28 4 MACH ENVIRONMENT

4 Mach Environment

See the section “General Mach Information” at the end ofAlReogrammers's Guide to the Mach
User Environment to find the current include file names and paths needed to ¢equie using the
Mach system calls.

3.3 Inheritance of Shared versus Copied Memory 27

nmenf 0] = CHI LD _CHANGED;

printf("\n");

printf("CH LD: lock = %l\n", *lock);

printf("CH LD: changing lock to %\n", CH LD WAT);

printf("\n");

*lock = CHILD WAI T;

while (*lock == CHILD WAIT);
/* wait for parent to change |ock */

if ((ret = vmdeallocate(task_self(), |ock,
sizeof (int), TRUE)) != KERN_SUCCESS) {

mach_error("vmdeal | ocate returned value of ", ret);
printf("Exiting.\n");
exit();

if ((ret = vmdeallocate(task_self(), mem

MAXDATA * sizeof (char), TRUE)) != KERN_SUCCESS) {
mach_error("vmdeal | ocate returned value of ", ret);
printf("Exiting.\n");

exit();

}
printf("CH LD: Finished.\n");

26

3 USE OF VIRTUAL MEMORY

TRUE)) != KERN SUCCESS) {

mach_error("vm.al l ocate returned value of ", ret);
printf("Exiting with error.\n");
exit();

if ((ret = vminherit(task_self(), lock, sizeof(int),

}

*|ock =

VM | NHERI T_SHARE)) != KERN_SUCCESS) {
mach_error("vm.inherit returned value of ", ret);
printf("Exiting with error.\n");

exit();

NO_ONE_WAI T;

if ((ret = vmallocate(task_self(), &mem sizeof(int) * MAXDATA,

TRUE)) != KERN SUCCESS) {

mach_error("vm.al l ocate returned value of ", ret);
printf("Exiting with error.\n");
exit();
}
nenf 0] = COPY_ON_WRI TE;
printf("value of lock before fork: %\ n", *lock);
pid = fork();
if (pid) {
printf("PARENT: copied memory = %\ n",
men{ 0]) ;
printf("PARENT: changing to %\ n", PARENT_CHANGCED);
nmenf 0] = PARENT_CHANGED;
printf("\n");
printf("PARENT: |ock = %l\n", *|ock);
printf("PARENT: changing lock to %l\n", PARENT_WAIT);
printf("\n");
*| ock = PARENT_WAIT;
while (*lock == PARENT_WAIT);
/* wait for child to change the value */
/* beware of optimzing conpilers */
printf("PARENT: copied menmory = %l\n",
men{ 0]) ;
printf("PARENT: |ock = %l\n", *|ock);
printf("PARENT: Finished.\n");
*| ock = PARENT_WAIT;
exit();
}
while (*lock !'= PARENT_WAIT);
/* wait for parent to change |ock */
/* beware of optimzing conpilers */
printf("CH LD: copied nenory = %\n", neni0]);

printf(

"CH LD: changing to %l\n", CH LD CHANGED);

3.3 Inheritance of Shared versus Copied Memory 25

3.3.2 Programming Examplelll, cowtest.c

* This program denonstrates the use of vm.inherit and copy on wite

* menory. A child and parent process will share nenory, polling this

* menory to see whos turn it is to proceed. First sone nenory is allocated,
* and vm.inherit is called on this menory, the variable 'lock’. Next nore
* menory is allocated for the copy on wite test. A fork is executed, and
* The parent then stores new data in the copy on wite nmenory

* previously allocated, and sets the shared variable signaling to the

* child that he is now waiting. The child, polling the shared variabl e,

* realizes it is his turn. The child prints the value of the variable

* Jock and a value of the copy on wite nenory as the child sees it.

* You will notice that the value of the lock is what the parent

* set it to be, but the value of the copy on wite nmenory is the original
* value and not what the parent changed it to be.

* The parent then awakes and prints out the two values once nore.

* The program then ends with the parent signaling the child via the

* shared variabl e | ock.
**/

#i ncl ude <mach. h>

#i ncl ude <stdio. h>

#define NOONE_WAIT O
#define PARENT_WAIT 1
#define CH LD WAIT 2
#define COPY_ON WRI TE O
#defi ne PARENT_CHANGED 1
#define CH LD_CHANGED 2

#defi ne MAXDATA 100

mai n(argc, argv)

int argc;
char *argv[];

{
int pi d;
int *mem
int *| ock;
kern_return_t ret;

if (argc > 1) {
printf("cowtest takes no switches. ");
printf("This programis an exanple of copy on wite \n");
printf("menory and of the use of vm.inherit.\n");
exit();

if ((ret = vmallocate(task_self(), & ock, sizeof(int),

24 3 USE OF VIRTUAL MEMORY

Through execution of this program, the user will notice tinat changes to the copied memory
are not seen from the child to the parent; that is when thenpatenges the value, the child does
not see this change. On the other hand, any change in thedsharaory is noticed by both tasks.

