selectors with type signatures
described by sig. Raises NSInvalidArgumentException
if sig is nil .

Classes: NSInvocation 2-75OpenStep Specification—10/19/94

Managing Invocation Arguments

– (BOOL)argumentsRetained Returns YES if arguments are retained.

– (void)getArgument:(void *)argumentLocation Copies the argument stored at index into the storage
atIndex:(int)index pointed to by argumentLocation where 2 is the index of

the first argument, 3 is the index of the second, and so
on.

– (void)getReturnValue:(void *)retLoc Copies the invocation’s return value into the storage
pointed to by retLoc.

– (NSMethodSignature *)methodSignature Returns the invocation’s method signature object.

– (void)retainArguments By default, target and arguments are not retained, and C
strings are not copied. This method instructs the
invocation to retain its arguments, target, and make
copies of C strings. This method is invoked
automatically by timers. This method should be invoked
whenever the dynamic scope of the invocation can
exceed its arguments.

– (SEL)selector Returns the invocation’s selector.

– (void)setArgument:(void *)argumentLocation Sets the argument stored at index to the storage pointed to
atIndex:(int)index by argumentLocation where 2 is the index of the first

argument, 3 is the index of the second, and so on..

– (void)setReturnValue:(void *)retLoc Sets the invocation’s return value to that indicated by
retLoc.

– (void)setSelector:(SEL)selector Sets the invocation’s selector to selector.

– (void)setTarget:(id)target Sets the invocation’s target to target.

– (id)target Returns the invocation’s target; returns nil if there is no
target.

Dispatching an Invocation

– (void)invoke Causes the message encoded in the invocation to be
dispatched to its target.

– (void)invokeWithTarget: (id)target Causes the message encoded in the invocation to be
dispatched to target.

OpenStep Specification—10/19/942-76 Chapter 2: Foundation Kit

NSLock

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h

Class Description

An NSLock is used to protect critical regions of code. A lock is created once and is subsequently used to protect
one or more regions of code. If a region of code is in use, an NSLock waits using the condition_wait() function,
so the thread doesn’t busy-wait. The following example shows the use of an NSLock with the methods lock and
unlock defined in the NSLocking protocol:

NSLock *theLock = [NSLock new]; // done once!

/* ... other code */

[theLock lock];

/* ... possibly a long time of fussing with global data... */

[theLock unlock];

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the NSLocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

Acquiring a Lock

– (BOOL)tryLock Attempts to acquire a lock. Returns YES if successful and
NO otherwise. Returns immediately.

Classes: NSMethodSignature2-77OpenStep Specification—10/19/94

NSMethodSignature

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSMethodSignature.h

Class Description

NSMethodSignature provides the programmatic interface to objects that provide access to the “type signatures” of
an object’s methods—that is, the types of the arguments and return value. A method signature is used by the
distributed objects machinery to determine how to correctly encode method names and arguments for the
underlying inter-process communications. The typical use of method signatures is when a message is sent to a
remote object via a proxy. If the proxy doesn’t know the types of arguments a remote object will use, the proxy first
has to query the remote object for its method signature object, which specifies the types the method requires as
arguments. The proxy then knows how to encode the data it has been passed and forward it correctly to the real
object.

You create a method signature object by sending a signatureWithObjCTypes method to the NSMethodSignature
class object, passing a “C”-style character string which specifies the method’s return types and argument types.

Given a method signature, all other available instance methods query the object for information about the signature,
such as its return type, number of arguments, stack frame size (obviously architecture-dependent), and so on.

Also see NSInvocation for the class which can use method signature objects to send messages to other objects.

Creating a Method Signature

+ (NSMethodSignature *)signatureWithObjCTypes:(const char *)types
Creates a method signature object given types, a string

encoding the method return and argument types.

Querying a Method Signature

– (NSArgumentInfo)argumentInfoAtIndex: (unsigned)index
Returns information about the argument at index. Indices

begin with 0. The “hidden” arguments self and _cmd
are indexed at 0 and 1; method-specific arguments begin
at index 2. If index is too large for the actual number of
arguments, NSInvalidArgumentException is raised.

– (unsigned)frameLength Returns the number of bytes that the arguments, taken
together, would occupy on the stack.

OpenStep Specification—10/19/942-78 Chapter 2: Foundation Kit

– (BOOL)isOneway Returns YES if the method is asynchronous (that is, it
returns without waiting for the receiver to finish
processing it), and NO otherwise.

– (unsigned)methodReturnLength Returns the number of bytes required by the return value.

– (char *)methodReturnType Returns a string encoding the return type of the method.
(What the characters in the string represent is usually
defined by some implementation-dependent runtime
types.)

– (unsigned)numberOfArguments Returns the number of arguments recorded in the receiver.
This will be at least two, since it includes the “hidden”
arguments, self and _cmd, which are the first two
arguments passed to every method implementation.

Classes: NSMutableArray 2-79OpenStep Specification—10/19/94

NSMutableArray

Inherits From: NSArray : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSArray)
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class Description

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array of
objects. This class adds insertion and deletion operations to the basic array-handling behavior it inherits from
NSArray.

The array operations that NSMutableArray declares are conceptually based on these three methods:

addObject:
replaceObjectAtIndex:withObject:
removeLastObject

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the array
and of removing an object based on its identity or position in the array.

When an object is removed from a mutable array it receives a release message, which can cause it to be deallocated.
Note that if your program keeps a reference to such an object, the reference may become invalid unless you
remember to send the object a retain message before it’s removed from the array. For example, the third statement
below could result in a run-time error, except for the retain message in the first statement:

id anObject = [[anArray objectAtIndex:0] retain];

[anArray removeObjectAtIndex:0];

[anObject someMessage];

Implementing Subclasses of NSMutableArray

Although conceptually the interface to the NSMutableArray class is based on the three methods listed above, for
performance reasons two others—insertObject:atIndex: and removeObjectAtIndex:—also directly access the
object’s data. These two methods could be implemented using the methods listed above but in doing so would incur
unnecessary overhead from the retain and release messages that objects would receive as they are shifted to
accommodate the insertion or deletion of an element. Thus, if you create a subclass of NSMutableArray, you should
override all five primitive methods so that the other methods in NSMutableArray’s interface work properly.

Creating and Initializing an NSMutableArray

+ (id)allocWithZone:(NSZone *)zone Creates and returns an uninitialized NSMutableArray in
zone.

OpenStep Specification—10/19/942-80 Chapter 2: Foundation Kit

+ (id)arrayWithCapacity: (unsigned int)aNumItems Creates and returns an NSMutableArray, giving it enough
allocated memory to hold numItems objects.

– (id)initWithCapacity: (unsigned int)aNumItems Initializes a newly allocated NSMutableArray, giving it
enough memory to hold numItems objects.

Adding Objects

– (void)addObject:(id)anObject Inserts anObject at the end of the array. Raises
NSInvalidArgumentException if anObject is nil .

– (void)addObjectsFromArray: (NSArray *)anotherArray
Adds the objects contained in anotherArray to the end of

the receiver’s array.

– (void)insertObject:(id)anObject atIndex:(unsigned int)index
Inserts anObject into the array at index. Raises

NSInvalidArgumentException if anObject is nil . Raises
NSRangeException if index is outside of the bounds of
the array.

Removing Objects

– (void)removeAllObjects Empties the array of all its elements.

– (void)removeLastObject Removes the last object in the array and sends it a release
message. Raises NSRangeException if there are no
objects in the array.

– (void)removeObject:(id)anObject Removes all occurrences of anObject. isEqual: is used to
test for anObject.

– (void)removeObjectAtIndex:(unsigned int)index Removes the object at index and moves all elements
beyond index up one slot to fill the gap. Raises
NSRangeException if index is outside of the bounds of
the array.

– (void)removeObjectIdenticalTo:(id)anObject Removes all elements having the same id as anObject.

– (void)removeObjectsFromIndices:(unsigned int*)indices
numIndices:(unsigned int)count Removes objects at the positions specified in the indices

array, which has count elements. Raises
NSRangeException if any of the indices is outside of
the bounds of the array. This method is provided for
efficiency reasons; it will not work if the receiver is a
proxy to an array in another process.

– (void)removeObjectsInArray: (NSArray *)otherArray
Removes from the receiver the objects found in otherArray.

Classes: NSMutableArray 2-81OpenStep Specification—10/19/94

Replacing Objects

– (void)replaceObjectAtIndex:(unsigned int)index Replaces the object at index with anObject. Raises
 withObject: (id)anObject NSInvalidArgumentException if anObject is nil . Raises

NSRangeException if index is not within the bounds of
the array.

– (void)setArray: (NSArray *)otherArray Sets the contents of the receiver to the elements in
otherArray

Sorting Elements

– (void)sortUsingFunction:(int (*)(id element1, id element2,void *userData))comparator
context:(void *)context Sorts the receiver’s elements in ascending order as defined

by the comparison function comparator. context is
passed as the function’s third argument.

– (void)sortUsingSelector:(SEL)comparator Sorts the receiver’s elements in ascending order as defined
by the comparison method comparator.

OpenStep Specification—10/19/942-82 Chapter 2: Foundation Kit

NSMutableCharacterSet

Inherits From: NSCharacterSet : NSObject

Conforms To: NSCopying, NSMutableCopying
NSCoding, NSCopying, NSMutableCopying (NSCharacterSet)
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSMutableCharacterSet class declares the programmatic interface to objects that construct mutable
descriptions of character sets in the Unicode character encoding. Ha ving constructed such character set
descriptions using methods described in the NSCharacterSet class, you can use the methods described here to
modify the character sets dynamically.

Adding and Removing Characters

– (void)addCharactersInRange:(NSRange)aRange Adds to the receiver the Unicode characters whose values
are given by aRange.

– (void)addCharactersInString:(NSString *)aString Adds the characters in aString to those in the receiver.

– (void)removeCharactersInRange:(NSRange)aRange
Removes from the receiver the Unicode characters whose

values are given by aRange.

– (void)removeCharactersInString:(NSString *)aString
Removes from the receiver the characters in aString.

Combining Character Sets

– (void)formIntersectionWithCharacterSet: (NSCharacterSet *)otherSet
Modifies the receiver so that it contains only those

characters that exist in both the receiver and in otherSet.

– (void)formUnionWithCharacterSet: (NSCharacterSet *)otherSet
Modifies the receiver so that it contains all characters that

exist in either the receiver or otherSet, barring
duplicates.

Classes: NSMutableCharacterSet2-83OpenStep Specification—10/19/94

Inverting a Character Set

– (void)invert Replaces all of the characters in the receiver with all the
characters it didn’t previously contain.

OpenStep Specification—10/19/942-84 Chapter 2: Foundation Kit

NSMutableData

Inherits From: NSData : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSData)
NSObject (NSObject)

Declared In: Foundation/NSData.h
Foundation/NSSerialization.h

Class Description

The NSMutableData class declares the programmatic interface to objects that contain modifiable data in the form
of bytes. This class inherits all read-only access methods from its superclass, NSData, and declares only those
methods that permit the modification of the data.

NSMutableData’s two primitive methods—mutableBytes and setLength:—provide the basis for all the other
methods in its interface. The mutableBytes method returns a pointer for writing into the bytes contained in the
mutable data object. setLength: allows you to truncate or extend the length of a mutable data object.

The appendBytes:length: and appendData: methods let you append bytes or the contents of another data object
to a mutable data object. You can replace a range of bytes in a mutable data object with either zeroes (using the
resetBytesInRange: method), or with different bytes (using the replaceBytesInRange:withBytes: method).

This class declares various serialization methods that enable architecture-independent serialization of arbitrary
Objective C types.

Creating an NSMutableData Object

+ (id)allocWithZone:(NSZone *)zone Creates and returns an uninitialized mutable data object
from zone.

+ (id)dataWithCapacity: (unsigned int)numBytes Creates and returns a mutable data object, initially
allocating enough memory to hold numBytes bytes.

+ (id)dataWithLength: (unsigned int)length Creates and returns a mutable data object, giving it enough
memory to hold length bytes. Fills the object with
zeroes up to length.

– (id)initWithCapacity: (unsigned int)capacity Initializes a newly allocated mutable data object, giving it
enough memory to hold capacity bytes. Sets the length
of the data object to 0.

– (id)initWithLength: (unsigned int)length Initializes a newly allocated mutable data object, giving it
enough memory to hold length bytes. Fills the object
with zeroes up to length.

Classes: NSMutableData 2-85OpenStep Specification—10/19/94

Adjusting Capacity

– (void)increaseLengthBy:(unsigned int)extraLengthIncreases the length of a mutable data object by
extraLength zero-filled bytes.

– (void *)mutableBytes Returns a pointer to the bytes in a mutable data object,
enabling you to modify the bytes.

– (void)setLength:(unsigned int)length Extends or truncates the length of a mutable data object by
length bytes. If the mutable data object is extended, the
additional bytes are zero-filled.

Appending Data

– (void)appendBytes:(const void *)bytes Appends length bytes to a mutable data object from
length:(unsigned int)length the buffer bytes.

– (void)appendData:(NSData *)other Appends the contents of the data object other to the
receiver.

Modifying Data

– (void)replaceBytesInRange:(NSRange)aRange Replaces the receiver’s bytes located in aRange with bytes.
withBytes:(const void *)bytes Raises an NSRangeException if aRange is not within

the range of the receiver's data.

– (void)resetBytesInRange:(NSRange)aRange Replaces the receiver’s bytes located in aRange with zeros.
Raises an NSRangeException if aRange is not within
the range of the receiver's data.

Serializing Data

– (void)serializeAlignedBytesLength:(unsigned int)length
Prepares bytes for an appendBytes:length: invocation by

serializing them. If the length of the bytes will cause
extension past the page size, this method encodes
header information, creating a hole so that all bytes in
the data object are aligned on page boundaries.

– (void)serializeDataAt:(const void *)data Serializes whatever data element is referenced by data,
ofObjCType: (const char *)type interpreting it by the Objective C type specifier type.
context: If the data element is an object other than an instance of
(id <NSObjCTypeSerializationCallBack>)callback NSDictionary, NSArray, NSString, or NSData, further

definition of the object can occur through a callback
from object callback. All Objective C types are
currently supported except unions and void *. Pointers
refer to a single item.

OpenStep Specification—10/19/942-86 Chapter 2: Foundation Kit

– (void)serializeInt:(int)value Serializes the integer value by encoding it as a character
representation.

– (void)serializeInt:(int)value Serializes the integer value by encoding it as a character
atIndex:(unsigned int)index representation and replaces the encoded value at the

specified index in the data.

– (void)serializeInts:(int *) intBuffer Serializes numInts count of integers in intBuffer by
count:(unsigned int)numInts encoding each integer as a character representation.

– (void)serializeInts:(int *) intBuffer Serializes numInts count of integers in intBuffer by
count:(unsigned int)numInts encoding each integer, starting at the specified
atIndex:(unsigned int)index index, and replacing each corresponding integer

encoding serially.

Classes: NSMutableDictionary2-87OpenStep Specification—10/19/94

NSMutableDictionary

Inherits From: NSDictionary : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSDictionary)
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

Class Description

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable associations
of keys and values. With its two efficient primitive methods—setObject:forKey: and removeObject:forKey:—
this class adds modification operations to the basic operations it inherits from NSDictionary.

The other methods declared here operate by invoking one or both of these primitives. The derived methods provide
convenient ways of adding or removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects that make up the entry receive a
release message, which can cause them to be deallocated. Note that if your program keeps a reference to such
objects, the reference will become invalid unless you remember to send the object a retain message before it’s
removed from the dictionary. For example, the third statement below could result in a run-time error, except for the
retain message in the first statement:

id anObject = [[aDictionary objectForKey: theKey] retain];

[aDictionary removeObjectForKey: theKey];

[anObject someMessage];

Allocating and Initializing

+ (id)allocWithZone:(NSZone *)zone Creates and returns an uninitialized NSMutableDictionary
in zone.

+ (id)dictionaryWithCapacity: (unsigned int)aNumItems
Creates and returns an NSMutableDictionary, giving it

enough allocated memory to hold numEntries entries.

– (id)initWithCapacity: (unsigned int)aNumItems Initializes a newly allocated NSMutableDictionary, giving
it enough allocated memory to hold numEntries entries.

OpenStep Specification—10/19/942-88 Chapter 2: Foundation Kit

Adding and Removing Entries

– (void)addEntriesFromDictionary: (NSDictionary *)otherDictionary
Adds the entries from otherDictionary to the receiver.

– (void)removeAllObjects Empties the receiver of its entries.

– (void)removeObjectForKey:(id)theKey Removes theKey and its associated value object from the
dictionary. Raises NSInvalidArgumentException if
aKey is nil .

– (void)removeObjectsForKeys:(NSArray *)keyArray
Removes from the receiver one or more entries as identified

by the keys in keyArray.

– (void)setObject:(id)anObject Adds an entry to the receiver, consisting of anObject and its
forKey: (id)aKey corresponding key aKey. Raises

NSInvalidArgumentException if either anObject or
aKey is nil.

– (void)setDictionary:(NSDictionary *)otherDictionary
Sets the contents of the receiver to the keys and values in

other.

Classes: NSMutableSet2-89OpenStep Specification—10/19/94

NSMutableSet

Inherits From: NSSet : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class Description

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of objects.
NSMutableSet provides support for the mathematical concept of a set. A set, both in its mathematical sense, and in
the OpenStep implementation of NSMutableSet, is an unordered collection of distinct elements. OpenStep also
provides the NSCountedSet class for a mutable set that can contain multiple instances of the same element, and
provides the NSSet class for creating and managing immutable sets. In general, you should use NSSet unless you
really need a mutable set.

Use set objects as an alternative to array objects when the order of elements is not important, but performance in
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respond to hash and isEqual: methods. See the NSObject protocol for details on hash and
isEqual:.

Generally, you instantiate an NSMutableSet object by sending one of the set… methods to the NSMutableSet class
object, as described in the method descriptions for NSSet. These methods return an NSMutableSet object
containing the elements (if any) you pass in as arguments. Newly created instances of NSMutableSet created by
invoking the set method can be populated with objects using any of the init… methods. initWithObjects:: is the
designated initializer for this class.

Objects are added to an NSMutableSet using addObject:, which adds a single specified object to the set,
addObjectsFromArray: , which adds all objects from a specified array to the set, or by unionSet:, which adds all
the objects from another set to this set.

Objects are removed from an NSMutableSet using any of the methods intersectSet:, minusSet:,
removeAllObjects, or removeObject:.

OpenStep Specification—10/19/942-90 Chapter 2: Foundation Kit

Allocating and Initializing an NSMutableSet

+ (id)allocWithZone:(NSZone *)zone Creates and returns an uninitialized set object in zone.

+ (id)setWithCapacity:(unsigned)numItems Creates and returns a set object, giving it enough allocated
memory to hold numItems objects.

– (id)initWithCapacity: (unsigned)numItems Initializes a newly allocated set object, giving it enough
allocated memory to hold numItems objects.

Adding Objects

– (void)addObject:(id)object Adds object to the set, unless object is equal to some object
already in the set.

– (void)addObjectsFromArray: (NSArray *)array Adds to the set all the objects in array, by calling
addObject: for each one.

– (void)unionSet:(NSSet *)other Adds to the receiving set all the objects in other, by calling
addObject: for each one.

Removing Objects

– (void)intersectSet:(NSSet *)other Removes from the receiving set every object that’s not
equal to any object in other, by calling removeObject:
for each one.

– (void)minusSet:(NSSet *)other Removes from the receiving set every object that’s equal to
some object in other, by calling removeObject: for
each one.

– (void)removeAllObjects Empties the set of all its elements. (This method doesn’t
call removeObject:.)

– (void)removeObject:(id)object If any member of the receiving set is equal to object, this
method removes that object from the set.

Classes: NSMutableString2-91OpenStep Specification—10/19/94

NSMutableString

Inherits From: NSString : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSString)
NSObject (NSObject)

Declared In: Foundation/NSString.h

Class Description

NSMutableString (and NSString) declare the programmatic interface for objects that create and managemutable
representation-independent character strings. For a more general overview of string classes, see the description of
NSString.

NSMutableString (and NSString) are abstract classes for string manipulation. NSMutableString declares the
interface to objects that inherit all the capabilities of NSString objects, but in addition allow for modification of the
string data. NSString and NSMutableString provide factory methods that return autoreleased instances of
unspecified subclasses of strings.

You can instantiate an NSMutableString object by sending any of the stringWith … methods to the
NSMutableString class object. This set of methods also includes localizedStringWithFormat: . A newly allocated
NSMutableString object can also be initialized using the initWithCapacity : method, to set the string to a specified
capacity.

Creating Temporary Strings

+ (NSMutableString *)localizedStringWithFormat: (NSString *)format,...
Returns a string created by using format as a printf() style

format string, and the following arguments as values to
be substituted into the format string. The user’s default
locale is used for format information.

+ (NSMutableString *)stringWithCString: (const char *)zeroTerminatedBytes
Returns a mutable string containing the characters in

zeroTerminatedBytes, which must be null-terminated.
The zeroTerminatedBytes string should contain bytes in
the default C string encoding.

+ (NSMutableString *)stringWithCString: (const char *)bytes
length:(unsigned int)length Returns a mutable string containing length characters made

from bytes. This method doesn’t stop at a null byte.
bytes should contain bytes in the default C string
encoding.

OpenStep Specification—10/19/942-92 Chapter 2: Foundation Kit

+ (NSMutableString *)stringWithCapacity: (unsigned int)capacity
Returns an empty mutable string, using capacity as a hint

for how much initial storage to reserve.

+ (NSMutableString *)stringWithCharacters: (const unichar *)characters
length:(unsigned int)length Returns a mutable string containing characters. The first

length characters are copied into the string. This method
doesn’t stop at a null character.

+ (NSMutableString *)stringWithContentsOfFile: (NSString *)path
Returns a string containing the contents of the file specified

by path. This method attempts to determine the
encoding for the file. The string is assumed to be in
Unicode encoding, but if the encoding is determined not
to be Unicode, the default C string encoding is used
instead.

+ (NSMutableString *)stringWithFormat: (NSString *)format,...
Returns a mutable string created by using format as a

printf() style format string, and the subsequent
arguments as values to be substituted into the format
string.

Initializing a Mutable String

– initWithCapacity: (unsigned int)capacity Initializes a newly allocated mutable string object, giving it
enough allocated memory to hold capacity characters.

Modifying a String

– (void)appendFormat:(NSString *)format,... Adds a constructed string to the receiver. The new
characters are created by using format as a printf() style
format string, and the following arguments as values to
be substituted into the format string. Invokes
replaceCharactersInRange:withString: as part of its
implementation.

