
USE SRR include the SRR transport module in the network server.

Both USE_VMTP and NETPORT require kernel support that is not normally present. Normally,
USE_TCP, USE_SRR and USE_DATAGRAM should always be enabled for the system to work.

In addition to the configuration options, the file config.h also contains all the definitions needed
to compile the network server on various architectures. It is the only file that should be modified when
porting the network server to a new architecture.

References

References

[1] Cheriton, D. VMTP: A Transport Protocol for the Next Generation of Communication Systems. In:
Proceedings of the ACM SIGCOMM 86 Symposium on Communications Architectures and
Protocols. ACM, 1986, pp. 406–415.

[2] Sansom, R. D., Julin, D. P., and Rashid, R. F. Extending a Capability Based System into a Network
Environment. In: SIGCOMM ’86 Symposium: Communications Architectures & Protocols,
ACM SIGCOMM. 1986. Also available as Technical Report CMU-CS-86-115.

[3] Spector, A. Z., Bloch, J. J., Daniels, D. S., Draves, R. P., Duchamp, D., Eppinger, J. L., Menees,
S. G., and Thompson, D. S. The Camelot Project. Database Engineering, vol. 9 (1986). Also
available as Technical Report CMU-CS-86-166, Carnegie-Mellon University, November 1986.

42



A Compiling a Network Server

The various configuration options for the Network Server are all defined in the file config.h, which
should simply be edited before compiling the system. The option settings in the file as distributed are
suitable for a normal generic configuration.

The configuration options are:

NET LOG enable the LOGn macros.

NET DEBUG enable the DEBUGn macros.

NET TRACE enable tracing of procedure calls, under control of a command line switch.

NET PRINT enable printing from the LOG and DEBUG macros.

LOCK THREADS do not allow more than one thread to run at any one time. To use only for debugging.

NM STATISTICS enable normal statistics gathering.

NETPORT enable entering information in the kernel port records for use by the Netport option.

PORTSTAT enable port statistics gathering.

RPCMOD enable the RPC optimization, and the request-response transport interface. Should always be
on.

COMPAT enable special operating mode for compatibility with the previous implementation (Mach 1.0
and 2.0) of the Network Server.

NOTIFY explicitly allocate a notify port, which is not created by default in newer versions of the Mach
kernel.

CAMELOT include the Camelot module in the network server.

NM USE KDS use an external Key Distribution Server.

USE VMTP include the VMTP transport module in the network server.

USE DELTAT include the Delta-t transport module in the network server.

USE CRYPT include the Crypt module in the network server.

USE DES include the DES encryption module in the network server.

USE MULTPERM include the “multiple permutations” encryption module in the network server.

USE NEWDES include the “new” DES encryption module in the network server.

USE XOR include the “exclusive or” encryption module in the network server.

USE KEYMAN include the keymanager module in the network server.

USE TCP include the TCP transport module in the network server.

USE DATAGRAM include the DATAGRAM transport module in the network server.

41



17.7. Camelot Support

The Camelot Distributed Transaction Facility [3] requires special handling for IPC messages used in
Camelot transactions. This handling is performed in a special Camelot module, not described, here, that
behaves as an extra step in the translation process for incoming and outgoing IPC messages.

In addition, Camelot also requires some specialized name servers, also implemented in the Camelot
module.

17.8. Kernel Netport Support

Certain Mach kernels provide an experimental feature, called Netport or MACH_NP with which Kernel
port records may be flagged as corresponding to local representatives for remote network ports. Under
certain very restricted conditions, the kernel may, upon processing a message destined for one of these
ports, send the message directly to the remote node instead of handing it to the network server. This
scheme results in improved performance by avoiding the overhead of invoking the network servers on
both ends of the communication. Correctness is assured by having the kernel abort its transmission and
reflect the message back to the network server as soon as a situation arises that is too complex for the
Netport code to handle.

When enabled, all modules in the network server that modify network port records enter the correct
information in the kernel port records to allow the Netport code to function.

17.9. Initialization

The network server initialization sequence takes care of detecting modules that require kernel support not
present on the current node, and of setting the working parameters accordingly. These include:

� Access to a network interface. If there is no network, the network server degenerates into a simple
local Name Server, as specified by the conf_network parameter.

� Netport support: controlled by the conf_netport parameter.

� VMTP support. The transport_default parameter is set to the index of the best transport
protocol available.

17.9.1. Interface

boolean_t nm_init()

initializes the network server by calling and checking the error returns for all the module initialization
functions.

40



is used to obtain a record with the vital network server statistics in the response.

kern_return_t ls_resetstat(ServPort)
port_t ServPort;

resets all statistics counters to zero.

kern_return_t ls_senddebug(ServPort,debug_ptr,debug_size)
port_t ServPort;
debug_ptr_t *debug_ptr;
unsigned int *debug_size;

is used to obtain a record with all the debugging flags used to control the operation of the DEBUG macros.

kern_return_t ls_setdebug(ServPort,debug_ptr,debug_size)
port_t ServPort;
debug_ptr_t *debug_ptr;
unsigned int *debug_size;

is used to replace the record with all the debugging flags used to control the operation of the DEBUG
macros.

kern_return_t ls_sendparam(ServPort,param_ptr,param_size)
port_t ServPort;
param_ptr_t *param_ptr;
unsigned int *param_size;

is used to obtain a record with the network server control parameters.

kern_return_t ls_setparam(ServPort,param_ptr,param_size)
port_t ServPort;
param_ptr_t *param_ptr;
unsigned int *param_size;

is used to replace the record with the network server control parameters.

kern_return_t ls_sendportstat(ServPort,port_stat_ptr,port_stat_size)
port_t ServPort;
port_stat_ptr_t *port_stat_ptr;
unsigned int *port_stat_size;

is used to obtain a record with the port record statistics.

39



is used to print out a message on stderr an make an entry in the log. The argument should be a valid set
of arguments for sprintf, with the message string msg.

void panic(error_msg)
char *error_msg;

is called if something catastrophic happens. Prints out the error_msg, dumps the log and terminates
the network server.

void ipaddr_to_string(output_string, input_address)
char *output_string;
netaddr_t input_address;

translates the input_address IP address into a printable representation in output_string.

Procedures exported outside the network server: The following procedures can be called remotely
by sending requests on a port checked-in as NM_LOGSTAT in the network server.

kern_return_t ls_sendlog(ServPort,old_log_ptr,old_log_size,
cur_log_ptr,cur_log_size)

port_t ServPort;
log_ptr_t *old_log_ptr;
unsigned int *old_log_size;
log_ptr_t *cur_log_ptr;
unsigned int *cur_log_size;

is used to obtain both network server logs in the response message. The old and new logs correspond to
the two alternating logs used to record events.

kern_return_t ls_resetlog(ServPort)
port_t ServPort;

resets the log to zero size.

kern_return_t ls_writelog(ServPort)
port_t ServPort;

causes the network server to write its log in a file NMLOG in its current working directory.

kern_return_t ls_sendstat(ServPort,stat_ptr,stat_size)
port_t ServPort;
stat_ptr_t *stat_ptr;
unsigned int *stat_size;

38



17.4. IPC Message Receive

17.5. Interface

int netmsg_receive(msg_ptr)
msg_header_t *msg_ptr;

does a non-blocking receive for a local IPC message.

17.6. Debugging

The network server keeps a log in memory of various events happening during its operation. This log,
along with statistics on various operations, can be obtained via the logstat service exported by the network
server. In addition, many operating parameters, including the level of debugging information written to
the log, can be set using this same service.

17.6.1. Interface

Macros and procedures called within the network server

DEBUGn(condition,print_level,code,arg1,...,argn)

is a macro to be used to write a record containing the code and all the integer args into the log. n is a
number between 0 and 6, indicating how many integers must be copied into the log. A log entry is only
made if condition evaluates to TRUE. In addition, if print_level is greater or equal to the global
debug.print_level, a message is printed on stderr.

DEBUG_STRING(cond,level,string)
DEBUG_NPORT(cond,level,nport)
DEBUG_NETADDR(cond,level,netaddr)
DEBUG_KEY(cond,level,key)
DEBUG_SBUF(cond,level,sbuf)

are similar to the DEBUGn macros, but are used to enter a string, a network port identifier, a network
address, an encryption key or an sbuf into the log.