The copied memory in this example is actually copy-on-writamory. That is, the memory is
never really copied until one of the tasks desires to writdhis region.

3.3.1 Virtual Memory, Inheritance

vm_ i nherit allows a task to specify how the various regions of its memtybe passed to any
child tasks that it forks. By default all memory is passedhe thild as a logical copy (actually
copy-on-write).vm_ i nheri t allows a task to specify that certain page-regions of its orgrare
to be shared with any children it subsequently forks, or atdmbe passed at all to that child.

The inheritance parameter may be set\vid | NHERI T_SHARE, VM _| NHERI T_COPY or
VM_| NHERI T_NONE. The si ze parameter is measured in bytes but only integral numbers of
pages are dealt with. The pages are selected by rounding tth@vatart address to a page boundary
and then rounding up the end address to a page boundary.

int *| ock;
kern_return_t ret;

if ((ret = vminherit(task_self(), lock, sizeof(int),

VM | NHERI T_SHARE)) ! = KERN_SUCCESS) {
mach_error("vm.nherit returned value of ", ret);
exit(1);

3.2 Virtual Memory Copying 23

3.2 Virtual Memory Copying

Thevm _copy primitive is another alternative tom r ead. In either case the task port used as the
first parameter may specify the caller’'s address space botisme other task. If another task’s
port is usedsm r ead copies memory from that task’s address space to the caflddeess space.
On the other handym _copy moves the memory from one part of the designated task’s asidre
space to another section of that address space. The fa¢hésat primitives do not actually copy
the data regions, but only map the regions as copy-on-wageg, means that they actually have
some use even in copying data in the caller’'s own addres&spha task wants multiple virtual
memory references to the same data, it can use either of phiesiéives to set this up. No data is
actually copied until one of the virtual memory areas is rfiedi

The destination region must be allocated prior to the callntocopy.

int *datal, *data2;
kern_return_t rtn;

/* note that data2 was previously allocated. */

if ((rtn = vmcopy(task_self(), datal, vmpage_size, data2)) !=
KERN_SUCCESS) {
mach_error("vmcopy returned value of ", rtn);
exit(1);

}

An complete example of a program usivigy_ copy can be found inthe Mach example directory
asvm copy. C.

3.3 Inheritance of Shared versus Copied Memory

This final virtual memory example illustrates the usevof i nheri t, and the difference between
copied and shared memory. The problem posed is to have twamewgions, one inherited and
shared by a child task and one region simply copied by the UNiKcall. To show the difference
between the two acquisition methods, the parent and childakie turns printing out and changing
the values of the two regions.

The first step towards a solution is to allocate and fill witltadavo regions of memory. The
address of the memory that is to be shared by the child tasksisel tovm i nheri t, using the
VM _INHERIT_SHARED flag. The shared memory is used in this program as attooégulate
whether the child or parent process is to proceed. Afterifigrkhe child will wait while the parent
prints out the value of the shared memory and the value ofdped memory. After the parent is
finished, he changes the lock causing himself to wait andatilgmthe child to continue. The child
prints the contents of the two regions then changes the Indkvaits. The lock change signals
the parent to once again print the memory values. The patentges the lock and exits. The
child notices the lock change, deallocates the two memagipns, and exits. Be aware that code
which loops on a lock that some other task is going to modifgoimetimes deleted by optimizing
compilers. Either the variable should be tagged as "velitif your compiler understands that
construct or optimizing may need to be turned off.

22

3 USE OF VIRTUAL MEMORY

printf("vnread: Exiting.\n");
exit();

printf("Successful vmread.\n");

if (vmpage_size != data_cnt) {
printf("vnread: Nunber of bytes read not equal to nunber");
printf("available and requested. \n");

}

mn = (vmpage_size < data_cnt) ? vmpage_size : data_cnt;

for (i =0; (i <mn); i++) {
if (datall[i] != data2[i]) {
printf("vnread: Data not read correctly.\n");
printf("vnread: Exiting.\n");
exit();
}

printf("Checked data successfully.\n");

if ((rtn = vmdeallocate(task_self(), datal,
vm page_si ze)) != KERN_SUCCESS) {

mach_error("vmdeal | ocate returned value of ", rtn);
printf("vnread: Exiting.\n");
exit();

}

if ((rtn = vmdeall ocate(task_self(), data2,
data_cnt)) != KERN_SUCCESS) {

mach_error("vmdeal | ocate returned value of ", rtn);
printf("vnread: Exiting.\n");
exit();

3.1 Allocation, Deallocation, and Reading 21

3.1.4 Programming Examplell, vm_read.c

This programis a test of vmallocate, vmread and vm deal |l ocate.

