18 4 GENERAL MACH INFORMATION

45 Mach Include Files

When writing a program that uses Mach facilities some of tieWing include files may be needed:

mach.h : needed for all Mach programs

mach/message.h : if any message structures are used
mach_error.h : if mach_error() is used

servers/env_mgr.h : if environment manager server is used
servers/netname.h : if nethame server is used

cthreads.h : if C threads package is used

4.6 Mach Information/Questions

A Mach news group exists to keep the user community up to datew Mach releases. This news
group is called ‘comp.os.mach’.

If you have questions relating to the use of any Mach faesitior any comments on this
tutorial, send mail tanachlib@wbl.cs.cmu.edu . Comments on this tutorial will be greatly
appreciated.

17

4 General Mach Information

4.1 Structure of the Mach Tree

Directories of interest include:

Jusr/mach/man : Mach manual pages
Jusr/mach/bin : Mach system programs such as MiG

Jusr/mach/etc : Mach servers such as the environment manage r
/usr/mach/include : Mach include files
/usr/mach/lib : Mach libraries such as libmach.a and libthr eads.a

4.2 Where to Find Examples and Manuals

You can print copies of the Mach manuals and documents forsgtfuusing the .ps files in the
/usr/mach/doc directory. There is subdirectogxamples indoc which contains the example
programs used in the two tutorial documents. Sedpghe UNIX manual entry on how to print .ps
files.

4.3 Setting Up Search Paths

To compile or load a Mach program your paths must be set to ilodke proper place for Mach
include files and libraries. By typingpurce /usrt/mach/lib/machpaths the appropriate
Mach directories will be added to your existing paths.

4.4 Mach Libraries

The Mach library, -Imach, must be loaded with most of the eplas given in this tutorial. Any

program using Mach kernel interface functions must be |dadéh libmach and the Mach version
of crt0 . For example, assuming that /usr/mach/lib is on your LPAHfbke any other version of
crt0 :

cc -0 simp_ipc simp_ipc.c -Imach

Two threads libraries exist: libthreads.a and libdweads.a. The 'co’ version of this library
works on all current Mach kernels. This version does notaltwse Mach threads; it uses
coroutines. This library does not provide real parallelisnsingle UNIX process is running. The
other threads library, libthreads.a, uses Mach threads.

3 MIG - THE MACH INTERFACE GENERATOR

16
{
i = ((inthrandom()%range) + (int)
password[i] = (char)j;
}
password[25] = "\0’;
return(KERN_SUCCESS);
}
3.5 User Side

The following code shows an example of how to use the server.

/* This is an example of a program using the random server */

#include
#include
#include
#include
#include

main()

{

int

<mach.h>
<servers/netname.h>
"random.h"
<mach_error.h>
<stdio.h>

number;

string25 password;
port_t serv_port;
kern_return_t retcode;

printf("Looking up port for random server\n");

retcode = netname_look_up(name_server_port,"","Random
&serv_port);

if (retcode !'= KERN_SUCCESS)

{ mach_error("error in looking up port for random server",r
printf("Random server may not be running\n®);
exit();

printf("Calling get_random\n");
retcode = get_random(serv_port,&number);
if (retcode == KERN_SUCCESS)

printf("Result from get_random is %d\n",number);
else mach_error("Error from get_random is" retcode);
printf("Calling get_secret\n");
retcode = get_secret(serv_port,password);
if (retcode == KERN_SUCCESS)

printf("Result from get_secret is %s\n",password);
else mach_error("Error from get_secret is",retcode);

ServerPort",

etcode);

3.4 Server procedures 15

msg_simple = InOP->Head.msg_simple;
if ((msg_size != 24) || (msg_simple != TRUE))
{ OutP->RetCode = MIG_BAD_ARGUMENTS; return; }
#endif TypeCheck

OutP->RetCode = get_random(InOP->Head.msg_request_por t, &OutP->num);
if (OutP->RetCode '= KERN_SUCCESS)
return;

msg_size = 40;

OutP->numType = numType;
OutP->Head.msg_simple = TRUE;
OutP->Head.msg_size = msg_size;

3.4 Server procedures

Finally the subsystem implementor must write the proceesitiat actually perform the requested
operations. For this server the following code will do.