– (void)appendString:(NSString *)aString Adds the characters of aString to end of the receiver.
Invokes replaceCharactersInRange:withString: as
part of its implementation.

– (void)deleteCharactersInRange:(NSRange)range
Removes from the receiver the characters in range. This

method raises an NSStringBoundsError exception if
any part of range lies beyond the end of the string.
Invokes replaceCharactersInRange:withString: as
part of its implementation.

Classes: NSMutableString2-93OpenStep Specification—10/19/94

– (void)insertString: (NSString *)aString Inserts the characters of aString into the receiver, such that
atIndex:(unsigned)index the new characters begin at index and the existing

character from index to the end are shifted by the length
of aString. This method raises an NSStringBoundsError
exception if index lies beyond the end of the string.
Invokes replaceCharactersInRange:withString: as
part of its implementation.

– (void)replaceCharactersInRange:(NSRange)aRange
withString: (NSString *)aString Inserts the characters of aString into the receiver, such that

they replace the characters in aRange. This method
raises an NSStringBoundsError exception if any part of
aRange lies beyond the end of the string.

– (void)setString:(NSString *)aString Replaces the characters of the receiver with those in
aString.

OpenStep Specification—10/19/942-94 Chapter 2: Foundation Kit

NSNotification

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: Foundation/NSNotification.h

Class Description

NSNotification objects provide a flexible way to transmit event information between objects.

Message passing—invoking a method—is the standard way to convey information between objects. However, this
requires the object sending the message to know who the receiver is. At times this explicit binding of two objects
is undesirable—most notably because it would tie two otherwise independent subsystems. For these instances, a
looser broadcast model is introduced: An object posts a notification, which is dispatched to the appropriate
receivers through a notification center.

An object may post an NSNotification object (referred to as a notification object or simply, a notification), which
contains information about an object: the notification’s name, its sender, and an optional dictionary containing other
information. Other objects can register themselves as observers to receive notification objects when they are posted.
When the event happens, the registered objects receive notifications about it. The object posting the NSNotification
object, the object the notification is about, and the observer of the notification may all be different objects.

An NSNotificationCenter object registers observers for events and notifies the observers if these events occur. An
object may ask an NSNotificationCenter object (also known as a notification center) to observe an event regarding
another object. If the event occurs, the posting object tells the notification center to notify its observers that this
condition has occurred. The notification center then sends a notification to all observing objects. (See the class
specification of NSNotificationCenter for more on posting notification objects.)

This notification model frees an object from concern about what objects may want to observe it. An object involved
with an event—or another object—may simply post a notification about that event without knowing what objects—
if any—are observing the event. The notification center takes care of distributing notifications to registered
observers. Another benefit of this model is to allow multiple objects to listen for notifications, an effect that might
otherwise require explicitly setting up an array.

You instantiate a notification object directly by sending the notificationWithName:object: or
notificationWithName:object:userInfo: messages to the NSNotification class object. You can also create
notifications indirectly through the NSNotificationCenter class using the postNotificationName:object: and
postNotificationName:object:userInfo: convenience methods.

You can subclass NSNotification to contain information in addition to the notification name, sender, and dictionary.

NSNotification objects are immutable objects.

Classes: NSNotification 2-95OpenStep Specification—10/19/94

The NSNotification class adopts the NSCopying protocol, making it possible to treat notifications as
context-independent values that can be copied and reused. You can put notifications in an array and send the copy
message to that array, which recursively copies every item. This essentially allows clients to deal with notifications
as first class values that can be copied by collections.

Creating Notification Objects

+ (NSNotification *)notificationWithName: (NSString *)aName
object:(id)anObject Returns a notification object that associates the name

aName with the object anObject.

+ (NSNotification *)notificationWithName: (NSString *)aName
object:(id)anObject Returns a notification object that associates the name
userInfo:(NSDictionary *)userInfo aName with the object anObject and the dictionary of

arbitrary data userInfo. userInfo may be nil .

Querying a Notification Object

– (NSString *)name Returns the name of the notification.

– (id)object Returns the object (such as the sender) that’s associated
with this notification.

– (NSDictionary *)userInfo Returns a dictionary object associated with this
notification. Returns nil if there is no such object.

OpenStep Specification—10/19/942-96 Chapter 2: Foundation Kit

NSNotificationCenter

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotification.h

Class Description

An NSNotificationCenter object (or simply, notification center) is essentially a notification dispatch table. It notifies
all observers of events meeting specific criteria of notification and sender. This event information is encapsulated
in NSNotification objects, also known as notification objects, or simply, notifications. Client objects register
themselves as observers of a specific notification originating in another object. When the condition occurs to signal
a notification, some object (which may or may not be the object observed) posts an appropriate notification object
to the notification center. (See the class specification of NSNotification for more on notification objects.) The
notification center dispatches a message to each observer (using the selector provided by the observer), with the
notification as the sole argument.

An object registers itself to observe notifications by the addObserver:selector:name:object: method, specifying
the object and associated notification it wants to see. However, the observer need not specify both of these
parameters. If it specifies only the object, it will see all notifications associated with that object. If the object
specifies only a notification name to observe, it will see that notification for any object whenever it’s posted.

The methods postNotificationName:object: and postNotificationName:object:userInfo: are provided as
convenience methods, which both create and post notifications.

Each task has a default notification center.

As an example of using the notification center, suppose your program can perform a number of conversions on text
(for instance, MIF to RTF or RTF to ASCII). You have defined a class of objects that perform those conversions,
Convertor. Convertor objects might be added or removed during program execution. Your program has a client
object that wants to be notified when convertors are added or removed, allowing the application to reflect the
available options in a pop-up list. The client object would register itself as an observer by sending the following
messages to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(objectAddedToConvertorList:)

 name:@"NSConverterAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(objectRemovedFromConvertorList:)

 name:@"NSConverterRemoved" object:nil];

Classes: NSNotificationCenter2-97OpenStep Specification—10/19/94

When a user installs or removes a converter, the Convertor sends one of the following messages to the notification
center:

[[NSNotificationCenter defaultCenter]

 postNotificationName:@"NSConverterAdded" object:self];

or

[[NSNotificationCenter defaultCenter]

 postNotificationName:@"NSConverterRemoved" object:self];

The notification center identifies all observers who are interested in the “NSConverterAdded” or
“NSConverterRemoved” notifications by invoking the method they specified in the selector argument of
addObserver:selector:name:object:. In the case of our example observer, the selectors are
objectAddedToConvertorList: and objectRemovedFromConvertorList:. Assume the Convertor class has an
instance method convertorName that returns the name of the Convertor object. Then the
objectAddedToConvertorList: method might have the following implementation:

- (void)objectAddedToConvertorList:(NSNotification *)notification

{

 Convertor *addedConvertor = [notification object];

// Add this to our popup (it will only be added if not there)...

 [myPopUpButton addItem:[addedConvertor convertorName]];

}

The convertors don’t need to know anything about the pop-up list or any other aspect of the user interface to your
program.

Accessing the Default Notification Center

+ (NSNotificationCenter *)defaultCenter Returns the default notification center object; used for
generic notifications.

Adding and Removing Observers

– (void)addObserver:(id)anObserver Registers anObserver and aSelector with the receiver so
selector:(SEL)aSelector that anObserver receives an aSelector message when a
name:(NSString *)aName notification of name aName is posted to the notification
object:(id)anObject center by anObject. If anObject is nil , observer will get

posted whatever the object is. If aName is nil , observer
will get posted for all notifications that match anObject.

– (void)removeObserver:(id)anObserver Removes anObserver as the observer of any notifications
from any objects.

– (void)removeObserver:(id)anObserver Removes anObserver as the observer of aName
name:(NSString *)aName notifications from anObject.
object:anObject

OpenStep Specification—10/19/942-98 Chapter 2: Foundation Kit

Posting Notifications

– (void)postNotification:(NSNotification *)aNotification

Posts aNotification to the notification center. Raises
NSInvalidArgumentException if the name associated
with aNotification is nil .

– (void)postNotificationName:(NSString *)aName Creates a notification object that associates aName and
object:(id)anObject anObject and posts it to the notification center.

– (void)postNotificationName:(NSString *)aName Creates a notification object that associates aName and
object:(id)anObject anObject and posts it to the notification center. userInfo
userInfo:(NSDictionary *)userInfo is a dictionary of arbitrary data that will be passed with

the notification. userInfo may be nil .

Classes: NSNotificationQueue2-99OpenStep Specification—10/19/94

NSNotificationQueue

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotificationQueue.h

Class Description

NSNotificationQueue objects (or simply, notification queues) act as buffers for notifications centers (instances of
NSNotificationCenter). A notification queue maintains notifications (instances of NSNotification) generally in a
FIFO order (First In First Out). When a notification rises to the “top” of the queue, the queue posts it to the
notification center, which in turn dispatches the notification to all objects registered as observers.

NSNotificationQueue contributes two important features to OpenStep’s notification mechanism: asynchronous
posting and the coalescing of notifications. With NSNotificationCenter’s postNotification: and its variants, you can
post a notification immediately to a notification center. However, the invocation of the method is synchronous:
Before the posting object can resume its thread of execution, it must wait until the notification center dispatches the
notification to all observers and returns. With NSNotificationQueue’s enqueueNotification:postingStyle: and
enqueueNotification:postingStyle:coalesceMask:forModes:, however, you can post a notification
asynchronously by putting it on the queue. These methods immediately return to the invoking object after putting
the notification in the queue.

Posting to a notification queue can occur in one of three different styles. The posting style is an argument to both
enqueueNotification:... methods:

• NSPostWhenIdle. The notification is posted when the run loop is idle.

• NSPostASAP. The notification is posted as soon as possible.

• NSPostNow. The notification is posted immediately to the notification center.

Note: See “Enqueuing with the Different Posting Styles,” below, for details on and examples of enqueuing
notifications with the three postingStyle: constants.

What is the difference between enqueuing notifications with NSPostNow and posting notifications
(postNotification:)? Both post notifications immediately (but synchronously) to the notification center. The
difference is that enqueueNotification:... (with NSPostNow as posting style) coalesces notifications in the queue
before posting while postNotification: does not.

OpenStep Specification—10/19/942-100 Chapter 2: Foundation Kit

Coalescing is a process that removes notifications in the queue that are similar to the notification just enqueued (or
posted, if posting style is NSPostNow. The notification queue scans the notifications in the queue for those with
attributes matching the new notification and removes them, except for the notification that is topmost in the queue
(closest to being posted). You indicate the criteria for similarity by specifying the NSNotificationCoalescing
constants in the third argument of enqueueNotification:postingStyle:coalesceMask:forModes: (OR them in if
multiple):

• NSNotificationNoCoalescing. Do not coalesce notifications in the queue.

• NSNotificationCoalescingOnName. Coalesce notifications with the same name.

• NSNotificationCoalescingOnSender. Coalesce notifications with the same sender.

Every task has a default notification queue, which is associated with the task’s default notification center. You can
create your own notification queues, and have multiple queues per center and task; but you can have only one
notification center per task. NSNotificationQueue is a public, concrete class; instances of it are mutable.

Enqueuing with the Different Posting Styles

Any notification enqueued with the NSPostASAP posting style is posted to the notification center when the code
executing in the current run loop callout completes. Callouts can be Application Kit event messages, file descriptor
changes, timers, or another asynchronous notification. You’d typically use the NSPostASAP posting style for an
expensive resource, like the Display PostScript server. When many clients draw on the window buffer during a
callout, it’s expensive to flush the buffer to the Display PostScript server after every draw operation. So in this case,
each draw... method enqueues some notification such as “FlushTheServer” with coalescing on name and sender
specified, and a posting style of NSPostASAP. As a result, only one of those notifications is dispatched at the end
of the current callout, and the window buffer is flushed only once.

A notification enqueued with the NSPostIdle posting style is posted only when the run loop is in a wait state. In
this state, there is nothing in the run loop’s input channels, be it timers or other asynchronous notifications. A typical
example of enqueuing with the NSPostIdle posting style occurs when the user types text, and the program displays
the size of the text in bytes somewhere. It would be very expensive (and not very useful) to update the displayed
size after each character the user types, especially if the user types fast. In this case, the program enqueues a
notification after each character typed such as “ChangeTheDisplayedSize” with coalescing turned on and a posting
style of NSPostWhenIdle. When the user stops typing, the single “ChangeTheDisplayedSize” notification in the
queue (due to coalescing) is posted when the run loop is in a wait state and the display is updated.

A notification enqueued with NSPostNow is posted immediately to the notification center. You enqueue a
notification with NSPostNow (or post one with NSNotificationCenter’s postNotification:) when you do not
require asynchronous calling behavior. For many programming situations, synchronous behavior is not only
allowable but desirable; you want the notification center to return after dispatching so you can be sure that
observing objects have received the notification. Of course, you should enqueue with NSPostNow rather than use
postNotification: when there are similar notifications in the queue that you want to remove through coalescing.

Classes: NSNotificationQueue2-101OpenStep Specification—10/19/94

Creating Notification Queues

+ (NSNotificationQueue *)defaultQueue Returns the default NSNotificationQueue object for the
current task. This object always uses the default
notification-center object for the same task.

– (id)init Initializes and returns an NSNotificationQueue object that
uses the default notification-center object.

– (id)initWithNotificationCenter: (NSNotificationCenter *)notificationCenter
Initializes and returns an NSNotificationQueue object that

uses the notification-center object specified in
notificationCenter.

Inserting and Removing Notifications From a Queue

– (void)dequeueNotificationsMatching:(NSNotification *)notification
coalesceMask:(unsigned int)coalesceMask Removes all notifications from the queue that match the

notification’s attributes as specified by coalesceMask.
The mask (set through NSNotificationCoalescing
constants) can specify notification name, notification
sender, or both name and sender.

– (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle Puts a notification in the queue that the queue will post to

the notification center at the time indicated by
postingStyle. The notification queue posts in all runloop
modes, and it coalesces only notifications in the queue
that match both the name and sender of notification

– (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle Puts a notification in the queue that the queue will post to
coalesceMask:(unsigned int)coalesceMask the notification center at the time indicated by
forModes:(NSArray *)modes postingStyle, but only if the runloop is in a mode

identified by one of the string objects in the modes
array. The notification queue coalesces related
notifications in the queue as specified by coalesceMask.
If modes is nil , all runloop modes are valid for posting.

OpenStep Specification—10/19/942-102 Chapter 2: Foundation Kit

NSNumber

Inherits From: NSValue : NSObject

Conforms To: NSCoding, NSCopying (NSValue)
NSObject (NSObject)

Declared In: Foundation/NSValue.h

Class Description

NSNumber objects provide an object-oriented wrapper for the standard C-language number data types (int , double,
etc.). The Foundation Kit’s collection classes can store only objects, so this class provides a way to prepare numbers
of various types for use with the collection classes.

NSNumber, which inherits from NSValue, provides methods for creating number objects that contain data of a
specified type. It also provides methods for extracting data from a number object and casting the data to be of a
particular type. For determining whether two number objects are equal, NSNumber provides the compare: method.

Allocating and Initializing

+ (NSNumber *)numberWithBool: (BOOL)value Creates and returns a number object representing value of
the type BOOL .

+ (NSNumber *)numberWithChar: (char)value Creates and returns a number object representing value of
the type char.

+ (NSNumber *)numberWithDouble: (double)value
Creates and returns a number object representing value of

the type double.

+ (NSNumber *)numberWithFloat: (float)value Creates and returns a number object representing value of
the type float.

+ (NSNumber *)numberWithInt: (int)value Creates and returns a number object representing value of
the type int .

+ (NSNumber *)numberWithLong: (long)value Creates and returns a number object representing value of
the type long.

+ (NSNumber *)numberWithLongLong: (long long)value
Creates and returns a number object representing value of

the type long long.

+ (NSNumber *)numberWithShort: (short)value Creates and returns a number object representing value of
the type short.

Classes: NSNumber2-103OpenStep Specification—10/19/94

+ (NSNumber *)numberWithUnsignedChar:(unsigned char)value
Creates and returns a number object representing value of

the type unsigned char.

+ (NSNumber *)numberWithUnsignedInt: (unsigned int)value
Creates and returns a number object representing value of

the type unsigned int.

+ (NSNumber *)numberWithUnsignedLong:(unsigned long)value
Creates and returns a number object representing value of

the type unsigned long.

+ (NSNumber *)numberWithUnsignedLongLong:(unsigned long long)value
Creates and returns a number object representing value of

the type unsigned long long.

+ (NSNumber *)numberWithUnsignedShort:(unsigned short)value
Creates and returns a number object representing value of

the type unsigned short.

Accessing Data

– (BOOL)boolValue Returns the receiver’s value as a boolean value.

– (char)charValue Returns the receiver’s value as a character value.

– (double)doubleValue Returns the receiver’s value as a double precision floating
point value.

– (float)floatValue Returns the receiver’s value as a single precision floating
point value.

– (int)intValue Returns the receiver’s value as a integer value.

– (long long)longLongValue Returns the receiver’s value as a long long double precision
floating point value.

– (long)longValue Returns the receiver’s value as a long double precision
floating point value.

– (short)shortValue Returns the receiver’s value as a short integer value.

– (NSString *)stringValue Returns the receiver’s value as a string contained in an
NSString object.

– (unsigned char)unsignedCharValue Returns the receiver’s value as an unsigned character value.

– (unsigned int)unsignedIntValue Returns the receiver’s value as an unsigned integer value.

– (unsigned long long)unsignedLongLongValue Returns the receiver’s value as an unsigned long long
double precision floating point value.

OpenStep Specification—10/19/942-104 Chapter 2: Foundation Kit

– (unsigned long)unsignedLongValue Returns the receiver’s value as an unsigned long double
precision floating point value.

– (unsigned short)unsignedShortValue Returns the receiver’s value as an unsigned short integer
value.

Comparing Data

– (NSComparisonResult)compare:(NSNumber *)otherNumber
Compares the receiver to otherNumber, using ANSI C rules

for type coersion, and returns an NSComparisonResult.

Classes: NSObject2-105OpenStep Specification—10/19/94

NSObject

Inherits From: none (NSObject is the root class)

Conforms To: NSObject

Declared In: Foundation/NSObject.h
Foundation/NSRunLoop.h

Class Description

NSObject is the root class of all ordinary Objective C inheritance hierarchies; it has no superclass. Its interface
derives from two sources: the methods it declares directly and those declared in the NSObject protocol. Its interface
is divided in this way so that objects inheriting from other root classes (notably NSProxy) can stand in for ordinary
objects without having to inherit from NSObject. The following discussion makes no distinction between the
methods declared in this class and those declared in the NSObject protocol.

From NSObject, other classes inherit a basic interface to the run-time system for the Objective C language. It’s
through NSObject that instances of all classes obtain their ability to behave as objects. Among other things, the
NSObject class provides inheriting classes with a framework for creating, initializing, deallocating, comparing, and
archiving objects, for performing methods selected at run-time, for querying an object about its methods and its
position in the inheritance hierarchy, and for forwarding messages to other objects. For example, to ask an object
what class it belongs to, you’d send it a class message. To find out whether it implements a particular method, you’d
send it a respondsToSelector: message

The NSObject class is an abstract class; programs use instances of classes that inherit from NSObject, but never of
NSObject itself.

Initializing an Object to Its Class

Every object is connected to the run-time system through its isa instance variable, inherited from the NSObject
class. isa identifies the object’s class; it points to a structure that’s compiled from the class definition. Through isa,
an object can find whatever information it needs at run time—such as its place in the inheritance hierarchy, the size
and structure of its instance variables, and the location of the method implementations it can perform in response
to messages.

Because all ordinary objects inherit directly or indirectly from the NSObject class, they all have this variable. The
defining characteristic of an “object” is that its first instance variable is an isa pointer to a class structure.

The installation of the class structure—the initialization of isa—is one of the responsibilities of the alloc and
allocWithZone: methods, the same methods that create (allocate memory for) new instances of a class. In other
words, class initialization is part of the process of creating an object; it’s not left to the methods, such as init , that
initialize individual objects with their particular characteristics.

OpenStep Specification—10/19/942-106 Chapter 2: Foundation Kit

Instance and Class Methods

Every object requires an interface to the run-time system, whether it’s an instance object or a class object. For
example, it should be possible to ask either an instance or a class whether it can respond to a particular message.
So that this won’t mean implementing every NSObject method twice, once as an instance method and again as a
class method, the run-time system treats methods defined in the root class in a special way:

Instance methods defined in the root class can be performed both by instances
and by class objects.

A class object has access to class methods—those defined in the class and those inherited from the classes above it
in the inheritance hierarchy—but generally not to instance methods. However, the run-time system gives all class
objects access to the instance methods defined in the root class. Any class object can perform any root instance
method, provided it doesn’t have a class method with the same name.

For example, a class object could be sent messages to perform NSObject’s respondsToSelector: and
perform:withObject: instance methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsToSelector:method])

 [MyClass perform:method withObject:self];

When a class object receives a message, the run-time system looks first at the receiver’s set of class methods. If it
fails to find a class method that can respond to the message, it looks at the set of instance methods defined in the
root class. If the root class has an instance method that can respond (as NSObject does for respondsToSelector:
and perform:withObject:), the run-time system uses that implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root class. If MyClass in the
example above had reimplemented either respondsToSelector: or perform:withObject: , those new versions of
the methods would be available only to instances. The class object for MyClass could perform only the versions
defined in the NSObject class. (Of course, if MyClass had implemented respondsToSelector: or
perform:withObject: as class methods rather than instance methods, the class would perform those new versions.)

Initializing the Class

+ (void)initialize Initializes the class before it’s used (before it receives its
first message).

Creating and Destroying Instances

+ (id)alloc Returns a new, uninitialized instance of the receiving class.

+ (id)allocWithZone:(NSZone *)zone Returns a new, uninitialized instance of the receiving class
in zone.

Classes: NSObject2-107OpenStep Specification—10/19/94

+ (id)new Allocates a new instance of the receiving class, sends it an
init message, and returns the initialized object returned
by init . This method is simply a convenient cover for
the alloc and init methods.

– (id)copy Invokes copyWithZone:. This method is implemented in
NSObject as a convenience to subclasses. A subclass
need override only copyWithZone: for both copy and
copyWithZone: to operate correctly.

– (void)dealloc Deallocates the memory occupied by the receiver.

– (id)init Implemented by subclasses to initialize a new object (the
receiver) immediately after memory for it has been
allocated.

– (id)mutableCopy Invokes mutableCopyWithZone:. This method is
implemented in NSObject as a convenience to
subclasses. A subclass need override only
mutableCopyWithZone: for both mutableCopy and
mutableCopyWithZone: to operate correctly.