First sonme menory is allocated, and filled with data. vmread is

then called, with reading starting at the previously allocated chunk.
The contents of the two pieces of menory, one retreived by vmallocate,
one by vmread is conpared. vmdeallocate is then used to rid of the
two chunks of nenory.

***/

#i ncl ude <mach. h>
#i ncl ude <stdio. h>

mai n(argc, argv)

int argc;

char *argv[];

char *datal, *tenp;
char *dat a2;

int data_cnt, i, mn;
kern_return_t rtn;

if (argc > 1) {

printf("vmread takes no switches. ");
printf("This programis an exanple vmread\n");
exit();

}

if ((rtn = vmallocate(task_self(), &datal, vm page_size,
TRUE)) != KERN_SUCCESS) ({

mach_error("vm.al l ocate returned value of ", rtn);
printf("vnread: Exiting.\n");
exit();
}
tenp = datal;
for (i =0; (i < vmpage_size); i++)
temp[i] =1i;

printf("Filled space allocated with sone data.\n");
printf("Doing vmread....\n");
if ((rtn = vmread(task_self(), datal, vm page_size, &data2,
&data_cnt)) != KERN_SUCCESS) ({
mach_error("vmread returned value of ", rtn);

and

20 3 USE OF VIRTUAL MEMORY

char *dat al;
kern_return_t rtn;

if ((rtn = vmdeallocate(task_self(), datal,
vm page_si ze)) != KERN_SUCCESS) {

mach_error("vmdeal | ocate returned value of ", rtn);
printf("vnread: Exiting.\verb+\ +n");
exit(1);

3.1.3 Virtual Memory Reading

vm r ead makes it possible for one task to read the virtual memory otlzar. In the example
below, a task is reading its own memory. The first parametentia ead is the task whose address
space is to be read. Note the paramatitr ess, which is the first address to be read, must be on a
page boundary. Size is in bytes and must be an integral nushpages. The dataread is returned in
a newly allocated region. The size in bytes of this new reggaiso returnedvm deal | ocat e
should be used on the region returnedvimy r ead when it is no longer needed.

char *datal, *data2;
int data_cnt;
kern_return_t rtn;

if ((rtn = vmread(task_self(), datal, vmpage_size, &data2,
&data_cnt)) !'= KERN_SUCCESS) ({

mach_error("vmread returned value of ", rtn);
printf("vnread: Exiting.\verb+\ +n");
exit(1);

19

3 Useof Virtual Memory

3.1 Allocation, Deallocation, and Reading

The program for this section will demonstrate al | ocat e,vm r ead, andvm deal | ocat e.
The purpose of this example is to chadk r ead to be sure the data was read correctly.

The first step in solving this problem is to get a chunk of memand fill it with data.
vm al | ocat e is used to get the virtual memory. Data is then stored in i éxt step is to call
vm r ead. vm r ead allows a task to read another task’s virtual memory. Padtiegddress of
the previously allocated memory as a starting poimt, r ead is called. Note that our example is
a simplified use offm r ead since a task is reading its own memorym r ead returns a newly
allocated region containg the data read. Note that the paesusi ze, which is the number of
bytes to be read, must be an integral number of pagesr ead can be checked by comparing the
data received with the previously allocated chunk. If bgthces contain the same data) r ead
worked correctly. To clean up before ending this exampleggm, both allocated spaces must
be deallocated by callingm deal | ocat e. Note that the data returned byn r ead must be
deallocated.

3.1.1 Virtual Memory Allocation

vm al | ocat e allocates a region of virtual memory, placing itin the sfieditask’s address space.
The size parameter is the number of bytes to allocate whigbtiaded to an integeral number
of virtual pages. If last parameter TRUE the kernel allocates a region of memory at the next
convenient location and returns the virtual address asdbensl parameter. If the last parameter
is FALSE, the kernel allocates memory starting at the address spidiff the second parameter.
vm page_si ze is a global constant defined wieach. h. A page of newly allocated memory is
zero-filled when it is first touched.

char *dat al;
kern_return_t rtn;

if ((rtn = vmallocate(task_sel f(), &datal, vm page_size,
TRUE)) != KERN_SUCCESS) ({

mach_error("vm.all ocate returned value of ", rtn);
printf("vnread: Exiting.\verb+\ +n");
exit(1);

3.1.2 Virtual Memory Deallocation

vm deal | ocat e affects only the memory of task specified as the first paramdtais function
reliquished access to the memory specified in the parametddsess and size. Other tasks which
have access to this physical memory may continue to use ie tie size is expected in bytes and
is rounded up to give a page boundary. Neverwsedeal | ocat e on memory that has been
acquired by UNIXmal | oc.

