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1. Introduction
MACH provides a set of low-level, language-independent primitives for manipulating threads of control [3].
The C Threads package is a run-time library that provides a C language interface to these facilities [1].
The constructs provided are similar to those found in Mesa [4] and Modula-2+ [5]: forking and joining of
threads, protection of critical regions with mutex variables, and synchronization by means of condition
variables.

2. Naming Conventions
An attempt has been made to use a consistent style of naming for the abstractions implemented by the C
Threads package.  All types, macros, and functions implementing a given abstract data type are prefixed
with the type name and an underscore.  The name of the type itself is suffixed with _t and is defined via a
C typedef. Documentation of the form

typedef struct mutex {...} *mutex_t;

indicates that the mutex_t type is defined as a pointer to a referent type struct mutex which may
itself be useful to the programmer. (In cases where the referent type should be considered opaque,
documentation such as

typedef ... cthread_t;

is used instead.)

Continuing the example of the mutex_t type, the functions mutex_alloc() and mutex_free()

provide dynamic storage allocation and deallocation. The functions mutex_init() and
mutex_clear() provide initialization and finalization of the referent type.  These functions are useful if
the programmer wishes to include the referent type itself (rather than a pointer) in a larger structure, for
more efficient storage allocation. They should not be called on objects that are dynamically allocated via
mutex_alloc(). Type-specific functions such as mutex_lock() and mutex_unlock() are also
defined, of course.

3. Initializing the C Threads Package

3.1. cthreads.h
#include <cthreads.h>

The header file cthreads.h defines the C threads interface.  All programs using C threads must include
this file.

3.2. cthread_init
void
cthread_init()

The cthread_init() procedure initializes the C threads implementation. A program using C threads
must explicitly call cthread_init() (typically from main()) before using any of the other functions
described below.  Multiple calls to cthread_init() are harmless.
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4. Threads of Control

4.1. Creation
When a C program starts, it contains a single thread of control, the one executing main(). The thread of
control is an active entity, moving from statement to statement, calling and returning from procedures.
New threads are created by fork operations.

Forking a new thread of control is similar to calling a procedure, except that the caller does not wait for
the procedure to return.  Instead, the caller continues to execute in parallel with the execution of the
procedure in the newly forked thread.  At some later time, the caller may rendez-vous with the thread and
retrieve its result (if any) by means of a join operation, or the caller may detach the newly created thread
to assert that no thread will ever be interested in joining it.

4.2. Termination
1A thread t terminates when it returns from the top-level procedure it was executing. If t has not been

detached, it remains in limbo until another thread either joins it or detaches it; if t has been detached, no
rendez-vous is necessary.

4.3. cthread_fork
typedef ... any_t;
typedef ... cthread_t;

The any_t type represents a pointer to any C type.  The cthread_t type is an integer-size ‘‘handle’’
that uniquely identifies a thread of control.  Values of type cthread_t will be referred to as thread
identifiers.

cthread_t
cthread_fork(func, arg)

any_t (*func)();
any_t arg;

The cthread_fork() procedure creates a new thread of control in which func(arg) is executed
concurrently with the caller’s thread.  This is the sole means of creating new threads. Arguments larger
than a pointer must be passed by reference.  Similarly, multiple arguments must be simulated by passing
a pointer to a structure containing several components.  The call to cthread_fork() returns a thread
identifier that can be passed to cthread_join() or cthread_detach() (see below).  Every thread
must be either joined or detached exactly once.

4.4. cthread_exit
void
cthread_exit(result)

any_t result;

1Currently, this is not true of the initial thread executing main(). Instead, an implicit call to exit() occurs when main()
returns, terminating the entire program. If the programmer wishes detached threads to continue executing, the final statement of
main() should be a call to cthread_exit().
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This procedure causes termination of the calling thread.  An implicit cthread_exit() occurs when the
top-level function of a thread returns, but it may also be called explicitly.  The result will be passed to the
thread that joins the caller, or discarded if the caller is detached.