Identifying Classes

+ (Class)class Returns self. Since this is a class method, it returns the class
object.

+ (Class)superclass Returns the class object for the receiver’s superclass.

Testing Class Functionality

+ (BOOL)instancesRespondToSelector:(SEL)aSelector
Returns YES if instances of the class are capable of

responding to aSelector messages, and NO if they’re
not.

Testing Protocol Conformance

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol
Returns YES if the receiving class conforms to aProtocol,

and NO if it doesn’t.

OpenStep Specification—10/19/942-108 Chapter 2: Foundation Kit

Obtaining Method Information

+ (IMP)instanceMethodForSelector:(SEL)aSelector
Locates and returns the address of the implementation of

the aSelector instance method.

– (IMP)methodForSelector:(SEL)aSelector Locates and returns the address of the receiver’s
implementation of the aSelector method, so that it can
be called as a function.

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
Returns an object that contains a description of the

aSelector method, or nil if the aSelector method can’t
be found.

Describing Objects

+ (NSString *)description Subclasses override this method to return a
human-readable string representation of the contents of
the receiver. NSObject’s implementation simply prints
the name of the receiver’s class.

Posing

+ (void)poseAsClass:(Class)aClass Causes the receiving class to “pose as” its superclass.

Error Handling

– (void)doesNotRecognizeSelector:(SEL)aSelector
Handles aSelector messages that the receiver doesn’t

recognize.

Sending Deferred Messages

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget
selector:(SEL)aSelector Cancels previous perform requests having the same target
object:(id)anObject and argument (as determined by isEqual:), and the

same selector. This method removes timers only in the
current run loop, not all run loops.

– (void)performSelector:(SEL)aSelector Sends an aSelector message to anObject after delay. self
object:(id)anObject and anObject are retained until after the action is
afterDelay:(NSTimeInterval)delay executed.

Classes: NSObject2-109OpenStep Specification—10/19/94

Forwarding Messages

– (void)forwardInvocation: (NSInvocation *)anInvocation
Implemented by subclasses to forward messages to other

objects.

Archiving

– (id)awakeAfterUsingCoder:(NSCoder *)aDecoderImplemented by subclasses to reinitialize the receiver. The
NSObject implementation of this method simply
returns self.

– (Class)classForArchiver Identifies the class to be used during archiving. NSObject’s
implementation returns the object returned by
classForCoder:.

– (Class)classForCoder Identifies the class to be used during serialization. An
NSObject returns its own class by default.

– (id)replacementObjectForArchiver:(NSArchiver *)anArchiver
Allows an object to substitute another object for itself

during archiving. NSObject’s implementation returns
the object returned by replacementObjectForCoder:.

– (id)replacementObjectForCoder:(NSCoder *)anEncoder
Allows an object to substitute another object for itself

during serialization. NSObject’s implementation
returns self.

+ (void)setVersion:(int)version Sets the class version number to version.

+ (int)version Returns the version of the class definition.

OpenStep Specification—10/19/942-110 Chapter 2: Foundation Kit

NSProcessInfo

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSProcessinfo.h

Class Description

The NSProcessInfo class provides methods to access process-wide information. An NSProcessInfo object can
return such information as the arguments, environment, host name, or process name. The processInfo class method
returns an NSProcessInfo object. For example, the following code creates an NSProcessInfo object, which then
provides the name of the current process:

[[NSProcessInfo processInfo] processName];

Getting an NSProcessInfo Object

+ (NSProcessInfo *)processInfo Returns the NSProcessInfo object for the process. It is
already initialized. An NSProcessInfo object is created
the first time this method is invoked, and that same
object is returned on each subsequent invocation.

Returning Process Information

– (NSArray *)arguments Returns the arguments as an array of NSStrings from the
command line.

– (NSDictionary *)environment Returns a dictionary of variables defined for the
environment from which the process was launched.

– (NSString *)hostName Returns the name of the host system.

– (NSString *)processName Returns the name of the process under which this
program’s user defaults domain is created, and is the
name used in error messages. It does not uniquely
identify the process.

– (NSString *)globallyUniqueString Returns a globally unique string to identify the process.
This method uses the host name, process ID, and a
timestamp to ensure that the string returned will be
globally unique.

Classes: NSProcessInfo2-111OpenStep Specification—10/19/94

Specifying a Process Name

– (void)setProcessName:(NSString *)newName Sets the name of the process to newName. Warning:
Aspects of the environment like user defaults might
depend on the process name, so be very careful if you
change this. Setting the process name this way is not
thread-safe.

OpenStep Specification—10/19/942-112 Chapter 2: Foundation Kit

NSProxy

Inherits From: none (NXProxy is a root class)

Conforms To: NSObject

Declared In: Foundation/NSProxy

Class Description

The NSProxy class declares the programmatic interface to proxies—objects that stand in for real objects (usually
descendants of the NSObject class), where the real objects may exist within the same or another process, perhaps
even in a system of a different architecture across a network. To the application, the proxy behaves like the real
object, though the real object may not be directly accessible, and in general, instance variables of remote objects
are not accessible.

NSProxy class defines few methods, because proxies respond to few messages directly. Instead, when a proxy
receives a message it doesn’t respond to, it encodes the message, including the arguments, in an invocation, and
invokes forwardInvocation: . Specialized subclasses then direct further processing, such as forwarding the
message to a real object in the same or another process.

Methods defined in this class are methods that the NSProxy class responds to directly. Unless otherwise noted, none
of these methods are forwarded to the proxy’s correspondent.

Your application in general doesn’t instantiate NSProxy objects—they’re created as instances of specialized
subclasses. Proxies are reference-counted so that only a single NSProxy per connection is instantiated for any real
object.

Creating and Destroying Instances

+ (id)alloc Returns a new, uninitialized instance of the receiving class.

+ (id)allocWithZone:(NSZone *)zone Returns a new, uninitialized instance of the receiving class
in zone.

– (void)dealloc Deallocates the memory occupied by the receiver.

Identifying Classes

+ (Class)class Returns self. Since this is a class method, it returns the class
object.

Classes: NSProxy2-113OpenStep Specification—10/19/94

Obtaining Method Information

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
Implemented by subclasses to return an object that contains

a description of the aSelector method, or nil if the
aSelector method can’t be found. The NSProxy
implementation of this method raises an
NSInvalidArgumentException exception.

Describing Objects

– (NSString *)description Prints the name of receiver’s class and the hexadecimal
value of the its id.

Forwarding Messages

– (void)forwardInvocation: (NSInvocation *)invocation
Implemented by subclasses to forward messages to other

objects. The NSProxy implementation of this method
raises an NSInvalidArgumentException exception.

OpenStep Specification—10/19/942-114 Chapter 2: Foundation Kit

NSRecursiveLock

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h

Class Description

NSRecursiveLock is used for locks that need to be reacquired by the same thread.

An NSRecursiveLock locks a critical section of code such that a single thread can reaquire the lock multiple times
without deadlocking, while preventing access by other threads. (Note that this implies that a recursive lock will not
protect a critical section from a signal handler interrupting the thread holding the lock.) Here is an example where
a recursive lock functions properly but other lock types would deadlock:

// create the lock only once!

NSRecursiveLock *theLock = [NSRecursiveLock new];

/* ...other code... */

[theLock lock];

/* ... possibly a long time of fussing with global data... */

[theLock lock]; /* possibly invoked in a subroutine */

[theLock unlock];

[theLock unlock];

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the NSLocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

Acquiring a Lock

– (BOOL)tryLock Attempts to acquire a lock. Returns YES if successful and
NO otherwise. This method can be called repeatedly to
produce nested locks.

Classes: NSRunLoop2-115OpenStep Specification—10/19/94

NSRunLoop

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSRunLoop.h

Class Description

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An NSRunLoop
object processes input for sources such as mouse and keyboard events from the window system, NSTimers, POSIX
file descriptors, and NSConnections, based on a mode argument. A given NSRunLoop object processes input for
input sources associated with a particular mode.

In general, your application won’t need to either create or explicitly manage NSRunLoop objects. Each thread has
an NSRunLoop object automatically created for it. The NSApplication object creates a default thread and therefore
creates a default run loop.

Applications wanting to perform their own explicit run loop management should send the currentRunLoop
message to the NSRunLoop class object to obtain the NSRunLoop object for the current thread, then invoke one of
the methods described below in “Running a Run Loop” to obtain input.

Currently defined modes are:

NSDefaultRunLoopMode Use this mode to deal with input sources other than NSConnections. Defined
in the Foundation/NSRunLoop.h header file.

NSConnectionReplyMode Use this mode to indicate NSConnections waiting for replies. Defined in the
Foundation/NSConnection.h header file.

Accessing the Current Run Loop

+ (NSRunLoop *)currentRunLoop Returns the NSRunLoop for the current thread.

– (NSString *)currentMode Returns the current run loop mode.

– (NSDate *)limitDateForMode: (NSString *)mode Polls timers and platform-specific input managers for their
limit date (if any). Timers will fire if appropriate.
Returns nil if there are no input sources for this mode.

OpenStep Specification—10/19/942-116 Chapter 2: Foundation Kit

Adding Timers

– (void)addTimer: (NSTimer *)aTimer Registers the timer aTimer with input filter mode. The run
forMode: (NSString *)mode loop causes the timer to fire at its scheduled fire date.

Note that timers are removed from modes if they supply
nil as their fire date.

Running a Run Loop

– (void)acceptInputForMode:(NSString *)mode Runs the run loop, accepting input from the input sources
beforeDate:(NSDate *)limitDate for the mode specified by mode until the time specified

by limitDate.

– (void)run Runs the run loop in the default mode until there is nothing
to do.

– (BOOL)runMode: (NSString *)mode Runs the run loop, accepting input from filter mode
beforeDate:(NSDate *)limitDate until limitDate or until the earliest limit date for input

sources in this mode. Returns NO without starting the
run loop if there are no limit dates set for input sources
(that is, there’s nothing to do).

– (void)runUntilDate: (NSDate *)limitDate Runs the run loop until limitDate or until there are no limit
dates set for input sources (that is, there’s nothing to
do).

Classes: NSScanner2-117OpenStep Specification—10/19/94

NSScanner

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: Foundation/NSScanner.h

Class Description

The NSScanner class declares the programmatic interface to an object that is capable of scanning NSString objects
(strings of characters in the Unicode character encoding), con verting the scanned strings to various numeric
representations, or scanning characters from a character set.

Generally, you instantiate a scanner object by sending one of scannerWithString: or
localizedScannerWithString: methods to the NSScanner class object. Either method returns a scanner object
initialized with the string you pass in.

NSScanner provides methods of configuring the behavior of the scan. setCaseSensitive: specifies whether the
scanner will treat upper case and lower case letters as distinct. setCharactersToBeSkipped: determines the set of
characters that will be skipped while scanning. The preset set of characters to skip are whitespace and newline
characters. setLocale: specifies the locale to be used while scanning strings. setScanLocation: sets the index in
the string object at that scanning will commence. Using this method, you can repeatedly scan portions of a string.

Scanning is performed using any of the scan… methods listed under “Scanning a String”.

Note that floating point numbers are assumed to be IEEE compliant.

Creating an NSScanner

+ (id)localizedScannerWithString:(NSString *)aString
Creates and returns a scanner that scans aString. Invokes

initWithString: and sets the locale to the user’s default
locale.

+ (id)scannerWithString:(NSString *)aString Creates and returns a scanner that scans aString.

– (id)initWithString: (NSString *)aString Initializes the receiver, a newly allocated scanner, to scan
aString. Returns self.

Getting an NSScanner’s String

– (NSString *)string Returns the string object that the scanner was created with.

OpenStep Specification—10/19/942-118 Chapter 2: Foundation Kit

Configuring an NSScanner

– (BOOL)caseSensitive Returns YES if the scanner distinguishes case, and NO
otherwise. Scanners are by default not case sensitive.

– (NSCharacterSet *)charactersToBeSkipped Returns a character set object containing those characters
that the scanner ignores when looking for an element.
The default set is the whitespace and newline character
set.

– (NSDictionary *)locale Returns a dictionary object containing locale information.
Returns nil if the locale dictionary has not been set.

– (unsigned)scanLocation Returns the character index at which the scanner will begin
its next scanning operation.

– (void)setCaseSensitive:(BOOL)flag If flag is YES, the scanner considers case when scanning
characters. If flag is NO, it ignores case distinctions.
NSScanners are by default not case sensitive.

– (void)setCharactersToBeSkipped:(NSCharacterSet *)aSet
Sets the scanner to ignore characters from aSet when

scanning its string.

– (void)setLocale:(NSDictionary *)localeDictionary Sets the receiver’s dictionary object containing locale
information.

– (void)setScanLocation:(unsigned int)anIndex Sets the location at which the next scan will begin to
anIndex.

Scanning a String

In the scan…methods listed here, the value arguments (which are values returned by reference) are optional. Pass
an argument value of nil if you do not wish a return value.

– (BOOL)scanCharactersFromSet:(NSCharacterSet *)aSet
intoString: (NSString **)value Scans the string as long as characters from aSet are

encountered, accumulating characters into an optional
string that’s returned by reference in value. If any
characters are scanned, returns YES; otherwise returns
NO.

– (BOOL)scanDouble:(double *)value Scans a double into value if possible. Returns YES if a
valid floating-point expression was scanned; NO
otherwise. HUGE_VAL or –HUGE_VAL is put in
value on overflow; 0.0 on underflow. Returns YES in
overflow and underflow cases

Classes: NSScanner2-119OpenStep Specification—10/19/94

– (BOOL)scanFloat:(float *)value Scans a float into value if possible. Returns YES if a valid
floating-point expression was scanned; NO otherwise.
HUGE_VAL or –HUGE_VAL is put in value on
overflow; 0.0 on underflow. Returns YES in overflow
and underflow cases.

– (BOOL)scanInt:(int *)value Scans an int into value if possible. Returns YES if a valid
integer expression was scanned; NO otherwise.
INT_MAX or INT_MIN is put in value on overflow.
Returns YES in overflow cases.

– (BOOL)scanLongLong:(long long *)value Scans a long long int into value if possible. Returns YES
if a valid integer expression was scanned; NO
otherwise. LONG_LONG_MAX or
LONG_LONG_MIN is put in value on overflow.
Returns YES in overflow cases.

– (BOOL)scanString:(NSString *)aString Scans for aString, and if a match is found returns by
intoString: (NSString **)value reference in the optional value argument a string object

equal to it. If aString matches the characters at the scan
location, returns YES; otherwise returns NO.

– (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)aSet
intoString: (NSString **)value Scans the string until a character from aSet is encountered,

accumulating characters encountered into a string that’s
returned by reference in the optional value argument. If
any characters are scanned, returns YES; otherwise
returns NO.

– (BOOL)scanUpToString:(NSString *)aString Scans the string until aString is encountered,
intoString: (NSString **)value accumulating characters encountered into a string that’s

returned by reference in the optional value argument. If
any characters are scanned, returns YES; otherwise
returns NO.

– (BOOL)isAtEnd Returns YES if the scanner has exhausted all characters in
its string; NO if there are characters left to scan.

OpenStep Specification—10/19/942-120 Chapter 2: Foundation Kit

NSSerializer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSSerialization.h

Class Description

The NSSerializer class provides a mechanism for creating an abstract representation of a property list. (In
OpenStep, property lists are defined to be—and to contain—objects of these classes: NSDictionary, NSArray,
NSString, NSData). The NSSerializer class stores this representation in an NSData object in an
architecture-independent format, so that property lists can be used with distributed applications. NSSerializer’s
companion class NSDeserializer declares methods that take the abstract representation and recreate the property
list in memory.

In contrast to archiving (see the NSArchiver class specification), the serialization process preserves only structural
information, not class information. Thus, if a property list is serialized and then deserialized, the objects in the
resulting property list might not be of the same class as the objects in the original property list. However, the
structure and interrelationships of the data in the resulting property list are identical to that in the original, with one
possible exception.

The exception is that when an object graph is serialized, the mutability of the containers objects (NSDictionary and
NSArray objects) is preserved only down to the highest node in the graph that has an immutable container. Thus,
if an NSArray contains an NSMutableDictionary, the serialized version of this object graph would not preserve the
mutability of the dictionary or any of the mutable objects it contained. Since serialization doesn’t preserve class
information or—in some cases—mutability, coding (as implemented by NSCoder and NSArchiver) is the preferred
way to make object graphs persistent.

The NSSerializer class object provides the interface to the serialization process; you don’t create instances of
NSSerializer. You might subclass NSSerializer to modify the representation it creates, for example, to encrypt the
data or add authentication information.

Other types of data besides property lists can be serialized using methods declared by the NSData and
NSMutableData classes (see serializeDataAt:ofObjCType:context: and
deserializeDataAt:ofObjCType:atCursor:context:), allowing these types to be represented in an
architecture-independent format. Furthermore, the NSObjCTypeSerializationCallBack protocol allows you to
serialize and deserialize objects that aren’t property lists.

Classes: NSSerializer2-121OpenStep Specification—10/19/94

Serialization of Property Lists

+ (NSData *)serializePropertyList:(id)aPropertyList
Creates a data object, serializes aPropertyList into it, and

returns the data object. aPropertyList must be a kind of
NSData, NSString, NSArray, or NSDictionary.

+ (void)serializePropertyList:(id)aPropertyList Serializes the property list aPropertyList in the mutable
intoData:(NSMutableData *)mdata data object mdata. aPropertyList must be a kind of

NSData, NSString, NSArray, or NSDictionary.

OpenStep Specification—10/19/942-122 Chapter 2: Foundation Kit

NSSet

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class Description

The NSSet class declares the programmatic interface to an object that manages an immutable set of objects. NSSet
provides support for the mathematical concept of a set. A set, both in its mathematical sense and in the OpenStep
implementation of NSSet, is an unordered collection of distinct elements. OpenStep provides the NSMutableSet
class for sets whose contents may be altered, and also provides the NSCountedSet class for sets that can contain
multiple instances of the same element.

Use set objects as an alternative to array objects when the order of elements is not important, but performance in
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets. For example, the NSSet method containsObject: operates in O(1) time when
applied to a set, while containsObject: operates in O(N) time when applied to an array.

Objects in a set must respond to hash and isEqual: methods. See the NSObject protocol for details on hash and
isEqual:.

Generally, you instantiate an NSSet object by sending one of the set… methods to the NSSet class object. These
methods return an NSSet object containing the elements (if any) you pass in as arguments. The set method is a
“convenience” method to create an empty set. Newly created instances of NSSet created by invoking the set method
can be populated with objects using any of the init… methods. initWithObjects:: is the designated initializer for
the NSSet class. Objects added to the set are not copied; rather, each object receives a retain message before it’s
added to the set.

NSSet provides methods for querying the elements of the set. allObjects returns an array containing all objects in
the set. anyObject returns some object in the set. count returns the number of objects currently in the set. member:
returns the object in the set that is equal to a specified object. Additionally, the intersectsSet: tests for set
intersection, isEqualToSet: tests for set equality, and isSubsetOfSet: tests for one set being a subset of the
specified set object.

The objectEnumerator method provides for traversing elements of the set one by one.

NSSet’s makeObjectsPerform: and makeObjectsPerform:withObject: methods provides for sending messages
to individual objects in the set.

Classes: NSSet2-123OpenStep Specification—10/19/94

Exceptions

NSSet implements the encodeWithCoder: method, which raises NSInternalInconsistencyException if the number
of objects enumerated for encoding turns out to be unequal to the number of objects in the set.

Allocating and Initializing a Set

+ (id)allocWithZone:(NSZone *)zone Creates and returns an uninitialized set object in zone.

+ (id)set Creates and returns an empty set object.

+ (id)setWithArray: (NSArray *)array Creates and returns a set object containing the objects in
array.

+ (id)setWithObject:(id)anObject Creates and returns a set object containing the single
element anObject.

+ (id)setWithObjects:(id)firstObj,... Creates and returns a set object containing the objects in the
argument list. The object list is comma-separated and
ends with nil .

– (id)initWithArray: (NSArray *)array Initializes a newly allocated set object by placing in it the
objects contained in array.

– (id)initWithObjects: (id)firstObj,... Initializes a newly allocated set object by placing in it the
objects in the argument list. The object list is
comma-separated and ends with nil .

– (id)initWithObjects: (id *)objects Initializes a newly allocated set object by placing in
count:(unsigned int)count it count objects from the objects array.

– (id)initWithSet: (NSSet *)anotherSet Initializes a newly allocated set object by placing in it the
objects contained in anotherSet.

– (id)initWithSet: (NSSet *)set Initializes a newly allocated set object by placing in it the
copyItems:(BOOL)flag objects contained in anotherSet (or immutable copies of

them, if flag is YES).

OpenStep Specification—10/19/942-124 Chapter 2: Foundation Kit

Querying the Set

– (NSArray *)allObjects Returns an array containing all the objects in the set.

– (id)anyObject Returns some object in the set, or nil if the set is empty.

– (BOOL)containsObject:(id)anObject Returns YES if anObject is present in the set.

– (unsigned int)count Returns the number of objects currently in the set.

– (id)member:(id)anObject Return the object in the set that is equal to anObject, or nil
if none is equal.

– (NSEnumerator *)objectEnumerator Returns an enumerator object that lets you access each
object in the set.

 Sending Messages to Elements of the Set

– (void)makeObjectsPerform:(SEL)aSelector Sends an aSelector message to each object in the set.

– (void)makeObjectsPerform:(SEL)aSelector Sends an aSelector message to each object in the
withObject: (id)anObject set, with anObject as an argument.

Comparing Sets

– (BOOL)intersectsSet:(NSSet *)otherSet Returns YES if there’s any object in the receiving set that’s
equal to an object in otherSet.

– (BOOL)isEqualToSet:(NSSet *)otherSet Returns YES if every object in the receiving set is equal to
an object in otherSet, and the two sets contain the same
number of objects.

– (BOOL)isSubsetOfSet:(NSSet *)otherSet Returns YES if every object in the receiving set is equal to
an object in otherSet, and the receiving set contains no
more objects than otherSet does.

Creating a String Description of the Set

– (NSString *)description Returns a string object that describes the contents of the
receiver.

– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary
Returns a string representation of the NSSet object,

including the keys and values that represent the locale
data from localeDictionary.

Classes: NSString2-125OpenStep Specification—10/19/94

NSString

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSString.h
Foundation/NSPathUtilities.h
Foundation/NSUtilities.h

Class Description

NSString declares the programmatic interface for objects that create and manage immutable character strings in a
representation-independent format.