18 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

if ((err = env_del _port(environnent_port, port_nane))
1= KERN_SUCCESS) {
mach_error (" PARENT: env_del port returned ", err);
exit(1);

if ((err = port_deallocate(task_self(), nmy_port))
I'= KERN_SUCCESS) {
mach_error (" PARENT: port_deal |l ocate returned ", err);
exit(1);
}
printf("PARENT: Finished successfully.\n");
}

else printf("Error fromfork.\n");

2.12 Programming Example |, ssmp_ipc.c

for (i = 0; i < MAXDATA; i++)
printf("% ", msg_rcv.inline_data[i])
printf("\n");
setup_si np_repl y(&rsg_xnt, &nsg_rcv);
if ((ret = meg_send(&sg_xnt, NMSG_OPTI ON_NONE,
0)) != SEND_SUCCESS) {
mach_error (" PARENT: nsg_send returned val ue of
exit(1);
}
printf("PARENT: Successful nsg_send.\n");

main (argc, argv)

int argc;
char **argv;

{
kern_return_t err;
port _t nmy_port;
env_namne_t port_nane;
int fret;

if (argc > 1) {
printf("no arguments to sinp_ipc\n");
exit(1);
}
/* create a port nane that both the child and parent wil
sprintf(port_nane, "ipc_test_ %", getpid());

/* create and register port for parent to receive on */

if ((my_port = Register(port_nane)) == PORT_NULL)
exit(1);

17

", ret);

I know */

/* fork returns O if child, and the child's IDto the parent. */

fret = fork();
if (fret == 0) { /* child process */
if ((my_port = LookFor(port_nane)) == PORT_NULL)
exit(1);
child_routine(ny_port);
printf("CH LD Finished successfully.\n");

else if (fret >0) { /* parent process */
parent _routi ne(nmy_port);

16 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

/* This routine is called to denonstrate the passing of a sinple nessage.

* Pl ease see program comment for order of events. */

void child_routine(ny_port)

port _t ny_port;
{
nsg_return_t ret;
int i;
struct sinp_msg_struct nsg_xnt, msg_rcv;
set up_si np_request (&sg_xnt, ny_port);
if ((ret = meg_rpc(&sg_xnt.h, MSG OPTI ON_NONE, sizeof(nmsg_xnt), O,
0)) != RPC_SUCCESS) ({
mach_error (" CH LD: msg_rpc returned val ue of
exit(1);
}
printf("CH LD: Successful nsg_rpc.\n");
}

voi d parent_routine(ny_port)

port _t ny_port;
{

nmsg_return_t ret;

i nt i

int X;

nsg_header _t nmsg_xnt;

struct sinp_nmsg_struct nsg_rcv;

nsg_rcv. h.nsg_l ocal _port = ny_port;
msg_rcv. h. meg_si ze = sizeof (msg_rcv);

if ((ret = msg_receive(&rsg_rcv.h, MG OPTION_NONE, 0))

RCV_SUCCESS) {

mach_error (" PARENT: nsg_receive returned val ue of

exit(1);
}
printf("PARENT: Successful nsg_receive.\n");
printf("PARENT: Data..");

ret);

2.12 Programming Example |, ssmp_ipc.c 15

* associated with the given nane.

*/
port _t LookFor (nane)
env_nane_t nane;
{
port _t resul t;
kern_return_t error;
if ((error = env_get_port (environnent_port, nane,
&result)) != KERN _SUCCESS) {
mach_error("CHI LD: env_get_port returned ",
error);
exit(1);
}
printf("CH LD: Successful env_get_port.\n");
return(result);
}

/* This routine is used by the parent to create a port, and to associate the
* port name with the port via the environment manager.