The DEBUG macros can be made to expand to nothing via a compile-time switch to avoid overheads
at execution time. Each of those macros has an equivalent LOG macro that can be enabled or disabled
independently; those LOG macros are intended for events that should always be entered in the log and
are infrequent enough that the overhead involved is negligible.

ERROR((msg,format,args...))

37



17.1.1. Interface

void uid_init()

initializes the UID module.

long uid_get_new_uid()

returns a new UID.

17.2. Sbuf

The sbuf module provides macros that manipulate sbufs.

17.2.1. Interface

void sbuf_printf(where, sb_ptr)
FILE *where;
sbuf_ptr_t sb_ptr;

is the only exported function of the sbuf module. It prints out the contents of the sbuf pointed to by
sb_ptr.

17.3. Network Interfaces

Under Mach the interface to the network is an IPC interface with a filter inside the kernel determining
which network packets are to be received by the network server. Currently, many transport modules still
use BSD Unix sockets to access network protocol implementations in the kernel.

17.3.1. Interface

int netipc_receive(pkt_ptr)
netipc_ptr_t pkt_ptr;

waits to receive a packet from the kernel. Checks the packet’s UDP checksum before returning to the
caller.

int netipc_send(pkt_ptr)
netipc_ptr_t pkt_ptr;

calculates the UDP checksum for the packet and then sends it to the kernel for transmission over the
network.

36



applies the user-supplied function fn to each successive item of queue and arg.

In addition to the above routines, a number of equivalent routines are provided that do not acquire or
release the queue lock when invoked, to be used in situations where global lock management is needed
to avoid deadlock. Those routines are prefixed with lqn_ instead of lq_.

Finally, the network server also uses doubly-linked lists for some queues. using the same macros used
in the Mach kernel for that purpose.

16. Timer Module

The timer module accepts requests from other modules for events to be scheduled at some time in the
future. When the event’s deadline expires the timer module calls the user-supplied function associated
with the timer.

16.1. Interface

boolean_t timer_init()

initializes the timer module.

struct timer {...} *timer_t;

timer_t timer_alloc()

returns a new timer.

void timer_start(timer)
timer_t timer;

starts up timer.

void timer_stop(timer)
timer_t timer;

stops timer.

17. Miscellaneous

17.1. Unique Identifier Generator

Simply generates locally unique identifiers (UIDs). The identifiers generated are unique with high prob-
ability.

35



boolean_t lq_cond_delete_from_queue(queue, test, item)
lock_queue_t queue;
int (*test)();
queue_item_t item;
int arg;

performs the user-supplied function test on item, arg and on successive elements of queue. If it
returns TRUE, then the current element of the queue is deleted.

boolean_t lq_on_queue(queue, item)
lock_queue_t queue;
queue_item_t item;

checks to see if the item is on queue.

queue_item_t lq_dequeue(queue)
lock_queue_t queue;

if queue is not empty remove and return the queue item which is at the head of it.

queue_item_t lq_blocking_dequeue(queue)
lock_queue_t queue;

if queue is empty, a wait is done until it is non-empty. Removes and returns the queue item which is at
the head of queue.

void lq_enqueue(queue, item);
lock_queue_t queue;
queue_item_t item;

inserts item at the tail of queue.

queue_item_t lq_find_in_queue(queue, fn, args)
lock_queue_t queue;
int (*fn)();
int arg;

returns a queue_item_t which is found by applying the user-supplied function fn to successive
elements of queue and arg until fn returns TRUE.

void lq_map_queue(queue, fn, args);
lock_queue_t queue;
int (*fn)();
int arg;

34



15. Locked Queue Module

The locked queue module provides functions to manipulate items on queues. When a queue is accessed
it is always locked before being manipulated.

15.1. Interface

typedef struct {...} *lock_queue_t;
typedef struct queue_item {struct queue_item *next} *queue_item_t;

lock_queue_t lq_alloc()

allocates and initializes a new locked queue.

void lq_init_queue(queue)
lock_queue_t queue;

re-initializes the already allocated queue.

void lq_prequeue(queue, item)
lock_queue_t queue;
queue_item_t item;

inserts item at the head of queue.

void lq_insert_in_queue(queue, test, item, args)
lock_queue_t queue;
int (*test)();
queue_item_t item;
int arg;

inserts item in the “correct” position on queue. The correct position is determined by calling the
user-supplied function test on item, arg and the members of queue until it returns TRUE.

boolean_t lq_remove_from_queue(queue, item)
lock_queue_t queue;
queue_item_t item;

removes item from queue if item is present on the queue. Returns TRUE is item was deleted from
queue, FALSE otherwise.

33



pointer_t mem_alloc(size,aligned)
int size;
boolean_t aligned;

allocates a memory area of arbitrary size; it returns 0 in case of failure.

void mem_dealloc(ptr,size)
pointer_t ptr;
int size;

deallocates memory previously allocated by mem_dealloc.

14. Read/Write Locks

The read/write locks module provides locks which can have multiple readers and signals threads waiting
for a lock when it becomes free.

14.1. Interface

typedef enum {PERM_READ, PERM_READWRITE} rw_perm_t;
typedef enum {NOBLOCK = 0, BLOCK = 1} rw_block_t;
typedef struct lock {...} *lock_t;

lock_t lk_alloc()

allocates a read/write lock.

void lk_free(lock)

frees a read/write lock.

int lk_lock(lock, perm, block)
lock_t lock;
rw_perm_t perm;
rw_block_t block;

locks the lock for type perm. If block is true, then this calls blocks waiting until the lock can be
obtained, otherwise the function returns 0 if the lock cannot be obtained.

void lk_unlock(lock)
lock_t lock;

unlocks the lock.

32



int nn_handle_request(request,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming request for a network name look up.

int nn_handle_reply(client_id,reply,from,broadcast,crypt_level)

is called by disp_rr_simple to handle an incoming response to a request for a network name look
up.

13. Memory Management

13.1. Operation

The memory management module is responsible for allocating and deallocating various objects used by
the different modules, such as port and message records, buffers, and so on. It attempts to use knowledge
of the types of objects required to achieve good performance. It tries to reduce the load placed on the
MACH virtual memory system.

13.2. Interface

boolean_t mem_init()

initializes the memory management module.

int mem_clean()

attempts to free as much unused space as possible to reduce the paging load on the operating system; it
is potentially slow.

pointer_t mem_allocobj(objtype)
int objtype;

allocates one instance of an object of the given objtype and returns its address, or 0 in case of failure.

void mem_deallocobj(ptr,objtype)
pointer_t ptr;
int objtype;

deallocates an object of objtype previously allocated using mem_allocobj.

31



12.2. Interface

boolean_t netname_init()

initializes the network name module.

nn_remove_entries(port_id)
port_t port_id;

removes all entries for the local port port_id from the local name table.

typedef char netname_name_t[80]

kern_return_t netname_check_in(ServPort,port_name,signature,port_id)
vport_t ServPort;
netname_name_t port_name;
port_t signature;
port_t port_id;

checks in the port port_id under the name port_name protected by signature.

kern_return_t netname_look_up(ServPort,host_name,port_name,port_id)
port_t ServPort;
netname_name_t host_name;
netname_name_t port_name;
port_t *port_id;

looks up port_name at host given by host_name. Returns in port_id the port found.

kern_return_t netname_check_out(ServPort,port_name,signature,port_id)
port_t ServPort;
netname_name_t port_name;
port_t signature;

checks out the port checked in under port_name. The signature must match the signature
supplied to the netname_check_in call.

kern_return_t netname_version(ServPort,version)
port_t ServPort;
netname_name_t version;

returns in version some version identification for the network server.

30



is called by the local KDS to tell the network server to use key for all future communication with
host_id.

In the above two calls the server_port should always be a special port which is known only to the
network server and the local KDS. The network server is responsible for starting the KDS and passing
send rights to this special port to the KDS.

11. Crypt

The crypt module is responsible for the actual encryption and decryption of packets that are to be sent
out over the network and received over the network.