NSString (and NSMutableString) are abstract classes for string manipulation. NSString provides methods for
read-only access, while NSMutableString allows for changing the contents of the string. NSString and
NSMutableString provide factory methods that return autoreleased instances of unspecified subclasses of strings.

While the actual representation of character strings stored in NSString and NSMutableString is independent of any
particular implementation, you can in general think of the contents of NSString and NSMutableString objects as
being, canonically, Unicode characters (defined by the unichar data type). Methods that use the terms “character”,
“range”, and “length”, refer to strings of unichars and ranges and lengths of unichar strings—this is important,
because conversion between unichars and other character encodings is not necessarily one-to-one. For instance,
an ISO Latin1 encoded string of a given length might contain fewer or more characters when encoded as unichars.
Another important point is that unichars don't necessarily correspond one-to-one with what is normally thought of
as “letters” in a string; if you need to go through a string in terms of ”letters”, use
rangeOfComposedCharacterSequenceAtIndex:.

Methods that take “CString” arguments deal with the default eight-bit encoding of the environment, which could
be, for instance, EUC or ISOLatin1. You can also explicitly convert to and from any encoding by using methods
such as initWithData:usingEncoding: and dataUsingEncoding:.

Constant NSStrings can be created with the @"..." option—such strings should contain only ASCII characters, and
nothing more.

Strings are provided with generic coding behavior when used for storage or distribution. This behavior is to copy
the contents and provide a generic NSString implementation, losing class but preserving mutability.

In general, you instantiate NSString objects sending one of the stringWith … methods or the
localizedStringWithFormat: method to the NSString class object. For NSString objects that were allocated
“manually”, use any of the initWith … methods to initialize the contents of the string object.

The primitive methods to NSString are length and characterAtIndex: .

OpenStep Specification—10/19/942-126 Chapter 2: Foundation Kit

UNIX-style file system path names can be manipulated using the collection of stringBy… methods described
under “Manipulating File System Paths” below.

Creating Temporary Strings

+ (NSString *)localizedStringWithFormat: (NSString *)format,...
Returns a string created by using format as a printf() style

format string, and the following arguments as values to
be substituted into the format string. The user’s default
locale is used for format information.

+ (NSString *)stringWithCString: (const char *)byteString
Returns a string containing the characters in byteString,

which must be null-terminated. byteString should
contain characters in the default C string encoding.

+ (NSString *)stringWithCString: (const char *)byteString
length:(unsigned int)length Returns a string containing characters from byteString.

byteString should contain characters in the default C
string encoding. length bytes are copied into the string,
regardless of whether a null byte exists in byteString.
Raises NSInvalidArgumentException if byteString is
NULL

+ (NSString *)stringWithCharacters: (const unichar *)chars
length:(unsigned int)length Returns a string containing chars. length characters are

copied into the string, regardless of whether a null
character exists in chars.

+ (NSString *)stringWithContentsOfFile: (NSString *)path
Returns a string containing the contents of the file specified

by path. This method attempts to determine the
encoding for the file. The string is assumed to be in
Unicode encoding, but if the encoding is determined not
to be Unicode, the default C string encoding is used
instead.

+ (NSString *)stringWithFormat: (NSString *)format,...
Returns a string created by using format as a printf() style

format string, and the following arguments as values to
be substituted into the format string.

Classes: NSString2-127OpenStep Specification—10/19/94

Initializing Newly Allocated Strings

– (id)init Initializes the receiver, a newly allocated NSString, to
contain no characters. This is the only initialization
method that a subclass of NSString should invoke.

– (id)initWithCString: (const char *)byteString Initializes the receiver, a newly allocated NSString, by
converting the one-byte characters in byteString into
Unicode characters. byteString must be a
null-terminated C string in the default C string
encoding.

– (id)initWithCString: (const char *)byteString Initializes the receiver, a newly allocated NSString, by
length:(unsigned int)length converting length one-byte characters in byteString into

Unicode characters. This method doesn’t stop at a null
byte.

– (id)initWithCStringNoCopy: (char *)byteString Initializes the receiver, a newly allocated NSString, by
length:(unsigned int)length converting length one-byte characters in byteString into
freeWhenDone:(BOOL)flag Unicode characters. This method doesn’t stop at a null

byte. The receiver becomes the owner of byteString; if
flag is YES it will free the memory when it no longer
needs it, but if flag is NO it won’t.

– (id)initWithCharacters: (const unichar *)chars Initializes the receiver, a newly allocated NSString, by
length:(unsigned int)length copying length characters from chars. This method

doesn’t stop at a null character.

– (id)initWithCharactersNoCopy: (unichar *)chars Initializes the receiver, a newly allocated NSString, to
length:(unsigned int)length contain length characters from chars. This method
freeWhenDone:(BOOL)flag doesn’t stop at a null character. The receiver becomes

the owner of chars; if flag is YES the receiver will free
the memory when it no longer needs them, but if flag is
NO it won’t. Note that the NO case could be dangerous
if used with memory that could be freed. The NO flag
should be used only when the provided backing store is
permanent.

– (id)initWithContentsOfFile: (NSString *)path Initializes the receiver, a newly allocated NSString, by
reading characters from the file whose name is given by
path. This method attempts to determine the encoding
for the file. The string is assumed to be in Unicode
encoding, but if the encoding is determined not to be
Unicode, the default C string encoding is used instead.
Also see writeToFile:atomically: in “Storing the
String”.

OpenStep Specification—10/19/942-128 Chapter 2: Foundation Kit

– (id)initWithData: (NSData *)data Initializes the receiver, a newly allocated NSString, by
encoding:(NSStringEncoding)encoding converting the bytes in data into Unicode characters.

data must be an NSData object containing bytes in
encoding and in the default “plain text” format for that
encoding.

– (id)initWithFormat: (NSString *)format,... Initializes the receiver, a newly allocated NSString, by
constructing a string from format and following string
objects in the manner of printf() .

– (id)initWithFormat: (NSString *)format Initializes the receiver, a newly allocated NSString, by
arguments:(va_list)argList constructing a string from format and argList in the

manner of vprintf() .

– (id)initWithFormat: (NSString *)format Initializes the receiver, a newly allocated NSString, by
locale:(NSDictionary *)dictionary,... constructing a string from format and the formatting

information in the dictionary in the manner of printf() .

– (id)initWithFormat: (NSString *)format Initializes the receiver, a newly allocated NSString, by
locale:(NSDictionary *)dictionary constructing a string from format and format
arguments:(va_list)argList information in dictionary and argList in the manner of

vprintf() .

– (id)initWithString: (NSString *)string Initializes the receiver, a newly allocated NSString, by
copying the characters from string.

Getting a String’s Length

– (unsigned int)length Returns the number of characters in the receiver. This
number includes the individual characters of composed
character sequences.

Accessing Characters

– (unichar)characterAtIndex: (unsigned int)index Returns the character at the array position given by index.
This method raises an NSStringBoundsError
exception if index lies beyond the end of the string.

– (void)getCharacters:(unichar *)buffer Invokes getCharacters:range: with the provided buffer
and the entire extent of the receiver as the range.

– (void)getCharacters:(unichar *)buffer Copies characters from aRange in the receiver into buffer,
range:(NSRange)aRange which must be large enough to contain them. This

method does not add a null character. This method
raises an NSStringBoundsError exception if any part
of aRange lies beyond the end of the string.

Classes: NSString2-129OpenStep Specification—10/19/94

Combining Strings

– (NSString *)stringByAppendingFormat: (NSString *)format,...
Returns a string made by using format as a printf() style

format string, and the following arguments as values to
be substituted into the format string.

– (NSString *)stringByAppendingString: (NSString *)aString
Returns a string made by appending aString and the

receiver.

Dividing Strings into Substrings

– (NSArray *)componentsSeparatedByString:(NSString *)separator
Finds the substrings in the receiver that are delimited by

separator and returns them as the elements of an
NSArray. The strings in the array appear in the order
they did in the receiver.

– (NSString *)substringFromIndex:(unsigned int)index
Returns a string object containing the characters of the

receiver starting from the one at index to the end. This
method raises an NSStringBoundsError exception if
index lies beyond the end of the string.

– (NSString *)substringFromRange:(NSRange)aRange
Returns a string object containing the characters of the

receiver which lie within aRange. This method raises an
NSStringBoundsError exception if any part of
aRange lies beyond the end of the string.

– (NSString *)substringToIndex:(unsigned int)index
Returns a string object containing the characters of the

receiver up to, but not including, the one at index. This
method raises an NSStringBoundsError exception if
index lies beyond the end of the string.

Finding Ranges of Characters and Substrings

– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
Invokes rangeOfCharacterFromSet:options: with no

options.

– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(unsigned int)mask Invokes rangeOfCharacterFromSet:options:range:

with mask and the entire extent of the receiver as the
range.

OpenStep Specification—10/19/942-130 Chapter 2: Foundation Kit

– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(unsigned int)mask Returns the range of the first character found from aSet.
range:(NSRange)aRange The search is restricted to aRange with mask options.

mask can be any combination (using the C bitwise OR
operator |) of NSCaseInsensitiveSearch,
NSLiteralSearch, and NSBackwardsSearch.

– (NSRange)rangeOfString:(NSString *)string Invokes rangeOfString:options: with no options.

– (NSRange)rangeOfString:(NSString *)string Invokes rangeOfString:options:range: with mask
options:(unsigned int)mask options and the entire extent of the receiver as the range.

– (NSRange)rangeOfString:(NSString *)aString Returns the range giving the location and length in the
options:(unsigned int)mask receiver of aString. The search is restricted to aRange
range:(NSRange)aRange with mask options. mask can be any combination (using

the C bitwise OR operator |) of
NSCaseInsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch, and NSAnchoredSearch.

Determining Composed Character Sequences

– (NSRange)rangeOfComposedCharacterSequenceAtIndex:(unsigned int)anIndex
Returns an NSRange giving the location and length in the

receiver of the composed character sequence located at
anIndex. This method raises an NSStringBoundsError
exception if anIndex lies beyond the end of the string.

Identifying and Comparing Strings

– (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString
Invokes compare:options: with the option

NSCaseInsensitiveSearch.

– (NSComparisonResult)compare:(NSString *)aString
Invokes compare:options: with no options.

– (NSComparisonResult)compare:(NSString *)aString
options:(unsigned int)mask Invokes compare:options:range: with mask as the options

and the receiver’s full extent as the range.

– (NSComparisonResult)compare:(NSString *)aString
options:(unsigned int)mask Compares aString to the receiver and returns their lexical
range:(NSRange)aRange ordering. The comparison is restricted to aRange and

uses mask options, which may be
NSCaseInsensitiveSearch and NSLiteralSearch.

– (BOOL)hasPrefix:(NSString *)aString Returns YES if aString matches the beginning characters
of the receiver, NO otherwise.

Classes: NSString2-131OpenStep Specification—10/19/94

– (BOOL)hasSuffix:(NSString *)aString Returns YES if aString matches the ending characters of
the receiver, NO otherwise.

– (unsigned int)hash Returns an unsigned integer that can be used as a table
address in a hash table structure. If two string objects
are equal (as determined by the isEqual: method), they
must have the same hash value.

– (BOOL)isEqual:(id)anObject Returns YES if both the receiver and anObject have the
same id or if they’re both NSStrings that compare as
NSOrderedSame, NO otherwise.

– (BOOL)isEqualToString:(NSString *)aString Returns YES if aString is equivalent to the receiver (if they
have the same id or if they compare as
NSOrderedSame), NO otherwise.

Storing the String

– (NSString *)description Returns the string itself.

– (BOOL)writeToFile: (NSString *)filename Writes a textual description of the receiver to filename.
atomically:(BOOL)useAuxiliaryFile If useAuxiliaryFile is YES, the data is written to a

backup file and then, assuming no errors occur, the
backup file is renamed to the intended file name. The
string is written in the default C string encoding if the
contents can be converted to that encoding. If not, the
string is stored in the Unicode encoding.

Getting a Shared Prefix

– (NSString *)commonPrefixWithString: (NSString *)aString
options:(unsigned int)mask Returns the substring of the receiver containing characters

that the receiver and aString have in common. mask can
be any combination (using the C bitwise OR operator |)
of NSCaseInsensitiveSearch and NSLiteralSearch.

Changing Case

– (NSString *)capitalizedString Returns a string with the first character of each word
changed to its corresponding uppercase value.

– (NSString *)lowercaseString Returns a string with each character changed to its
corresponding lowercase value.

– (NSString *)uppercaseString Returns a string with each character changed to its
corresponding uppercase value.

OpenStep Specification—10/19/942-132 Chapter 2: Foundation Kit

Getting C Strings

– (const char *)cString Returns a representation of the receiver as a C string in the
default C string encoding.

– (unsigned int)cStringLength Returns the length in bytes of the C string representation of
the receiver.

– (void)getCString:(char *)buffer Invokes
getCString:maxLength:range:remainingRange:
with NSMaximumStringLength as the maximum
length, the receiver’s entire extent as the range, and
NULL for the remaining range. buffer must be large
enough to contain the resulting C string plus a
terminating null character (which this method adds).

– (void)getCString:(char *)buffer Invokes
maxLength:(unsigned int)maxLength getCString:maxLength:range:remainingRange:

with maxLength as the maximum length, the receiver’s
entire extent as the range, and NULL for the remaining
range. buffer must be large enough to contain the
resulting C string plus a terminating null character
(which this method adds).

– (void)getCString:(char *)buffer Copies the receiver’s characters (in the default C string
maxLength:(unsigned int)maxLength encoding) as bytes into buffer. buffer must be
range:(NSRange)aRange large enough to contain maxLength bytes plus a
remainingRange:(NSRange *)leftoverRange terminating null character (which this method adds).

Characters are copied from aRange; if not all characters
can be copied, the range of those not copied is put into
leftoverRange. This method raises an
NSStringBoundsError exception if any part of
aRange lies beyond the end of the string.

Getting Numeric V alues

– (double)doubleValue Returns the double precision floating point value of the
receiver’s text. Whitespace at the beginning of the string
is skipped. If the receiver begins with a valid text
representation of a floating-point number, that number’s
value is returned, otherwise 0.0 is returned.
HUGE_VAL or –HUGE_VAL is returned on overflow.
0.0 is returned on underflow. Characters following the
number are ignored.

Classes: NSString2-133OpenStep Specification—10/19/94

– (float)floatValue Returns the floating-point value of the receiver’s text.
Whitespace at the beginning of the string is skipped. If
the receiver begins with a valid text representation of a
floating-point number, that number’s value is returned,
otherwise 0.0 is returned. HUGE_VAL or
–HUGE_VAL is returned on overflow. 0.0 is returned
on underflow. Characters following the number are
ignored.

– (int)intValue Returns the integer value of the receiver’s text. Whitespace
at the beginning of the string is skipped. If the receiver
begins with a valid representation of an integer, that
number’s value is returned, otherwise 0 is returned.
INT_MAX or INT_MIN is returned on overflow.
Characters following the number are ignored.

Working With Encodings

+ (NSStringEncoding *)availableStringEncodings Returns a null terminated array of available string
encodings..

+ (NSStringEncoding)defaultCStringEncoding Returns the C string encoding assumed for any method
accepting a C string as an argument.

+(NSString *)localizedNameOfStringEncoding:(NSStringEncoding)encoding
Returns the localized name of the string encoding specified

by encoding.

– (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding
Returns YES if the receiver can be converted to encoding

without loss of information, and NO otherwise.

– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
Invokes dataUsingEncoding:allowLossyConversion:

with NO as the argument to allow lossy conversion.

– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
allowLossyConversion:(BOOL)flag Returns an NSData object containing a representation of

the receiver in encoding. If flag is NO and the receiver
can’t be converted without losing some information
(such as accents or case) this method returns nil . If flag
is YES and the receiver can’t be converted without
losing some information, some characters may be
removed or altered in conversion.

OpenStep Specification—10/19/942-134 Chapter 2: Foundation Kit

– (NSStringEncoding)fastestEncoding Encoding in which this string can be expressed (with
lossless conversion) most quickly.

– (NSStringEncoding)smallestEncoding Encoding in which this string can be expressed (with
lossless conversion) in the most space efficient manner

Converting String Contents into a Proper ty List

– (id)propertyList Depending on the format of the receiver’s contents, returns
a string, data, array, or dictionary object represention of
those contents.

– (NSDictionary *)propertyListFromStringsFileFormat
Returns a dictionary object initialized with the keys and

values found in the receiver. The receiver’s format must
be that used for “.string” files.

Manipulating File System Paths

– (unsigned int)completePathIntoString:(NSString **)outputName
caseSensitive:(BOOL)flag Regards the receiver as containing a partial filename and
matchesIntoArray: (NSArray **)outputArray returns in outputName the longest matching path name.
filterTypes:(NSArray *)filterTypes Case is considered if flag is YES. If outputArray is

given, all matching filenames are return in outputArray.
If filterTypes is provided, this method considers only
those paths that match one of the types. Returns 0 if no
matches are found; otherwise, the return value is
positive.

– (NSString *)lastPathComponent Returns the last component of the receiver’s path
representation. Given the path “/Images/Bloggs.tiff”,
this method returns a string containing “Bloggs.tiff”.

– (NSString *)pathExtension Returns the extension of the receiver’s path representation.
Given the path “/Images/Bloggs.tiff”, this method
returns a string containing “tiff”.

– (NSString *)stringByAbbreviatingWithTildeInPath
Returns a string in which the user’s home directory path is

replace by “~”.

– (NSString *)stringByAppendingPathComponent:(NSString *)aString
Returns a string representing the receiver’s path with the

addition of the path component aString.

– (NSString *)stringByAppendingPathExtension:(NSString *)aString
Returns a string representing the receiver’s path with the

addition of the extension aString.

Classes: NSString2-135OpenStep Specification—10/19/94

– (NSString *)stringByDeletingLastPathComponent
Returns the receiver’s path representation minus the last

component. Given the path “/Images/Bloggs.tiff”, this
method returns a string containing “/Images”.

– (NSString *)stringByDeletingPathExtension Returns the receiver’s path representation minus the
extension on the last component. Given the path
“/Images/Bloggs.tiff”, this method returns a string
containing “/Images/Bloggs”.

– (NSString *)stringByExpandingTildeInPath Returns a string in which a tilde is expanded to its full path
equivalent.

– (NSString *)stringByResolvingSymlinksInPath Returns a string identical to the receiver’s path except that
any symbolic links have been resolved.

– (NSString *)stringByStandardizingPath Returns a string containing a “standardized” path, one in
which tildes are expanded and redundant elements (for
example “//”) eliminated.

OpenStep Specification—10/19/942-136 Chapter 2: Foundation Kit

NSThread

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSThread.h

Class Description

An NSThread object controls a thread of execution. You use an NSThread when you want to terminate or delay a
thread or you want a new thread.

A thread is an executable unit. A task is made up of one or more threads. Each thread has its own execution stack
and is capable of independent I/O. All threads share the virtual memory address space and communication rights
of their task. When a thread is started, it is detached from its initiating thread. The new thread runs independently.
That is, the initiating thread does not know the new thread’s state.

To obtain an NSThread object that represents your current thread of execution, use the currentThread method. To
obtain an NSThread object that will create a new thread of execution, use
detachNewThreadSelector:toTarget:withObject:. This method sends the specified Objective C message to the
specified object in its own thread of execution. You use the NSThread object returned by these methods if you ever
need to delay or terminate that thread of execution.

When you use detachNewThreadSelector:toTarget:withObject:, your application becomes multithreaded. At
any time, you can send isMultiThreaded to find out if the application is multithreaded, that is, if a thread was ever
detached from the current thread. isMultiThreaded returns YES even if the detached thread has completed
execution.

Creating an NSThread

+ (NSThread *)currentThread Returns an object representing the current thread of
execution.

+ (void)detachNewThreadSelector:(SEL)aSelector Creates and starts a new NSThread for the message
toTarget:(id)aTarget [aTarget aSelector:anArgument]. The method
withObject: (id)anArgument aSelector may take only one argument and may not

have a return value. If this is the first thread detached
from the current thread, this method posts the
notification NSBecomingMultiThreaded will the nil
object to the default notification center.

Classes: NSThread2-137OpenStep Specification—10/19/94

Querying a Thread

+ (BOOL)isMultiThreaded Returns YES if a thread was ever detached (regardless of if
the detached thread is still running).

– (NSMutableDictionary *)threadDictionary Returns the NSThread’s dictionary, allowing you to add
data specific to the receiving NSThread. This
essentially allows user-defined NSThread variables.

Delaying a Thread

+ (void)sleepUntilDate:(NSDate *)date Has the receiving NSThread sleep until the time specified
by date. No input or timers will be processed in this
interval.

Terminating a Thread

+ (void)exit Terminates the thread represented by the calling object.
Before exiting that thread, this method posts the
NSThreadExiting notification with the thread being
exited to the default notification center.

OpenStep Specification—10/19/942-138 Chapter 2: Foundation Kit

NST imer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSTimer.h

Class Description

NSTimer creates timer objects. A timer object waits until a certain time interval has elapsed and then fires, sending
a specified message to a specified object. For example, you could create an NSTimer that sends a message to a
window, telling it to update itself, after a certain time interval.

NSTimer objects work in conjunction with NSRunLoop objects. NSRunLoops control loops that wait for input,
and they use NSTimers to help determine the maximum amount of time they should wait. When the NSTimer’s
time limit has elapsed, the NSRunLoop fires the NSTimer (causing its message to be sent), then checks for new
input.

There are several ways to create an NSTimer object. The scheduledTimerWithTimeInterval ... class methods
automatically register the new NSTimer with the current NSRunLoop object in default mode. The
timerWithTimeInterval ... class methods create NSTimers that the user may register at a later time by sending the
message addTimer:forMode: to the NSRunLoop. If you specify that the NSTimer should repeat, it will
automatically reschedule itself after it fires. If a delay occurs when a timer is scheduled to fire, the timer will not
fire. For example, suppose you used the following statement to create a timer:

timer = [NSTimer scheduledTimerWithTimeInterval:0.5 invocation:anInvocation repeats:YES];

This statement creates a timer will schedule itself to fire after 0.5 seconds, 1 second, 1.5 seconds, and so on from
the time this statement is executed. Suppose there was a 2 second delay because NSRunLoop was busy processing
input. The timer takes this delay into consideration and will skip intervals that were already missed when computing
the next scheduled fire date.

There is no method that removes the association of an NSTimer from an NSRunLoop—send the NSTimer the
invalidate message instead. invalidate disables the NSTimer, so it will no longer affect the NSRunLoop.

See the NSRunLoop class description for more information on NSRunLoops.

As a consequence of being a subclass of NSObject, NSTimer conforms to the NSCoding protocol. In practice,
however, NSTimers are not encoded nor archived.