* port_allocate is used to allocate a port, and then env_set_port is called
* passing the nanme of the port, and the newy allocated port. */

port _t Regi ster(nane)

env_nane_t nane;
{

port _t resul t;

kern_return_t error;

if ((error = port_allocate(task_self(), &esult)) !'= KERN SUCCESS) ({
mach_error ("PARENT: port_allocate returned value of ", error);
exit(1);

if ((error = env_set_port(environnent_port, nane,
result)) !'= KERN_SUCCESS) {
mach_error (" PARENT: env_set _port returned value of ", error);
exit(1);

}

printf("PARENT: Successful env_set_port.\n");

return(result);

14

/*

*

*
*
*

2 MESSAGE COMMUNICATION BETWEEN PROCESSES

int i;

nsg_l ocal _port = thread_reply();
nsg_renote_port = ny_port;

neg_size = sizeof(struct sinmp_nsg_struct);
msg_id = 0x12345678;

nmsg_type = MSG_TYPE_NORVAL;

nsg_si npl e = TRUE;

msg_xnt - >h.
msg_xnt - >h.
msg_xnt - >h.
msg_xnt - >h.
msg_xnt - >h.
msg_xnt - >h.

msg_xnt - >t .
msg_xnt - >t .
msg_xnt - >t .
msg_xnt - >t .

MSG_TYPE_| NTEGER 32;

nmsg_t ype_nane =
= 32;

nsg_type_size
nsg_type_nunber = NMNAXDATA;
msg_type_inline = TRUE
msg_xnt->t. nsg_type_| ongf orm = FALSE;
nmsg_xnt->t. nsg_type_deal | ocate = FALSE;
for (i = 0; i < MNAXDATA; i ++)
msg_xnt->inline_data[i] =

(e

This procedure is used to set up the reply nmessage that the parent is
sending to the child. Note that the renote_port of the received nessage
desi gnates where the reply nessage will be sent. No data is sent in this
nmessage, so the size of the nmessage is sinply the size of the nmessage
header. */

void setup_sinp_reply(msg_xnt, nsg_rcv)

nsg_header _t
st ruct

nsg_xnt->nsg_renote_port =
msg_xnt - >msg_I| ocal _port =
0x12345678;

nmeg_xnt->nsg_id =
neg_xnt->nsQg_si ze =
nsg_xnt - >nsg_type =
nsg_xnt->nsg_si nmpl e

si np_nsg_struct

*meg_xnt ;
*meg_rcv;

nsg_rcv->h. nsg_renote_port;
PORT_NULL;

si zeof (nmsg_header _t);
MSG_TYPE_NORMAL ;
= TRUE;

/* This procedure is used by the child to get the commrunication port.

* The child got the nane as part
are not
* autility of the environnment

* Port rights, however,

of its inherited static variable space.
inherited across forks. env_get_port,
manager is called to return the port

2.12 Programming Example |, ssmp_ipc.c 13

212 Programming Examplel, smp_ipc.c

This programis an illustration of MACH nessage passing froma child

to the parent process and back. In this exanple, the child is passing
a sinple nessage where the data is stored in the nessage. The program
allocates a port to use for conmunication. The environment nanager

is used to register the port with a nane that both the parent

and child know. The program forks a child process which

then uses env_get _port to acquire the port needed for communication.

A nessage, containing the data the parent needs, is forned by the child
and sent with nsg_rpc to the parent. nsg_rpc does a send and a receive
using the sane nessage buffer. The parent does a receive on the

est abl i shed comuni cati on port receiving the nessage fromthe child.
Upon receiving the child s nessage, the parent constructs and sends

a confirmation or reply nessage back to the child indicating he received
the child s nessage and data. The call to nmsg_rpc by the child
receives the parent’s reply. The child then tells the environnent
nmanager the conmmunication port is no |onger needed, and calls

port _deal | ocat e.

**/

#i ncl ude <stdio. h>

#i ncl ude <mach. h>

#i ncl ude <mach_error. h>

#i ncl ude <mach/ nessage. h>

#i ncl ude <servers/env_ngr. h>

#defi ne MAXDATA 20

/*

sinpl e message structure */

struct sinp_nsg_struct {

/*

*

nsg_header _t h;
nsg_t ype_t t;
int i nl i ne_dat a| MAXDATA] ;

This routine is used to set up the nessage containing the data that
the child will send to the parent. Here the data is a sinple array of
integers. */

voi d setup_sinp_request (nmsg_xmt, my_port)

struct sinp_nsg_struct *nsg_xnt;
port _t nmy_port;

12

2 MESSAGE COMMUNICATION BETWEEN PROCESSES

nmsg_xnt.t.nsg_type_deal |l ocate = FALSE;

/* set

nsg_xnt.out_of _line_data to point to the data */

211 A Non-SmpleMessage 11

}s

struct sinp_nsg_struct nsg_xnt;

if ((ret = nsg_rpc(&rsg_xnt.h, MG OPTION_NONE, sizeof(nmsg_xnt), O,
0)) != RPC_SUCCESS) ({
mach_error("CH LD: nsg_rpc returned value of ", ret);
exit(1);

211 A Non-Simple Message

Messages areon-simpleif they contain ports or out-of-line data. The next examgievgs how to
construct a data containing out-of-line data. The most comreasons for sending data out-of-line
are that the data block is very large or is of variable sizeline data is copied by the sender into
the message structure and then often copied out of the neebyathe receiver. Out-of-line data,
however, is mapped by the kernel from the address space sktiter to the address space of the
receiver. No actual copying of data is done unless one ofwtloetasks subsequently modifies the
data. This is an example of copy-on-write data sharing.

