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Abstract

Factors such as the decomposition of parallel programs affect their performance.  Measurements of
parallel program performance are improved if supported by information such as how programs are
scheduled. This manual describes how to use MKM, the Mach (context-switch) kernel monitor.  Special
examples of data obtained by using MKM are shown via the PIE performance monitoring environment.
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1 The Mach Kernel Monitor:  The Need to Monitor Context-Switching
The performance of computations on parallel machines is affected by user designed attributes such as

the parallel decomposition of the computations and by operating system actions such as scheduling.  One

way of determining how computations are scheduled is to detect and time-stamp the context-switches of

their threads.

Certain Mach configurations (ie. those with the EXP extension) include the Mach Kernel Monitor (MKM)

for monitoring kernel-level behavior.  Currently, MKM only monitors context-switches of user selectable

threads. It permits simultaneous monitoring of independent computations so that multiple users may

selectively observe as many computations as they desire, collecting only the data about those they are

interested in regardless of what else is running on the system.

After discussing the implementation and system calls of MKM, this manual gives some examples using
1the PIE . performance monitoring and visualization system.  Using the PIE examples, the scheduling

information collected by MKM fulfills the double role of visualizing scheduling performance in general as

well as visualizing the influence of the scheduler on user algorithms.

2 Implementation
An MKM monitor consists of:

• A data structure consisting of buffers for storing information about detected events (in the
current implementation, a monitor can detect only context-switch events) and state
information.

• A list of threads that can be observed by the monitor.

• Event detection sensors within Mach context-switching code.

• Entries within thread data structures for assigning monitors to threads.

These data structures are operated upon by several monitor system calls. Future versions of the monitor

may contain data structures for monitoring message sends and recieves or paging behavior.  Currently,

the only calls recognized by a Mach kernel monitor are ones concerned with detection of context-

switches.

The monitor_create call creates a monitor within the calling task.  The call returns the monitor id and

the size of the event buffer in the kernel.  The user uses this size to allocate an appropriatly sized user

buffer into which monitor_read writes context-switch data read from the kernel. monitor_create

returns the monitor in a suspended state. monitor_resume starts the monitor. monitor_suspend

permits the user to suspend (pause) monitoring. monitor_terminate destroys the monitor.

monitor_read reads the context-switch event data from the kernel into a user supplied buffer.

monitor_read calls are valid as long as its argument is a valid, non-terminated monitor.

thread_monitor enables individual threads for monitoring.  When a thread calls thread_monitor the

1For introduction to PIE, see "Visualizing Performance Debugging," in IEEE Computer, October 1989, by Ted Lehr, et ala.
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associated monitor will detect each time the thread context-switches. thread_unmonitor disables a

thread from being monitored.

#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

main()
{

int buf_size;
monitor_t my_monitor;
int j,num_events=MONITOR_MIG_BUFFER_SIZE;
kern_mon_buffer_t kernel_events;

buf_size = REQUESTED_SIZE;
monitor_create(task_self(), &this_monitor, &buf_size);
monitor_resume(this_monitor);
thread_monitor(this_monitor,UNIQUE_ID,thread_self());

for(i = 0; i < 300; i++) sleep(1);

thread_unmonitor(this_monitor, thread_self());
kernel_events = (kern_mon_buffer_t)
malloc(sizeof(kern_mon_data_t)*MONITOR_MIG_BUFFER_SIZE);

while (num_events == MONITOR_MIG_BUFFER_SIZE) {
monitor_read(this_monitor,kernel_events,&num_events)
for (j = 0; j < num_events; j++) {
printf("%8.8x %8.8x %8.8x %8.8x %8.8x\n",

kernel_events[j].third_element,
kernel_events[j].second_element,
kernel_events[j].hi_time,
kernel_events[j].lo_time,
kernel_events[j].first_element);

}
}
monitor_terminate(this_monitor);

}

Figure 1: Simple Example Program Using Monitor

Figure 1 shows an example program using monitoring.  The program runs as a single thread.  The

constant REQUESTED_SIZE is assigned to buf_size. This is the requested size of the monitor buffers

allocated inside the kernel.  After creating and resuming (starting) the monitor, the program enables itself

for monitoring. UNIQUE_ID is some constant that the user knows is unique across all the threads in his

program. In this case, since there is only one thread, the value of UNIQUE_ID is arbitrary.