/* procedues of random_server */
#include <mach.h>
#include "random_types.h"

long random();

kern_return_t get_random(serv_port,num)

/* get_random returns a random number between 0 and 2**32 - 1 * /
port_t serv_port;
int *num;

{

*num = (int) random();
return(KERN_SUCCESS);
}

kern_return_t get_secret(serv_port,password)
port_t serv_port;
string25 password;
/* get_secret returns a random printable ascii string 25 cha rs long */
int LJ;
int range = (int)™ - (int)’

for (i=0;i<25; i++)

14

3 MIG - THE MACH INTERFACE GENERATOR

return TRUE;

The two internal routines that do most of the message unpgckie Xget random and
_Xget_secret . These routines respectively cglet random andget secret with the
appropriate parameters. When those routines return, g nepdsage is created in the buffer that
OutHeadP points to.

The following is the code for Xget_random ;

/* Routine get_random */
mig_internal novalue _Xget random(InHeadP, OutHeadP)

{

msg_header_t *InHeadP, *OutHeadP;

typedef struct {
msg_header_t Head;
} Request;

typedef struct {
msg_header_t Head,;
msg_type_t RetCodeType;
kern_return_t RetCode;
msg_type_t numType;
int num;

} Reply;

register Request *InOP = (Request *) InHeadP;
register Reply *OutP = (Reply *) OutHeadP;
extern kern_return_t get_random();

#if TypeCheck

boolean_t msg_simple;

#endif TypeCheck

unsigned int msg_size;

static msg_type_t numType = {

/* msg_type_name = */ MSG_TYPE_INTEGER_32,
/* msg_type_size = */ 32,

/* msg_type_number = */ 1,

/* msg_type_inline = */ TRUE,

/* msg_type_longform = */ FALSE,

/* msg_type_deallocate = */ FALSE,

/* msg_type_unused = * 0

}

#if TypeCheck

msg_size = InOP->Head.msg_size;

3.3 Server message dispatch code 13

3.3 Server message dispatch code

The filerandomServer.c contains the server side code that was generated by MIGptrex

the routinerandom_server that is called by the main program. It checks the message id to
determine what message was received, and then unpackgytiveearts and calls the appropriate
server procedure. The following fragment shows the cotdgit of the dispatch routine.

boolean_t random_server(InHeadP, OutHeadP)
msg_header_t *InHeadP, *OutHeadP;

{

register msg_header_t *InP = InHeadP;
register death_pill_t *OutP = (death_pill_t *) OutHeadP;

static msg_type_t RetCodeType = {

/* msg_type_name = */ MSG_TYPE_INTEGER_32,
[* msg_type_size = */ 32,

/* msg_type_number = */ 1,

/* msg_type_inline = */ TRUE,

/* msg_type_longform = */ FALSE,

/* msg_type_deallocate = */ FALSE,

/* msg_type_unused = * 0

h

OutP->Head.msg_simple = TRUE;
OutP->Head.msg_size = sizeof *OutP;
OutP->Head.msg_type = InP->msg_type;
OutP->Head.msg_local_port = PORT_NULL;
OutP->Head.msg_remote_port = InP->msg_reply_port;
OutP->Head.msg_id = InP->msg_id + 100;
OutP->RetCodeType = RetCodeType;
OutP->RetCode = MIG_BAD_ID;

if ((InP->msg_id > 501) || (InP->msg_id < 500))
return FALSE;

else {
typedef novalue (*SERVER_STUB_PROC)();

static SERVER_STUB_PROC routines[] = {
_Xget_random,
_Xget_secret,

h

if (routines[InP->msg_id - 500])

(routines[InP->msg_id - 500]) (InP, &OutP->Head);
else

return FALSE;

12

3 MIG - THE MACH INTERFACE GENERATOR

msg_header_t *request = (msg_header_t *) requestbuf;
death_pill_t *reply = (death_pill_t *) replybuf;
msg_return_t mr;