11.1. Interface

typedef struct {...} netipc_t, *netipc_ptr_t;

points to an Internet packet encapsulated in a MACH IPC message.

int crypt_encrypt_packet(packet_ptr, crypt_level)
netipc_ptr_t packet_ptr;
int crypt_level;

encrypts the packet pointed to by packet_ptr at the encryption level given by crypt_level. Returns
either CRYPT_SUCCESS or CRYPT_FAILURE if there is no key for the remote host.

crypt_decrypt_packet(packet_ptr, crypt_level)
netipc_ptr_t packet_ptr;
int crypt_level;

decrypts the packet pointed to by packet_ptr at the encryption level given by crypt_level. Re-
turns either CRYPT_SUCCESS, CRYPT_FAILURE if there is no key for the remote host or CRYPT_
CHECKSUM_FAILURE if the decrypted checksum is incorrect.

12. Network Name Service

12.1. Description

The network name service module provides a simple name service that is sufficient to boot-strap a higher-
level name service that will provide a distributed and replicated user-level name service. The network
name service is host-directed; that is requests for name look ups are sent to specific hosts and are not
broadcast.

29



10.2. Interface

boolean_t km_init()

initializes the key management module.

typedef struct {...} key_t, *key_ptr_t;

is used to hold an encryption or decryption key.

boolean_t km_get_key(host_id, key_ptr)
netaddr_t host_id;
key_ptr_t key_ptr;

looks up the key for the host_id. If there is a key it returns TRUE and places the key in key_ptr.

boolean_t km_get_ikey(host_id, ikey_ptr)
netaddr_t host_id;
key_ptr_t key_iptr;

looks up the inverse key for the host_id. If there is a key returns TRUE and places the key in
ikey_ptr.

km_do_key_exchange(client_id, client_retry, host_id)
int client_id;
int (*client_retry)();
netaddr_t host_id;

is called by a client module to get a key exchange done for host_id. When the key exchange succeeds,
the key management module calls the function client_retry with the parameter client_id to
inform the client that there is now a key for the host.

km_kds_connect(server_port, kds_port)
port_t server_port;
port_t kds_port;

is called by the local KDS to register its port (kds_port) with the network server.

km_use_key_for_host(server_port, host_id, key)
port_t server_port;
netaddr_t host_id;
key_t key;

28



initializes the port search module.

ps_do_port_search(port_rec_ptr,new_information,new_nport_ptr,retry)
port_rec_ptr_t port_rec_ptr;
boolean_t new_information;
network_port_ptr_t new_nport_ptr;
int (*retry)();

is called to begin a port search for the network port recorded in port_rec_ptr. If the caller has new_
information about the port (either the possible identity of a new receiver or owner for the port) then
that new information is contained in the network port pointed to by new_nport_ptr. retry is a
function supplied by the client to be called if the port search concludes successfully. It takes as its only
parameter the port_rec_ptr.

int ps_handle_request(request,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming port search query.

int ps_handle_reply(client_id,reply,from,broadcast,crypt_level)

is called by disp_rr_simple to handle an incoming reply to a port search query.

int ps_handle_auth_request(request,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming request for authentication of a receiver or
owner.

int ps_handle_auth_reply(client_id,reply,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming reply to a request for authentication of a
receiver or owner.

10. Key Management

10.1. Description

The key management module maintains a table which maps remote hosts to keys. When it has to send a
message securely over the network, the IPC module checks that the key management module has a key
for the message’s destination. The actual encryption is done at the transport level when the message data
has been placed in packets.

If the key management module has no key for a particular remote host, or the key that it possesses
is obsolete, then it must call upon the local KDS (Key Distribution Server) to do a key exchange. The
local KDS uses a central KDS to perform the key exchange. After the key exchange is complete, the key
management module should retry the suspended IPC message.

27



9. Port Search

9.1. Description

The port search module is called when some other module (probably either the port checkups module or
the IPC module) determines that the information held about a network port is no longer correct. The task
of the port search module is to update that information, in particular it may determine that the network
port is dead.

The search procedure is basically as follows:

query network server believed to be the receiver;
if receiver responds with useful information
then believe it
else {

query network server believed to be the owner;
if owner responds with useful information
then believe it
else broadcast a request for information

}

The response to a port search query can be one of:

� port here, in which case the port search concludes successfully;

� port here but receive or ownership transferred, in which case the port search concludes successfully
with the port record updated to reflect the new owner or receiver;

� port not here but receive and ownership rights transferred, in which case the port search continues
by querying the new receiver;

� port dead, in which case the port search concludes and the port is destroyed locally; or

� port not known, in which case the port search continues by resorting to a broadcast query.

In addition, a query may receive no response in which case the port search continues by resorting to a
broadcast query. To actually transmit port search queries and responses the port search module uses the
simple request-response transport protocol.

The port search module is also responsible for authenticating a new receiver or owner for a network
port if the identity of the new receiver or owner was obtained as a result of a broadcast search for the
port. This authentication is only necessary is the port is being handled securely.

9.2. Interface

boolean_t ps_init()

26



One other function of the checkups module is to determine whether there exist any tasks with send
rights to each port the network server knows about. This is in order to extend the MACH “no-senders”
notification message into the network environment. The checkups module can determine that a network
port has no senders if there has been no interactions (the reception of either an IPC message or a checkup
request) involving this port for some period of time (typically some number of checkup rounds). If the
network port has no senders then the checkups module can deallocate send rights to the corresponding
local port and destroy the associated port record.

In addition the checkups module is responsible for handling hints received saying that a remote network
server has just restarted. For such a hint the checkups module calls the port search module for each port
that had the restarted network server as its owner or receiver.

8.2. Interface

boolean_t pc_init()

initializes the checkups module.

int pc_do_checkups()

is called by the timer module to perform a checkup.

pc_handle_checkup_request(request,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming checkup request.

pc_handle_checkup_reply(client_id,reply,from,broadcast,crypt_level)

is called by disp_rr_simple to handle an incoming checkup reply.

void pc_send_startup_hint()

is called on start-up to send out a hint saying that this network server has just restarted.

int pc_handle_startup_hint(hint,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming network server restart hint.

25



int po_handle_token_request(request,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming request for a token of receiver/owner
authenticity.

int po_handle_token_reply(client_id,reply,from,broadcast,crypt_level)

is called by disp_rr_simple to handle the response to a request for a token of receiver/owner
authenticity.

8. Port Checkups

8.1. Description

The port checkups module does a periodic probing of other network servers to find out whether the status
of network ports has changed. In particular, it is the default way in which the network server finds out
about the death of a network port or the fact that receive or ownership rights have moved to a different
network server. These special conditions can also be detected as part of the normal transmission of IPC
messages across the network. The port checkups routine should only be called periodically and when the
network server is otherwise idle; in other words it is of low priority.

The checkups module needs to be able to look at the port records in order to examine a “aliveness”
parameter associated with each port record. The aliveness parameter is decremented by the port checkups
module every time it is called. Only when it goes below some predetermined value, is a checkup
performed for the port. Moreover, the aliveness parameter is updated to fully-alive when the IPC
module has successfully sent a message over the network to the port. In other words, if the port is in
regular use then no checkup is done for it.

When the checkups module actually decides to send a checkup request to find out about ports, it
constructs an sbuf for each network server that it must query. An sbuf contains the ports in which it is
interested for which it believes the remote network server is responsible. To transmit and receive checkup
information across the network, the port checkups module uses the simple request-response transport
protocol. After making a request by calling srr_send, the checkups module will either receive a
checkup reply or a failure notification from the transport module.

On receiving a checkup request, the checkups module looks at each port contained in the request. If
the information about the port that the requester sent does not match the information held locally, then
the port in the checkup packet is marked as being “bad”. The checkup reply packet is then sent back to
the requester.

On receiving a checkup reply, the requester examines all the ports in the reply and for those ports with
a “bad” status it calls the port search module. It is up to the port search module to find out more about
the status of the port. If no response was received to the checkup request then the checkups module must
call the port search module for each port in the checkup request in order to resolve the port’s status (e.g.
to determine whether it is dead).