4.5. cthread_join
any_t
cthread_join(t)

cthread_t t;

This function suspends the caller until the specified thread t terminates via cthread_exit(). (It follows
that attempting to join one’s own thread will result in deadlock.)  The caller receives either the result of t’s
top-level function or the argument with which t explicitly called cthread_exit().

4.6. cthread_detach
void
cthread_detach(t)

cthread_t t;

The detach operation is used to indicate that the given thread will never be joined.  This is usually known
at the time the thread is forked, so the most efficient usage is the following:

cthread_detach(cthread_fork(procedure, argument));

A thread may, however, be detached at any time after it is forked, as long as no other attempt is made to
join it or detach it.

4.7. cthread_yield
void
cthread_yield()

This procedure is a hint to the scheduler, suggesting that this would be a convenient point to schedule
another thread to run on the current processor. Calls to cthread_yield() are unnecessary in an
implementation with preemptive scheduling, but may be required to avoid starvation in a coroutine-based
implementation.

4.8. cthread_self
cthread_t
cthread_self()

This function returns the caller’s own thread identifier, which is the same value that was returned by
cthread_fork() to the creator of the thread.  The thread identifier uniquely identifies the thread, and
hence may be used as a key in data structures that associate user data with individual threads.  Since
thread identifiers may be reused by the underlying implementation, the programmer should be careful to
clean up such associations when threads exit.
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4.9. cthread_set_data, cthread_data
void
cthread_set_data(t, data)

cthread_t t;
any_t data;

any_t
cthread_data(t)

cthread_t t;

These functions allow the user to associate arbitrary data with a thread, providing a simple form thread-
specific ‘‘global’’ variable.  More elaborate mechanisms, such as per-thread property lists or hash tables,
can then be built with these primitives.

5. Synchronization
typedef struct mutex {...} *mutex_t;

typedef struct condition {...} *condition_t;

This section describes mutual exclusion and synchronization primitives, called mutexes and condition
variables. In general, these primitives are used to constrain the possible interleavings of threads’
execution streams.  They separate the two most common uses of Dijkstra’s P() and V() operations into
distinct facilities.  This approach basically implements monitors [2, 4], but without the syntactic sugar.

Mutually exclusive access to mutable data is necessary to prevent corruption of data.  As simple example,
consider concurrent attempts to update a simple counter.  If two threads fetch the current value into a
(thread-local) register, increment, and write the value back in some order, the counter will only be
incremented once, losing one thread’s operation.  A mutex solves this problem by making the fetch-
increment-deposit action atomic.  Before fetching a counter, a thread locks the associated mutex.  After
depositing a new value, the thread unlocks the mutex.  If any other thread tries to use the counter in the
meantime, it will block when it tries to lock the mutex.  If more than one thread tries to lock the mutex at
the same time, the C threads package guarantees that only one will succeed; the rest will block.

Condition variables are used when one thread wants to wait until another thread has finished doing
something. Every condition variable should be protected by a mutex. Conceptually, the condition is a
boolean function of the shared data that the mutex protects.  Commonly, a thread locks the mutex and
inspects the shared data.  If it doesn’t like what it finds, it waits using a condition variable.  This operation
also temporarily unlocks the mutex, to give other threads a chance to get in and modify the shared data.
Eventually, one of them should signal the condition (which wakes up the blocked thread) before it unlocks
the mutex.  At that point, the original thread will regain its lock and can look at the shared data to see if
things have improved.  It can’t assume that it will like what it sees, because some other thread may have
slipped in and mucked with the data after the the condition was signaled.

One must take special care with data structures that are dynamically allocated and deallocated.  In
particular, if the mutex that is controlling access to a dynamically allocated record is part of the record,
one must be sure that no thread is waiting for the mutex before freeing the record.

