
18 4 GENERAL MACH INFORMATION

4.5 Mach Include Files

When writing a program that uses Mach facilities some of the following include files may be needed:

mach.h : needed for all Mach programs
mach/message.h : if any message structures are used
mach_error.h : if mach_error() is used
servers/env_mgr.h : if environment manager server is used
servers/netname.h : if netname server is used
cthreads.h : if C threads package is used

4.6 Mach Information/Questions

A Mach news group exists to keep the user community up to date on new Mach releases. This news
group is called ‘comp.os.mach’.

If you have questions relating to the use of any Mach facilities, or any comments on this
tutorial, send mail tomachlib@wb1.cs.cmu.edu . Comments on this tutorial will be greatly
appreciated.

17

4 General Mach Information

4.1 Structure of the Mach Tree

Directories of interest include:

/usr/mach/man : Mach manual pages
/usr/mach/bin : Mach system programs such as MiG
/usr/mach/etc : Mach servers such as the environment manage r
/usr/mach/include : Mach include files
/usr/mach/lib : Mach libraries such as libmach.a and libthr eads.a

4.2 Where to Find Examples and Manuals

You can print copies of the Mach manuals and documents for yourself using the .ps files in the
/usr/mach/doc directory. There is subdirectoryexamples in doc which contains the example
programs used in the two tutorial documents. See thelpr UNIX manual entry on how to print .ps
files.

4.3 Setting Up Search Paths

To compile or load a Mach program your paths must be set to lookin the proper place for Mach
include files and libraries. By typingsource /usr/mach/lib/machpaths the appropriate
Mach directories will be added to your existing paths.

4.4 Mach Libraries

The Mach library, -lmach, must be loaded with most of the examples given in this tutorial. Any
program using Mach kernel interface functions must be loaded with libmach and the Mach version
of crt0 . For example, assuming that /usr/mach/lib is on your LPATH before any other version of
crt0 :

cc -o simp_ipc simp_ipc.c -lmach

Two threads libraries exist: libthreads.a and libco_threads.a. The ’co’ version of this library
works on all current Mach kernels. This version does not actually use Mach threads; it uses
coroutines. This library does not provide real parallelism, a single UNIX process is running. The
other threads library, libthreads.a, uses Mach threads.

16 3 MIG - THE MACH INTERFACE GENERATOR

{
j = ((int)random()%range) + (int)’ ’;
password[i] = (char)j;

}
password[25] = ’\0’;
return(KERN_SUCCESS);

}

3.5 User Side

The following code shows an example of how to use the server.

/* This is an example of a program using the random server */
#include <mach.h>
#include <servers/netname.h>
#include "random.h"
#include <mach_error.h>
#include <stdio.h>

main()
{

int number;
string25 password;
port_t serv_port;
kern_return_t retcode;

printf("Looking up port for random server\n");
retcode = netname_look_up(name_server_port,"","Random ServerPort",

&serv_port);
if (retcode != KERN_SUCCESS)
{ mach_error("error in looking up port for random server",r etcode);

printf("Random server may not be running\n");
exit();

}
printf("Calling get_random\n");
retcode = get_random(serv_port,&number);
if (retcode == KERN_SUCCESS)

printf("Result from get_random is %d\n",number);
else mach_error("Error from get_random is",retcode);
printf("Calling get_secret\n");
retcode = get_secret(serv_port,password);
if (retcode == KERN_SUCCESS)

printf("Result from get_secret is %s\n",password);
else mach_error("Error from get_secret is",retcode);

}

3.4 Server procedures 15

msg_simple = In0P->Head.msg_simple;
if ((msg_size != 24) || (msg_simple != TRUE))

{ OutP->RetCode = MIG_BAD_ARGUMENTS; return; }
#endif TypeCheck

OutP->RetCode = get_random(In0P->Head.msg_request_por t, &OutP->num);
if (OutP->RetCode != KERN_SUCCESS)

return;

msg_size = 40;

OutP->numType = numType;
OutP->Head.msg_simple = TRUE;
OutP->Head.msg_size = msg_size;

}

3.4 Server procedures

Finally the subsystem implementor must write the proceedures that actually perform the requested
operations. For this server the following code will do.