The fields that change values from those in the simple messegaple arevsg_si npl e,
nsg_type_inline, and possiblyreg t ype deal | ocat e. See Section 2.6 for details on
nsg_renote_port andnsg_| ocal _port. An example program of non-simple message
passing can be found in the Mach examples directory. Thisnpkais not included in this
document, but can be found inthe fdel _i pc. c in the Mach examples directory.

struct ool _nsg_struct {

nsg_header _t h;

msg_type_t t;

int *out _of _|i ne_dat a;
b
struct ool _msg_struct msg_xnt ;
port _t comm port;
nmsg_xnt. h. nsg_l ocal _port = thread_reply();
nsg_xnt. h. nsg_renote_port = conmport;
nsg_xnt. h. nsg_si ze = sizeof (struct ool _nmsg_struct);
msg_xnt. h.msg_id = 0x12345678;
msg_xnt. h. msg_t ype = MSG_TYPE_NORMAL;
msg_xnt. h. msg_si npl e = FALSE;
meg_xnt.t.msg_type_name = MSG TYPE_| NTEGER 32;
nmsg_xnt.t.nsg_type_size = 32;
nmsg_xnt.t.nsg_type_number = MAXDATA,
msg_xnt.t.msg_type_inline = FALSE;

t

msg_xnt.t. msg_type_l ongf orm = FALSE;

10 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

nsg_rcv. h. nsg_|l ocal _port = conm port;

if ((ret = nsg_receive(&rsg_rcv.h, MSG OPTION_NONE, 0)) !=
RCV_SUCCESS) {
mach_error("CH LD msg_receive returned value of ", ret);
exit(1);

2.9 Settingup a Reply Message

At this point a message has already been received in thawtemsg_r cv. A reply message is to
be constructed and sent to the sendersy_r cv. Note that the reply messagesg_xnt is simply
ansg_header _t since no data is required. Tinsg_r enot e_port field, where to send the
message, is set to the remote port of the previously recenessage. The earliesg _recei ve
call set the remote port field ofsg_r cv to themsg_| ocal _port field specified by the sender.
See the comment in Section 2.6 about setting uprdge | ocal _port field.

struct sinmp_nsg_struct {

msg_header _t h;

msg_type_t t;

int i nl i ne_dat a[MAXDATA] ;
b
nsg_header _t nsg_xnt;

struct sinp_msg_struct *nsg_rcv;

nsg_xnt.h. nsg_renote_port = nsg_rcv->h. nsg_renote_port;
nmsg_xnt. h. msg_l ocal _port = PORT_NULL; /* no reply expected */
nmeg_xnt. h. msg_id = 0x12345678;

nsg_xnt. h. nsg_size = sizeof (msg_header_t);

neg_xnt. h. msg_t ype = NMSG_TYPE_NORMAL;

nsg_xnt. h. msg_si npl e = TRUE;

210 RPC, Send/Receive

nsg_rpc does ansg_send followed by ansg recei ve using the same message buffer.
nsg_si ze is, as usual, the size of the message that is being sent. ifti@#nameter tarsg_r pc
represents the maximum size of the message buffer for theagedo be received. In this case itis
the size of the message being sent because we know that theregsage is smaller.

nmsg_return_t ret;
struct sinp_nsg_struct {
nsg_header _t h;
nsg_t ype_t t;
int i nl i ne_dat a| MAXDATA] ;

2.7 Sending Messages 9

nmsg_xnt.t.nsg_type_number = MAXDATA,

neg_xnt.t.msg_type_inline = TRUE

neg_xnt.t. msg_t ype_| ongf orm = FALSE;

nsg_xnt.t.nmsg_type_deal | ocate = FALSE;

/* fill the msg_xnt.inline_data array with the desired data */

2.7 Sending Messages

The first parameter tosg_send is the address of asg_header _t . This message will be sent
to the port indicated by thesg_r enpt e_port field. Send rights torsg | ocal _port are
given to the receiver so that it may send a reply message.