Attempting to lock a mutex that one already holds is another common error.  The offending thread will
block waiting for itself.  This can happen when a thread is traversing a complicated data structure, locking
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as it goes, and reaches the same data by different paths.  Another instance of this is when a thread is
locking elements in an array, say to swap them, and it doesn’t check for the special case that the
elements are the same.

In general, one must be very careful to avoid deadlock.  Deadlock is defined as the condition in which one
or more threads are permanently blocked waiting for each other.  The above scenarios are a special case
of deadlock.  The easiest way to avoid deadlock with mutexes is to impose a total ordering on the
mutexes, and then ensure that threads only lock mutexes in increasing order.

One important issue the programmer must decide is what kind of granularity to use in protecting shared
data with mutexes.  The two extremes are to have one mutex protecting all shared memory, and to have
one mutex for every byte of shared memory. Finer granularity normally increases the possible
parallelism, because less data is locked at any one time.  However, it also increases the overhead lost to
locking and unlocking mutexes and increases the possibility of deadlock.

5.1. mutex_lock
void
mutex_lock(m)

mutex_t m;

The mutex_lock() procedure attempts to lock the mutex m and blocks until it succeeds.  If several
threads attempt to lock the same mutex concurrently, one will succeed, and the others will block until m is
unlocked. The case of a thread attempting to lock a mutex it has already locked is not treated specially;
deadlock will result.

5.2. mutex_try_lock
int
mutex_try_lock(m)

mutex_t m;

The mutex_try_lock() function attempts to lock the mutex m, like mutex_lock(), and returns TRUE

if it succeeds.  If m is already locked, however, mutex_try_lock() immediately returns FALSE rather
than blocking.  For example, a busy-waiting version of the mutex_lock() procedure could be written in
terms of mutex_try_lock() as follows:

void
mutex_lock(m)

mutex_t m;
{

for (;;)
if (mutex_try_lock(m))

return;
}

5.3. mutex_unlock
void
mutex_unlock(m)

mutex_t m;

The mutex_unlock() procedure unlocks the mutex m, giving other threads a chance to lock it.



6

5.4. condition_signal
void
condition_signal(c)

condition_t c;

The condition_signal() procedure should be called when one thread wishes to indicate that the
condition represented by the condition variable is now true.  If any other threads are waiting (via
condition_wait()), then at least one of them will be awakened.  If no threads are waiting, then
nothing happens.

5.5. condition_broadcast
void
condition_broadcast(c)

condition_t c;

The condition_broadcast() procedure is similar to condition_signal(), except that it awakens
all threads waiting for the condition, not just one of them.

5.6. condition_wait
void
condition_wait(c, m)

condition_t c;
mutex_t m;

The condition_wait() procedure unlocks m, suspends the calling thread until the specified condition
is likely to be true, and locks m again when the thread resumes.  Since there is no guarantee that the
condition will be true when the thread resumes, use of this procedure should always be of the form

mutex_lock(m);
...
while (/* condition is not true */)

condition_wait(c, m);
...
mutex_unlock(m);

Shared variables should be inspected on each iteration to determine whether the condition is true.

6. Management of Synchronization Variables
A mutex or condition variable can be allocated dynamically from the heap, or the programmer can take an
object of the referent type, initialize it appropriately, and then use its address.

6.1. Allocation
mutex_t
mutex_alloc()

condition_t
condition_alloc()

These functions provide dynamic allocation of mutex and condition objects.
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6.2. Deallocation
void
mutex_free(m)

mutex_t m;

void
condition_free(c)

condition_t c;

These functions allow the programmer to deallocate mutex and condition objects that were allocated
dynamically. Before deallocating such an object, the programmer must guarantee that no other thread
will reference it.  In particular, a thread blocked in mutex_lock() or condition_wait() should be
viewed as referencing the object continually, so freeing the object ‘‘out from under’’ such a thread is
erroneous, and can result in bugs that are extremely difficult to track down.