Classes: NSTimer2-139OpenStep Specification—10/19/94

Creating a Timer Object

+ (NSTimer *)scheduledTimerWithTimeInterval: (NSTimeInterval)seconds
invocation:(NSInvocation *)anInvocation Returns a new NSTimer object and registers it with the
repeats:(BOOL)repeats current NSRunLoop in the default mode. After seconds

seconds have elapsed, the NSTimer fires, sending
anInvocation’s message to its target. If repeats is YES,
the NSTimer will repeatedly reschedule itself.

+ (NSTimer *)scheduledTimerWithTimeInterval: (NSTimeInterval)seconds
target:(id)anObject Returns a new NSTimer object and registers it with the
selector:(SEL)aSelector current NSRunLoop in the default mode. After seconds
userInfo:(id)anArgument seconds have elapsed, the NSTimer fires, sending the
repeats:(BOOL)repeats message [anObject aSelector:self]. If anObject needs

more information, it can send the NSTimer a userData
message to retrieve anArgument. If repeats is YES, the
NSTimer will repeatedly reschedule itself.

+ (NSTimer *)timerWithTimeInterval: (NSTimeInterval)seconds
invocation:(NSInvocation *)anInvocation Returns a new NSTimer that, if registered, will fire after
repeats:(BOOL)repeats seconds seconds. Upon firing, the NSTimer sends

anInvocation’s message to its target. If repeats is YES,
the NSTimer will repeatedly reschedule itself.

+ (NSTimer *)timerWithTimeInterval: (NSTimeInterval)seconds
target:(id)anObject Returns a new NSTimer that, if registered, will fire after
selector:(SEL)aSelector seconds seconds. Upon firing, the NSTimer sends the
userInfo:(id)anArgument message [anObject aSelector:self]. If anObject needs
repeats:(BOOL)repeats more information, it can send the NSTimer a userData

message to retrieve anArgument. If repeats is YES, the
NSTimer will repeatedly reschedule itself.

Firing the Timer

– (void)fire Causes the NSTimer’s message to be dispatched to its
target.

Stopping the Timer

– (void)invalidate Stops the NSTimer from ever firing again.

Getting Information About the NST imer

– (NSDate *)fireDate Returns the date that the NSTimer will next fire.

– userInfo Additional data that the object receiving NSTimer’s
message can use.

OpenStep Specification—10/19/942-140 Chapter 2: Foundation Kit

NST imeZone

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSTimeZone is an abstract class that defines the behavior of time-zone objects. By itself, NSDate represents dates
as universal time. Universal time treats a date and time value as identical in, for instance, Redwood City and New
York City. NSDate has no provision for locale adjustment of time-zone information. Provision for locale is critical
for string descriptions and other expressions of conventional dates and times. NSTimeZone is used to affect the
apparent value of date objects so that they reflect time zone related locale information.

NSTimeZoneDetail, a public subclass of NSTimeZone, augments the behavior of NSTimeZone by providing the
commonly known attributes of a time zone in effect for a date within a time zone geopolitical area. These attributes
are abbreviation, the offset from GMT (universal time), and an indication of whether Daylight Savings Time is in
effect.

Time-zone objects represent geopolitical regions and use names to denote the various regions. For example,
“US/Pacific” identifies the geopolitical time zone for San Francisco and Los Angeles, which falls in the same
general latitude as that for the time zone “Canada/Pacific.” The US/Pacific time-zone has specific
NSTimeZoneDetail instances that specify PST (Pacific Standard Time) and PDT (Pacific Daylight Time), which
have slightly different offsets from GMT.

You typically associate the objects returned by NSTimeZone (and, by extension, NSTimeZoneDetail) with date
objects to affect their behavior. Time-zone objects can be of various types:

• time zones with hour and minute offsets from Greenwich Mean Time (GMT)

• time zones with a single abbreviation and offset

• time zones that vary according to Standard Time and Daylight Savings Time

The system should supply the various choices for time zones along with time-zone information. These choices
should be restricted to subsets based on latitude. You can access these choices through the timeZoneArray class
method. Another restriction is the choice of time zone available when there is an ambiguous abbreviation; these
choices are available through the class method abbreviationDictionary. Despite these restrictions, you can obtain
an NSTimeZone object from an arbitrary file through the class method timeZoneWithName.

Note: By itself, the NSTimeZone class only names a time zone. It does not associate an abbreviation or a temporal
offset with a time zone; that is done by NSTimeZoneDetail. An instance of NSTimeZone, however, “knows” about
the set of time-zone detail objects related to it.

Classes: NSTimeZone2-141OpenStep Specification—10/19/94

NSTimeZone provides several class methods to get time-zone objects, with or without detail:
timeZoneWithName:, timeZoneWithAbbreviation: , and timeZoneForSecondsFromGMT:. The class also
permits you to set the default time zone used by your application for your locale (setDefaultTimeZone:) You can
access this default time zone at any time by the defaultTimeZone method, and, with the localTimeZone class
method, you can also get a relative time-zone object that will decode itself to become the default time zone for any
locale in which it finds itself.

NSCalendarDate methods return date objects that are automatically bound with time-zone detail objects. These
date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you specify
otherwise, objects returned from NSCalendarDate are bound to the default time zone for the current locale. A useful
instance method is timeZoneDetailForDate:, which returns a time-zone detail object associated with a specific
date.

Creating and Initializing an NSTimeZone

+ (NSTimeZoneDetail *)defaultTimeZone Returns the default time zone as set for the current locale.

+ (NSTimeZone *)localTimeZone Returns an NSTimeZone that behaves as the current default
time zone in any given locale.

+ (NSTimeZone *)timeZoneForSecondsFromGMT:(int)seconds
Returns an NSTimeZone representing the time zone with

seconds offset from Greenwich Mean Time. If there is
no object matching the offset, this method creates
and returns a new NSTimeZone bearing the value
seconds as a name.

+ (NSTimeZoneDetail *)timeZoneWithAbbreviation: (NSString *)abbreviation
Returns the time-zone object identified by the abbreviation

abbreviation. If there’s no match, this method returns
nil .

+ (NSTimeZone *)timeZoneWithName:(NSString *)aTimeZoneName
Returns the time-zone object with the name that

corresponds to the geopolitical region
aTimeZoneName. It searches the regions dictionary for
matching names. If there is no match on the name, this
method returns nil .

– (NSTimeZoneDetail *)timeZoneDetailForDate:(NSDate *)date
Returns the correct time-zone detail object associated with

a date object. You invoke this method when a region’s
time zone (that is, its offset value from GMT) varies
over the year, as happens between Standard Time and
Daylight Savings Time.

OpenStep Specification—10/19/942-142 Chapter 2: Foundation Kit

Managing Time Zones

+ (void)setDefaultTimeZone:(NSTimeZone *)aTimeZone
Sets aTimeZone as the time zone appropriate for the current

locale. This new time zone replaces the previous default
time zone.

Getting Time Zone Information

+ (NSDictionary *)abbreviationDictionary Returns a dictionary that maps abbreviations to region
names, for example “PST” is the key for “US/Pacific”.
If you know a region name for a key, you can obtain a
valid abbreviation from the dictionary and use it to
obtain a detail time-zone object using
timeZoneWithAbbreviation: .

– (NSString *)timeZoneName Returns the geopolitical name of the time zone.

Getting Arrays of Time Zones

+ (NSArray *)timeZoneArray Returns an array of string object arrays, each containing
strings that show current geopolitical names for each
time zone. The subarrays are grouped by latitudinal
region.

– (NSArray *)timeZoneDetailArray Returns an array of NSTimeZoneDetail objects that are
associated with the receiving NSTimeZone object.

Classes: NSTimeZoneDetail2-143OpenStep Specification—10/19/94

NST imeZoneDetail

Inherits From: NSTimeZone : NSObject

Conforms To: NSCoding, NSCopying (NSTimeZone)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSTimeZoneDetail is an abstract class that refines the behavior provided by NSTimeZone. NSTimeZone identifies
a geopolitical area with a name (such as US/Pacific). NSTimeZoneDetail augments this region name with more
specific information appropriate for a particular date within its geopolitical region: an abbreviation, an offset (in
seconds) from Greenwich Mean Time (GMT), and an indication of whether Daylight Savings Time is in effect. The
specificity afforded through NSTimeZoneDetail helps to resolve conflicts between abbreviations and offsets that
can arise within regions.

Even though it is a concrete subclass of NSTimeZone, NSTimeZoneDetail does not have “factory” class methods
that create and return time-zone objects. See the specification of NSTimeZone for methods that provide this ability.

However, NSTimeZoneDetail does have methods that allow you to get the abbreviation and temporal offset of a
time-zone object, as well as determine whether Daylight Savings Time is in effect.

Querying an NSTimeZoneDetail

– (BOOL)isDaylightSavingTimeZone Returns YES if the time-zone detail object is used in the
representation of dates during Daylight Savings Time
and returns NO otherwise.

– (NSString *)timeZoneAbbreviation Returns the abbreviation of the time-zone detail object,
such as EDT (Eastern Daylight Time).

– (int)timeZoneSecondsFromGMT Returns the difference in seconds between the receiving
time-zone detail object and Greenwich Mean Time. The
offset can be a positive or negative value.

OpenStep Specification—10/19/942-144 Chapter 2: Foundation Kit

NSUnarchiver

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSArchiver.h

Class Description

NSUnarchiver, a concrete subclass of NSCoder, defines objects that can decode a data structure, such as a graph of
Objective C objects, from an archive. Such archives are produced by objects of the NSArchiver class. See the
NSArchiver specification for an introduction to archiving.

General Exception Conditions

While unarchiving, NSUnarchiver performs a variety of consistency checks on the incoming data stream.
NSUnarchiver raises an NSInconsistentArchiveException for a variety of reasons. Possible data errors leading to
this exception are: unknown type descriptors in the data file; an array type descriptor is incorrectly terminated
(missing]); excess characters in a type descriptor; a null class found where a concrete class was expected; class not
loaded.

Initializing an NSUnarchiver

– (id)initForReadingWithData: (NSData *)data Initializes an NSUnarchiver object from data object data.
Raises NSInvalidArgumentException if the data
argument is nil .

Decoding Objects

+ (id)unarchiveObjectWithData: (NSData *)data Decodes an archived object stored in data.

+ (id)unarchiveObjectWithFile: (NSString *)path Decodes an archived object stored in the file path.

– (void)decodeArrayOfObjCType:(const char *)itemType
count:(unsigned int)count Decodes an array of count data elements of the same
at:(void *)array Objective C data itemType. It is your responsibility to

release any objects derived in this way.

Managing an NSUnarchiver

– (BOOL)isAtEnd Returns YES if the end of data is reached, NO if more data
follows.

Classes: NSUnarchiver2-145OpenStep Specification—10/19/94

– (NSZone *)objectZone Returns the allocation zone for the unarchiver object.

– (void)setObjectZone:(NSZone *)zone Sets the allocation zone for the unarchiver object to zone. If
zone is nil , it sets it to the default zone.

– (unsigned int)systemVersion Returns the system version number for the unarchived data.

Substituting One Class for Another

+ (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive
Returns the class name used to archive instances of the

class (nameInArchive). This may not be the original
class name but another name encoded with
NSArchiver’s encodeClassName:intoClassName.

+ (void)decodeClassName:(NSString *)nameInArchive
asClassName:(NSString *)trueName Decodes from the archived data a class name

(nameInArchive) substituted for the real class name
(trueName). This method enables easy conversion of
unarchived data when there are name changes in
classes.

– (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive
Returns the class name used to archive instances of the

class (nameInArchive). This may not be the original
class name but another name encoded with
NSArchiver’s encodeClassName:intoClassName.

– (void)decodeClassName:(NSString *)nameInArchive
asClassName:(NSString *)trueName Decodes from the archived data a class name

(nameInArchive) substituted for the real class name
(trueName). This method enables easy conversion of
unarchived data when there are name changes in
classes.

OpenStep Specification—10/19/942-146 Chapter 2: Foundation Kit

NSUserDefaults

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSUserDefaults.h

Class Description

The NSUserDefaults class allows an application to query and manipulate a user’s defaults settings.

Defaults are grouped in domains. For example, there’s a domain for application-specific defaults and another for
global defaults. Each domain has a name and stores defaults as key-value pairs in an NSDictionary object. A default
is identified by a string key, and its value can be any property-list object (NSData, NSString, NSArray, or
NSDictionary). The standard domains are:

Domain Identifier

Argument NSArgumentDomain

Application Identified by the application’s name

Global NSGlobalDomain

Languages Identified by the language names

Registration NSRegistrationDomain

The identifiers starting with “NS” above are global constants.

The argument domain is composed of defaults parsed from the application’s arguments. The application domain
contains the defaults set by the application. It’s identified by the name of the application, as returned by this
message:

NSString *applicationName = [[NSProcessInfo processInfo] processName];

The global domain contains defaults that are meant to be seen by all applications. The registration domain is a set
of temporary defaults whose values can be set by the application to ensure that searches for default values will
always be successful. Applications can create additional domains as needed.

A search for the value of a given default proceeds through the domains listed in an NSUserDefault object’s search
list. Only domains in the search list are searched. The standard search list contains the domains from the table
above, in the order listed. A search ends when the default is found. Thus, if multiple domains contain the same
default, only the domain nearest the beginning of the search list provides the default’s value. Using the searchList
method, you can reorder the default search list or set up one that is a subset of all the user’s domains.

Typically, you use this class by invoking the standardUserDefaults class method to get an NSUserDefaults object.
This method returns a global NSUserDefaults object with a search list already initialized. Then use the
setObject:forKey: and objectForKey: methods to set and access user defaults.

Classes: NSUserDefaults2-147OpenStep Specification—10/19/94

The rest of the methods allow more complex defaults management. You can create your own domains, modify any
domain, set up a custom search list, and even control the synchronization of the in-memory and on-disk defaults
representations. The synchronize method saves any modifications to the persistent domains and updates all
persistent domains that were not modified to what is on disk. synchronize is automatically invoked at periodic
intervals.

You can create either persistent or volatile domains. Persistent domains are permanent and last past the life of the
NSUserDefaults object. Any changes to the persistent domains are committed to disk. Volatile domains last only
last as long as the NSUserDefaults object exists. The NSGlobalDomain domain is persistent; the
NSArgumentDomain is volatile.

Warnings:

• User defaults are not thread safe.

• Automatic saving of changes to disk (through synchronize) depends on a run-loop being present.

• You should synchronize any domain you have altered before exiting a process.

Getting the Shared Instance

+ (NSUserDefaults *)standardUserDefaults Returns the shared defaults object. If it doesn’t exist yet, it’s
created with a search list containing the names of the
following domains, in order: the NSArgumentDomain
(consisting of defaults parsed from the application’s
arguments), a domain with the process’ name, separate
domains for each of the user’s preferred languages, the
NSGlobalDomain (consisting of defaults meant to be
seen by all applications), and the
NSRegistrationDomain (a set of temporary defaults
whose values can be set by the application to ensure that
searches will always be successful). The defaults are
initialized for the current user. Subsequent
modifications to the standard search list remain in effect
even when this method is invoked again—the search list
is guaranteed to be standard only the first time this
method is invoked. The shared instance is provided as a
convenience; other instances may also be created.

Getting and Setting a Default

– (NSArray *)arrayForKey: (NSString *)defaultName
Invokes objectForKey: with key defaultName. Returns the

corresponding value if it’s an NSArray object
(according to the isKindOfClass: test) and nil
otherwise.

OpenStep Specification—10/19/942-148 Chapter 2: Foundation Kit

– (BOOL)boolForKey:(NSString *)defaultName Invokes stringForKey: with key defaultName. Returns
YES if the corresponding value is an NSString
containing uppercase or lowercase “YES” or responds
to the intValue message by returning a non-zero value.
Otherwise, returns NO.

– (NSData *)dataForKey:(NSString *)defaultName Invokes objectForKey: with key defaultName. Returns the
corresponding value if it’s an NSData object (according
to the isKindOfClass: test) and nil otherwise.

– (NSDictionary *)dictionaryForKey: (NSString *)defaultName
Invokes objectForKey: with key defaultName. Returns the

corresponding value if it’s an NSDictionary object
(according to the isKindOfClass: test) and nil
otherwise.

– (float)floatForKey: (NSString *)defaultName Invokes stringForKey: with key defaultName. Returns 0 if
no string is returned. Otherwise, the resulting string is
sent a floatValue message, which provides this
method’s return value.

– (int)integerForKey:(NSString *)defaultName Invokes stringForKey: with key defaultName. Returns 0 if
no string is returned. Otherwise, the resulting string is
sent a intValue message, which provides this method’s
return value.

– (id)objectForKey:(NSString *)defaultName Returns the value of the first occurrence of the specified
default, searching the domains included in the search
list. Returns nil if the default isn’t found.

– (void)removeObjectForKey:(NSString *)defaultName
Removes the value for the given default in the standard

application domain. Removing a default has no effect
on the value returned by the objectForKey: method if
the same key exists in a domain that precedes the
standard application domain in the search list.

– (void)setBool:(BOOL)value Sets the value of the specified default to a string
forKey: (NSString *)defaultName representation of YES or NO, depending on value.

Invokes setObject:forKey: as part of its
implementation.

– (void)setFloat:(float)value Sets the value of the specified default to a string
forKey: (NSString *)defaultName representation of value. Invokes setObject:forKey: as

part of its implementation.

– (void)setInteger:(int)value Sets the value of the specified default to a string
forKey: (NSString *)defaultName representation of value. Invokes setObject:forKey: as

part of its implementation.

Classes: NSUserDefaults2-149OpenStep Specification—10/19/94

– (void)setObject:(id)value Sets the value of the specified default in the standard
forKey: (NSString *)defaultName application domain. Setting a default has no effect on

the value returned by the objectForKey: method if the
same key exists in a domain that precedes the
application domain in the search list.

– (NSArray *)stringArrayForKey: (NSString *)defaultName
Invokes objectForKey: with key defaultName. Returns the

corresponding value if it’s an NSArray object
containing NSStrings, and nil otherwise. The class of
each object is determined using the isKindOfClass:
test.

– (NSString *)stringForKey: (NSString *)defaultName
Invokes objectForKey: with key defaultName. Returns the

corresponding value if it’s an NSString object
(according to the isKindOfClass: test) and nil
otherwise.

Initializing the User Defaults

– (id)init Initializes defaults for the current user (who’s identified by
examining the environment). This method doesn’t put
anything in the search list. Invoke it only if you’ve
allocated your own NSUserDefaults object instead of
using the shared one. Returns self.

– (id)initWithUser: (NSString *)userName Like init , but initializes defaults for the specified user.

Returning the Search List

– (NSMutableArray *)searchList Returns a mutable array of domain names, signifying the
domains that objectForKey: will search. You can
customize the search list by modifying the array that’s
returned. Non-existent domain names in the list are
ignored.

Maintaining Persistent Domains

– (NSDictionary *)persistentDomainForName:(NSString *)domainName
Returns a dictionary corresponding to the specified

persistent domain. The keys in the dictionary are names
of defaults, and the value corresponding to each key is
a property list data object.

OpenStep Specification—10/19/942-150 Chapter 2: Foundation Kit

– (NSArray *)persistentDomainNames Returns an array containing the names of the persistent
domains. Each domain can then be retrieved by
invoking persistentDomainForName:.

– (void)removePersistentDomainForName:(NSString *)domainName
Removes the named persistent domain from the user’s

defaults. The first time that a persistent domain is
changed after synchronize, an
NSUserDefaultsChanged notification is posted.

– (void)setPersistentDomain:(NSDictionary *)domain
forName:(NSString *)domainName Sets the dictionary for the persistent domain named

domainName; raises an NSInvalidArgumentException
if a volatile domain with domainName already exists.
The first time that a persistent domain is changed after
synchronize, an NSUserDefaultsChanged notification
is posted.

– (BOOL)synchronize Saves any modifications to the persistent domains and
updates all persistent domains that were not modified to
what is on disk. Returns NO if it could not save data to
disk. Since the synchronize method is automatically
invoked at periodic intervals, use this method only if
you cannot wait for the automatic synchronization (for
example if your application is about to exit), or if you
want to update user defaults to what is on disk even
though you have not made any changes.

Maintaining V olatile Domains

– (void)removeVolatileDomainForName:(NSString *)domainName
Removes the named volatile domain from the user’s

defaults.

– (void)setVolatileDomain:(NSDictionary *)domain
forName:(NSString *)domainName Sets the dictionary to domain for the volatile domain

named domainName. This method raises an
NSInvalidArgumentException if a persistent domain
with domainName already exists.

– (NSDictionary *)volatileDomainForName:(NSString *)domainName
Returns a dictionary corresponding to the specified volatile

domain. The keys in the dictionary are names of
defaults, and the value corresponding to each key is a
property list data object.

Classes: NSUserDefaults2-151OpenStep Specification—10/19/94

– (NSArray *)volatileDomainNames Returns an array containing the names of the volatile
domains. Each domain can then be retrieved by calling
volatileDomainForName:.

Making Advanced Use of Defaults

– (NSDictionary *)dictionaryRepresentation Returns a dictionary that contains a union of all key-value
pairs in the domains in the search list. As with
objectForKey:, key-value pairs in domains that are
earlier in the search list take precedence. The combined
result doesn’t preserve information about which domain
each entry came from.

– (void)registerDefaults:(NSDictionary *)dictionary
Adds the contents of dictionary to the registration domain.

If there is no registration domain yet, it’s created using
dictionary, and NSRegistrationDomain is added to the
end of the search list.

OpenStep Specification—10/19/942-152 Chapter 2: Foundation Kit

NSValue

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSValue.h
Foundation/NSGeometry.h

Class Description

NSValue objects provide an object-oriented wrapper for the data types defined in standard C and Objective C. The
NSValue class is often used to put Objective C and standard C data types into collections that require objects, such
as NSArray objects. When a value object is instantiated, it is encoded with the specified data type.

The NSValue class declares the programmatic interface to an object that contains a C data type. It provides methods
for creating value objects that contain values of a specified data type, pointers, and other objects.

Use NSValue objects to put C types into collections. Use NSNumber objects to put numbers into collections.

The following code puts an NSRange into an NSArray, using the Objective C @encode directive to get a character
string that encodes the type structure of NSRange:

[myArray insertObject:[NSValue value:&range withObjCType:@encode(NSRange)] atIndex:n]

To get the value back, you would do this:

[[myArray objectAtIndex:n] getValue:&range]

NSValue objects are provided with generic coding and copying behavior. To subclass NSValue and preserve class
when encoding or copying, override classForCoder, initWithCoder:, encodeWithCoder: (for encoding), and
copyWithZone: (for copying).