/* procedues of random_server */
#include <mach.h>
#include "random_types.h"

long random();

kern_return_t get_random(serv_port,num)
/* get_random returns a random number between 0 and 2**32 - 1 * /

port_t serv_port;
int *num;

{
*num = (int) random();
return(KERN_SUCCESS);

}

kern_return_t get_secret(serv_port,password)
port_t serv_port;
string25 password;

/* get_secret returns a random printable ascii string 25 cha rs long */
{

int i,j;
int range = (int)’˜’ - (int)’ ’;

for (i=0;i<25; i++)

14 3 MIG - THE MACH INTERFACE GENERATOR

return TRUE;
}

The two internal routines that do most of the message unpacking are_Xget_random and
_Xget_secret . These routines respectively callget_random and get_secret with the
appropriate parameters. When those routines return, a reply message is created in the buffer that
OutHeadP points to.

The following is the code for_Xget_random ;

/* Routine get_random */
mig_internal novalue _Xget_random(InHeadP, OutHeadP)

msg_header_t *InHeadP, *OutHeadP;
{

typedef struct {
msg_header_t Head;

} Request;

typedef struct {
msg_header_t Head;
msg_type_t RetCodeType;
kern_return_t RetCode;
msg_type_t numType;
int num;

} Reply;

register Request *In0P = (Request *) InHeadP;
register Reply *OutP = (Reply *) OutHeadP;
extern kern_return_t get_random();

#if TypeCheck
boolean_t msg_simple;

#endif TypeCheck

unsigned int msg_size;

static msg_type_t numType = {
/* msg_type_name = */ MSG_TYPE_INTEGER_32,
/* msg_type_size = */ 32,
/* msg_type_number = */ 1,
/* msg_type_inline = */ TRUE,
/* msg_type_longform = */ FALSE,
/* msg_type_deallocate = */ FALSE,
/* msg_type_unused = */ 0

};
#if TypeCheck

msg_size = In0P->Head.msg_size;

3.3 Server message dispatch code 13

3.3 Server message dispatch code

The file randomServer.c contains the server side code that was generated by MIG. It exports
the routinerandom_server that is called by the main program. It checks the message id to
determine what message was received, and then unpacks the arguments and calls the appropriate
server procedure. The following fragment shows the controllogic of the dispatch routine.

boolean_t random_server(InHeadP, OutHeadP)
msg_header_t *InHeadP, *OutHeadP;

{
register msg_header_t *InP = InHeadP;
register death_pill_t *OutP = (death_pill_t *) OutHeadP;

static msg_type_t RetCodeType = {
/* msg_type_name = */ MSG_TYPE_INTEGER_32,
/* msg_type_size = */ 32,
/* msg_type_number = */ 1,
/* msg_type_inline = */ TRUE,
/* msg_type_longform = */ FALSE,
/* msg_type_deallocate = */ FALSE,
/* msg_type_unused = */ 0

};

OutP->Head.msg_simple = TRUE;
OutP->Head.msg_size = sizeof *OutP;
OutP->Head.msg_type = InP->msg_type;
OutP->Head.msg_local_port = PORT_NULL;
OutP->Head.msg_remote_port = InP->msg_reply_port;
OutP->Head.msg_id = InP->msg_id + 100;
OutP->RetCodeType = RetCodeType;
OutP->RetCode = MIG_BAD_ID;

if ((InP->msg_id > 501) || (InP->msg_id < 500))
return FALSE;

else {
typedef novalue (*SERVER_STUB_PROC)();

static SERVER_STUB_PROC routines[] = {
_Xget_random,
_Xget_secret,

};

if (routines[InP->msg_id - 500])
(routines[InP->msg_id - 500]) (InP, &OutP->Head);

else
return FALSE;

}

12 3 MIG - THE MACH INTERFACE GENERATOR

msg_header_t *request = (msg_header_t *) requestbuf;
death_pill_t *reply = (death_pill_t *) replybuf;
msg_return_t mr;