/*
* Problems with this server loop:
* Requests which are not processed successfully
* (bad msg_id, type mismatch, whatever) should
* be cleaned up; ports & memory should be deallocated.
* Replies which are dropped (reply port died or was
* full, some problem with rights or memory in the reply)
* should also be cleaned up.
* But these are hard problems (harder than they might appear)
* so we ignore them.
*/
for () {
/* receive a request message */
request->msg_size = sizeof requestbuf;
request->msg_local_port = service;
mr = msg_receive(request, MSG_OPTION_NONE, 0);
if (mr != RCV_SUCCESS)
return mr;
/* ignore notification messages from the kernel */
if (request->msg_local_port == task_notify())
continue;
/* demux and process the request, generating a reply */
(void) (*function)(request, &reply->Head);
/* send the reply, if necessary */
if ((reply->Head.msg_remote_port != PORT_NULL) &&
(reply->RetCode !'= MIG_NO_REPLY)) {
/* don't block if the reply port is full */
(void) msg_send(&reply->Head, SEND_TIMEOUT, 0);
}
}

3.2 Server main program

kr = port_set_add(task_self(), port_set, server_port);
if (kr '= KERN_SUCCESS) {
mach_error("port_set_add", kr);
exit(1);
}

kr = port_set_add(task_self(), port_set, task_notify())
if (kr '= KERN_SUCCESS) {
mach_error("port_set_add", kr);
exit(1);
}

/* check service port into the name service so clients can fin

kr = netname_check_in(name_server_port, "RandomServerP ort",
PORT_NULL, server_port);
if (kr '= KERN_SUCCESS) ({
mach_error("netname_check_in", kr);
exit(1);
}

/* call the standard service loop; should never return */
kr = mig_server(port_set, random_server);
mach_error("mig_server", kr);
exit(2);
The following code is the library routinaig _server
#include <mach/mach.h>
#include <mach/message.h>

#include <mach/mig_errors.h>

msg_return_t
mig_server(service, function)

port_name_t service; [* receive right or port set */

boolean_t (*function)(); /* server demux & processing */
{

/*

* Buffers should be aligned on 4-byte boundaries,

* so that internal fields are aligned properly

* for int fetches and stores.

*/

int requestbuf[MSG_SIZE_MAX/sizeof(int)];
int replybuffMSG_SIZE_MAXI/sizeof(int)];

d

11

it */

10 3 MIG - THE MACH INTERFACE GENERATOR

This server may get sSomEEMERGENCY_MS@&em the kernel on itgotify _port() which
it wishes to ignore. The most common sortEIERGENCY _M$3he notification of a port death.
In the case of a server these ports are usually client rephg p@he library routinenig _server

ignores all messages on thetify_port() . A more complicated server might need to take
action on some of these messages and would not be able to use
t mig_server.

Note that the functiormach_error_string is a library routine that returns the string

associated with a Mach error code. This function is definedach_error.h and is included in
libmach.a
The following code shows a typical main loop for a MIG server.

[x** * *% * *

* Main program for random server

* * * * *k * /

#include <stdio.h>

#include <mach.h>

#include <mach_error.h>
#include <mach/message.h>
#include <servers/netname.h>

extern boolean_t random_server(); [* from randomServer.c */
extern msg_return_t mig_server(); [* from mig_server.c */

main()

{

port_name_t server_port;
port_name_t port_set;
kern_return_t kr;

/* allocate a service port for receiving request messages */

kr = port_allocate(task_self(), &server_port);

if (kr '= KERN_SUCCESS) {
mach_error("port_allocate", kr);
exit(1);

}

/* allocate a port set to hold the service port and notify port */

kr = port_set_allocate(task_self(), &port_set);

if (kr '= KERN_SUCCESS) {
mach_error("port_set_allocate", kr);
exit(1);

}

/* put the service port and notify port into the port set */

3.2 Server main program 9

different messages: one for the gahdom function which will have a msg of 500; one for the
reply to getrandom which will have a msg@ of 600; one for the function getecret which will
have a msdd of 501; and one for its reply which will have a m&gjof 601. The msgd is used by
the server to identify which message it has received.

The filemach/std _types.defs defines some frequently used types. In this case the relevant
defintions are:

MSG_TYPE_INTEGER_32;
MSG_TYPE_PORT;
MSG_TYPE_INTEGER_32;

type int
type port_t
type boolean_t

The MIG defs file is processed lpypp before it is processed by MIG. Thus cpp strips off the
comments and handles thanclude directives.