24



po_port_rights_commit(client_id, completion_code, destination)
int client_id;
int completion_code;
netaddr_t destination;

informs the port operations module that a transfer of rights to a remote network host has either suc-
ceeded or failed. The client_id allows the port operations module to match this call with a previous
call of po_translate_lport_rights. The completion_code can be one of PO_RIGHTS_
XFER_SUCCESS and PO_RIGHTS_XFER_FAILURE. The destination names the remote network
server to which the port rights were actually transferred. It may be different from the destination_
hint passed to po_translate_lport_rights.

int po_translate_nport_rights(source,port_data,security_level,
lport,right)

netaddr_t source;
pointer_t port_data;
int security_level;
port_t *lport;
int *right;

is called by the IPC module when it receives access rights to a remote network port in a message from a
remote network server. The access rights are contained in the data pointed to by port_data and were
received from the network server on host source and at security_level. The port data received
is handled according to what access rights are being transferred and the local port corresponding to the
network port that was transferred is returned in lport. In addition the actual right transferred is returned
in right and the size of the port data that was processed is returned as the function’s result.

int po_handle_ro_xfer_request(request,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an incoming transfer of receiver or ownership rights.

int po_handle_ro_xfer_reply(client_id,reply,from,broadcast,crypt_level)

is called by disp_rr_simple to handle the response to a transfer of receiver or ownership rights.

int po_handle_ro_xfer_hint(request,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an unreliable notification of a transfer of receiver or
ownership rights.

int po_handle_nport_death(hint,from,broadcast,crypt_level)

is called by disp_indata_simple to handle an unreliable notification of the death of a network port.

23



checks that the incoming IPC sequence number of a message is greater that the last sequence number
received for the network port with port record port_rec_ptr from the network server on machine
host_id. This check is only done for secure messages and ensures that complete IPC messages cannot
be replayed by a malicious party.

typedef struct {...} secure_info_t, *secure_info_ptr_t;

is used to hold the key representing receiver or ownership rights to a network port.

long po_create_token(port_rec_ptr, token_ptr)
port_rec_ptr_t port_rec_ptr;
secure_info_ptr_t token_ptr;

creates a token for a port. Stores the token in token_ptr and returns the random number used to
construct the token.

void po_notify_port_death(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

triggers handling of a local port death. Marks the port’s record as deleted, sends out an unreliable port
death notification messages and does other local cleanups.

void po_port_deallocate(lport)
port_t lport

deallocates a port but retains send rights to it. This allows the network server to transfer receive or
ownership rights to a port to a local task using the notification mechanism of the kernel.

int po_translate_lport_rights(client_id,lport,right,security_level,
destination_hint,port_data)

int client_id;
port_t lport;
int right;
int security_level;
netaddr_t destination_hint;
pointer_t port_data;

is called by the IPC module to pack up the data that needs to be sent to the host destination_hint
in order to transfer the access rights right to port lport. The data that needs to be sent depends on
the security_level of the transfer. The data is packed into the space pointed to by port_data
and the size of the network port data that has been created is returned as the function’s result. The
client_id is an identifier remembered by the port operations module so that it can match up a subse-
quent po_port_rights_commit (see below) with this call of po_translate_lport_rights.

22



7. Port Operations

7.1. Description

The functions provided by the port operations module are called in one of the following three circum-
stances:

1. A message is received from the local kernel notifying the network server about a change in condition
of a local port. These changes are:

� the death of the local port;

� the transfer of port access rights to another task (probably because the task holding the rights
has died); and

� the local unblocking of the port.

2. A message is received over the network notifying the network server of a change in the remote
network port’s condition. The possible changes are as for the local case except that they should be
interpreted in the context of the remote port.

3. Access rights to a port are being transferred in a normal IPC message which is about to be sent to
a remote network server or has been received from a remote network server.

The behavior of the port operations module depends on whether the port that it is handling must be
treated securely or not. For instance, if send rights to a port are being transferred in an IPC message and
the port is meant to be secure, then a token should be created for the port and transferred along with the
network port identifier when the message is sent to the remote network server. Similarly, at the receiving
end, the port operations module should store the token in the network port’s record. However, if the port
is not meant to be treated securely, then no transfer and storing of a token need be done.

In general the port operations module will often have to directly modify the port’s records, it may
retry or freeze the sending of an IPC message, it may initiate a port search, or, when port rights are being
transferred, it will provide the information that must be sent to the remote network server. Conversely, it
must process this information when the information is received from a remote network server. In addition,
when it is considering a secure port, it may have to generate or check a token for the port or it may have
to transfer or check the key that represents receive or ownership rights to the port.

7.2. Interface

boolean_t po_init()

initializes the port operations module.

po_check_ipc_seq_no(port_rec_ptr, host_id, ipc_seq_no)
port_rec_ptr_t port_rec_ptr;
netaddr_t host_id;
long ipc_seq_no;

21



is called by the local port operations module when it receives a notify message from the kernel saying
that a particular port is now unblocked. The IPC module will send unblock notification messages to
remote network servers that are blocked waiting to send a message to the port.

void ipc_port_dead(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

is called by the local port operations module either when it receives a notify message from the kernel
saying that a particular port is now dead or when it receives a message from a remote network server
saying that a particular network port is now dead. The IPC module will clean up any data structures it
has associated with the deceased port.

void ipc_port_moved(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

is called by the local port operations module when it receives a message from a remote network server
saying that a particular network port has moved. The IPC module will abort any pending RPC’s involving
this port.

int ipc_in_abortreq(trmod,trid,data_ptr,from,crypt_level,broadcast)

is called from disp_in_request when a request to abort a pending request-response interaction is
received over the network by a transport module. The data specifies which RPC is to be aborted. If it
is still pending, a dummy response is sent at once; otherwise, this request is ignored. See the dispatcher
module for details about the parameters to this call.

void ipc_in_abortreply(client_id,code,data_ptr)

is the procedure used by the IPC module to receive responses from the transport module after a call to
xxx_sendrequest for a request to abort a pending RPC. See the transport module for details about
the parameters to this call.

void ipc_retry(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

is called from other modules when a message transmission should be retried following some change in
the port records. It will cause the retransmission to be executed in a special “resend” thread distinct from
the one making the ipc_retry call.

void ipc_freeze(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

is called from other modules when the status of a port becomes such that no further transmissions should
be attempted to that port. Transmission will be resumed when ipc_retry is called.

20



� as soon as one single IPC message is queued, newer messages (IPC or RPC) are queued but not
transmitted until that IPC message is successfully transmitted and dequeued (including any number
of retransmissions).

� RPC responses are never queued; they are transmitted at once and never retransmitted.

� whenever the status of the network port changes, retransmissions are initiated as needed in the order
in which records are on the queue.

� the local port is locked when the queue becomes too long and new messages cannot be transmitted.

This strategy guarantees that single IPC messages directed at the same destination port from the same
node are strictly ordered. RPC’s are naturally ordered simply because the client waits for the response
before issuing the next request. There are no ordering guarantees for a single IPC immediately following
the request for a RPC.

6.5. Interface

boolean_t ipc_init()

initializes the IPC module.

int ipc_in_request(trmod,trid,data_ptr,from,crypt_level,broadcast)

is called from disp_in_request when a RPC request or single IPC is received over the network by
a transport module. It is the main entry point for incoming messages. See the dispatcher module for
details about the parameters to this call.

void ipc_in_reply(client_id,code,data_ptr)

is the procedure used by the IPC module to receive responses from the transport module after a call to
xxx_sendrequest for IPC message data. See the transport module for details about the parameters
to this call.

ipc_in_unblock(client_id,data,from,broadcast,crypt_level)

is called by disp_indata_simple when an unblock message is received from a remote network
server. It will cause the message transmission to be retried. See the dispatcher module for details about
the parameters to this call.

void ipc_msg_accepted(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

19



If any of those rules is violated, the response is not guaranteed to be delivered, or may be delivered out
of order; the behavior of the network server may vary from one instance of such an erroneous situation to
the next. The user must specify the MSG_TYPE_RPC bit in the msg_type field of the message header
for the request to indicate that he accepts those modified message semantics.

Whenever a valid request is received with the MSG_TYPE_RPC bit set, the network server on the
server side uses DISP_WILL_REPLY if possible to delay the transmission of the completion code at the
transport level. It keeps track of the pending request in a ipc_rec, and considers a new IPC message
destined to the reply port as the response for the RPC interaction. Instead of sending this message with
a new transport interaction, it places it in the response for the pending interaction. Because the transport
interface does not provide an end-to-end acknowledgment that the data portion of a response was correctly
handled by the IPC module on the client side, the network server on the server side must rely on the
above assumptions for delivery of the response to the reply port.