/*
* Problems with this server loop:
* Requests which are not processed successfully
* (bad msg_id, type mismatch, whatever) should
* be cleaned up; ports & memory should be deallocated.
*
* Replies which are dropped (reply port died or was
* full, some problem with rights or memory in the reply)
* should also be cleaned up.
* But these are hard problems (harder than they might appear)
* so we ignore them.
*/

for (;;) {
/* receive a request message */

request->msg_size = sizeof requestbuf;
request->msg_local_port = service;

mr = msg_receive(request, MSG_OPTION_NONE, 0);
if (mr != RCV_SUCCESS)

return mr;

/* ignore notification messages from the kernel */

if (request->msg_local_port == task_notify())
continue;

/* demux and process the request, generating a reply */

(void) (*function)(request, &reply->Head);

/* send the reply, if necessary */

if ((reply->Head.msg_remote_port != PORT_NULL) &&
(reply->RetCode != MIG_NO_REPLY)) {

/* don’t block if the reply port is full */

(void) msg_send(&reply->Head, SEND_TIMEOUT, 0);
}

}
}

3.2 Server main program 11

kr = port_set_add(task_self(), port_set, server_port);
if (kr != KERN_SUCCESS) {

mach_error("port_set_add", kr);
exit(1);

}

kr = port_set_add(task_self(), port_set, task_notify()) ;
if (kr != KERN_SUCCESS) {

mach_error("port_set_add", kr);
exit(1);

}

/* check service port into the name service so clients can fin d it */

kr = netname_check_in(name_server_port, "RandomServerP ort",
PORT_NULL, server_port);

if (kr != KERN_SUCCESS) {
mach_error("netname_check_in", kr);
exit(1);

}

/* call the standard service loop; should never return */

kr = mig_server(port_set, random_server);
mach_error("mig_server", kr);
exit(2);

}

The following code is the library routinemig server .

#include <mach/mach.h>
#include <mach/message.h>
#include <mach/mig_errors.h>

msg_return_t
mig_server(service, function)

port_name_t service; /* receive right or port set */
boolean_t (*function)(); /* server demux & processing */

{
/*

* Buffers should be aligned on 4-byte boundaries,
* so that internal fields are aligned properly
* for int fetches and stores.
*/

int requestbuf[MSG_SIZE_MAX/sizeof(int)];
int replybuf[MSG_SIZE_MAX/sizeof(int)];

10 3 MIG - THE MACH INTERFACE GENERATOR

This server may get someEMERGENCY_MSGsfrom the kernel on itsnotify_port() which
it wishes to ignore. The most common sort ofEMERGENCY_MSGis the notification of a port death.
In the case of a server these ports are usually client reply ports. The library routinemig server
ignores all messages on thenotify_port() . A more complicated server might need to take
action on some of these messages and would not be able to use
t mig server.

Note that the functionmach_error_string is a library routine that returns the string
associated with a Mach error code. This function is defined inmach_error.h and is included in
libmach.a .

The following code shows a typical main loop for a MIG server.

/** *
* Main program for random server
**/

#include <stdio.h>
#include <mach.h>
#include <mach_error.h>
#include <mach/message.h>
#include <servers/netname.h>

extern boolean_t random_server(); /* from randomServer.c */
extern msg_return_t mig_server(); /* from mig_server.c */

main()
{

port_name_t server_port;
port_name_t port_set;
kern_return_t kr;

/* allocate a service port for receiving request messages */

kr = port_allocate(task_self(), &server_port);
if (kr != KERN_SUCCESS) {

mach_error("port_allocate", kr);
exit(1);

}

/* allocate a port set to hold the service port and notify port */

kr = port_set_allocate(task_self(), &port_set);
if (kr != KERN_SUCCESS) {

mach_error("port_set_allocate", kr);
exit(1);

}

/* put the service port and notify port into the port set */

3.2 Server main program 9

different messages: one for the getrandom function which will have a msgid of 500; one for the
reply to getrandom which will have a msgid of 600; one for the function getsecret which will
have a msgid of 501; and one for its reply which will have a msgid of 601. The msgid is used by
the server to identify which message it has received.

The filemach/std types.defs defines some frequently used types. In this case the relevant
defintions are:

type int = MSG_TYPE_INTEGER_32;
type port_t = MSG_TYPE_PORT;
type boolean_t = MSG_TYPE_INTEGER_32;

The MIG defs file is processed bycpp before it is processed by MIG. Thus cpp strips off the
comments and handles the#include directives.