The syntax of the type declaration is to define the C type namstegind then say that it is equal
to an IPC type name. The set of defined IPC types can be fourdiMtG document or in the
file <mach/message.h> . For string and unstructured types the numbebitgin the type must
follow the name.

The import statement gives the name of a header file to bededlin the generated code. This
header file must define any non-standard C types used by trésice. In this case it consists of the
following definition:

typedef char string25[25];

The routine declarations specify the name of the routinglaadrder and types of the arguments.
The first argument is the port to which the message will be.sdie specificationn , out or
inout may precede the name of any other parameter and specify indiveation the argument is
to be passed. Any unspecified parameter, except the firstooagsumed to be @n parameter.

MIG generates three C files from the definition file. The fdadom.h defines the functions
to be called by a client of the server and shouldttmeluded into code that calls those functions.
randomUser.c is the code to create and send the messages to the clienteamdait to receive
the reply message. When the reply message is receivedyuangr inout parameters are taken
out of the message and returned as function parameters ¢altee This file should be linked with
the user of the serverandomServer.c is the server side of the message interface. It unpacks
the request message, calls a function provided by the senmementor to execute the request
and then creates the reply message. The server implemenginwmite a main program and the
functions that execute the requests. There is a librarymeurnig _server , that provides a simple
version of a send and receive loop. In the example, the uséesathe code which sets up the
ports and then callsig _server to do the rest. If a server needs more control over possibbe er
conditions, it can provide its own receive and send loop.

3.2 Server main program

In this example the server waits on a pset containing th&erverPort andnotify _port()
The thread reply port is not included in this set. When paréscaeated they are not a member of
any port set by default. Thus they must be added explicitpoid _set .

8 3 MIG - THE MACH INTERFACE GENERATOR

3 MIG - The Mach Interface Generator

Much multi-task communication takes the form of one or masks$ requesting services or responses
from another task. This in fact is a description of a Mach seprocess. Since the creation and
reading of messages requires a lot of repetitious code,otildhcome as no great surpise that
Mach provides a compiler to produce a remote procedure mitface to IPC message passing.
A complete description of MIG including an example of its wsa be found ifMIG - the Mach
Interface Generator by Draves, Jones and Thompson.

A brief example of the use of MIG follows. The problem thatade solved is to write a simple
server that will return either a random integer or a randaimgt The user interface to this server is
to consist of two calls:

ret_code = get_random(server_port,num)
port t server_port;
int num;

ret_code = get_secret(server_port,password)

port_t server_port;
string25 password;

3.1 MIG Definition file

The subsystem implementor must first write a MIG definitioe tib specify the details of the
procdure arguments and the messages to be used. MIG umdisrgifferent kinds of routines and
many obscure options in the way messages are to be formattatiand received. But for this
simple case it is enough to define the name of the server, pies tyf the arguments that are being
used, and the routines that are desired. The following MIfédi®n file will suffice to do this:

subsystem random 500;

#include <mach/std_types.defs>

type string25 = (MSG_TYPE_STRING_C,8*25);
import "random_types.h";

routine get_random(

requestport server_port . port_t;

out num :int);
routine get_secret(

requestport server_port . port_t;

out password . string25);

The first line of the definition file states that the name of thiesytem is to beandom and
the messages that are created will start with the message5i@0o This interface will send four

212 ExampleV, masterdave.c

while (count != 0)
condition_wait(done, lock);
mutex_unlock(lock);
printf("All %d slaves have finished.\n", nslaves);
cthread_exit(0);
}

main()
{
init();
master((int) random() % 16); /* create up to 15 slaves */

6 2 CTHREADS MASTER THREAD SPAWNING CONCURRENT SLAVES

cthread_init();

count = 0O;

lock = mutex_alloc();

done = condition_alloc();

srandom(time((int *) 0)); /* initialize random number gene rator */

}

/*
* Each slave just counts up to its argument, yielding the proc essor on
* each iteration. When it is finished, it decrements the glob al count
* and signals that it is done.
*/
slave(n)
int n;
{

int i;

for i =0;i<n;i+=1)
cthread_yield();

mutex_lock(lock);

count -= 1;

printf("Slave finished %d cycles.\n", n);

condition_signal(done);

mutex_unlock(lock);