6.3. Initialization
void
mutex_init(m)

struct mutex *m;

void
condition_init(c)

struct condition *c;

These functions allow the programmer to initialize an object of the struct mutex or struct

condition referent type, so that its address can be used wherever an object of type mutex_t or
condition_t is expected.  For example, the mutex_alloc() function could be written in terms of
mutex_init() as follows:

mutex_t
mutex_alloc()
{

register mutex_t m;

m = (mutex_t) malloc(sizeof(struct mutex));
mutex_init(m);
return m;

}

Initialization of the referent type is most often used when the programmer has included the referent type
itself (rather than a pointer) in a larger structure, for more efficient storage allocation. For instance, a data
structure might contain a component of type struct mutex to allow each instance of that structure to be
locked independently. During initialization of the instance, the programmer would call mutex_init() on
the struct mutex component. The alternative of using a mutex_t component and initializing it using
mutex_alloc() would be less efficient.

6.4. Finalization
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void
mutex_clear(m)

struct mutex *m;

void
condition_clear(c)

struct condition *c;

These functions allow the programmer to finalize an object of the struct mutex or struct

condition referent type.  For example, the mutex_free() procedure could be written in terms of
mutex_clear() as follows:

void
mutex_free(m)

mutex_t m;
{

mutex_clear(m);
free((char *) m);

}

7. Shared Variables
All global and static variables are shared among all threads: if one thread modifies such a variable, all
other threads will observe the new value. In addition, a variable reachable from a pointer is shared
among all threads that can dereference that pointer.  This includes objects pointed to by shared variables
of pointer type, as well as arguments passed by reference in cthread_fork().

When pointers are shared, some care is required to avoid dangling reference problems.  The programmer
must ensure that the lifetime of the object pointed to is long enough to allow the other threads to
dereference the pointer.  Since there is no bound on the relative execution speed of threads, the simplest
solution is to share pointers to global or heap-allocated objects only.  If a pointer to a local variable is
shared, the procedure in which that variable is defined must remain active until it can be guaranteed that
the pointer will no longer be dereferenced by other threads. The synchronization functions can be used
to ensure this.

The programmer must remember that unless a library, like the standard C library, has been designed to
work in the presence of reentrancy, the operations provided by the library must be presumed to make
unprotected use of shared data.  Hence, the programmer must protect against this through the use of a
mutex that is locked before every library call (or sequence of library calls) and unlocked afterwards.

7.1. Dynamic Allocation
Dynamic allocation and freeing of user-defined data structures is typically accomplished with the standard
C functions malloc() and free(). The C threads package provides versions of these functions that
work correctly in the presence of multiple threads.

8. Using the C Threads Package
All of the functions described have been implemented for the MACH multiprocessor operating system.
Three implementations of threads are provided, in the form of libraries.  Programs need not be recompiled
to use a different thread implementation, only relinked. To compile a program that uses C threads, the
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user must include the file cthreads.h. (The directory /usr/mach/include should be in the user’s
CPATH search list for the C preprocessor to find this header file.)  The program must call
cthread_init() before using any other C threads features.  To link a program that uses C threads, the
user must specify on the cc command line one of the three libraries described below, followed by the
-lmach library. (The directory /usr/mach/lib should be in the user’s LPATH search list for the linker
to find these libraries.)

8.1. The Coroutine Implementation
The first implementation, -lco_threads, uses coroutines within a single MACH task (UNIX process).
Scheduling of these threads is non-preemptive, hence cthread_yield() should be called within loops
that do not otherwise call synchronization procedures.  The programmer will typically link with this version
while debugging.

This implementation includes versions of the MACH interprocess communication primitives
msg_receive(), msg_send(), and msg_rpc(), and a version of the UNIX select() system call, that
can be called from one thread without blocking the other threads in the program.  The other forms of
UNIX I/O have not been redefined for use with -lco_threads, however.  For example, calling
getchar() from one thread may block all threads in the program, not just the caller.  To work around
this, the programmer should first call select() on the relevant file descriptor to guarantee that the
subsequent input operation will not block.