The syntax of the type declaration is to define the C type name first and then say that it is equal
to an IPC type name. The set of defined IPC types can be found in the MIG document or in the
file <mach/message.h> . For string and unstructured types the number ofbits in the type must
follow the name.

The import statement gives the name of a header file to be included in the generated code. This
header file must define any non-standard C types used by the interface. In this case it consists of the
following definition:

typedef char string25[25];

The routinedeclarations specify the name of the routineandthe order and types of the arguments.
The first argument is the port to which the message will be sent. The specificationin , out or
inout may precede the name of any other parameter and specify in what direction the argument is
to be passed. Any unspecified parameter, except the first one,is assumed to be anin parameter.

MIG generates three C files from the definition file. The filerandom.h defines the functions
to be called by a client of the server and should be#included into code that calls those functions.
randomUser.c is the code to create and send the messages to the client and then wait to receive
the reply message. When the reply message is received, anyout or inout parameters are taken
out of the message and returned as function parameters to thecaller. This file should be linked with
the user of the server.randomServer.c is the server side of the message interface. It unpacks
the request message, calls a function provided by the serverimplementor to execute the request
and then creates the reply message. The server implementor must write a main program and the
functions that execute the requests. There is a library routine,mig server , that provides a simple
version of a send and receive loop. In the example, the user writes the code which sets up the
ports and then callsmig server to do the rest. If a server needs more control over possible error
conditions, it can provide its own receive and send loop.

3.2 Server main program

In this example the server waits on a portset containing theServerPort andnotify_port() .
The thread reply port is not included in this set. When ports are created they are not a member of
any port set by default. Thus they must be added explicitly toport set .

8 3 MIG - THE MACH INTERFACE GENERATOR

3 MIG - The Mach Interface Generator

Much multi-task communication takes the form of one or more tasks requesting services or responses
from another task. This in fact is a description of a Mach server process. Since the creation and
reading of messages requires a lot of repetitious code, it should come as no great surpise that
Mach provides a compiler to produce a remote procedure call interface to IPC message passing.
A complete description of MIG including an example of its usecan be found inMIG - the Mach
Interface Generator by Draves, Jones and Thompson.

A brief example of the use of MIG follows. The problem that is to be solved is to write a simple
server that will return either a random integer or a random string. The user interface to this server is
to consist of two calls:

ret_code = get_random(server_port,num)
port_t server_port;
int num;

ret_code = get_secret(server_port,password)
port_t server_port;
string25 password;

3.1 MIG Definition file

The subsystem implementor must first write a MIG definition file to specify the details of the
procdure arguments and the messages to be used. MIG understands different kinds of routines and
many obscure options in the way messages are to be formatted,sent and received. But for this
simple case it is enough to define the name of the server, the types of the arguments that are being
used, and the routines that are desired. The following MIG definition file will suffice to do this:

subsystem random 500;

#include <mach/std_types.defs>

type string25 = (MSG_TYPE_STRING_C,8*25);

import "random_types.h";

routine get_random(
requestport server_port : port_t;
out num : int);

routine get_secret(
requestport server_port : port_t;
out password : string25);

The first line of the definition file states that the name of the subsytem is to berandom and
the messages that are created will start with the message id of 500. This interface will send four

2.12 Example V, masterslave.c 7

while (count != 0)
condition_wait(done, lock);

mutex_unlock(lock);
printf("All %d slaves have finished.\n", nslaves);
cthread_exit(0);

}

main()
{

init();
master((int) random() % 16); /* create up to 15 slaves */

}

6 2 C THREADS: MASTER THREAD SPAWNING CONCURRENT SLAVES

{
cthread_init();
count = 0;
lock = mutex_alloc();
done = condition_alloc();
srandom(time((int *) 0)); /* initialize random number gene rator */

}

/*
* Each slave just counts up to its argument, yielding the proc essor on
* each iteration. When it is finished, it decrements the glob al count
* and signals that it is done.
*/

slave(n)
int n;

{
int i;

for (i = 0; i < n; i += 1)
cthread_yield();

mutex_lock(lock);
count -= 1;
printf("Slave finished %d cycles.\n", n);
condition_signal(done);
mutex_unlock(lock);