General Exception Conditions

NSValue can raise NSInternalInconsistencyException in a variety of cases where an unkown Objective C type is
found. In addition, NSValue’s implementation of encodeWithCoder: can raise NSInvalidArgumentException if
an attempt is made to encode void.

Classes: NSValue2-153OpenStep Specification—10/19/94

Allocating and Initializing Value Objects

+ (NSValue *)value:(const void *)value Creates and returns a value object containing the value
withObjCType: (const char *)type value of the Objective C type type.

+ (NSValue *)valueWithNonretainedObject: (id)anObject
Creates and returns a value object containing the object

anObject, without retaining anObject. This is
provided as a convenience method: the statement
[NSValue valueWithNonretainedOject:anObject] is
equivalent to the statement [NSValue value:&anObject
withObjCType:@encode(void *)].

+ (NSValue *)valueWithPointer: (const void *)pointer
Creates and returns a value object that contains the

specified pointer. This is provided as a convenience
method: the statement [NSValue
valueWithPointer:pointer] is equivalent to the statement
[NSValue value:&pointer
withObjCType:@encode(void *)].

Allocating and Initializing Geometry V alue Objects

+ (NSValue *)valueWithPoint: (NSPoint)point Creates and returns a value object that contains the
specified NSPoint structure (which represents a
geometrical point in two dimensions).

+ (NSValue *)valueWithRect:(NSRect)rect Creates and returns a value object that contains the
specified NSRect structure, representing a rectangle.

+ (NSValue *)valueWithSize:(NSSize)size Creates and returns a value object that contains the
specified NSSize structure (which stores a width and a
height).

Accessing Data in Value Objects

– (void)getValue:(void *)value Copies the receiver’s data into value.

– (id)nonretainedObjectValue Returns the non-retained object that’s contained in the
receiver. It’s an error to send this message to an
NSValue object that doesn’t store a nonretained object.

– (const char *)objCType Returns the Objective C type of the data contained in the
receiver.

– (void *)pointerValue Returns the value pointed to by a pointer contained in an
value object. It’s an error to send this message to an
NSValue that doesn’t store a pointer.

OpenStep Specification—10/19/942-154 Chapter 2: Foundation Kit

Accessing Data in Value Geometry Objects

– (NSPoint)pointValue Returns the point structure that’s contained in the receiver.

– (NSRect)rectValue Returns the rectangle structure that’s contained in the
receiver.

– (NSSize)sizeValue Returns the size structure that’s contained in the receiver.

Protocols: NSCoding2-155OpenStep Specification—10/19/94

Protocols

NSCoding

Adopted By: NSObject

Declared In: Foundation/NSObject.h

Protocol Description

The NSCoding protocol declares the two methods that a class must implement so that objects of that class can be
encoded and decoded. This capability provides the basis for archiving (where objects and other structures are stored
on disk) and distribution (where objects are copied to different address spaces).

When an object receives an encodeWithCoder: message, it should write its instance variables (and, through a
message to super, the instance variables that it inherits) to the supplied NSCoder. Similarly, when an object receives
an initWithCoder: message, it should initialize its instance variables (and inherited instance variables, again
through a message to super) from the data in the supplied NSCoder. See the NSCoder and NSArchiver class
specifications for more complete information.

Encoding and Decoding Objects

– (void)encodeWithCoder:(NSCoder *)aCoder Encodes the receiver using aCoder.

– (id)initWithCoder: (NSCoder *)aDecoder Initializes and returns a new instance from data in
aDecoder.

OpenStep Specification—10/19/942-156 Chapter 2: Foundation Kit

NSCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

A class whose instances provide functional copies of themselves should adopt the NSCopying protocol. The exact
meaning of “copy” can vary from class to class, but a copy must be a functionally independent object, identical to
the original at the time the copy was made. Where the concept “immutable vs. mutable” applies to an object, this
protocol produces immutable copies; see the NSMutableCopying protocol for details on making mutable copies.
Property list classes (NSString, NSData, NSArray, and NSDictionary) guarantee immutable returned values.

In most cases, to produce a copy that’s independent of the original, a deep copy must be made. A deep copy is one
in which every instance variable of the receiver is duplicated, instead of referencing the variable in the original
object. If the receiver’s instance variables themselves have instance variables, those too must be duplicated, and so
on. A deep copy is thus a completely separate object from the original; changes to it don’t affect the original, and
changes to the original don’t affect it. Further, for an immutable copy, no part at any level may be changed, making
a copy a “snapshot” of the original object.

Making a complete deep copy isn’t always needed. Some objects can reasonably share instance variables among
themselves—a static string object that gets replaced but not modified, for example. In such cases your class can
implement NSCopying more cheaply than it might otherwise need to.

The typical usage of NSCopying is to create “passing by value” value objects.

Contrary to most methods, the returned object is owned by the caller, who is responsible for releasing it.

Copying Objects

– (id)copyWithZone:(NSZone *)zone Returns a new instance that’s a functional copy of the
receiver. Memory for the new instance is allocated from
zone. For collections, creates a deep (recursive) copy.
The copy returned is immutable if the consideration
“immutable vs. mutable” applies to the receiving
object; otherwise the exact nature of the copy is
determined by the class. The returned object is owned
by the caller, who is responsible for releasing it.

Protocols: NSLocking2-157OpenStep Specification—10/19/94

NSLocking

Adopted By: NSConditionLock
NSLock
NSRecursiveLock

Declared In: Foundation/NSLock.h

Protocol Description

This protocol is used by classes that provide lock objects. The lock objects provided by OpenStep are used only for
protecting critical sections of code: sections that manipulate shared data and that can be executed simultaneously
in several threads. Lock objects—except for NSConditionLock objects—contain no useful data.

Although an object that isn't a lock could adopt the NSLocking protocol, it may be more desirable to design the
object so that all locking is handled internally, through normal use rather than requiring that the object be explicitly
locked and unlocked.

In order to enable clients to only have locks when processes become multithreaded, it is permissible to unlock a
lock freshly created (i.e. that has not been locked)—unless it is a recursive lock.

Three classes conform to the NSLocking protocol:

Class Usage

NSLock Protect critical sections of code.

NSConditionLock Protects critical sections of code, but can also be used to postpone entry to a
critical section until a condition is met. This class is functionally a superset of
the NSLock class, though unlocking is slightly more expensive.

NSRecursiveLock Protects critical sections from access by multiple threads, but allows a single
thread to acquire a lock several times without deadlocking.

None of these classes busy-waits while the lock is unavailable. All classes may all be efficiently used for long
sections of atomic code. See the class specifications for these classes for further information on their behavior and
usage.

Locking Operations

– (void)lock Acquires a lock. Applications generally do this when
entering a critical section of their code. A thread will
sleep if it can’t immediately acquire the lock.

– (void)unlock Releases a lock. Applications generally do this when
exiting a critical section of their code.

OpenStep Specification—10/19/942-158 Chapter 2: Foundation Kit

NSMutableCopying

Adopted By: various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

A class that defines an “immutable vs. mutable” distinction adopts this protocol to allow mutable copies of its
instances to be made. A mutable copy of an object is usually a shallow copy (as opposed to the deep copy defined
in the NSCopying protocol specification). The original and its copy share references to the same instance variables,
so that if a component of the copy is changed, for example, that change is reflected in the original.

A class that doesn’t define an “immutable vs. mutable” distinction but that needs to offer both deep and shallow
copying shouldn’t adopt this protocol. The NSCopying methods should by default be assumed to produce deep
copies; the class can then also implement methods to produce shallow copies.

Contrary to most methods, the returned value is owned by the caller, who is responsible for releasing it.

Making Mutable Copies of Objects

– (id)mutableCopyWithZone:(NSZone *)zone Returns a new instance that’s a top level, mutable copy of
the receiver. For a collection, objects in the collection
are retained. Memory for the new instance is allocated
from zone. The returned object is owned by the caller,
who is responsible for releasing it.

Protocols: NSObjCTypeSerializationCallBack2-159OpenStep Specification—10/19/94

NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the serialization
and deserialization process. The primary purpose of this protocol is to allow for the serialization of objects and
other data types that aren’t directly supported by OpenStep’s serialization facility. (See the NSSerializer class
specification for information on serialization.)

NSMutableData declares the method that’s used to begin the serialization process:

- (void)serializeDataAt:(const void *)data

 ofObjCType:(const char *)type

 context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialized all standard Objective C types (int , float, character strings, and so on) except for objects,
union, and void *. If, during the serialization process, an object is encountered, the object passed as the callback
argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {

 NSString *stockName;

 float value;

};

The Objective C type code for this structure is {@f}, so the serialization process begins with this message: (Assume
that theData is the NSMutableData object that’s doing the serialization and helper is an object that conforms to
the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType: "{@f}" context:helper];

OpenStep Specification—10/19/942-160 Chapter 2: Foundation Kit

Since the first field of the structure is an unsupported type, the helper object is sent a
serializeObjectAt:ofObjCType:intoData: message, letting it serialize the object. helper might implement the
method in this way:

- (void)serializeObjectAt:(id *)objectPtr

 ofObjCType:(const char *)type

 intoData:(NSMutableData *)theMutableData

{

 NSString *nameObject;

 char *companyName

 nameObject = *objectPtr;

 companyName = [nameObject cString];

 [theData serializeDataAt:&companyName ofObjCType:@encode(typeof(companyName))

 context:nil]

}

The callback object is free to serialize the target object as it wishes. In this case, helper simply extracts the company
name from the NSString object and then has that character string serialized. Once this callback method finishes
executing, the original method (serializeDataAt:ofObjCType:context:) resumes execution and serializes the
second field of the structure. Since this second field contains a supported type (float), the callback method is not
invoked again.

Deserialization follows a similar pattern, except in this case NSData declares the central method
deserializeDataAt:ofObjCType:atCursor:context:. The deserialization of the example structure starts with a
message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;

[theData deserializeDataAt:&aRecord ofObjCType: "{@f}" cursor:&cursor context:helper];

(The cursor argument is a pointer to zero since we’re starting at the beginning of the data in the NSData object.)

When this method is invoked, the callback object receives a
deserializeObjectAt:ofObjCType:fromData:atCursor: message, as declared in this protocol. The callback
object can then reestablish the first field of the structure. For example, helper might implement the method in this
way:

- (void) deserializeObjectAt:(id *)objectPtr

 ofObjCType:(const char *)type

 fromData:(NSData *)data

 atCursor:(unsigned *)cursor

{

 char *companyName;

 [theData deserializeDataAt:&companyName ofObjCType: "* " atCursor:cursor context:nil];

 *objectPtr = [[NSString stringWithCString:companyName] retain];

}

Protocols: NSObjCTypeSerializationCallBack2-161OpenStep Specification—10/19/94

Callback Handling

– (void)deserializeObjectAt:(id *)object The implementor of this method decodes the referenced
ofObjCType: (const char *)type object (which should always be of type "@") located at
fromData: (NSData *)data the cursor position in the data object. The decoded
atCursor: (unsigned int*)cursor object is not autoreleased. See description of NSData

method deserializeDataAt:ofObjCType:context:.

– (void)serializeObjectAt:(id *)object The implementor of this method encodes the referenced
ofObjCType: (const char *)type object (which should always be of type "@") in the data
intoData:(NSMutableData *)data object. See description of NSMutableData method

serializeDataAt:ofObjCType:context:

OpenStep Specification—10/19/942-162 Chapter 2: Foundation Kit

NSObject

Adopted By: NSObject
NSProxy

Declared In: Foundation/NSObject.h

Protocol Description

The NSObject protocol declares methods that all objects—no matter which root class they descend from
(NSObject, NSProxy, or another root class)—should implement to work well within OpenStep. Some of the
methods in this protocol reveal an object’s primary attributes: its position in the class hierarchy, its conformance to
other protocols, and whether it responds to specific messages. Others let it be manipulated in various ways. For
example, it can be asked to perform methods that are determined at runtime (using the perform:... methods) or to
participate in OpenStep’s automatic deallocation scheme (using the retain, release, and autorelease methods).

By conforming to this protocol an object advertises that it has the basic behaviors necessary to work with the
OpenStep’s container classes (such as NSArray or NSDictionary).

Identifying and Comparing Instances

– (unsigned int)hash Returns an unsigned integer that can be used as a table
address in a hash table structure. Two objects that are
equal must hash to the same value.

– (BOOL)isEqual:(id)anObject Returns YES if the receiver and anObject have equal
values; otherwise returns NO.

– (id)self Returns the receiver.

Identifying Class and Superclass

– (Class)class Returns the class object for the receiver’s class.

– (Class)superclass Returns the class object for the receiver’s superclass.

Determining Allocation Zones

– (NSZone *)zone Returns a pointer to the zone from which the receiver was
allocated.

Protocols: NSObject2-163OpenStep Specification—10/19/94

Sending Messages Determined at Run Time

– (id)perform: (SEL)aSelector Sends an aSelector message to the receiver and returns the
result of the message. If aSelector is null, an
NSInvalidArgumentException is raised.

– (id)perform: (SEL)aSelector Sends an aSelector message to the receiver with anObject
withObject: (id)anObject as an argument. If aSelector is null, an

NSInvalidArgumentException is raised.

– (id)perform: (SEL)aSelector Sends the receiver an aSelector message with anObject and
withObject: (id)anObject anotherObject as arguments. If aSelector is null, an
withObject: (id)anotherObject NSInvalidArgumentException is raised.

Identifying Proxies

– (BOOL)isProxy Returns YES to indicate that the receiver is an NSProxy,
rather than an object that descends from NSObject.
Otherwise, it returns NO.

Testing Inheritance Relationships

– (BOOL)isKindOfClass:(Class)aClass Returns YES if the receiver is an instance of aClass or an
instance of any class that inherits from aClass.
Otherwise, it returns NO.

– (BOOL)isMemberOfClass:(Class)aClass Returns YES if the receiver is an instance of aClass.
Otherwise, it returns NO.

Testing for Protocol Conformance

– (BOOL)conformsToProtocol:(Protocol *)aProtocol
Returns YES if the class of the receiver conforms to

aProtocol, and NO if it doesn’t.

Testing Class Functionality

– (BOOL)respondsToSelector:(SEL)aSelector Returns YES if the receiver implements or inherits a
method that can respond to aSelector messages, and NO
if it doesn’t.

OpenStep Specification—10/19/942-164 Chapter 2: Foundation Kit

Managing Reference Counts

– (id)autorelease As defined in the NSObject class, decrements the receiver’s
reference count. When the count reaches 0, adds the
object to the current autorelease pool. Returns self.
Objects in the pool are released later, typically at the top
of the event loop.

– (oneway void)release As defined in the NSObject class, decrements the receiver’s
reference count. When the count reaches 0, the object is
automatically deallocated immediately.

– (id)retain As defined in the NSObject class, retain increments the
receiver’s reference count. You send an object a retain
message when you want to prevent it from being
deallocated without your express permission. Returns
self as a convenience.

– (unsigned int)retainCount Returns the receiver’s reference count for debugging
purposes.

Describing the Object

– (NSString *)description Returns a human-readable description of the receiver.

Foundation Kit Functions 2-165OpenStep Specification—10/19/94

Foundation Kit Functions

Memory Allocation Functions

Get the V irtual Memory Page Size

unsigned NSPageSize(void) Returns the number of bytes in a page.

unsigned NSLogPageSize(void) Returns the binary log of the page size.

unsigned NSRoundDownToMultipleOfPageSize(unsigned byteCount)
Returns the multiple of the page size that is closest to, but

not greater than, byteCount.

unsigned NSRoundUpToMultipleOfPageSize(unsigned byteCount)
Returns the multiple of the page size that is closest to, but

not less than, byteCount.

Get the Amount of Real Memory

unsigned NSRealMemoryAvailable(void) Returns the number of bytes available in the RAM.

Allocate or Free Virtual Memory

void *NSAllocateMemoryPages(unsigned byteCount)
Allocates the integral number of pages whose total size is

closest to, but not less than, byteCount, with the pages
guaranteed to be zero-filled.

void NSDeallocateMemoryPages(void *pointer, Deallocates memory that was allocated with
unsigned byteCount) NSAllocateMemoryPages().

void NSCopyMemoryPages(const void *source, Copies (or copies-on-write) byteCount bytes from source
void *destination, to destination.
unsigned byteCount)

Get a zone

NSZone *NSCreateZone(unsigned startSize, Creates and returns pointer to a new zone of startSize bytes,
unsigned granularity, that grows and shrinks by granularity bytes. If canFree
BOOL canFree) is NO, the allocator never frees memory, and malloc()

will be fast.

OpenStep Specification—10/19/942-166 Chapter 2: Foundation Kit

NSZone *NSDefaultMallocZone(void) Returns the default zone, which is created automatically at
startup. This is the zone used by malloc().

NSZone *NSZoneFromPointer(void *pointer) Returns the zone for the pointer block of memory, or
NULL if the block wasn’t allocated from a zone. The
pointer must be one that was returned by a prior call to
an allocation function.

Allocate or Free Memory in a Zone

void *NSZoneMalloc(NSZone *zone, Allocates size bytes in zone, and returns a pointer to the
unsigned size) allocated memory.

void *NSZoneCalloc(NSZone *zone, Allocates memory from zone for numElems elements, each
unsigned numElems, with a size of numBytes, and returns a pointer to the
unsigned numBytes) memory. The memory is initialized with zeros.

void *NSZoneRealloc(NSZone *zone, Changes the size of the block of memory pointed to by
void *pointer, pointer to size bytes. It may allocate new memory to
unsigned size) replace the old, in which case it moves the contents of

the old memory block to the new block, up to a
maximum of size bytes. The pointer may be NULL.

void NSRecycleZone(NSZone *zone) Frees zone after adding any of its pointers still in use to the
default zone. (This strategy prevents retained objects
from being inadvertently destroyed.)

void NSZoneFree(NSZone *zone, Returns memory to the zone from which it was allocated.
void *pointer) The standard C function free() does the same, but

spends time finding which zone the memory belongs to.

Name a Zone

void NSSetZoneName(NSZone *zone, Sets the specified zone’s name to name, which can aid in
NSString *name) debugging.

NSString *NSZoneName(NSZone *zone) Returns the name of zone.

Foundation Kit Functions 2-167OpenStep Specification—10/19/94

Object Allocation Functions

Allocate or Free an Object

NSObject *NSAllocateObject(Class aClass, Allocates and returns a pointer to an instance of aClass,
unsigned extraBytes, created in the specified zone (or in the default zone, if
NSZone *zone) zone is NULL). extraBytes (usually 0) states the number

of extra bytes required for indexed instance variables.

NSObject *NSCopyObject(NSObject *anObject, Creates and returns a new object that’s an exact copy of
unsigned extraBytes, anObject. The second and third arguments have the
NSZone *zone) same meaning as in NSAllocateObject().

void NSDeallocateObject(NSObject *anObject) Deallocates anObject, which must have been allocated
using NSAllocateObject().

Decide Whether to Retain an Object

BOOL NSShouldRetainWithZone(NSObject *anObject,
NSZone *requestedZone) Returns YES if requestedZone is NULL, the default zone,

or the zone in which anObject was allocated. This
function is typically called from inside an NSObject’s
copyWithZone: method, when deciding whether to
retain anObject as opposed to making a copy of it.

Modify the Number of References to an Object

BOOL NSDecrementExtraRefCountWasZero(id anObject)
Returns YES if the externally maintained “extra reference

count” for anObject is zero; otherwise, this function
decrements the count and returns NO.

void NSIncrementExtraRefCount(id anObject) Increments the externally maintained “extra reference
count” for anObject. The first reference (typically done
in the +alloc method) isn’t maintained externally, so
there’s no need to call this function for that first
reference.

OpenStep Specification—10/19/942-168 Chapter 2: Foundation Kit

Error-Handling Functions

Change the Top-level Error Handler

NSUncaughtExceptionHandler *NSGetUncaughtExceptionHandler(void)
Returns a pointer to the function serving as the top-level

error handler. This handler will process exceptions
raised outside of any exception-handling domain.

void NSSetUncaughtExceptionHandler(NSUncaughtExceptionHandler *handler)
Sets the top-level error-handling function to handler. If

handler is NULL or this function is never invoked, the
default top-level handler is used.

Macros to Handle an Exception

NS_DURING Marks the beginning of an exception-handling domain (a
portion of code delimited by NS_DURING and
NS_HANDLER). When an error is raised anywhere
within the exception-handling domain, program
execution jumps to the first line of code in the exception
handler. It’s illegal to exit the exception-handling
domain by any other means than
NS_VALUERETURN, NS_VOIDRETURN, or falling
out the bottom.

NS_ENDHANDLER Marks the ending of an exception handler (a portion of
code delimited by NS_HANDLER and
NS_ENDHANDLER).

NS_HANDLER Marks the ending of an exception-handling domain and the
beginning of the corresponding exception handler.
Within the scope of the handler, a local variable called
exception stores the raised exception. Code delimited
by NS_HANDLER and NS_ENDHANDLER is never
executed except when an error is raised in the preceding
exception-handling domain.

value NS_VALUERETURN(value, type) Causes the method (or function) in which this macro occurs
to immediately return value of type type. This macro
can only be used within an exception-handling domain.

NS_VOIDRETURN Causes the method (or function) in which this macro occurs
to return immediately, with no return value. This macro
can only be placed within an exception-handling
domain.

Foundation Kit Functions 2-169OpenStep Specification—10/19/94

Call the Assertion Handler from the Body of an Objective-C Method

NSAssert(BOOL condition, Calls the NSAssertionHandler object for the current thread
NSString *description) if condition is false. The description should explain the

error, formatted as for the standard C function printf ();
it need not include the object’s class and method name,
since they’re passed automatically to the handler.

NSAssert1(BOOL condition, Like NSAssert(), but the format string description
NSString *description, includes a conversion specification (such as %s or %d)
arg) for the argument arg, in the style of printf() . You can

pass an object in arg by specifying %@, which gets
replaced by the string that the object’s description
method returns.

NSAssert2(BOOL condition, Like NSAssert1(), but with two arguments.
NSString *description,
arg1,
arg2)

NSAssert3(BOOL condition, Like NSAssert1(), but with three arguments.
NSString *description,
arg1,
arg2,
arg3)

NSAssert4(BOOL condition, Like NSAssert1(), but with four arguments.
NSString *description,
arg1,
arg2,
arg3,
 arg4)

NSAssert5(BOOL condition, Like NSAssert1(), but with five arguments.
NSString *description,
arg1,
arg2,
arg3,
arg4,
arg5)

Call the Assertion Handler from the Body of a C Function

NSCAssert(BOOL condition, Calls the NSAssertionHandler object for the current thread
NSString *description) if condition is false. The description should explain the

error, formatted as for the standard C function printf() ;
it need not include the function name, which is passed
automatically to the handler.