8.2. The MACH Thread Implementation
The second implementation, -lthreads, uses one MACH thread per C thread.  These threads are
preemptively scheduled, and may execute in parallel on a multiprocessor. This is the implementation that
should be used in the production version of a C threads program.

The current -lco_threads and -lthreads implementations allocate large fixed-size stacks for each C
thread in virtual memory.  The implementations rely on the MACH virtual memory system to allocate
physical memory only as needed by the thread.

8.3. The MACH Task Implementation
The third implementation, -ltask_threads, uses one MACH task (UNIX process) per thread, and uses
the MACH virtual memory primitives to share memory between threads.  In most circumstances, the
-lthreads implementation should be used instead of this one.  An exception is when the programmer
wishes to use the MACH virtual memory primitives to provide a specialized pattern of memory sharing
between C threads.

Users of the -ltask_threads implementation should note that capabilities such as MACH ports and
UNIX file descriptors are private to the task that creates them, and so cannot be shared.  The current
-ltask_threads implementation also makes stack segments private to each task, so automatic (stack-
allocated) variables cannot be shared.

The MACH operating system currently limits the number of tasks (and hence the number of C threads in
the -ltask_threads implementation) that a user may create. Applications that create large numbers of
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threads will encounter run-time errors when they exceed this limit.  It may be the case that concurrent
execution is required to avoid deadlock (for example, in a multi-stage pipeline).  For applications with
largely independent threads, however, a limited degree of parallelism may still allow correct execution.
The following function can be used in such applications.

void
cthread_set_limit(n)

int n;

This function limits the number of active threads to n. If a newly created thread of control exceeds this
limit, it will not begin execution until another thread terminates.

9. Debugging
It is strongly recommended that the coroutine-based implementation (-lco_threads) be used for
debugging, for the following reasons:

• The order of thread context switching is repeatable in successive executions of the program,
so obvious synchronization bugs may be found easily.

• Since the program is a single MACH task, existing debuggers can be used.

• The user need not worry about concurrent calls to C library routines.

9.1. Low-Level Tracing
int cthread_debug;

Setting this variable to 1 causes diagnostic information to be printed when each C threads primitive is
executed. Trace output appears on stdout.

9.2. Associating Names with C Thread Objects
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void
cthread_set_name(t, name)

cthread_t t;
string_t name;

string_t
cthread_name(t)

cthread_t t;

void
mutex_set_name(m, name)

mutex_t m;
string_t name;

string_t
mutex_name(m)

mutex_t m;

void
condition_set_name(c, name)

condition_t c;
string_t name;

string_t
condition_name(c)

condition_t c;

These functions allow the user to associate a name with a thread, mutex, or condition.  The name is used
when trace information is displayed (see above).  The name may also be used by the programmer for
application-specific diagnostics.

9.3. Pitfalls of Preemptively Scheduled Threads
The C run-time library needs a substantial amount of modification in order to be used with preemptively
scheduled threads (-lthreads and -ltask_threads). Currently the user must ensure that calls to the
standard I/O library are serialized, through the use of one or more mutex variables.  (The storage
allocation functions malloc() and free() do not require any special precautions.)

The debuggers currently available under MACH cannot be used on programs linked with -lthreads or
-ltask_threads. Furthermore, the very act of turning on tracing or adding print statements may
perturb programs that incorrectly depend on thread execution speed.  One technique that is useful in
such cases is to vary the granularity of locking and synchronization used in the program, making sure that
the program works with coarse-grained synchronization before refining it further.
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10. Examples
The following example illustrates how the facilities described here can be used to program Hoare
monitors [2].  The program would be compiled and linked by the command

cc hoaremonitor.c -lthreads -lmach

/*
* Producer/consumer with bounded buffer.
*
* The producer reads characters from stdin
* and puts them into the buffer.  The consumer
* gets characters from the buffer and writes them
* to stdout.  The two threads execute concurrently
* except when synchronized by the buffer.
*/
#include <stdio.h>
#include <cthreads.h>
typedef struct buffer {

struct mutex lock;
char *chars; /* chars[0..size-1] */
int size;
int px, cx; /* producer and consumer indices */
int count; /* number of unconsumed chars in buffer */
struct condition non_empty, non_full;