}

/*
* The master spawns a given number of slaves and then waits for them all to
* finish.
*/

master(nslaves)
int nslaves;

{
int i;

for (i = 1; i <= nslaves; i += 1) {
mutex_lock(lock);
/*

* Fork a slave and detach it,
* since the master never joins it individually.
*/

count += 1;
cthread_detach(cthread_fork(slave, random() % 1000));
mutex_unlock(lock);

}
mutex_lock(lock);

2.10 Yielding the Processor to other Threads 5

2.10 Yielding the Processor to other Threads

This procedure is a hint to the scheduler, suggesting that this would be a convenient point to schedule
another thread to run on the current processor. Calls tocthread_yield are unnecessary in an
implementation with preemptive scheduling, but may be required to avoid starvation in a coroutine
based implementation.

int i, n;

/* n is set previously */

for (i = 0; i < n; i += 1)
cthread_yield();

2.11 Exiting a C Thread

cthread_exit causes termination of the calling thread. An implicitcthread_exit occurs
when the top level function of a thread returns. The result parameter will be passed to the thread
that joins the caller, or discarded if the caller is detached.

cthread_exit(0);

2.12 Example V, masterslave.c

/*
* This program is an example of a master thread spawning a numb er of
* concurrent slaves. The master thread waits until all of the slaves have
* finished to exit. Once created a slave process doesn’t do mu ch in this
* simple example except loop. A count variable is used by the m aster and
* slave processes to keep track of the current number of slave s executing.
* A mutex is associated with this count variable, and a condit ion variable
* with the mutex. This program is a simple demonstration of th e use of
* mutex and condition variables.
*/

#include <stdio.h>
#include <cthreads.h>

int count; /* number of slaves active */
mutex_t lock; /* mutual exclusion for count */
condition_t done; /* signalled each time a slave finishes */

extern long random();

init()

4 2 C THREADS: MASTER THREAD SPAWNING CONCURRENT SLAVES

mutex_t lock;
condition_t done;

mutex_lock(lock);
...
while (count != 0)

condition_wait(done, lock);
...
mutex_unlock(lock);

2.7 Signalling a Condition

condition_signal is called when one thread wishes to indicate that the condition represented
by the condition variable may now be true. If any threads are waiting viacondition_wait , at
least one of them will be awakened. If no threads are waiting,nothing happens.

condition_t done; /* signalled each time a slave finishes */
condition_signal(done);

2.8 Forking a C Thread

This function takes two parameters: a function for the new thread to execute, and a parameter to
this function. cthread_fork creates a new thread of control in which the specified function
is executed concurrently with the caller’s thread. This is the sole means of creating new threads.
A parameter that is larger than a pointer must be passed by reference. Similarly, multiple
parameters must be simulated by passing a pointer to a structure containing several components.
The call tocthread_fork returns a thread identifier that can be passed tocthread_join or
cthread_detach . Every thread must be either joined or detached exactly once.

/* slave is a function that expects an integer parameter */
/* see Detaching a C Thread for description of chtread_detac h */

cthread_detach(cthread_fork(slave, random() % 1000));

2.9 Detaching a C Thread

cthread_detach is used to indicate that a thread will never be joined. A thread may be detached
at any time after it is forked, as long as no other attempt at joining or detaching has been made. In
the example below, at the time the thread was forked, it was known that it would never be joined
and therefore it was detached.

/* slave is a function that expects an integer parameter */
/* see Forking a C Thread for description of chtread_fork */

cthread_detach(cthread_fork(slave, random() % 1000));

2.2 Allocation of a Mutex Variable 3

cthread_init();

2.2 Allocation of a Mutex Variable

mutex_alloc provides dynamic allocation of a mutex variable.

mutex_t lock; /* mutual exclusion for count */
lock = mutex_alloc();

2.3 Locking a Mutex Variable

mutex_lock attempts to lock the given mutex variable. If the mutex is already locked this call
blocks until the mutex is unlocked. If several threads attempt to lock the same mutex concurrently,
one will succeed, and the others will block until the mutex isunlocked. A deadlock will result from
a thread attempting to lock a mutex it has already locked.

mutex_t lock; /* mutual exclusion for count */
mutex_lock(lock);