}

/*
* The master spawns a given number of slaves and then waits for them all to
* finish.
*/
master(nslaves)
int nslaves;

{

int i;

for (i = 1; i <= nslaves; i += 1) {
mutex_lock(lock);
/*
* Fork a slave and detach i,
* since the master never joins it individually.
*/
count += 1;
cthread_detach(cthread_fork(slave, random() % 1000));
mutex_unlock(lock);

}

mutex_lock(lock);

2.10 Yielding the Processor to other Threads 5

2.10 Yielding the Processor to other Threads

This procedure is a hint to the scheduler, suggesting tiatibuld be a convenient pointto schedule
another thread to run on the current processor. Caltshteead_yield are unnecessary in an

implementation with preemptive scheduling, but may be iregito avoid starvation in a coroutine

based implementation.

int i, n;
/* n is set previously */

for i =0;i<n;i+=1)
cthread_yield();

2.11 Exitinga C Thread

cthread_exit causes termination of the calling thread. An implicitread_exit occurs
when the top level function of a thread returns. The resutapater will be passed to the thread
that joins the caller, or discarded if the caller is detached

cthread_exit(0);

2.12 Example V, masterslave.c

/*

* This program is an example of a master thread spawning a numb er of

* concurrent slaves. The master thread waits until all of the slaves have
* finished to exit. Once created a slave process doesn't do mu ch in this

* simple example except loop. A count variable is used by the m aster and
* slave processes to keep track of the current number of slave s executing.
* A mutex is associated with this count variable, and a condit ion variable

* with the mutex. This program is a simple demonstration of th e use of

* mutex and condition variables.

*/

#include <stdio.h>
#include <cthreads.h>

int count; I* number of slaves active */
mutex_t lock; [* mutual exclusion for count */
condition_t done; /* signalled each time a slave finishes */

extern long random();

init()

4 2 CTHREADS MASTER THREAD SPAWNING CONCURRENT SLAVES

mutex_t lock;
condition_t done;

mutex_lock(lock);

while (count != 0)
condition_wait(done, lock);

mutex_unlock(lock);

2.7 Signalling a Condition

condition_signal is called when one thread wishes to indicate that the candigpresented
by the condition variable may now be true. If any threads aa#img viacondition_wait , at
least one of them will be awakened. If no threads are waitinthing happens.

condition_t done; /* signalled each time a slave finishes */
condition_signal(done);

2.8 Forking a C Thread

This function takes two parameters: a function for the nengdtl to execute, and a parameter to
this function. cthread_fork creates a new thread of control in which the specified functio
is executed concurrently with the caller’s thread. Thishis $ole means of creating new threads.
A parameter that is larger than a pointer must be passed lgyerefe. Similarly, multiple
parameters must be simulated by passing a pointer to asteucbntaining several components.
The call tocthread_fork returns a thread identifier that can be passecthicead_join or
cthread_detach . Every thread must be either joined or detached exactly.once

/* slave is a function that expects an integer parameter */
/* see Detaching a C Thread for description of chtread_detac h *

cthread_detach(cthread_fork(slave, random() % 1000));

2.9 Detachinga C Thread

cthread_detach isused toindicate that a thread will never be joined. A thmeay be detached
at any time after it is forked, as long as no other attemptiairjg or detaching has been made. In
the example below, at the time the thread was forked, it wasvknthat it would never be joined
and therefore it was detached.

/* slave is a function that expects an integer parameter */
/* see Forking a C Thread for description of chtread_fork */

cthread_detach(cthread_fork(slave, random() % 1000));

2.2 Allocation of a Mutex Variable 3

cthread_init();

2.2 Allocation of a Mutex Variable

mutex_alloc provides dynamic allocation of a mutex variable.

mutex_t lock; [* mutual exclusion for count */
lock = mutex_alloc();

2.3 Locking a Mutex Variable

mutex_lock attempts to lock the given mutex variable. If the mutex ieadty locked this call
blocks until the mutex is unlocked. If several threads aptetm lock the same mutex concurrently,
one will succeed, and the others will block until the mutedrigocked. A deadlock will result from
a thread attempting to lock a mutex it has already locked.

mutex_t lock; [* mutual exclusion for count */
mutex_lock(lock);