msg_return_t ret;
struct sinmp_nsg_struct {

nsg_header _t h;

nsg_t ype_t t;

int i nl i ne_dat a| MAXDATA] ;
b

struct sinp_nsg_struct nsg_xnt;

if ((ret = nsg_send(&rsg_xnt.h, NMSG OPTI ON_NONE, 0)) != SEND_SUCCESS){
mach_error ("CH LD: nsg_send returned value of ", ret);
exit(1);

2.8 Receiving M essages

neg_receive is used to retrieve the next message from a port specified & th
nsg _renote_port field. The fieldnsg_si ze must be set to the size of the buffer for
the message and thus the maximum permitted size of the neebsaty received. If the message
that is queued on the port is too big, the receive will fail. &msg_r ecei ve returns, the
nsg_renote_port field will be set to the senderissg_| ocal _port field, or the port that
reply messages are expected on asdj_si ze will be set to the size of the message that was
received.

nsg_return_t ret;
struct sinmp_nsg_struct {

nsg_header _t h;

msg_type_t t;

int i nl i ne_dat a| MAXDATA] ;
b

struct sinp_nmsg_struct msg_rcv;

msg_rcv. h. nsg_size = sizeof (nmsg_rcv);

8 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

&omm port)) != KERN_SUCCESS) {
mach_error("env_get _port returned ", error);
exit(1);

2.6 Settingup a Simple M essage

A message consists of a fixed length header defined by thaéwsensg header _t followed by

a variable number of typed data items. A messaggniple if it does not contain any out-of-line
data (pointers) or any ports. Thesg renot e_port field must contain the port to which the
message is to be sent. In this case tésm port. Thensg_| ocal port field should be set
to the port or port set on which a reply message is expedtéd.ead _repl y() , which returns
the thread's reply port is used as the reply port. An examplesimg a port set for the reply port can
be found inA Programmer’s Guide to the Mach User Environment.

typedef struct {

unsi gned int 1 24,
nsg_sinple : 8;
unsi gned int nsg_si ze; /* in bytes */
int nsg_t ype; /* NORVMAL, EMERGENCY */
port _t nsg_l ocal _port;
port _t nmsg_renote_port;
int nsg_i d; /* user supplied id */

} nsg_header _t;

struct sinmp_nsg_struct {
nsg_header _t h;
neg_t ype_t t;
int i nl i ne_dat a| MAXDATA] ;
b
struct sinmp_nsg_struct nsg_xnt;
port _t comm port;

nsg_xmt = &rsg_xnt _dat a;

nsg_xnt.h. nsg_l ocal _port = thread_reply();

nmsg_xnt. h. msg_renote_port = comm port;

nsg_xnt. h. msg_size = sizeof (struct sinp_nsg_struct);
nmeg_xnt. h. msg_id = 0x12345678;

neg_xnt. h. msg_t ype = NMSG_TYPE_NORMAL;

nmsg_xnt. h. msg_si npl e = TRUE;

nmsg_xnt.t.nsg_t ype_nane
nsg_xnt.t.nmsg_type_size

VBG TYPE_I NTEGER 32;
32;

2.3 Port Deallocation 7

2.3 Port Deallocation

port deal | ocat e is used to relinquish a task’s access to a port. If the taslowagrship and
receive rights to the port, theort _deal | ocat e destroys the port and notifies (on their notify
ports) all the other tasks that have send rights to the port.

port _t ny_port;

kern_return_t error;

if ((error = port_deal locate(task_self(), ny_port)) != KERN SUCCESS) {
mach_error (" PARENT: port_deal | ocate returned value of ", error);
exit(1);

2.4 Environment Manager Server/Checkingin a Port

The Environment Manager is used as a repository for named.gorv_get port can be used to
associate a name with a port. Note that the port must havegregiously acquired either through a
message, or fromort _al | ocat e, or be one of the special system ports that are aquired on task
creation. Name has been set to a string.

env_nane_t nane;
port _t conm port;
kern_return_t error;

if ((error = env_set_port(environnment_port, nang,
comm port)) != KERN_SUCCESS) {
mach_error (" PARENT: env_set _port returned value of ", error);
exit(1);

25 Environment Manager Server/Looking up a Port

env_get port can be used to look up a port when the name of the port is knowin. |
env_set port has not been called to associate a port with the given name, get _port
will fail.

env_nane_t nane;
port _t conm port;
kern_return_t error;

/* Nane has been previously set to a desired string. */

if ((error = env_get_port(environment_port, nang,

6 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

Next the parent takes a message structure and fills in thehéaldls needed by
nNeg_receive: neg_renote_port, representing the port on which the message is to be
received, andrsg_si ze, the maximum size of the expected message. With this message
structure, the parent calsg_r ecei ve. nsg_r ecei ve returns the message queued on the port
designated by thesg_r enot e_port field. Remember that the child’'s message contained a port
to send a reply message to, timieg | ocal _port field. Upon return frommsg_r ecei ve, the
nsg_renote_port fieldis set tothe child'ssg | ocal _port field, the expected reply port.