} *buffer_t;
void
buffer_put(ch, b)

char ch;
buffer_t b;

{
mutex_lock(&b->lock);
while (b->count == b->size)

condition_wait(&b->non_full, &b->lock);
ASSERT(0 <= b->count && b->count < b->size);
b->chars[b->px] = ch;
b->px = (b->px + 1) % b->size;
b->count += 1;
condition_signal(&b->non_empty);
mutex_unlock(&b->lock);

}
char
buffer_get(b)

buffer_t b;
{

char ch;
mutex_lock(&b->lock);
while (b->count == 0)

condition_wait(&b->non_empty, &b->lock);
ASSERT(0 < b->count && b->count <= b->size);
ch = b->chars[b->cx];
b->cx = (b->cx + 1) % b->size;
b->count -= 1;
condition_signal(&b->non_full);
mutex_unlock(&b->lock);
return ch;

}



13

void
producer(b)

buffer_t b;
{

int ch;
do buffer_put((ch = getchar()), b);
while (ch != EOF);

}
void
consumer(b)

buffer_t b;
{

int ch;
while ((ch = buffer_get(b)) != EOF)

printf("%c", ch);
}
buffer_t
buffer_alloc(size)

int size;
{

buffer_t b;
extern char *malloc();
b = (buffer_t) malloc(sizeof(struct buffer));
mutex_init(&b->lock);
b->size = size;
b->chars = malloc((unsigned) size);
b->px = b->cx = b->count = 0;
condition_init(&b->non_empty);
condition_init(&b->non_full);
return b;

}
#define BUFFER_SIZE 10
main()
{

buffer_t b;
cthread_init();
b = buffer_alloc(BUFFER_SIZE);
cthread_detach(cthread_fork(producer, b));
cthread_detach(cthread_fork(consumer, b));
cthread_exit(0);

}
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The following example shows how to structure a program in which a single master thread spawns a
number of concurrent slaves and then waits until they all finish.  The program would be compiled and
linked by the command

cc masterslave.c -lthreads -lmach

/*
* Master/slave program structure.
*/
#include <stdio.h>
#include <cthreads.h>
int count; /* number of slaves active */
mutex_t lock; /* mutual exclusion for count */
condition_t done;  /* signalled each time a slave finishes */
extern long random();
init()
{

cthread_init();
count = 0;
lock = mutex_alloc();
done = condition_alloc();
srandom(time((int *) 0));  /* initialize random number generator *

}
/*
* Each slave just counts up to its argument,
* yielding the processor on each iteration.
* When it is finished, it decrements the global count
* and signals that it is done.
*/
slave(n)

int n;
{

int i;
for (i = 0; i < n; i += 1)

cthread_yield();
mutex_lock(lock);
count -= 1;
printf("Slave finished %d cycles.\n", n);
condition_signal(done);
mutex_unlock(lock);

}
/*
* The master spawns a given number of slaves
* and then waits for them all to finish.
*/
master(nslaves)

int nslaves;
{

int i;
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for (i = 1; i <= nslaves; i += 1) {
mutex_lock(lock);
/*
* Fork a slave and detach it,
* since the master never joins it individually.
*/
count += 1;
cthread_detach(cthread_fork(slave, random() % 1000));
mutex_unlock(lock);

}
mutex_lock(lock);
while (count != 0)

condition_wait(done, lock);
mutex_unlock(lock);
printf("All %d slaves have finished.\n", nslaves);
cthread_exit(0);

}
main()
{

init();
master((int) random() % 16);  /* create up to 15 slaves */

}
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