2.4 Unlocking a Mutex Variable

mutex_unlock unlocks the mutex giving other threads a chance to lock it.

mutex_t lock; [* mutual exclusion for count */
mutex_unlock(lock);

2.5 Allocation of a Condition Variable

condition_alloc provides dynamic allocation of a condition variable.

condition_t done; /* signalled each time a slave finishes */
done = condition_alloc();

2.6 Waiting on a Condition

This function unlocks the mutex it takes as a parameter,esupg the calling thread until another
thread callscondition_signal on the same condition variable. The mutex is then locked and
the thread resumes. There is no guarantee that the conditidre true when the thread resumes,
thereforecondition_wait should always be used in the form below.

2 2 CTHREADS MASTER THREAD SPAWNING CONCURRENT SLAVES

time the master thread is signalled bgandition_signal call, it tests thecount for a value
of zero.
cthread_init is the first function called in the example program. This fiortinitializes

the C threads implementation and must be called before atiyeobther cthread functions. If a
program is loaded with the Mach versionatf0O |, this call is no longer necessary as it has already
been done bgrt0 (orgcrt0 ormoncrt0). Thecount which represents the current number of
slaves is set to zeranutex_alloc s called to allocate a mutex assigned to the variddk .
condition_alloc is used to allocate a condition object assigned to the Varddne . The last
initialization call is to the random number generator.

After initialization, the master thread loops creating thember of slave processes desired
and incrementingcount with each creation. mutex_lock is called at the beginning of the
loop. This call results in either locking the variabtek , or blocking untillock is unlocked
by some other thread. The returnmitex_lock signals that the master can now change the
variablecount knowing that no other thread will be accessing this variabkd the master unlocks
the mutex. count is incremented, and a slave is created. To create a slavendkeer calls
cthread_fork followed by cthread_detach . cthread_fork creates a new thread of
control which executes concurrently with the mastethread_fork takes as a parameter a
function which the new thread is to execute. Since the malstes not intend to later rendez-vous
with the slavecthread_detach is called. Once the master has incrementedctiient and
created a slavenutex_unlock is called to give the other threads a chance to lock the mutéx a
consequently access theunt variable.

Having created the desired number of slaves, the masteadtstops looping and waits for
all of the slave threads to finish execution. The variatent signals the number of slave
processes still executingmutex_lock is called so the master may safely accessdbent
variable. Now the master thread must wait on the condidimme by callingcondition_wait
condition_wait unlocks the mutex and suspends the master, letting othesdbrchange the
count variable. Whertondition_wait returns, the mutex is automatically locked. The master
resumes and checks tbeunt to see ifitis infact equal to zero. Since there is no gaustitat the
condition will be true when the master is resumed abiedition_wait is called inaloop ending
when thecount is zero. Before exiting the master cattautex_unlock . cthread_exit is
called to terminate the master thread.

When the new slave was created wthread fork it was given a function to execute and
one parameter to pass to that function. In our example, gve $linction is given a random number
as a parameter. The slave loops this number of times callfogaioncthread_yield , Which
yields the processor to other threads. When finished loggileghread must decrement ttunt
variable because it is about to exit. In order to safely actlescount , mutex_lock is called.
Once the mutelock is locked, thecount is decremented. Nexbndition_signal is called
to indicate that the condition represented by the conditemabledone may be true. The slave
callsmutex_unlock and exits.

2.1 Initializing the C Threads Package

This initialization function must be called before any atkeThread functions. This call is now
called automatically bgrt0 , but multiple calls to this routine are harmless.

1 Introduction

This documentis one of two tutorials designed to teach Bdaih programming skills. This manual
demonstrates the use of the C Threads library primitivesriting a multi-threaded program and
the use of the Mach Interface Generator (MIG) to generat@temrocedure calls for interprocess
communication. It also includes a final section on where atlCid find the include files and
libraries that comprise the Mach environment as well as gitaoes for obtaining these files and
setting up the correct user environment.

The reader should be familiar with the basic Mach abstrastiof ports, messages, virtual
memory, tasks and threads before reading this document. intteeluction to the other tutorial
documentA Programmer’s Guideto the Mach System Calls, explains these concepts.