OpenStep Specification—10/19/942-170 Chapter 2: Foundation Kit

NSCAssert1(BOOL condition, Like NSCAssert(), but the format string description
NSString *description, includes a conversion specification (such as %s or %d)
arg) for the argument arg, in the style of printf() .

NSCAssert2(BOOL condition, Like NSCAssert1(), but with two arguments.
NSString *description,
arg1,
arg2)

NSCAssert3(BOOL condition, Like NSCAssert1(), but with three arguments.
NSString *description,
arg1,
arg2,
arg3)

NSCAssert4(BOOL condition, Like NSCAssert1(), but with four arguments.
NSString *description,
arg1,
arg2,
arg3,
arg4)

NSCAssert5(BOOL condition, Like NSCAssert1(), but with five arguments.
NSString *description,
arg1,
arg2,
arg3,
arg4,
arg5)

Validate a Parameter

NSParameterAssert(BOOL condition) Like NSAssert(), but the description passed is “Invalid
parameter not satisfying: ” followed by the text of
condition (which can be any boolean expression).

NSCParameterAssert(BOOL condition) Like NSParameterAssert(), but to be called from the body
of a C function.

Geometric Functions

Create Basic Structures

NSPoint NSMakePoint(float x, float y) Create an NSPoint having the coordinates x and y.

Foundation Kit Functions 2-171OpenStep Specification—10/19/94

NSSize NSMakeSize(float w, float h) Create an NSSize having the specified width and height.

NSRect NSMakeRect(float x, float y, float w, float h) Create an NSRect having the specified origin and size.

NSRange NSMakeRange(unsigned int location, unsigned int length)
Create an NSRange having the specified location and

length.

Get a Rectangle’s Coordinates

float NSMaxX(NSRect aRect) Returns the largest x-coordinate value within aRect.

float NSMaxY(NSRect aRect) Returns the largest y-coordinate value within aRect.

float NSMidX (NSRect aRect) Returns the x-coordinate of the rectangle’s center point.

float NSMidY (NSRect aRect) Returns the y-coordinate of the rectangle’s center point.

float NSMinX (NSRect aRect) Returns the smallest x-coordinate value within aRect.

float NSMinY (NSRect aRect) Returns the smallest y-coordinate value withinaRect .

float NSWidth(NSRect aRect) Returns the width of aRect.

float NSHeight(NSRect aRect) Returns the height of aRect.

Modify a Copy of a Rectangle

NSRect NSInsetRect(NSRect aRect, Returns a copy of the rectangle aRect, altered by moving
float dX, the two sides that are parallel to the y-axis inwards by
float dY) dX, and the two sides parallel to the x-axis inwards by

dY.

NSRect NSOffsetRect(NSRect aRect, Returns a copy of the rectangle aRect, with its location
float dX, shifted by dX along the x-axis and by dY along the
float dY) y-axis.

void NSDivideRect(NSRect inRect, Creates two rectangles, slice and remainder, from inRect,
NSRect *slice, by dividing inRect with a line that’s parallel to one of
NSRect *remainder, inRect’s sides (namely, the side specified by edge—
float amount, either NSMinXEdge, NSMinYEdge, NSMaxXEdge, or
NSRectEdge edge) NSMaxYEdge). The size of slice is determined by

amount, which measures the distance from edge.

NSRect NSIntegralRect(NSRect aRect) Returns a copy of the rectangle aRect, expanded outwards
just enough to ensure that none of its four defining
values (x, y, width, and height) have fractional parts. If
aRect’s width or height is zero or negative, this function
returns a rectangle with origin at (0.0, 0.0) and with zero
width and height.

OpenStep Specification—10/19/942-172 Chapter 2: Foundation Kit

Compute a Third Rectangle from Two Rectangles

NSRect NSUnionRect(NSRect aRect, Returns the smallest rectangle that completely encloses
NSRect bRect) both aRect and bRect. If one of the rectangles has zero

(or negative) width or height, a copy of the other
rectangle is returned; but if both have zero (or negative)
width or height, the returned rectangle has its origin at
(0.0, 0.0) and has zero width and height.

NSRect NSIntersectionRect(NSRect aRect, Returns the graphic intersection of aRect and bRect. If the
NSRect bRect) two rectangles don’t overlap, the returned rectangle has

its origin at (0.0, 0.0) and zero width and height. (This
includes situations where the intersection is a point or a
line segment.)

Test Geometric Relationships

BOOL NSEqualRects(NSRect aRect, Returns YES if the two rectangles aRect and bRect are
NSRect bRect) identical, and NO otherwise.

BOOL NSEqualSizes(NSSize aSize, Returns YES if the two sizes aSize and bSize are identical,
NSSize bSize) and NO otherwise.

BOOL NSEqualPoints(NSPoint aPoint, Returns YES if the two points aPoint and bPoint are
NSPoint bPoint) identical, and NO otherwise.

BOOL NSIsEmptyRect(NSRect aRect) Returns YES if the rectangle encloses no area at all—that
is, if its width or height is zero or negative.

BOOL NSMouseInRect(NSPoint aPoint, Returns YES if the point represented by aPoint is located
NSRect aRect, within the rectangle represented by aRect. It assumes
BOOL flipped) an unscaled and unrotated coordinate system; the

argument flipped should be YES if the coordinate
system has been flipped so that the positive y-axis
extends downward. This function is used to determine
whether the hot spot of the cursor lies inside a given
rectangle.

BOOL NSPointInRect(NSPoint aPoint, Performs the same test as NSMouseInRect(), but assumes
NSRect aRect) a flipped coordinate system.

BOOL NSContainsRect(NSRect aRect, Returns YES if aRect completely encloses bRect. For this
NSRect bRect) to be true, bRect can’t be empty and none of its sides can

touch any of aRect’s.

Foundation Kit Functions 2-173OpenStep Specification—10/19/94

Get a String Representation

NSString *NSStringFromPoint(NSPoint aPoint) Returns a string of the form “{x=a; y=b}”, where a and b
are the x- and y-coordinates of aPoint.

NSString *NSStringFromRect(NSRect aRect) Returns a string of the form “{x=a; y=b; width=c;
height=d}”, where a, b, c, and d are the x- and
y-coordinates and the width and height, respectively, of
aRect.

NSString *NSStringFromSize(NSSize aSize) Returns a string of the form “{width=a; height=b}”, where
a and b are the width and height of aSize.

Range Functions

Query a Range

BOOL NSEqualRanges(NSRange range1, Returns YES if range1 and range2 have the same
NSRange range2) locations and lengths.

unsigned NSMaxRange(NSRange range) Returns range.location + range.length—in other words, the
number one greater than the maximum value within the
range.

BOOL NSLocationInRange(unsigned location, Returns YES if location is in range (that is, if location is
NSRange range) greater than or equal to range.location and location is

less than NSMaxRange(range)).

 Compute a Range from Two Other Ranges

NSRange NSUnionRange(NSRange range1, Returns a range whose maximum value is the greater of
NSRange range2) range1’s and range2’s maximum values, and whose

location is the lesser of the two range’s locations.

NSRange NSIntersectionRange(NSRange range1, Returns a range whose maximum value is the lesser of
NSRange range2) range1’s and range2’s maximum values, and whose

location is the greater of the two range’s locations.
However, if the two ranges don’t intersect, the returned
range has a location and length of zero.

Get a String Representation

NSString *NSStringFromRange(NSRange range) Returns a string of the form: “{location = a; length = b}”,
where a and b are non-negative integers.

OpenStep Specification—10/19/942-174 Chapter 2: Foundation Kit

Hash Table Functions

Create a Table

NSHashTable *NSCreateHashTable(NSHashTableCallBacks callBacks,
unsigned capacity) Creates, and returns a pointer to, an NSHashTable in the

default zone; the table’s size is dependent on (but
generally not equal to) capacity. If capacity is 0, a small
hash table is created. The NSHashTableCallBacks
structure callBacks has five pointers to functions
(documented under “Types and Constants”), with the
following defaults: pointer hashing, if hash() is NULL;
pointer equality, if isEqual() is NULL; no call-back
upon adding an element, if retain() is NULL; no
call-back upon removing an element, if release() is
NULL; and a function returning a pointer’s
hexadecimal value as a string, if describe() is NULL.
The hashing function must be defined such that if two
data elements are equal, as defined by the comparison
function, the values produced by hashing on these
elements must also be equal. Also, data elements must
remain invariant if the value of the hashing function
depends on them; for example, if the hashing function
operates directly on the characters of a string, that string
can’t change.

NSHashTable *NSCreateHashTableWithZone(NSHashTableCallBacks callBacks,
unsigned capacity, Like NSCreateHashTable(), but creates the hash table in
NSZone *zone) zone instead of in the default zone. (If zone is NULL,

the default zone is used.)

NSHashTable *NSCopyHashTableWithZone(NSHashTable *table,
NSZone *zone) Returns a pointer to a new copy of table, created in zone

and containing copies of table’s pointers to data
elements. If zone is NULL, the default zone is used.

Free a Table

void NSFreeHashTable(NSHashTable *table) Releases each element of the specified hash table and frees
the table itself.

void NSResetHashTable(NSHashTable *table) Releases each element but doesn't deallocate the table. This
is useful for preserving the table's capacity.

Foundation Kit Functions 2-175OpenStep Specification—10/19/94

Compare Two Tables

BOOL NSCompareHashTables(NSHashTable *table1,
NSHashTable *table2) Returns YES if the two hash tables are equal—that is, if

each element of table1 is in table2, and the two tables
are the same size.

Get the Number of Items

unsigned NSCountHashTable(NSHashTable *table) Returns the number of elements in table.

Retrieve Items

void *NSHashGet(NSHashTable *table, Returns the pointer in the table that matches pointer (as
const void *pointer) defined by the isEqual() call-back function). If there is

no matching element, the function returns NULL

NSArray *NSAllHashTableObjects(NSHashTable *table)
Returns an array object containing all the elements of table.

This function should be called only when the table
elements are objects, not when they’re any other data
type.

NSHashEnumerator NSEnumerateHashTable(NSHashTable *table)
Returns an NSHashEnumerator structure that will cause

successive elements of table to be returned each time
this enumerator is passed to
NSNextHashEnumeratorItem().

void *NSNextHashEnumeratorItem(NSHashEnumerator *enumerator)
Returns the next element in the table that enumerator is

associated with, or NULL if enumerator has already
iterated over all the elements.

Add or Remove an Item

void NSHashInsert(NSHashTable *table, Inserts pointer, which must not be NULL, into table. If
const void *pointer) pointer matches an item already in the table, the

previous pointer is released using the release()
call-back function that was specified when the table was
created.

void NSHashInsertKnownAbsent(NSHashTable *table,
const void *pointer) Inserts pointer, which must not be NULL, into table. Unike

NSHashInsert(), this function raises
NSInvalidArgumentException if table already includes
an element that matches pointer.

OpenStep Specification—10/19/942-176 Chapter 2: Foundation Kit

void *NSHashInsertIfAbsent(NSHashTable *table, If pointer matches an item already in table, this function
const void *pointer) returns the pre-existing pointer; otherwise, it adds

pointer to the table and returns NULL.

void NSHashRemove(NSHashTable *table, If pointer matches an item already in table, this function
const void *pointer) releases the pre-existing item.

Get a String Representation

NSString *NSStringFromHashTable(NSHashTable *table)
Returns a string describing the hash table’s contents. The

function iterates over the table’s elements, and for each
one appends the string returned by the describe()
call-back function. If NULL was specified for the
call-back function, the hexadecimal value of each
pointer is added to the string.

Map Table Functions

Create a Table

NSMapTable *NSCreateMapTable(NSMapTableKeyCallBacks keyCallBacks,
NSMapTableValueCallBacks valueCallBacks,
unsigned capacity) Creates, and returns a pointer to, an NSMapTable in the

default zone; the table’s size is dependent on (but
generally not equal to) capacity. If capacity is 0, a small
map table is created. The NSMapTableKeyCallBacks
arguments are structures (documented under “Types
and Constants”) that are very similar to the call-back
structure used by NSCreateHashTable(); in fact, they
have the same defaults as documented for that function.

NSMapTable *NSCreateMapTableWithZone(NSMapTableKeyCallBacks keyCallBacks,
NSMapTableValueCallBacks valueCallBacks,
unsigned capacity, Like NSCreateMapTable(), but creates the map table in
NSZone *zone) zone instead of in the default zone. (If zone is NULL,

the default zone is used.)

NSMapTable *NSCopyMapTableWithZone(NSMapTable *table,
NSZone *zone) Returns a pointer to a new copy of table, created in zone

and containing copies of table’s key and value pointers.
If zone is NULL, the default zone is used.

Foundation Kit Functions 2-177OpenStep Specification—10/19/94

Free a Table

void NSFreeMapTable(NSMapTable *table) Releases each key and value of the specified map table and
frees the table itself.

void NSResetMapTable(NSMapTable *table) Releases each key and value but doesn’t deallocate the
table. This is useful for preserving the table’s capacity.

Compare Two Tables:

BOOL NSCompareMapTables(NSMapTable *table1,
NSMapTable *table2) Returns YES if each key of table1 is in table2, and the two

tables are the same size. Note that this function does not
compare values, only keys.

Get the Number of Items

unsigned NSCountMapTable(NSMapTable *table) Returns the number of key/value pairs in table.

Retrieve Items

BOOL NSMapMember(NSMapTable *table, Returns YES if table contains a key equal to key. If so,
const void *key, originalKey is set to key, and value is set to the value that
void **originalKey, the table maps to key.
void **value)

void *NSMapGet(NSMapTable *table, Returns the value that table maps to key, or NULL if the
const void *key) table doesn’t contain key.

NSMapEnumerator NSEnumerateMapTable(NSMapTable *table)
Returns an NSMapEnumerator structure that will cause

successive key/value pairs of table to be visited each
time this enumerator is passed to
NSNextMapEnumeratorPair().

BOOL NSNextMapEnumeratorPair(NSMapEnumerator *enumerator,
void **key, Returns NO if enumerator has already iterated over all the
void **value) elements in the table that enumerator is associated with.

Otherwise, this function sets key and value to match the
next key/value pair in the table, and returns YES.

NSArray *NSAllMapTableKeys(NSMapTable *table)
Returns an array object containing all the keys in table.

This function should be called only when the table keys
are objects, not when they’re any other type of pointer.

OpenStep Specification—10/19/942-178 Chapter 2: Foundation Kit

NSArray *NSAllMapTableValues(NSMapTable *table)
Returns an array object containing all the values in table.

This function should be called only when the table
values are objects, not when they’re any other type of
pointer.

Add or Remove an Item

void NSMapInsert(NSMapTable *table, Inserts key and value into table. If key matches a key
const void *key, already in the table, value is retained and the previous
const void *value) value is released, using the retain and release call-back

functions that were specified when the table was
created. Raises NSInvalidArgumentException if key is
equal to the notAKeyMarker field of the table’s
NSMapTableKeyCallBacks structure.

void *NSMapInsertIfAbsent(NSMapTable *table, If key matches a key already in table, this function returns
const void *key, the pre-existing key; otherwise, it adds key and value to
const void *value) the table and returns NULL. Raises

NSInvalidArgumentException if key is equal to the
notAKeyMarker field of the table’s
NSMapTableKeyCallBacks structure.

void NSMapInsertKnownAbsent(NSMapTable *table,
const void *key, Inserts key (which must not be notAKeyMarker) and value
const void *value) into table. Unike NSMapInsert(), this function raises

NSInvalidArgumentException if table already includes
a key that matches key.

void NSMapRemove(NSMapTable *table, If key matches a key already in table, this function releases
const void *key) the pre-existing key and its corresponding value.

NSString *NSStringFromMapTable(NSMapTable *table)
Returns a string describing the map table’s contents. The

function iterates over the table’s key/value pairs, and for
each one appends the string “a = b;\n”, where a and b
are the key and value strings returned by the
corresponding describe() call-back functions. If NULL
was specified for the call-back function, a and b are the
key and value pointers, expressed as hexadecimal
numbers.

Foundation Kit Functions 2-179OpenStep Specification—10/19/94

Miscellaneous Functions

Get Information about a User

NSString *NSUserName(void)

NSString *NSHomeDirectory(void)

NSString *NSHomeDirectoryForUser(NSString * userName)

Log an Error Message

void NSLog(NSString *format, ...) Writes to stderr an error message of the form:
“ time processName processID format”. The format
argument to NSLog() is a format string in the style of
the standard C function printf() , followed by an
arbitrary number of arguments that match conversion
specifications (such as %s or %d) in the format string.
(You can pass an object in the list of arguments by
specifying %@ in the format string—this conversion
specification gets replaced by the string that the object’s
description method returns.)

void NSLogv(NSString *format, va_list args) Like NSLog(), but the arguments to the format string are
passed in a single va_list, in the manner of vprintf() .

Get Localized Versions of Strings

NSString *NSLocalizedString(NSString *key, Returns a localized version of the string designated by key.
NSString *comment) The default string table (Localizable.strings) in the

main bundle is searched for key. comment is ignored, but
can provide information for translators.

NSString *NSLocalizedStringFromTable(NSString *key,
NSString *tableName, Like NSLocalizedString(), but searches the specified
NSString *comment) table.

NSString *NSLocalizedStringFromTableInBundle(NSString *key,
NSString *tableName, Like NSLocalizedStringFromTable, but uses the
NSBundle *aBundle, specified bundle instead of the application’s main
NSString *comment) bundle.

OpenStep Specification—10/19/942-180 Chapter 2: Foundation Kit

Convert to and from a String

Class NSClassFromString(NSString *aClassName) Returns the class object named by aClassName, or nil if
none by this name is currently loaded.

SEL NSSelectorFromString(NSString *aSelectorName)
Returns the selector named by aSelectorName, or zero if

none by this name exists.

NSString *NSStringFromClass(Class aClass) Returns an NSString containing the name of aClass.

NSString *NSStringFromSelector(SEL aSelector) Returns an NSString containing the name of aSelector.

Compose a Message To Be Sent Later to an Object

NSInvocation *NS_INVOCATION(Class aClass, Returns an NSInvocation object which you can later ask to
 instanceMessage) dispatch instanceMessage to an instance of aClass.

(You later use NSInvocation’s setTarget: method to
make a specific instance of aClass the receiver of the
message, after which you use invoke to cause the
message to be sent and getReturnValue: to retrieve the
result.) Because this is a macro, message can be any
Objective C message understood by an instance of
aClass, even a message with multiple arguments.

NSInvocation *NS_MESSAGE(id anObject, Like NS_INVOCATION() , but the first argument is an
 instanceMessage) instance of a class, rather than a class. The target of the

message will be anObject, so later you don’t use
setTarget:, only invoke and getReturnValue:.

Types and Constants2-181OpenStep Specification—10/19/94

Types and Constants

Exception Handling

typedef struct _NSHandler NSHandler; Exception handler information.

typedef volatile void NSUncaughtExceptionHandler(NSException *exception);
Register an uncaught exception handler.

NSString *NSInconsistentArchiveException; Consistency error in archive file.

NSString *NSGenericException; General programming error.

NSString *NSInternalInconsistencyException; Some item that should be invariant changed.

NSString *NSInvalidArgumentException; Invalid argument.

NSString *NSMallocException; No memory left to allocate.

NSString *NSRangeException; Attempt to access an element beyond the limit of an array
or similar structure.

NSString *NSByteStoreLockedException;

NSString *NSByteStoreVersionException;

NSString *NSBTreeStoreKeyTooLargeException;

NSString *NSByteStoreDamagedException;

Geometry

typedef struct _NSPoint { Point definition.
float x;
float y;

} NSPoint;

typedef struct _NSSize { Rectangle sizes.
float width ;
float height;

} NSSize;

OpenStep Specification—10/19/942-182 Chapter 2: Foundation Kit

typedef struct _NSRect { Rectangle.
NSPoint origin ;
NSSize size;

} NSRect;

typedef enum _NSRectEdge { Sides of a rectangle.
NSMinXEdge,
NSMinYEdge,
NSMaxXEdge,
NSMaxYEdge

} NSRectEdge;

const NSPoint NSZeroPoint; A zero point.

const NSRect NSZeroRect; A zero origin rectangle.

const NSSize NSZeroSize; A zero size rectangle.

Hash Table

typedef struct NSHashEnumerator; Private type for enumerating.

typedef struct _NSHashTable NSHashTable; Hash table type.

typedef struct { Callback functions.
unsigned (*hash)(NSHashTable *table, const void *anObject);

Hashing function. Note: Elements with equal values must
have equal hash function values.

BOOL (*isEqual)(NSHashTable *table, const void *anObject, const void *anObject);
Comparison function.

void (*retain)(NSHashTable *table, const void *anObject);
Retaining function called when adding elements to table.

void (*release)(NSHashTable *table, void *anObject);
Releasing function called when a data element is removed

from the table.
NSString *(*describe)(NSHashTable *table, const void *anObject);

 Description function.
} NSHashTableCallBacks;

Types and Constants2-183OpenStep Specification—10/19/94

const NSHashTableCallBacks NSIntHashCallBacks; For sets of pointer-sized or smaller quantities.

const NSHashTableCallBacks NSNonOwnedPointerHashCallBacks;
For sets of pointers hashed by address.

const NSHashTableCallBacks NSNonRetainedObjectHashCallBacks;
For sets of objects without retaining and releasing.

const NSHashTableCallBacks NSObjectHashCallBacks;
For sets of objects; similar to NSSet.

const NSHashTableCallBacks NSOwnedPointerHashCallBacks;
For sets of pointers with transfer of ownership upon

insertion.

const NSHashTableCallBacks NSPointerToStructHashCallBacks;
For sets of pointers to structs when the first field of the

struct is the size of an int.

Map Table

typedef struct NSMapEnumerator; Private type for enumerating.

typedef struct _NSMapTable NSMapTable; Map table type.

typedef struct { Callback functions for a key.
unsigned (*hash)(NSMapTable *table, const void *anObject);

Hashing function. Note: Elements with equal values must
have equal hash function values.

BOOL (*isEqual)(NSMapTable *table, const void *anObject, const void *anObject);
Comparison function.

void (*retain)(NSMapTable *table, const void *anObject);
Retaining function called when adding elements to table.

void (*release)(NSMapTable *table, void *anObject);
Releasing function called when a data element is removed

from the table.
NSString *(*describe)(NSMapTable *table, const void *anObject);

Description function.
const void *notAKeyMarker ; Quantity that is not a key to the hash table.