This scheme also relies on the assumption that the response message will eventually be sent from the
same node that received the request message, and that no other traffic involving the reply port takes place
until that response is delivered. This assumption may easily be invalidated both by erroneous actions on
the part of the client or server processes, or by normal operations such as request forwarding. Because
resources in the transport module are tied up as long as the response has not been delivered, the IPC
modules on both sides check for all events that may suggest that a response may not be forthcoming
in the normal way. When any such event occurs, they force the transmission of a dummy response to
terminate the request-response interaction, letting the real response, if any, proceed normally as a new
single IPC message. The events causing such an abort include:

� transfer of receive or ownership rights for the reply port.

� transmission of a new message using the same reply port.

� reception of a message on the reply port on the client side, from a source other the expected server.

� reception of a message on the reply port on the server side, with the MSG_TYPE_RPC bit set.

� timeout at the network server on the server side (triggered by the port checkups mechanism).

Note that none of these aborts compromise the semantics of an RPC; they simply nullify the perfor-
mance benefits of the RPC optimization when the situation is not simple. In addition, the network server
itself never sets the MSG_TYPE_RPC bit when delivering a message to a local port, to avoid hidden
forwarding problems.

6.4. Message Ordering

A weak ordering of message delivery is provided through the use of a queue of pending transactions for
each remote network port. This queue operates in the following way:

� all outgoing RPC requests and single IPC messages are queued in the order in which they are
received on the local port.

� as long as there are only RPC requests on the queue, each is transmitted as soon as it is queued;
the system does not wait for a response before transmitting the next request.

18



� Modification of a port record while a message for that port is in transit by some other thread running
concurrently with the IPC sending thread (for example in response to a port death message). It
simply triggers re-processing of the message.

� Network failure, detected by the transport module. The IPC module must decide to abort or retry
the message, and find out if the port is dead.

� Crypt failure, detected by the transport module at the local or remote node when it does not possess
the correct key to encrypt or decrypt the message. The IPC module calls the key management
module to establish a new key.

� Remote port not found at the expected node, signalled by the receiving IPC module — a port search
procedure is initiated (in another thread), and its completion will decide whether the transmission
is to be restarted or aborted.

� Remote port blocked, signalled by the remote IPC module. The sending node suspends the message
until further notice and indicates the situation in its port record. A ipc_block record for the
sending node is allocated at the receiving node. When the port becomes unblocked, the list of
those records is scanned and a special PORT_UNBLOCKED message is transmitted to each waiting
network server, to indicate that transmission should be restarted. If this unblock message is lost
then the port checkups module will discover that the port has become unblocked and will retry the
message transmission.

To avoid blocking the message delivery thread in the receiving network server, all messages are always
delivered using the SEND_NOTIFY option of msg_send. If the return from msg_send indicates that
the local port has become blocked, no other messages will be accepted for that port until the kernel
indicates that it has been unblocked. Appropriate marking and locking of the port record guarantees
that no two threads can be in the situation of exercising the SEND_NOTIFY option on the same port
at the same time. Note that this mechanism does not require the receiving network server to return a
port blocked indication for a message accepted under the SEND_NOTIFY option, thereby allowing the
actual message delivery to be performed in another thread after the dispatcher procedure has returned (the
current implementation does not take advantage of this feature).

6.3. RPC Interactions

The IPC module offers an optimization for RPC interactions for which the user is willing to accept some
semantic restrictions:

� the request message is followed by exactly one response message addressed to the reply port
indicated in the request.

� the reply port is local to the node issuing the request.

� no new request is sent using the same reply port while awaiting a response on that reply port.

� the reply port is not deallocated while awaiting a response.

� the receive rights for the reply port are not transferred while awaiting a response.

� the reply port is not blocked or locked while awaiting a response.

17



5. selects a transport protocol to use, and hands the whole message to the appropriate module via
xxx_sendrequest.

Note that the breakup of the message into several packets is the task of a transport module and not the
IPC module.

All these operations are performed on a message represented using an sbuf. In general, the segments
contained in the sbuf are:

� the IPC receive buffer, containing the inline data;

� each out-of-line data section;

� the IPC header, allocated by this module; and

� any special data structures needed for the message translation process, such as accessibility maps
or a network port dictionary.

In the remote network server receiving the message, all the component packets are assembled by
the transport module, which calls the IPC module and hands it an sbuf representing the whole message.
Typically segments in that sbuf are part of packet buffers in which the message was received. The module
uses ipc_rec records to store information about current incoming messages. It performs all necessary
translations (including byte-swapping and data type conversion), copies the message into a send buffer,
and delivers it to its local destination.

The IPC module on the sending network server may not discard the message immediately after
calling the transport module to initiate a transmission, because it may be necessary to effect a complete
retransmission, possibly to a new destination and with different accompanying data. This is the case
when some exceptional events, described in the next section, prevent the receiving network server from
delivering the message to its ultimate destination. In addition, some operations pertaining to security
must be performed by the IPC module on the sending node only when it is certain that the message
has been correctly transmitted. For these reasons, the network server on the receiving node uses the
request-response transport mechanism to return a completion code indicating if it was able to deliver the
message, or what happened if it was not. Upon reception of this completion code, the sending network
server may deallocate its ipc_rec and the message data, or undertake the appropriate recovery action
in case of error, including initiating a new transmission.

6.2. Exceptional Events

The exceptional events are detected either at the transport level or by the IPC module in the remote
network server. They are reported to the sending IPC module through the request-response completion
code described above. The IPC module must then freeze the current transmission, and call another
module to deal with that exception. That module may in turn request the IPC module to attempt to
retry the transmission of any pending messages for a given destination port, possibly after changing some
information in the port’s record. In that case, the IPC module will restart processing of any affected
messages as if that message had just been received on a local port. As an optimization, it could reuse
some of the information already gathered, and stored in the record for this pending message.

Exceptional events include:

16



allows a transport-level protocol to make a simple request-response interaction with a higher level module.
The higher-level module should process the request immediately and include the response on returning
from the call. Note that this procedure is intended for request-response interactions within the simple
send mode of operations, and not within the full request-response interface described above.

int disp_in_request(trmod,trid,data_ptr,from,crypt_level,broadcast);
int trmod;
int trid;
sbuf_ptr_t data_ptr;
netaddr_t from;
int crypt_level;
boolean_t broadcast;

is the single function for dispatching in the request-response mode of operation. The arguments are
similar to those of disp_indata. The data pointed to by data_ptr is valid only until this procedure
returns. Any return value other than DISP_WILL_REPLY is interpreted by the transport module as a
completion code to be returned immediately in a response to the client. DISP_WILL_REPLY means that
the higher-level module assumes the responsibility to send a response, and the transport module should do
nothing when this procedure returns (other than deallocate the space occupied by the data, if appropriate).
Note that if the dispatcher returns DISP_FAILURE, that code is returned to the client in the normal way.

In subsequent sections of this document, functions which are called via the dispatcher module do not
have their arguments described. The arguments are exactly as for the corresponding dispatcher function.

6. IPC Message Handling

The IPC Message Transfer module implements the upper layer of the mechanism used to communicate
with remote ports. It relies on a separate transport module to provide the lower-level network transmission
operations, and communicates with it using sbufs. To maximize performance, the IPC module tries to
identify messages that are part of a remote procedure call (RPC), and attempts to map the request-response
structure of such calls into a request-response interaction at the transport level.