2.4 Unlocking a Mutex Variable

mutex_unlock unlocks the mutex giving other threads a chance to lock it.

mutex_t lock; /* mutual exclusion for count */
mutex_unlock(lock);

2.5 Allocation of a Condition Variable

condition_alloc provides dynamic allocation of a condition variable.

condition_t done; /* signalled each time a slave finishes */
done = condition_alloc();

2.6 Waiting on a Condition

This function unlocks the mutex it takes as a parameter, suspending the calling thread until another
thread callscondition_signal on the same condition variable. The mutex is then locked and
the thread resumes. There is no guarantee that the conditionwill be true when the thread resumes,
thereforecondition_wait should always be used in the form below.

2 2 C THREADS: MASTER THREAD SPAWNING CONCURRENT SLAVES

time the master thread is signalled by acondition_signal call, it tests thecount for a value
of zero.

cthread_init is the first function called in the example program. This function initializes
the C threads implementation and must be called before any ofthe other cthread functions. If a
program is loaded with the Mach version ofcrt0 , this call is no longer necessary as it has already
been done bycrt0 (or gcrt0 or moncrt0). Thecount which represents the current number of
slaves is set to zero.mutex_alloc is called to allocate a mutex assigned to the variablelock .
condition_alloc is used to allocate a condition object assigned to the variable done . The last
initialization call is to the random number generator.

After initialization, the master thread loops creating thenumber of slave processes desired
and incrementingcount with each creation. mutex_lock is called at the beginning of the
loop. This call results in either locking the variablelock , or blocking until lock is unlocked
by some other thread. The return ofmutex_lock signals that the master can now change the
variablecount knowing that no other thread will be accessing this variableuntil the master unlocks
the mutex. count is incremented, and a slave is created. To create a slave, themaster calls
cthread_fork followed by cthread_detach . cthread_fork creates a new thread of
control which executes concurrently with the master.cthread_fork takes as a parameter a
function which the new thread is to execute. Since the masterdoes not intend to later rendez-vous
with the slave,cthread_detach is called. Once the master has incremented thecount and
created a slave,mutex_unlock is called to give the other threads a chance to lock the mutex and
consequently access thecount variable.

Having created the desired number of slaves, the master thread stops looping and waits for
all of the slave threads to finish execution. The variablecount signals the number of slave
processes still executing.mutex_lock is called so the master may safely access thecount
variable. Now the master thread must wait on the conditiondone by callingcondition_wait .
condition_wait unlocks the mutex and suspends the master, letting other threads change the
count variable. Whencondition_wait returns, the mutex is automatically locked. The master
resumes and checks thecount to see if it is in fact equal to zero. Since there is no gaurantee that the
condition will be true when the master is resumed, thecondition_wait is called in a loop ending
when thecount is zero. Before exiting the master callsmutex_unlock . cthread_exit is
called to terminate the master thread.

When the new slave was created viacthread_fork , it was given a function to execute and
one parameter to pass to that function. In our example, the slave function is given a random number
as a parameter. The slave loops this number of times calling afunctioncthread_yield , which
yields the processor to other threads. When finished looping, the thread must decrement thecount
variable because it is about to exit. In order to safely access thecount , mutex_lock is called.
Once the mutexlock is locked, thecount is decremented. Nextcondition_signal is called
to indicate that the condition represented by the conditionvariabledone may be true. The slave
callsmutex_unlock and exits.

2.1 Initializing the C Threads Package

This initialization function must be called before any other C Thread functions. This call is now
called automatically bycrt0 , but multiple calls to this routine are harmless.

1

1 Introduction

This document is one of two tutorials designed to teach basicMach programming skills. This manual
demonstrates the use of the C Threads library primitives in writing a multi-threaded program and
the use of the Mach Interface Generator (MIG) to generate remote procedure calls for interprocess
communication. It also includes a final section on where at CMU to find the include files and
libraries that comprise the Mach environment as well as procedures for obtaining these files and
setting up the correct user environment.

The reader should be familiar with the basic Mach abstractions of ports, messages, virtual
memory, tasks and threads before reading this document. Theintroduction to the other tutorial
document,A Programmer’s Guide to the Mach System Calls, explains these concepts.