After executing a sleep statement 300 times, the thread is disabled for monitoring.  Then a user routine

is called, print_events, that repeatedly calls monitor_read and prints the events until the

kernel_buffer is empty.  Note that the user buffer is only MONITOR_MIG_BUFFER_SIZE big because of a

limitation on MIG buffer sizes.  Thus, the program must call monitor_read until it returns less than

MONITOR_MIG_BUFFER_SIZE events. When this occurs, the program knows that the kernel buffer is

empty. When print_events returns, the monitor is terminated.  Note that in this program,

monitor_suspend is never called.
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The context-switch data structure saved for each relevant context-switch is:

typedef
struct kernel_event {

unsigned event_type; /* type */
unsigned first_element; /* stopped thread */
unsigned second_element; /* started thread */
unsigned third_element; /* flag and cpu */
unsigned hi_time; /* hi time stamp  */
unsigned lo_time; /* lo time stamp  */

} kern_mon_data_t, *kern_mon_buffer_t;

The members of the structure consist of the type of event (currently, only one type of kernel event is

detected: context-switches), the stopped-thread and started-thread, the processor on which the threads

switched, and a timestamp separated into seconds and microseconds fields.  If one of the threads is

unknown, its id is set to -1.  The most significant bit of the processor field is 1 if that event overwrote a

previous, unread event (ie. overflow).

NOTE:
Currently, there is no internal protection guarding against requesting too much memory for
buffers. It is suggested that no more than a half megabyte should be requested.  A rule of thumb
is that the greater the thread-to-processor ratio, t, of one’s computation, the more context-
switches there will be. Assume that when t > 1.0, there will be ten context-switches per second.
The size of the internal buffers then depends on how often they are read. monitor_read
retrieves at most n = sizeof(kern_mon_data_t) x MONITOR_MIG_BUFFER_IZE bytes each
time the buffers are read.  Assume that once one monitor_read is made to read the buffers,
the user repeats the call until the buffers are empty.  In such case, if the user makes bursts of
monitor_read calls once every d seconds, a good buffer size would be 10d ×n.

Figure 2 is schematic depicting a case in which two independent non-communicating Mach tasks have

created separate MKM monitors.  Each monitor is represented by a port in its parent task.  Thus, the task

that creates a monitor obtains rights to the port that represents the monitor; only tasks that possesses

such rights can access the monitor.  In our example, unless task B gives task A rights to the monitor

created by B, task A cannot access it.

Figure 2 also shows non-intersecting sets of circular buffers allocated to each monitor for holding context-

switch events.  A buffer is assigned to each processor in order to eliminate contention between

processors for buffers. When a thread context-switches, a software context-switch sensor detects which,

if any, monitor is tracking the thread and writes an event to the appropriate buffer.  Eventually, a task

holding rights to a monitor will release those rights and terminate the monitor. This can be done either

explicitly while the task is alive, or implicitly when the task terminates.  In either case, the termination of a

particular monitor is accomplished by the kernel.
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monitor_create
#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

kern_return_t monitor_create(owner_task, new_monitor, buffer_size)
task_t owner_task;
monitor_t *new_monitor; /* out */
int *buffer_size; /* out */

Description
monitor_create creates a new monitor within the task specified by owner_task argument.

buffer_size is the requested size (in number of events) for the monitor kernel buffer used to hold

context-switch events.  When monitor_create returns, buffer_size is maximum number of events

that kernel buffer may hold before it overflows.  When the monitor is created send rights to its monitor

kernel port are given to it and returned in new_monitor to the caller. The new monitor is returned in a

suspended state.  To get a new monitor to run, first monitor_create is called to get the new monitor’s

identifier,(monitor). Then monitor_resume is called to get the monitor to execute.

Arguments

owner_task The task which is to contain the new monitor.

new_monitor The new monitor.

buffer_size The size (in number of events) of the monitor buffer in kernel.

Returns

KERN_SUCCESS A new monitor has been created.

KERN_INVALID_ARGUMENT
parent_task is not a valid task.

Notes
Currently, there is no internal protection guarding against requesting too much memory for buffers.  It is

suggested that no more than a half megabyte should be requested. A rule of thumb is that the greater

the thread-to-processor ratio, t, of one’s computation, the more context-switches there will be.  Assume

that when t > 1.0, there will be ten context-switches per second.  The size of the internal buffers then

depends on how often they are read.  Each time the buffers are read, (see monitor_read) at most n =

sizeof(kern_mon_data_t) x MONITOR_MIG_BUF_SIZE bytes are retrieved.  Assume that once one

monitor_read is made to read the buffers, the user repeats the call until the buffers are empty.  In such

case, if the user makes bursts of monitor_read calls once every d seconds, a good buffer size would

be 10d ×n.

See Also
monitor_resume, monitor_terminate, monitor_suspend, monitor_read,

thread_monitor, thread_unmonitor, monitor
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monitor_resume
#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

kern_return_t monitor_resume(target_monitor)
monitor_t target_monitor;

Arguments

target_monitor The monitor to be resumed.