6.1. Normal Operation

The IPC module receives messages addressed to ports that are local representatives of remote ports. Upon
reception of such a local IPC message, the IPC module

1. allocates a transaction record (ipc_rec) to keep information about the transfer in progress,

2. consults the port records to find the remote port corresponding to the local port,

3. generates an IPC Header to contain special information to be used by the remote network server,

4. translates the ports and out-of-line pointers in the message so that they will be intelligible on the
receiving node, and

15



is the primary function used to dispatch incoming data in the simple send mode of operation. trid
is a transport level identifier assigned by the transport module trmod. It should be used in the call to
tr_cleanup which signals to the transport module that the higher-level module is finished with the data
contained in the sbuf data. Other arguments are: from, the host that sent the data; client_id, an iden-
tifier assigned by the client module within a prior call to disp_inprobe (see below); crypt_level,
the encryption level used to send data over the network; and broadcast whether the data was broadcast
or not. disp_indata returns DISP_FAILURE is the dispatcher module did not find a higher-level
routine to be called for the incoming message type or if the version number of the incoming message did
not match the current version number of this implementation of the network server; otherwise it returns
the value returned by the higher-level routine.

int disp_inprobe(trid,pkt,from,cancel,trmod,
client_id,crypt_level,broadcast)

int trid;
sbuf_ptr_t pkt;
netaddr_t from;
int *((*cancel)());
int trmod;
int *client_id;
int crypt_level;
boolean_t broadcast;

allows the first packet of a message to be dispatched to a higher-level probe routine. This allows the
higher-level routine to decide before-hand whether to accept or reject an incoming message. If it decides
to accept the message based on the probe packet, the it returns a client_id to allow it to later identify
the whole incoming message. cancel (an out parameter) is called by the transport module if it is unable
to deliver the complete message after a probe has been accepted. It takes as argument the client_id
and a reason code. Other parameters are as for disp_indata.

int disp_indata_simple(client_id,data,from,crypt_level,broadcast)
int client_id;
sbuf_ptr_t data;
netaddr_t from;
int crypt_level;
boolean_t broadcast;

is similar to disp_indata except that it is guaranteed that the data is processed at the higher-level
within the same thread that made the call. Hence there is no need for a tr_cleanup call because, when
the dispatcher call returns, the transport module knows that the data is no longer needed and can do the
cleanup synchronously.

int disp_rr_simple(data,from,crypt_level,broadcast)
sbuf_ptr_t data;
netaddr_t from;
int crypt_level;
boolean_t broadcast;

14



module deallocates the space used by incoming data before that data has been processed at the higher
level.

To allow communication between machines with different data representation, the dispatcher header
always use a standard representation. The rest of each message uses whatever representation is in use on
the sending machine; a code for that representation is stored in the dispatcher header and made available
to the message handler modules.

To allow future expansion, the dispatcher also checks a version number for each incoming message.

5.2. Interface

As discussed in 4.2, there are currently two transport interfaces, to which correspond two dispatcher
interfaces. The following table holds a set of entry points for each message type.

typedef struct {
int (*disp_indata)();
int (*disp_inprobe)();
int (*disp_indata_simple)();
int (*disp_rr_simple)();
int (*disp_in_request)();

} dispatcher_switch_t;

All modules place entry points in the table for each message type and each type of handler procedure
that they support and wish to receive messages for. Unused entries are set to the special procedure
disp_no_function; the network server is organized in such a way that there are not collisions in the
table.

disp_indata, disp_inprobe, disp_indata_simple and disp_rr_simple are called by
transport modules using the simple xxx_send interface, and will eventually be eliminated.

disp_in_request is the sole entry point used with the request-response interface.

int disp_init()

initializes the dispatcher module.

int disp_indata(trid,data,from,tr_cleanup,trmod,
client_id,crypt_level,broadcast)

int trid;
sbuf_ptr_t *data;
netaddr_t from;
int (*tr_cleanup)();
int trmod;
int client_id;
int crypt_level;
boolean_t broadcast;

13



4.3.3. TCP

The TCP module keeps a pool of TCP connections to the network servers on other nodes. Each connection
is created when needed to transmit a request, and is kept open as long as possible to service further requests
to the same destination. Open connections are recycled using a least-recently-used policy to limit their
number. The protocol handling module is in the kernel; it communicates with the network server using
sockets.

TCP currently implements the full request-response interface, and is suitable for IPC messages.

4.3.4. Datagram

The “datagram” transport protocol simply provides an interface to the UDP level. It allows unreliable
datagrams to be sent over the network.

Datagram currently implements the simple send interface and cannot be used to transmit IPC message
data.

4.3.5. Simple Request-Response

The simple request-response protocol permits the sending of a request over the network for which a
response is expected. The data of the request is guaranteed to fit in one network datagram. This protocol
will treat responses as acknowledgements to requests and inform its client either of the failure of the
request (if no response was received after some number of tries) or of the success of the request in which
case the response is returned to the client. It is assumed that a request can be handled without delay by
the higher-level protocol and the response is supplied on return from the request call. Requests made
using this protocol should be idempotent.

Although SRR is oriented toward request-response interactions, it implements the simple send inter-
face and not the request-response interface. It cannot therefore be used to transmit IPC message data.

5. Dispatcher Module

5.1. Operation

The dispatcher module is responsible for invoking the correct handler procedure when some network
message has been received. It is called by the various transport modules, examines the dispatcher
header, and selects the appropriate routine to call according to the message type (incoming IPC, port
death, and so on).

This module can optionally establish a separation between a network thread and one or more other
threads used to process the messages at the network server level. This last scheme is to be used if the
network thread would not be fast enough if it had to completely process each message before listening
to the net again. Note that with this mechanism, care must be taken to avoid problems when a transport

12



� TR_FAILURE: something went wrong with the transmission within either the local or remote
transport module; the error was detected too late to return TR_SEND_FAILURE.

� TR_OVERLOAD: the transport module is currently overloaded. No data was sent; the user should
retry later.

� TR_SUCCESS: the transmission was successful but it was not possible to determine whether the
message was accepted by the remote client.

� a client-specific completion code (see, for example, the codes returned by the IPC module).

Note that the transport-specific completion codes are in the same space as the client-specific completion
codes; care must be taken to avoid collisions.

4.3. Specific Transport Protocols

4.3.1. Delta-t

Delta-t is a connectionless transport protocol in which each packet sent over the network is individually
acknowledged by the destination network server before the next packet is sent. All the transport-level
protocol handling is performed in the network server; network access at the IP level is achieved through
the Mach network interface described below. Retransmissions are scheduled using the timer module. In
order to detect duplicate packets, information about an incoming data packet is maintained by a network
server either until the next packet in a sequence is received or the information has been held more that
some minimum amount of time.

Delta-t currently implements the request-response interface without deltat_sendreply.

Delta-t is suitable for transmitting messages containing small amounts of data (less than a few packets
in total). If the message is part of a RPC protocol in which the response to the request is expected shortly,
then it is better to use a more specialized request-response protocol such as VMTP.

4.3.2. VMTP

VMTP (Versatile Message Transport Protocol) is the request-response protocol developed at Stanford by
D. Cheriton and his group [1]. The VMTP module creates a single well-known server entity to receive
all network requests, and keeps a pool of client entities to use on the client side to initiate transactions.
Whenever vmtp_sendrequest is called, an unused client entity is pulled out of that pool; it is returned
to the pool when the reply is delivered. The actual VMTP protocol handling module is in the kernel; it
communicates with the network server using sockets.

There are currently two versions of the VMTP module. vmtp1 implements the simple send interface
and should not be used. vmtp2 implements the full request-response interface, and is suitable for IPC
messages.

11



void reply_proc(client_id,reply_code,data)
int client_id;
int reply_code;
sbuf_ptr_t data;

client_id is the ID given as argument to xxx_sendrequest. reply_code is a completion code
supplied either by the transport module (in case of transport errors) or by the server process that handled
the request. data may contain data supplied by the server in the response, or it may by null. This data
is kept valid by the transport module only until reply_proc returns.

If xxx_sendrequest returns anything other than TR_SUCCESS, no request-response interaction
is initiated, and reply_proc is never called.

The handler on the server side of a request-response interaction is invoked via the dispatcher module
(see below). This handler must return a code that determines how the response is sent. If this code is
anything other than DISP_WILL_REPLY, a response containing that code and no data is immediately
sent back by the transport module. If this code is DISP_WILL_REPLY, no response is generated by
the transport module, and the higher-level module must explicit call xxx_sendreply to terminate the
request-response interaction:

int xxx_sendreply(trid,code,data,crypt_level)
int trid;
int code;
sbuf_ptr_t data;
int crypt_level;

trid is a transport-level ID supplied by the dispatcher with the request. code and data are the reply
code and data to be used in the call to reply_proc on the client. crypt_level determines what
kind of encryption should be used to protect the data. data can be null. If it is not, the data must be
kept valid by the caller only until xxx_sendreply returns.

The procedure returns TR_SUCCESS or TR_FAILURE. It is an error to call xxx_sendreply for
a terminated request-response interaction, including one terminated by the handler returning a code other
than DISP_WILL_REPLY. Similarly, it is an error for the handler to return DISP_WILL_REPLY if the
transport module in use does not implement xxx_sendreply.

Note that since multiple threads are involved, the reply procedure may be called before
xxx_sendrequest returns. Similarly, it is acceptable for the server to call xxx_sendreply be-
fore returning from the handler procedure for the request, provided that this handler eventually returns
DISP_WILL_REPLY.