} NSMapTableKeyCallBacks;

OpenStep Specification—10/19/942-184 Chapter 2: Foundation Kit

typedef struct { Callback functions for a value.
void (*retain)(NSMapTable *table, const void *anObject);

Retaining function called when adding elements to table.
void (*release)(NSMapTable *table, void *anObject);

Releasing function called when a data element is removed
from the table.

NSString *(*describe)(NSMapTable *table, const void *anObject);
Description function.

} NSMapTableValueCallBacks;

#define NSNotAnIntMapKey ; Quantity that is never a map key.

#define NSNotAPointerMapKey; Quantity that is never a map key.

const NSMapTableKeyCallBacks NSIntMapKeyCallBacks;
For keys that are pointer-sized or smaller quantities.

const NSMapTableValueCallBacks NSIntMapValueCallBacks;
For values that are pointer-sized quantities.

const NSMapTableKeyCallBacks NSNonOwnedPointerMapKeyCallBacks;
For keys that are pointers not freed.

const NSMapTableValueCallBacks NSNonOwnedPointerMapValueCallBacks;
For values that are owned pointers.

const NSMapTableKeyCallBacks NSNonOwnedPointerOrNullMapKeyCallBacks;
For keys that are pointers not freed, or NULL.

const NSMapTableKeyCallBacks NSNonRetainedObjectMapKeyCallBacks;
For sets of objects without retaining and releasing.

const NSMapTableKeyCallBacks NSObjectMapKeyCallBacks;
For keys that are objects.

const NSMapTableValueCallBacks NSObjectMapValueCallBacks;
For values that are objects.

const NSMapTableKeyCallBacks NSOwnedPointerMapKeyCallBacks;
For keys that are pointers with transfer of ownership upon

insertion.

const NSMapTableValueCallBacks NSOwnedPointerMapValueCallBacks;
For values that are owned pointers.

Types and Constants2-185OpenStep Specification—10/19/94

Notification Queue

typedef enum {
 NSPostWhenIdle, Post the notification when the run loop is idle.
 NSPostASAP, Post the notification as soon as possible.
 NSPostNow Post the notification immediately.

} NSPostingStyle;

typedef enum {
 NSNotificationNoCoalescing, Do not coalesce similar notifications in the queue.
 NSNotificationCoalescingOnName, Coalesce notifications in the queue matching name.
 NSNotificationCoalescingOnSender, Coalesce notifications in the queue matching sender.

} NSNotificationCoalescing;

Run Loop

NSString *NSConnectionReplyMode; NSRunLoop mode in which Distributed Object system
seeks replies.

NSString *NSDefaultRunLoopMode; Common NSRunLoop mode.

Search Results

typedef enum _NSComparisonResult { Ordered comparison results.
NSOrderedAscending,
NSOrderedSame,
NSOrderedDescending

} NSComparisonResult;

enum { Flags passed to various search methods.
NSCaseInsensitiveSearch,
NSLiteralSearch,
NSBackwardsSearch,
NSAnchoredSearch

};

enum {NSNotFound}; Indicates an item not found.

OpenStep Specification—10/19/942-186 Chapter 2: Foundation Kit

String

typedef unsigned NSStringEncoding; Known encodings.

enum Known encodings.
NSASCIIStringEncoding,
NSNEXTSTEPStringEncoding,
NSJapaneseEUCStringEncoding,
NSUTF8StringEncoding,
NSISOLatin1StringEncoding ,
NSSymbolStringEncoding ,
NSNonLossyASCIIStringEncoding,
NSShiftJISStringEncoding,
NSISOLatin2StringEncoding,
NSUnicodeStringEncoding

};

enum _NSOpenStepUnicodeReservedBase { Base for Unicode characters.
NSOpenStepUnicodeReservedBase

};

NSHashStringLength; Hash string length.

NSMaximumStringLength; Maximum string length.

Threads

typedef enum { Thread priorities.
NSInteractiveThreadPriority ,
NSBackgroundThreadPriority,
NSLowThreadPriority

} NSThreadPriority ;

NSString *NSBecomingMultiThreaded; Notifications.

NSString *NSThreadExiting;

Types and Constants2-187OpenStep Specification—10/19/94

User Defaults

NSString *NSArgumentDomain; For defaults parsed from the application’s arguments.

NSString *NSGlobalDomain; For defaults seen by all applications.

NSString *NSRegistrationDomain; For registered defaults.

NSString *NSUserDefaultsChanged; Public notification.

NSString *NSWeekDayNameArray; Keys for language-dependent information.

NSString *NSShortWeekDayNameArray;

NSString *NSMonthNameArray;

NSString *NSShortMonthNameArray;

NSString *NSTimeFormatString;

NSString *NSDateFormatString;

NSString *NSTimeDateFormatString;

NSString *NSShortTimeDateFormatString;

NSString *NSCurrencySymbol;

NSString *NSDecimalSeparator;

NSString *NSThousandsSeparator;

NSString *NSInternationalCurrencyString ;

NSString *NSCurrencyString;

NSString *NSDecimalDigits;

NSString *NSAMPMDesignation;

OpenStep Specification—10/19/942-188 Chapter 2: Foundation Kit

Miscellaneous

typedef struct { Specifies layout of arguments used in invocations.
 int offset;
 int size;
 char *type;

} NSArgumentInfo;

typedef struct _NSRange { Specifies a range of items in arrays, strings, and so on.
unsigned int location;
unsigned int length;

} NSRange;

typedef double NSTimeInterval; Time interval difference between two dates.

typedef struct _NSZone NSZone; Large region allocation.

typedef int NSBTreeComparator(NSData *, NSData *, const void *);

Classes: NSDPSContext 3-1OpenStep Specification—10/19/94

3 Display PostScript

Classes

Classes listed here and the protocol in the following section constitute OpenStep’s object-oriented interface to the
Display PostScript System. As such, many of the argument and return types that appear below (specifically, those
having a “DPS” prefix) are not described in this document. Rather, they are detailed in the specification for the
Display PostScript System itself, as found in the Display PostScript System, Client Library Reference Manual, by
Adobe Systems Incorporated.

NSDPSContext

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: DPSClient/NSDPSContext.h

Class Description

The NSDPSContext class is the programmatic interface to objects that represent Display PostScript System
contexts. A context can be thought of as a destination to which PostScript code is sent for execution. Each Display
PostScript context contains its own complete PostScript environment including its own local VM (PostScript
Virtual Memory). Every context has its own set of stacks, including an operand stack, graphics state stack,
dictionary stack, and execution stack. Every context also contains a FontDirectory which is local to that context,
plus a SharedFontDirectory that is shared across all contexts. There are three built-in dictionaries in the dictionary
stack. From top to bottom, they are userdict, globaldict, and systemdict. userdict is private to the context, while

OpenStep Specification—10/19/943-2 Chapter 3: Display PostScript

globaldict and systemdict are shared by all contexts. globaldict is a modifiable dictionary containing information
common to all contexts. systemdict is a read-only dictionary containing all the PostScript operators.

At any time there is the notion of the current context. The current context for the current thread may be set using
setCurrentContext:.

NSDPSContext objects by default write their output to a specified data destination. This is used for printing,
FAXing, and for generation of saved EPS (Encapsulated PostScript) code. The means to create contexts that interact
with displays are platform-specific.

The NSApplication object creates a context by default.

NSDPSContext Objects and Display PostScript System Context Records

When an NSDPSContext object is created, it creates and manages a DPSContext record. Programmers familiar with
the client side C function interface to the Display PostScript System can access the DPSContext record by sending
a context message to an NSDPSContext object. You can then operate on this context record using any of the
functions or single operator functions defined in the Display PostScript System client library. Conversely, you can
create an NSDPSContext object from a DPSContext record with the DPSContextObject() function, as defined in
“Client Library Functions”. You can then work with the created NSDPSContext object using any of the methods
described here.

General Exception Conditions

A variety of exceptions can be raised from NSDPSContext. In most cases, exceptions are raised because of errors
returned from the Display PostScript Server. Exceptions are listed under “Types and Constants.” Also see the
Display PostScript System, Client Library Reference Manual, by Adobe Systems Incorporated, for more details on
Display PostScript System error names and their possible causes.

Initializing a Context

– initWithMutableData: (NSMutableData *)data Initializes a newly allocated NSDPSContext that writes its
forDebugging:(BOOL)debug output to data using the language and name encodings
languageEncoding:(DPSProgramEncoding)langEnc
nameEcoding:(DPSNameEncoding)nameEnc specified by langEnc and nameEnc. The callback
textProc:(DPSTextProc)tProc functions tProc and errorProc handle text and errors
errorProc: (DPSErrorProc)errorProc generated by the context. If debug is YES, the output is

given in human-readable form in which large structures
(such as images) may be represented by comments.

Testing the Drawing Destination

– (BOOL)isDrawingToScreen Returns YES if the drawing destination is the screen.

Classes: NSDPSContext 3-3OpenStep Specification—10/19/94

Accessing Context Data

– (NSMutableData *)mutableData Returns the receiver’s data object.

Setting and Identifying the Current Context

+ (NSDPSContext *)currentContext Returns the current context of the current thread.

+ (void)setCurrentContext:(NSDPSContext *)context
Installs context as the current context of the current thread.

– (DPSContext)DPSContext Returns the corresponding DPScontext.

Controlling the Context

– (void)flush Forces any buffered data to be sent to its destination.

– (void)interruptExecution Interrupts execution in the receiver’s context.

– (void)notifyObjectWhenFinishedExecuting:(id <NSDPSContextNotification>)object
Registers object to receive a contextFinishedExecuting:

message when the NSDPSContext’s destination is
ready to receive more input.

– (void)resetCommunication Discards any data that hasn’t already been sent to its
destination.

– (void)wait Waits until the NSDPSContext’s destination is ready to
receive more input.

Managing Returned Text and Errors

+ (NSString *)stringForDPSError: (const DPSBinObjSeqRec *)error
Returns a string representation of error.

– (DPSErrorProc)errorProc Returns the context’s error callback function.

– (void)setErrorProc: (DPSErrorProc)proc Sets the context’s error callback function to proc.

– (void)setTextProc:(DPSTextProc)proc Sets the context’s text callback function to proc.

– (DPSTextProc)textProc Returns the context’s text callback function.

Sending Raw Data

– (void)printFormat: (NSString *)format,... Constructs a string from format and following string
objects (in the manner of printf()) and sends it to the
context’s destination.

OpenStep Specification—10/19/943-4 Chapter 3: Display PostScript

– (void)printFormat: (NSString *)format Constructs a string from format and argList (in the
arguments:(va_list)argList manner of vprintf()) and sends it to the context’s

destination.

– (void)writeData: (NSData *)buf Sends the PostScript data in buf to the context’s destination.

– (void)writePostScriptWithLanguageEncodingConversion:(NSData *)buf
Writes the PostScript data in buf to the context’s

destination. The data, formatted as plain text, encoded
tokens, or a binary object sequence, is converted as
necessary depending on the language encoding of the
receiving context.

Managing Binary Object Sequences

– (void)awaitReturnValues Waits for all return values from the result table.

– (void)writeBOSArray: (const void *)data Write an array to the context’s destination as part of a
count:(unsigned int)items a binary object sequence. The array is taken from data
ofType:(DPSDefinedType)type and consists of items items of type type.

– (void)writeBOSNumString: (const void *)data Write a number string to the context’s destination as part of
length:(unsigned int)count a binary object sequence. The string is taken from data
ofType:(DPSDefinedType)type as described by count, type, and scale.
scale:(int)scale

– (void)writeBOSString: (const void *)data Write a string to the context’s destination as part of a
length:(unsigned int)bytes binary object sequence. The string is taken from bytes

(a count) of data.

– (void)writeBinaryObjectSequence:(const void *)data
length:(unsigned int)bytes Write a binary object sequence to the context’s destination.

The sequence consists of bytes (a count) of data.

– (void)updateNameMap Updates the context’s name map from the client library’s
name map.

Managing Chained Contexts

– (void)chainChildContext:(NSDPSContext *)child Links child (and all of it’s children) to the receiver as its
chained context, a context that receives a copy of all
PostScript code sent to the receiver.

– (NSDPSContext *)childContext Returns the receiver’s child context, or nil if none exists.

– (NSDPSContext *)parentContext Returns the receiver’s parent context, or nil if none exists.

– (void)unchainContext Unlinks the child context (and all of it’s children) from the
receiver’s list of chained contexts.

Classes: NSDPSContext 3-5OpenStep Specification—10/19/94

Debugging Aids

+ (BOOL)areAllContextsOutputTraced Returns YES if the data flowing between the application’s
contexts and their destinations is copied to diagnostic
output.

+ (BOOL)areAllContextsSynchronized Returns YES if all NSPDSContext objects invoke the wait
method after sending each batch of output.

+ (void)setAllContextsOutputTraced:(BOOL)flag Causes the data (PostScript code, return values, etc.)
flowing between the all the application’s contexts and
their destinations to be copied to diagnostic output.

+ (void)setAllContextsSynchronized:(BOOL)flag Causes the wait method to be invoked each time an
NSDPSContext object sends a batch of output to its
destination.

– (BOOL)isOutputTraced Returns YES if the data flowing between the application’s
single context and its destination is copied to diagnostic
output.

– (BOOL)isSynchronized Returns whether the wait method is invoked each time the
receiver sends a batch of output to the server.

– (void)setOutputTraced:(BOOL)flag Causes the data (PostScript code, return values, etc.)
flowing between the application’s single context and the
Display PostScript server to be copied to diagnostic
output.

– (void)setSynchronized:(BOOL)flag Sets whether the wait method is invoked each time the
receiver sends a batch of output to its destination.

OpenStep Specification—10/19/943-6 Chapter 3: Display PostScript

Protocols

NSDPSContextNotification

Adopted By: no OpenStep classes

Declared In: DPSClient/NSDPSContext.h

Protocol Description

The NSDPSContextNotification protocol supplies information about the execution status of a sequence of
PostScript commands previously sent to the Display PostScript server.

Synchronizing Application and Display PostScript Server Execution

– (void)contextFinishedExecuting:(NSDPSContext *)context
Notifies the receiver that the context has finished executing

a batch of PostScript commands. See
notifyObjectWhenFinishedExecuting:
(NSDPSContext).

Display PostScript Operators 3-7OpenStep Specification—10/19/94

Display PostScript Operators

The PostScript Language Reference Manual, Second Edition, by Adobe Systems Incorporated, provides the
specifications for standard PostScript and Display PostScript operators. Listed here are operators found in
OpenStep but not in the standard implementation of the PostScript language.

Compositing Operators

srcx srcy width height srcgstate
destx desty op composite – Composites rectangle in source graphics state

with image in current window.

destx desty width height op compositerect – Composites rectangle of current color and
coverage with image in current graphics
state.

srcx srcy width height srcgstate
destx desty delta dissolve – Dissolves between area of window referred to

by srcgstate and equal area of window
referred to by the current graphics state.

Graphics State Operators

coverage setalpha – Sets the current coverage.

– currentalpha coverage Returns the current coverage setting.

OpenStep Specification—10/19/943-8 Chapter 3: Display PostScript

Client Library Functions

The Display PostScript Client Library is composed of system-dependent and a system-independent parts. The
Display PostScript System, Client Library Reference Manual, by Adobe Systems, Incorporated., provides the
specification for the system-independent portion of this library.

Functions that are part of OpenStep’s system-dependent part of the Display PostScript Client Library are listed
here.

PostScript Execution Context Functions

Convert a DPSContext to an NSDPSContext Object

NSDPSContext *DPSContextObject(DPSContext ctxt)

Communication with the Display PostScript Server

Send a PostScript User Path to the Display PostScript Server

These functions are used to send a user path, plus one other action, to the Display PostScript Server. In the
…WithMatrix forms of these operators, the matrix operand is the optional matrix argument used by the ustroke,
inustroke, and ustrokepath operators. The matrix argument may be NULL, in which case it is ignored.

void PSDoUserPath(const void *coords, int numCoords, DPSNumberFormat numType,
const DPSUserPathOp *ops, int numOps, const void *bbox,
DPSUserPathAction action)

void PSDoUserPathWithMatrix(void *coords, int numCoords,
DPSNumberFormat numType, unsigned char *ops, int numOps,
void *bbox, DPSUserPathAction action, floatmatrix[6])

void DPSDoUserPath(DPSContext context, const void *coords, int numCoords,
DPSNumberFormat numType, const DPSUserPathOp *ops, int
numOps, const void *bbox, DPSUserPathAction action)

Client Library Functions 3-9OpenStep Specification—10/19/94

void DPSDoUserPathWithMatrix(DPSContext context, void *coords, int numCoords,
DPSNumberFormat numType, unsigned char *ops, int numOps,
void *bbox, DPSUserPathAction action, floatmatrix[6])

Send PostScript Code to the Display PostScript Server

void PSFlush(void)
void PSWait(void)

OpenStep Specification—10/19/943-10 Chapter 3: Display PostScript

Single-Operator Functions

Single-operator functions provide a C language interface to the individual operators of the PostScript language. The
specification for a single-operator function is identical to that of the PostScript operator it represents. The PostScript
Language Reference Manual, Second Edition, by Adobe Systems Incorporated, provides the specifications of all
standard PostScript operators. Also refer to the Display PostScript System, Client Library Reference Manual, by
Adobe Systems Incorporated. Listed below are single-operator functions that correspond to operators found in
OpenStep but not in the standard implementation of the PostScript language.

These functions have either a “PS” or a “DPS” prefix. For every single-operator function with a “PS” prefix, there’s
a corresponding single-operator function with a “DPS” prefix. The PS and DPS functions are identical except that
DPS functions take an additional (first) argument that represents the PostScript execution context.

Besides using standard C language types, some single-operator functions use userobject—an int that refers to the
value returned by DPSDefineUserObject().

In the function descriptions below, x and y refer to the origin of source rectangles, and w and h refer to the width
and height of the source rectangles. gstateNum refers to the graphics state (gstate) of the source rectangle. dx and
dy refer to the origin of the destination for the compositing or dissolving operation. op refers to the specific
compositing operation. a or alpha refers to the coverage component used for compositing operations.

“PS” Prefix Functions

void PScomposite(float x, float y, float w, float h, int gstateNum, float dx, float dy, int op)

void PScompositerect(float x, float y, float w, float h, int op)

void PScurrentalpha(float *alpha)

void PSdissolve(float x, float y, float w, float h, int gstateNum, float dx, float dy, floatdelta)

void PSsetalpha(float a)

“DPS” Prefix Functions

void DPScomposite(DPSContext ctxt, float x, float y, float w, float h, int gstateNum, float dx,
float dy, int op)

void DPScompositerect(DPSContext ctxt, float dx, float dy, float w, float h, int op)

void DPScurrentalpha(DPSContext ctxt, float *pcoverage)

void DPSdissolve(DPSContext ctxt, float x, float y, float w, float h, int gstateNum, float dx, float
dy, float delta)

void DPSsetalpha(DPSContext ctxt, float a)

Types and Constants 3-11OpenStep Specification—10/19/94

Types and Constants

The Display PostScript Client Library is composed of system-dependent and a system-independent parts. The
Display PostScript System, Client Library Reference Manual, by Adobe Systems, Incorporated, provides the
specification for the system-independent portion of this library.

The defined types, enumeration constants, and global variables that are part of OpenStep’s system-dependent part
of the Display PostScript Client Library are listed here.

Defined Types

Number Formats

typedef enum _DPSNumberFormat {

#ifdef __BIG_ENDIAN__
dps_float = 48,
dps_long = 0,
dps_short = 32

#else
dps_float = 48+128,
dps_long = 0+128,
dps_short = 32+128

#endif
} DPSNumberFormat;

Other permitted values are:

• For 32-bit fixed-point numbers, use dps_long plus the number of bits in the fractional part.

• For 16-bit fixed-point numbers, use dps_short plus the number of bits in the fractional part.

Backing Store Types

typedef enum _NSBackingStoreType {
NSBackingStoreRetained,
NSBackingStoreNonretained,
NSBackingStoreBuffered

} NSBackingStoreType;

OpenStep Specification—10/19/943-12 Chapter 3: Display PostScript

Compositing Operations

typedef enum _NSCompositingOperation {
NSCompositeClear,
NSCompositeCopy,
NSCompositeSourceOver,
NSCompositeSourceIn,
NSCompositeSourceOut,
NSCompositeSourceAtop,
NSCompositeDataOver,
NSCompositeDataIn,
NSCompositeDataOut,
NSCompositeDataAtop,
NSCompositeXOR,
NSCompositePlusDarker,
NSCompositeHighlight,
NSCompositePlusLighter

} NSCompositingOperation;

Window Ordering

typedef enum _NSWindowOrderingMode {
NSWindowAbove,
NSWindowBelow,
NSWindowOut

} NSWindowOrderingMode;

User Path Operators

These constants define the operator numbers used to construct the operator array parameter of DPSDoUserPath.

typedef unsigned char DPSUserPathOp;
enum {

dps_setbbox,
dps_moveto,
dps_rmoveto,
dps_lineto,
dps_rlineto,
dps_curveto,
dps_rcurveto,
dps_arc,
dps_arcn,
dps_arct,
dps_closepath,

Types and Constants 3-13OpenStep Specification—10/19/94

dps_ucache
};

User Path Actions

These constants define the action of a DPSDoUserPath. In addition to the actions defined here, any other system
name index may be used. See the PostScript Language Reference Manual, Second Edition, by Adobe Systems
Incorporated, for a detailed list of system name indexes.

typedef enum _DPSUserPathAction {
dps_uappend,
dps_ufill,
dps_ueofill,
dps_ustroke,
dps_ustrokepath,
dps_inufill,
dps_inueofill,
dps_inustroke,
dps_def,
dps_put

} DPSUserPathAction;

Enumerations

Special Values for Alpha

enum {
NSAlphaEqualToData,
NSAlphaAlwaysOne

};

User Object Representing the PostScript Null Object

enum {
DPSNullObject

};

OpenStep Specification—10/19/943-14 Chapter 3: Display PostScript

Symbolic Constants

Error Code Base

DPS_OPENSTEP_ERROR_BASE

Global Variables

Exception Names

NSString *DPSPostscriptErrorException;
NSString *DPSNameTooLongException;
NSString *DPSResultTagCheckException;
NSString *DPSResultTypeCheckException;
NSString *DPSInvalidContextException;
NSString *DPSSelectException;
NSString *DPSConnectionClosedException;
NSString *DPSReadException;
NSString *DPSWriteException;
NSString *DPSInvalidFDException;
NSString *DPSInvalidTEException;
NSString *DPSInvalidPortException;
NSString *DPSOutOfMemoryException;
NSString *DPSCantConnectException;