Description
Sets the state of target_monitor to MONITOR_RUN.  When the monitor is in this state, it can detect

events.

Returns

KERN_SUCCESS The monitor has been resumed.

KERN_FAILURE The monitor state is MONITOR_SHUTDOWN.

KERN_INVALID_ARGUMENT
target_monitor is not a monitor or its port is no longer valid.

See Also
monitor_create, monitor_terminate, monitor_suspend, monitor_read,

thread_monitor, thread_unmonitor, monitor



7

monitor_suspend
#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

kern_return_t monitor_suspend(target_monitor);
monitor_t target_monitor;

Arguments

target_monitor The monitor to be suspended.

Description
Sets the state of target_monitor to MONITOR_PAUSE.  No events are detected when the monitor is

in this state although any previously detected events may be read by monitor_read.

Returns

KERN_SUCCESS The monitor has been suspended.

KERN_FAILURE The monitor state is MONITOR_SHUTDOWN.

KERN_INVALID_ARGUMENT
target_monitor is not a monitor or its port is no longer valid.

See Also
monitor_create, monitor_terminate, monitor_resume, monitor_read,

thread_monitor, thread_unmonitor, monitor
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monitor_terminate
#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

kern_return_t monitor_terminate(target_monitor)
monitor_t target_monitor;

Description
monitor_terminate destroys the monitor specified by target_monitor.

Arguments

target_monitor The monitor to be destroyed.

Returns

KERN_SUCCESS The monitor has been destroyed.

KERN_INVALID_ARGUMENT
target_monitor is not a valid monitor or its monitor port no longer exists.

See Also
monitor_create, monitor_resume, monitor_suspend, monitor_read, thread_monitor,

thread_unmonitor, monitor
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monitor_read
#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

/* only current interpretion of kernel_event */

typedef
struct kernel_event {  /* unit kernel event */

unsigned event_type;  /* the type of kernel event  */
unsigned first_element; /* the stopped thread */
unsigned second_element; /* the started thread */
unsigned third_element; /* flag and cpu number */
unsigned hi_time; /* hi time stamp */
unsigned lo_time; /* lo time stamp */

} kern_mon_event, *kern_mon_event_t, kern_mon_data_t,
*kern_mon_buffer_t;

kern_return_t monitor_read(target_monitor, buffer, events_read)
monitor_t target_monitor;
kern_mon_buffer_t buffer;
int events_read;

Description
monitor_read returns events detected by target_monitor into the buffer argument.

events_read is the number of events returned.  Each call to monitor_read is limited to returning a

maximum of MONITOR_MIG_BUF_SIZE events, a limitation of MIG buffer size.  Buffer data is aligned

around event boundaries but it is the responsibility of user code to properly declare and allocate buffer

Arguments

target_monitor The monitor for which events are being read.

buffer The user’s buffer into which the events will be written.

events_read The number of events read by the call.

Returns

KERN_SUCCESS The monitor buffer was successfully read.

KERN_INVALID_ARGUMENT
target_monitor is not a monitor or the monitor port is not valid.

Notes
A rule of thumb is that the greater the thread-to-processor ratio, t, of one’s computation, the more context-

switches there will be.  Assume that when t > 1.0, there will be ten context-switches per second.  In order

to prevent the internal buffers from overflowing, monitor_read should be called at least once every

MONITOR_MIG_BUF_SIZE/10 seconds which in the current implementation is about every 30 seconds.

Or, if each time monitor_read is called it is immediately followed by repeated calls until the internal

buffers are empty, these bursts of repeated calls should occur every every B/(10 x

sizeof(kern_mon_data_t)) seconds where B is the size of the internal buffer in bytes.
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See Also
monitor_resume, monitor_terminate, monitor_suspend, monitor_read,

thread_monitor, thread_unmonitor, monitor
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thread_monitor
#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

kern_return_t thread_monitor(target_monitor,unique_id,target_thread)
monitor_t target_monitor;
int unique_id;
thread_t target_thread;

Arguments

target_monitor The monitor which will observe target_thread

unique_id An id for thread identification outside kernel.

target_thread The thread which will be monitored.

Description
thread_monitor enables target_thread for monitoring by target_monitor argument. The caller

is responsible for keeping unique_id unique among all threads that target_monitor observes.

target_thread can be observed by only one monitor at a time.

Returns

KERN_SUCCESS The thread has been enabled to be observed by monitor.

KERN_FAILURE The monitor state is MONITOR_SHUTDOWN or thread is not active.

KERN_INVALID_ARGUMENT
target_monitor is not a monitor, target_thread is not a thread, or the monitor
port is not valid.