2 C Threads: Master Thread Spawning Concurrent Slaves

The C threads package is a runtime library that provides a C language interface to a number of low
level, Mach primitives for manipulating threads of control. The constructs provided are: forking
and joining of threads, protection of critical regions withmutex variables, and synchronization by
means of condition variables. For a complete description ofthe C threads package see theC Threads
manual by Cooper and Draves. It is highly recommended that a programmer doing multi-threaded
applications use the C threads routines rather than the Machsystem calls. The C threads package is
designed to provide a more natural set of primitives for multi-threaded applications and is carefully
optimized to produce the most efficient use of the system calls.

The program at the end of this section is an example of how to structure a program with a single
master thread which spawns a number of concurrent slaves. The master thread waits until all the
slaves have finished to exit. A random number generator is used to determine the ‘life’ of the slave
processes. Once created the slave processes in this examplesimply loop calling a cthread function
making the processor available to other threads. The randomnumber generator determines the
length of this loop. In a more useful version of this program,each slave process would do something
while looping.

In order for the master thread to determine when all of the slaves have exited, acount variable
is needed to keep track of the number of current threads. Thiscount is incremented by the master
with each creation of a slave. Each slave decrements thecount when it exits. Because two or
more threads may be trying to access thecount at the same time, a mutex calledlock is used to
provide exclusive access tocount . If any thread wants to access thecount variable, it should first
lock the mutex. Consequently when the mutex is locked, any thread wanting thecount variable
must wait until the mutex is unlocked.

Condition variables are used to provide synchronization between threads, e.g one thread wishes
to wait until another thread has finished doing something. Every condition variable is associated
with a mutex. The condition variable represents a boolean state of the shared data that the mutex
protects. In this example after all of the slave threads havebeen created, the master thread waits until
thecount variable is equal to zero. A condition variabledone is used to represent the possibility
that thecount may equal zero. Just before a slave thread exits, it signals the conditiondone since
it may be the last slave executing. The master thread loops waiting on the conditiondone . Each

A Programmer’s Guide to the Mach User Environment

Linda R. Walmer
Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Version of: 7 November 1989

Abstract

This document is one of two tutorials designed to teach basicMach programming
skills. This manual demonstrates the use of the C Threads library primitives in writing
a multi-threaded program and the use of the Mach Interface Generator (MIG) to generate
remote procedure calls for interprocess communication.

The reader should be familiar with the basic Mach abstractions of ports, messages,
virtual memory, tasks and threads. The introduction to the companion document to this
one,A Programmer’s Guide to the Mach System Calls, explains these concepts.

Comments, suggestions and additions to this document are welcome.

The material developed under this subcontract was or is sponsored by the Defense Advanced Research Projects
Agency (DoD), ARPA order 4864, monitored by the Space and Naval Warfare Systems Command under Contract Number
N00039-87-C-0251.

The views and conclusions contained in this document are those of the authors and should not be interpreted as

representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or Department

of the Navy, Space and Naval Warfare Systems Command, or Carnegie-Mellon University, unless designated by other

documentation.

i

Contents

1 Introduction 1

2 C Threads: Master Thread Spawning Concurrent Slaves 1
2.1 Initializing the C Threads Package: 2
2.2 Allocation of a Mutex Variable: 3
2.3 Locking a Mutex Variable: 3
2.4 Unlocking a Mutex Variable: 3
2.5 Allocation of a Condition Variable: 3
2.6 Waiting on a Condition: 4
2.7 Signalling a Condition: 4
2.8 Forking a C Thread: 4
2.9 Detaching a C Thread: 5
2.10 Yielding the Processor to other Threads: 5
2.11 Exiting a C Thread: 5
2.12 Example V, masterslave.c: 6

3 MIG - The Mach Interface Generator 9
3.1 MIG Definition file : 9
3.2 Server main program: 10
3.3 Server message dispatch code: 14
3.4 Server procedures: 16
3.5 User Side: 17

4 General Mach Information 18
4.1 Structure of the Mach Tree: 18
4.2 Where to Find Examples and Manuals: 18
4.3 Setting Up Search Paths: 19
4.4 Mach Libraries: 19
4.5 Mach Include Files: 19
4.6 Mach Information/Questions: 19