The completion codes for transport operations are:

� TR_CRYPT_FAILURE: the transmission failed either because of a local encryption or a remote
decryption failure — the local client module should try and get a new key for the destination host
and then retry the transmission;

� TR_SEND_FAILURE: something went wrong with the transmission before any data could be sent.

10



netaddr_t to;
int service;
int crypt_level;
int (*cleanup)();

attempts to send message data to destination to. client_id is an ID used by the client to identify
this message. trid is a transport-level ID used to identify a current request-response interaction; it
should be 0 if not used. service is the kind of service required for this message; possible values are:

� TRSERV_NORMAL: normal transmission of a single message.

� TRSERV_IPC: transmission of an IPC message, “call-back” required. (OBSOLETE)

� TRSERV_RPC: transmission part of a request-response at the IPC level. Pairing information re-
quired and “call-back” required. Note that the “call-back” can be implicitly be the delivery of the
response if the RPC succeeds. (OBSOLETE)

� TRSERV_URGENT: transmission of an urgent single message, to be delivered before other non-
urgent transmissions in progress if possible.

crypt_level determines what kind of encryption should be used to protect the data. Possible levels of
encryption include: CRYPT_DONT_ENCRYPT and CRYPT_ENCRYPT. cleanup is a function supplied
by the client, to be called when the transmission is complete and the message data is no longer needed.
Depending on the service requested, it may indicate a simple local completion, or participate in the
“call-back” mechanism. It takes two arguments: the client ID, and a completion code.

cleanup returns 0 when all is well. xxx_send also returns a completion code to indicate the
immediate local result of the call.

int xxx_sendrequest(client_id,data,to,crypt_level,reply_proc)
int client_id;
sbuf_ptr_t data;
netaddr_t to;
int crypt_level;
int (*reply_proc)();

attempts to send a request containing data to destination to. client_id is an ID used by the
client to identify this request-response interaction. crypt_level determines what kind of encryption
should be used to protect the data. Possible levels of encryption include: CRYPT_DONT_ENCRYPT and
CRYPT_ENCRYPT. reply_proc is a procedure to be called from the transport module to deliver a
response.

xxx_sendrequest returns either TR_SUCCESS or a specific failure code. In the first case, a
request-response interaction is initiated, that will terminate when reply_proc is called. The data
supplied in the request must be kept valid by the caller for the whole duration of the request-response
interaction. The reply procedure is guaranteed to be called exactly once, with the following arguments:

9



4.2. Interface

Because of an ongoing revision of the implementation, there are currently two modes of operation for
transport modules.

The first mode of operation specifies a simple send operation to transmit a message to a given desti-
nation. It is used by all modules except the IPC module, to exchange information with the corresponding
modules in the network servers at other nodes.

The second mode of operation specifies a request-response interaction, in which one node (the client)
sends a request to another node (the server), and then awaits the reception of exactly one response from
that server. The transport protocol always supports the transmission of a 32-bit completion code in the
response, and may optionally support the transmission of data in that same response. This mode of
operation is used by the IPC module for the transmission of IPC message data; it is intended to be the
standard for all transport protocols, and all other modules will be converted to use it.

Currently, each specific transport module only implements one or the other mode of operation; and
can therefore be used either by the IPC module or by all other modules, but not both. In the future, all
modules will be converted to the second mode of operations.

The following table is used to hold all the entry points for all the possible transport modules. Each
transport module is assigned a specific number, to be used as an index into this table when invoking it,
and to be used to identify it when it delivers a message to the upper level.

typedef struct {
int (*send)();
int (*sendrequest)();
int (*sendreply)();

} transport_sw_entry_t;

The entries in this table are filled by each transport module when it initializes itself. Any unused entry
is set to the special function transport_no_function, which simply returns after emitting an error
message. The send entry is used for the simple send interface. The sendrequest and sendreply
entries are used for the request-response interface. Any protocol supporting that interface must implement
sendrequest, but not necessarily sendreply, as described above.

In the following descriptions, xxx_ is used as a generic prefix, to be replaced by the name of each
transport module.

boolean_t xxx_init()

initializes the transport module and places the entry points in the transport switch table.

int xxx_send(client_id,trid,data,to,service,crypt_level,cleanup)
int client_id;
int trid;
sbuf_ptr_t data;

8



looks up and locks a port record given a local port.

portrec_ptr_t pr_ltran(lport)
port_t lport;

looks up and locks a port record given a local port, creating a new port record and allocating a new
network port if necessary.

boolean_t nport_equal(nport_ptr_1,nport_ptr_2)
network_port_ptr_t nport_ptr_1;
network_port_ptr_t nport_ptr_2;

tests to see if two network ports are equal.

void pr_nporttostring(nport_str,nport_ptr)
char *nport_str;
network_port_ptr_t nport_ptr;

returns in nport_str a printable representation of a network port.

lock_queue_t pr_list()

returns a list of all the local ports for which there is a port record. (See the section on locked queues for
the definition of lock_queue_t.)

In general, all functions that return a port record lock that record before returning. Functions that
take a port record as an argument require that record to be already locked on entry. The reference count
normally reflects the presence of the port record in both the local and global tables, but no additional
reference is taken by any of the above functions when returning a locked port record. Note that these
functions will block on the lock if the record is already locked.

4. Transport Protocols

4.1. Description

Several transport modules co-exist within the network server, each of them implementing a different
protocol. Some protocols under consideration are Delta-t, VMTP, NETBLT, TCP, UDP, and various
multicast schemes. It is up to clients of the transport modules to choose the one that satisfies their needs
best. All the transport modules deliver messages into the same dispatcher, and are accessed via separate
entry points, grouped into a table similar to the Mach device table.

The organization of each protocol module is up to each implementor. Layered and non-layered
approaches are both acceptable, as well as the use of external servers, not residing in the same address
space as the network server. Implementors are encouraged to use the sbuf mechanism to represent and
manipulate data internally, and to copy data only at the last level before the network interface. The timer
module is available for handling periodic retransmission and other protocol functions needing timeouts.

7



3.2. Interface

boolean_t pr_init()

initializes the port records module.

void pr_reference(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

increments the reference count for the port record.

void pr_release(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

decrements the reference count for the port record, unlocks it and frees all memory associated with it if
the reference count becomes zero.

void pr_destroy(port_rec_ptr)
port_rec_ptr_t port_rec_ptr;

logically destroys a port record by removing it from all tables and deallocating the local port associated
with it. The actual space occupied by the port record is not freed until the reference count becomes zero,
but this function performs one pr_release before exiting.

port_rec_ptr_t pr_np_puid_lookup(np_puid)
np_uid_t np_puid;

looks up and locks a port record given a network port’s public unique identifier.

extern port_rec_ptr_t pr_nportlookup(nport_ptr)
network_port_ptr_t nport_ptr;

looks up and locks a port record given a network port.

portrec_ptr_t pr_ntran(nport_ptr)
network_port_ptr_t nport;

looks up and locks a port record given a network port, creating a new port record and allocating a new
local port if necessary.

extern port_rec_ptr_t pr_lportlookup(lport)
port_t lport;

6



segments only, and those segments are replaced in the sbuf by new segments containing the modified
data.

Maximum efficiency for the allocation and deallocation of space for the segments cannot be attained
with a general mechanism, consequently, space management is handled on a case by case basis by the
modules that use sbufs and is private to an individual module. The information needed to deallocate the
space used by segments of a given sbuf is not kept in the sbuf itself, but is recorded by the module that
created each particular segment. To simplify record-keeping, no segment may be referenced in more than
one (public) sbuf. Typically, when an sbuf is passed between modules, the system provides a call-back
procedure to signal the module that created the sbuf that it is no longer needed.

Special macros are provided to extract data from an sbuf, making its structure transparent to most
modules. Special macros are also provided for inserting data, but for performance reasons, they cannot
be made entirely transparent.

3. Port Records

3.1. Description

The port record module maintains all the data associated with ports. In particular it enables the network
server to map local to network and network to local ports. An individual port record:

typedef struct {...} port_rec_t, *port_rec_ptr_t;

contains the local port, the network port, status information about the port, several fields used by the IPC
module, several fields for security, a reference count and a read/write lock.