2 C Threads: Master Thread Spawning Concurrent Slaves

The C threads package is a runtime library that provides a@uiage interface to a number of low
level, Mach primitives for manipulating threads of contrdlhe constructs provided are: forking
and joining of threads, protection of critical regions witlutex variables, and synchronization by
means of condition variables. For a complete descriptidthe threads package see @éhreads
manual by Cooper and Draves. It is highly recommended thabgrammer doing multi-threaded
applications use the C threads routines rather than the Bystem calls. The C threads package is
designed to provide a more natural set of primitives for ivthiteaded applications and is carefully
optimized to produce the most efficient use of the systens.call

The program at the end of this section is an example of howtiatstre a program with a single
master thread which spawns a number of concurrent slaves.nBster thread waits until all the
slaves have finished to exit. A random number generator i tasgetermine the ‘life’ of the slave
processes. Once created the slave processes in this exa@mplg loop calling a cthread function
making the processor available to other threads. The rantdamber generator determines the
length of this loop. In a more useful version of this prograach slave process would do something
while looping.

In order for the master thread to determine when all of theesihave exited, eount variable
is needed to keep track of the number of current threads. cthist is incremented by the master
with each creation of a slave. Each slave decrementsdbat when it exits. Because two or
more threads may be trying to access¢bant at the same time, a mutex callemtk is used to
provide exclusive access tount . If any thread wants to access ttrunt variable, it should first
lock the mutex. Consequently when the mutex is locked, arsathwanting theount variable
must wait until the mutex is unlocked.

Condition variables are used to provide synchronizatidaween threads, e.g one thread wishes
to wait until another thread has finished doing somethinger§eondition variable is associated
with a mutex. The condition variable represents a booleate sif the shared data that the mutex
protects. In this example after all of the slave threads haea created, the master thread waits until
thecount variable is equal to zero. A condition variallene is used to represent the possibility
that thecount may equal zero. Just before a slave thread exits, it signalsdnditiordone since
it may be the last slave executing. The master thread loofisngy@n the conditiordone . Each

A Programmer’s Guide to the Mach User Environment

Linda R. Walmer
Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Version of: 7 November 1989

Abstract

This document is one of two tutorials designed to teach bissich programming
skills. This manual demonstrates the use of the C Threadaitprimitives in writing
a multi-threaded program and the use of the Mach Interfacefagor (MIG) to generate
remote procedure calls for interprocess communication.

The reader should be familiar with the basic Mach abstrastiof ports, messages,
virtual memory, tasks and threads. The introduction to tganion document to this
one,A Programmer’s Guide to the Mach System Calls, explains these concepts.

Comments, suggestions and additions to this document dceme.

The material developed under this subcontract was or is ssped by the Defense Advanced Research Projects
Agency (DoD), ARPA order 4864, monitored by the Space anddN#arfare Systems Command under Contract Number
N00039-87-C-0251.

The views and conclusions contained in this document arsetlud the authors and should not be interpreted as
representing official policies, either expressed or inthl@ the Defense Advanced Research Projects Agency or Bepar
of the Navy, Space and Naval Warfare Systems Command, oreGi@rMellon University, unless designated by other
documentation.

Contents

1 Introduction 1

2 C Threads: Master Thread Spawning Concurrent Slaves

2.1 |Initializingthe C Threads Package. 2
2.2 Allocationofa Mutex Variable o oo 3
2.3 Lockinga Mutex Variable. 3
2.4 Unlockinga Mutex Variable. o 3
2.5 Allocation of a ConditionVariable 3
2.6 WaitingonaCondition 4
2.7 Signallinga Condition 4
28 ForkingaCThread. 4
29 DetachingaCThread 5
2.10 Yielding the Processor to other Threads. 5
211 ExitingaCThread 5
2.12 Example V, masterslave.c 6
3 MIG - The Mach Interface Generator 9
3.1 MIG Definitionfile. 9
3.2 Servermain program. 10
3.3 Server message dispatchcode 14
3.4 Serverprocedures 16
35 UserSide 17
4 General Mach Information 18
4.1 StructureoftheMach Tree. 18
4.2 Whereto Find ExamplesandManuals 18
4.3 SettingUp SearchPaths. 19
4.4 Mach Libraries. 19
45 MachlIncludeFiles 19
4.6 Mach Information/Questions. 19