See Also
monitor_create, monitor_terminate, monitor_resume, monitor_suspend,

monitor_read, thread_unmonitor, monitor
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thread_unmonitor
#include <mach.h>
#include <mach/kernel_event.h>
#include <mach/monitor.h>

kern_return_t thread_unmonitor(target_monitor, target_thread)
monitor_t target_monitor;
thread_t target_thread;

Arguments

target_monitor The monitor which observes target_thread

target_thread The thread which will be disabled.

Description
thread_unmonitor disables target_thread from being monitored by target_monitor.

Returns

KERN_SUCCESS The thread has been disabled from monitoring.

KERN_INVALID_ARGUMENT
target_monitor is a valid monitor, target_thread is not a thread, or the monitor
port is not valid.

See Also
monitor_create, monitor_terminate, monitor_resume, monitor_suspend,

monitor_read, thread_monitor, monitor
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3 Examples of Context-Switch Monitoring
Before giving examples of some results achieved using MKM, a brief description of the PIE environment

is necessary. The Parallel Programming and Instrumentation Environment (PIE) is a software

development environment for debugging performance using special development and data analysis tools.

PIE is a "computational laboratory" in which programmers design experiments to evaluate the real

behavior of computations.

PIE is a portable system whose basic platform is a workstation running the X Window System.  It supports

several sequential and parallel languages.  Currently, PIE’s monitoring instrumentation runs on Vax and

Sun workstations, Encore Multimax, and Warp.  Although PIE can be ported to other Unix-like operating

systems, its current form is implemented on top of the Mach operating system.

RDB
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Mach
Monitor

Monitor
Application

Runtime

- Fortran
- CThreads
- ADA
- MPC

- C

Language

PIEscope

- Advisor
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AvoidancePrevention Detection

Figure 3: Organization of PIE

Figure 3 depicts the general organization of PIE.  This manual only presents the visualization component

of PIE, called PIEscope, because of its relevance in showing context-switches detected by MKM.  The

context-switches shown in the examples were detected by MKM and retrieved by PIE using the

monitor_read call. The begin and end of the threads were recorded using simple methods in PIE.

3.1 Interpreting the PIE Figures
The two views in Figure 4 are examples of PIE’s principle formats for representing performance

information. These particular views show the execution of a matrix multiplication computation.  The top

view is an example of the execution barscope view; the bottom view is an example of the cpu barscope
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Figure 4: Execution and Cpu Views of Incomplete Gang Scheduling

view. In the execution barscope view, time is measured in microseconds on the horizontal while the

threads of the computation are ordered on the vertical.  This particular view shows the part of the

execution from about 0.0 to 36.7 seconds.  The time of execution for each thread is depicted by the dark

rectangles.

The cpu barscope shows thread-to-processor assignments during the execution of a computation.  As in

the execution barscope, the cpu barscope displays time in microseconds on the horizontal.  On the

vertical, however, the processors used by the computation are ordered and arbitrarily numbered on the

vertical. Opposite each cpu are alternating sets of patterned rectangles.  A patterned rectangle

represents an identifiable executing thread while a white rectangle is a period when none of the

respective computation’s threads are running on the associated cpu.  PIE allows a user to arbitrarily

assign unique colors or patterns to as many threads per cpu-view as he wishes.

3.2 Gang Scheduling
Sometimes, the number of threads is greater than the number of processors.  The two views of Figure 4

are execution and cpu barscopes of an entire matrix multiply computation for which five processors were

allocated. In each view, a pair of time cursors delimit approximately the same period in time, one in which

the collector, again represented by dark diagonally slashed bars, is running on cpu 12.
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Figure 5: The Execution of Two Threads on Three Kernels:  XF29, CS5a, X96

3.3 Comparing Schedulers for a Uniprocessor
PIE and MKM can also monitor sequential computations.  The three views in Figure 5 are execution

barscopes that were used to evaluate the Mach scheduler.  Each view shows the same two threads

time-sharing one processor.  As one moves down the Figure, the views represent newer versions of

Mach. Because the views depict uniprocessor executions, cutting a vertical swath through a view at any

point slices through only one running thread ... only a single black rectangle.

The top view of Figure 5 depicts an execution on the old XF29 kernel. The next view depicts the same

computation on the less primitive CS5a kernel. The X96 kernel in the bottom view is the most advanced.

The views show that the two threads do not behave identically on three kernels.  XF29 uses a simple

scheduling algorithm that switches the threads roughly every 100 milliseconds.  The schedulers of the

latter two kernels use a progressive algorithm which attempt to increase the length of the time slices

allocated to each thread.  Despite good intentions, the progressive algorithm of CS5a fails to dramatically

reduce the number of context-switches because it permits threads to switch to themselves repeatedly as

indicated by the preponderance of "squiggles."  X96 corrects this drawback by preempting a thread from

switching to itself.
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