A network port identifier has the following structure:

typedef struct {
long np_uid_high;
long np_uid_low;

} np_uid_t;

typedef struct {
netaddr_t np_receiver;
netaddr_t np_owner;
np_uid_t np_puid;
np_uid_t np_sid;

} network_port_t, *network_port_ptr_t;

where the np_puid is the network port’s Public Unique Identifier and the np_sid is the port’s Secret
Identifier.

typedef unsigned long netaddr_t;

is used to identify all network addresses within the network server.

5



necessary perform byte-swapping (this corresponds to the ISO presentation layer roughly). It also
handles the blocking mechanism for network ports.

Port Operations Provides all port translation functions for the IPC module. Also handles transfers and
deletion of port access rights due to the reception of notify messages from the kernel and from
remote network servers.

Port Checkups Periodically verifies the information maintained in the local port records by consulting
other network servers.

Port Search Implements the sequence of operations needed to update the information kept about a remote
port when it is believed that the current information is incorrect. The checkups module calls this
module when it finds an inconsistency in the information maintained about a port.

Key Management Maintains a mapping between remote hosts and the keys that should be use to encrypt
secure messages. Also responsible for interfacing with the key distribution server to obtain new
keys for remote hosts.

Crypt Provides functions to encrypt and decrypt network messages.

Network Name Service Provides a simple, host-directed network name look up service.

Memory Management Provides allocation and deallocation functions for all memory objects used in the
network server.

Read/Write Lock Provides functions implementing read/write locks with multiple users.

Locked Queue Operations on shared (i.e. locked) queues of objects.

Timer Service Allows other modules to schedule actions after a specified interval.

Other, miscellaneous modules provide for the generation of unique identifiers, the initialization of the
network server, the actual transmission of datagrams over the network, and other ancillary functions.

2.4. Data Representation

There are a number of circumstances during the processing of IPC messages when the server has to
manipulate large amounts of data. In order to minimize overhead, large blocks of data are represented in
a special format designed to limit the need for data copying and space allocation.

Any conceptually contiguous block of data may be stored internally as a set of separate segments of
any size, and a special sbuf (Segmented Buffer) structure is used to identify the segments constituting one
block. No special meaning is attached to how a block is segmented, i.e. the segments do not necessarily
represent logical parts of a block of data. The segments reside in shared memory and are accessible by
every thread. Data modification and data transfer between modules are accomplished by operations on
sbufs (typedef struct {...} sbuf_t, *sbuf_ptr_t).

For instance, if some data must be inserted at the head or the tail of some existing buffer, a new
segment is allocated and placed at the right location in the sbuf. If some data inside a buffer must
be modified (possibly changing its length), the sbuf is modified so that the target data spans complete

4



for further processing. As suggested above, this thread may use the services of the timer thread to
schedule retransmissions of packets and to determine when a transmission should be aborted.

Notify Messages Waits for notify messages from the kernel to arrive on the server’s notify port. These
messages indicate changes in the status of local ports (death, movements of rights or local IPC
message accepted). Takes appropriate action in each case to update the server’s records and may
destroy a port, transfer access rights to a network port to a remote network server or signal the IPC
re-send thread to retry a message transmission.

Name Service Handles requests from other tasks for network name service. Allows names to be looked
up on this host, on a specific remote host or by broadcasting to all hosts.

Key Management Handles messages from the external Key Distribution Server. These messages tell the
network server to use new encryption keys for remote hosts.

Other Services A number of other threads may be used to provide other services included with the
network server, such as monitoring and specialized name services. In each case, the thread is
waiting for requests on a particular service port.

In addition, if the operations to be performed upon reception of a network message are too long,
the Transport Receive threads may hand the message to other specialized processing threads, in order to
remain available for new network messages. Note that it is impractical to allocate one thread to each IPC
message in transit due to resource limitations.

2.3. Code Structure

The code is distributed between several modules, each pertaining to some specific set of related operations
or the management of some data structure. The main modules are:

Port Records Operations for the handling of port records. The main data structure used is a database
of port records, which maintains a mapping between local ports and network port identifiers, as
well as keeping general status information on the ports themselves. Almost every module uses this
database to obtain information, and a number of modules modify the information to reflect new
situations that they have detected.

Transport Protocols Provide the complete transport mechanism for a block of data of arbitrary size
over the network. There are several such modules implementing several protocols; some guarantee
reliable delivery, others don’t. Clients of the transport protocols transmit messages by making
a function call into the transport module; for all incoming messages a transport protocol calls a
dispatcher function to deliver the message.

Dispatcher Dispatches incoming network messages assembled by the transport protocols to the appro-
priate module according the dispatcher type contained in the network message header. The handler
functions are directly called by the dispatcher.

IPC Message Handling Provides operations for receiving local IPC messages and handing them to the
transport layer, and receiving messages from the transport layer and handing them to the local
user processes. To do this it must translate IPC messages to and from a format appropriate for
transmission on the network. In particular it must translate ports, identify out-of-line data and, if

3



2. Overall Structure

2.1. General Operation

The set of all network servers on a network cooperate to provide IPC (Inter-Process Communication)
between processes on different hosts on that network. They achieve that cooperation by exchanging
Network Server Messages. Some of these messages contain the data of IPC messages that are to be
transported across the network, while others are used by the network servers to communicate information
about the status of the operations in progress, and to maintain a consistent view of the location of the
ports used in the network environment. A small dispatcher header is used to distinguish between these
various network server messages.

The network servers maintain a space of Network Ports and each network server maintains a mapping
between ports local to its host and network ports. Each network port is represented by a Network Port
Identifier which contains information to locate the receiver and owner for the network port and information
which allows the security of the Mach port abstraction to be maintained in the network environment. (See
[2] for further details.)

2.2. Control Structure

The server is structured as a collection of threads sharing the same address space. Each thread is used to
perform one specific task asynchronously with the other threads. Typically, there is one thread for each
“wait point” in the system. Wait points are most often waits for IPC messages. The thread is awakened
whenever something happens at this wait point, performs all operations pertinent to the current event, and
goes back to sleep. Should the service of an event require a further wait, another thread is signalled and
asked to continue operations after that wait. In general, one thread should not have more than one wait
point. Appropriate locking facilities are used where threads must share access to data structures. There
are a fixed number of threads in the system:

Timer Used by all the other threads whenever they need to schedule some action to take place at some
given time in the future. The most common use of this facility is to schedule packet retransmission.

IPC Send Waits for messages to arrive on any of the ports that are local representatives of remote
network ports. Upon reception of such a message, performs the necessary translations and initiates
transmission on the network. This thread does not wait for the transmission to complete; subsequent
actions will be taken by the timer thread or by a transport receive thread.

IPC Re-Send Is awakened when some other thread or some external condition indicates that a message
previously handled by the IPC send thread should be re-sent either to the original or to another
destination. It essentially performs the same functions as the IPC send thread, but might take
advantage of some work already done by the former. This thread is called into action when a port
is not found at the expected location, when a remote port is blocked, or when network errors occur.

Transport Receive (One or more per each transport protocol.) Waits for packets to arrive from the
network interface. Processes these packets, perhaps assembling multiple packets into contiguous
data and perhaps matching incoming packets with previously queued outgoing transmissions. Passes
IPC and other network server data received from remote network servers on to higher level modules

2



Network Server Design

MACH Networking Group

August 31, 1989

1. Introduction

The network server is responsible for extending the local MACH Inter-Process Communication abstraction
over the network which interconnects MACH hosts. We have designed and implemented a new version
of the network server in a way in which we hope makes it more efficient, easier to understand, more
modular and easier to extend. In particular we intend to use this new network server to experiment with
various ideas in the area of distributed systems networking, such as:

� evaluating the merits of various protocols for network interprocess communication — in particular,
we want to examine:

– connection-oriented versus connectionless protocols,

– request-response protocols for remote procedure calls, and

– the use of special-purpose protocols depending on the size or the destination of the data to be
transported;

� evaluating various models for the distribution of network functions between the operating system
kernel and user processes, and how these two components should interact;

� security in the network environment;

� multicast groups, and associated delivery problems; and

� copy-on-reference operations over a network.

This document describes the design of the network server and details the interfaces to the modules
that are used to implement it. It is intended for implementers rather than users. This document reflects
the current state of the implementation, and does not constitute a commitment for future developments.

In the next section the overall design of the network server is explained. The subsequent sections
describe the structure of individual modules.

1