In our example, the parent is going to send a message baok ¢billd indicating that it received
the message containing the data. This reply message contantata itself; it is just a confirmation.
The parent sets thesg_r enot e_port field of the reply message to tmsg _r enot e_port
field of the previously received messagesg_send is now called to send the reply message to the
portindicated by thesg _renote_port field.

The earlier call ofrsg_r pc by the child will now receive the parent’s reply message. Our
example is over except for cleaning ignv_del _port is called to let the Environment Manager
know the name/port association is no longer needeak.t _deal | ocat e is then called by the
parent which owns the communication port to destroy it.

Detailed discussion of the various calls used by the exampdegiven next and the complete
text of the program is given in Section 2.12.

2.1 Mach Error Printing

nmach_error is an error routine that accepts a string and an error valhe.sfring is then printed
along with an error string associated with the value.

kern_return__t error;
nmach_error (" PARENT: port_allocate returned value of", error);

2.2 Port Allocation

port _al | ocat e is used to create a port. The firstargumerppoo t _al | ocat e is the task the
port is to belong to, in this case the process itselfask_sel f ().

port _t resul t;
kern_return_t error;

if ((error = port_allocate(task_self(), &result)) != KERN SUCCESS) ({
nmach_error (" PARENT: port_allocate returned value of ", error);
exit(1);

2 Message Communication Between Processes

The first sample program shows how to pass messages betwetasts. This is a good illustration
of the following fundamental Mach features: allocationalitecation, and use of ports; use of the
Environment Manager; setting up message structures; amchoaication between two processes
via messages on ports. In this example the parent task willdcchild task, which will send the
parent a message containing data. The parent will thenyrtbgfchild that he received the data by
sending a reply message.

At this point, the reader should be aware that most prograsidenot code IPC at this level of
detail, but instead use the Mach Interface Generator (MdGroduce the message handling code.
The use of MIG is explained in therogrammers's Guide to the Mach User Environment. Users
who are new the the probably want to read that document baftempting to write code following
these examples.

This example uses a Mach version of the UNIX fork utility t@ate a child task. The UNIX
part of the fork creates a complete copy of the parent’'s a3ddspace and prepares the child to
begin executing immediately after the fork call. The Macint jwd the fork creates two ports for
the child task: its task kernel port, defined bgsk _sel f () ; and a notification port, defined by
task _notify(). The task port is the port that represents that task in calthe kernel. The
notify port is the port on which the task may receive speciassages from the kernel. The child
task also inherits an exception port, a bootstrap port amteguorts for system servers such as the
Environment Manager and the Netmsgserver. Access to ufised@orts is not inherited through
forking. The thread that is created has a thread kernel pderenced by hr ead_sel f (), and
a thread reply port, referenced biar ead_r epl y() created for it. The thread kernel port is the
port that represents the thread in kernel call. The threalgf port is a port on which the thread can
receive any initialization messages from its parent.

Message passing between the parent and child cannot tates yohéil a port is known by both
processes. Before forking, a string is constructed to bé ase¢he name of the communication port
and a port is allocated using thert _al | ocat e call. Then the Environment Manager function
env_set _port is called to associate the name with the port. This name idaéa to both
processes after forking since it is a static variable. Atterfork the child can acquire send rights to
the port usingenv_get _port.

Now that both tasks have access to the communication porgssage is constructed by the
child. This message contains a fixed sized message headex wadable sized data portion.
When constructing the message, the child setstée r enpt e_port field in the header to the
communication port established earlier. This field dedigmhe port to which the message is to be
sent. Another header field that the child must be sure to speply isnsg_| ocal _port. Thisis
the port on which the child will wait for a reply message. listexample, the child will receive the
reply message on his thread reply port. The task that rex¢ieemessage constructed by the child
automatically receives send rights to teg_| ocal _port . Since the child task wishes to send
a message and then immediately receive a reply messagesitaig_r pc instead ofrsg_send
andnsg_recei ve. nmsg_r pc does a send followed by a receive using the same message buffe
for both calls.

4 1 INTRODUCTION

1.25 Standard Mach Servers

There are a couple of standard servers that support use df 8gle communications. One is the
NetMsgServer. It passes Mach IPC messages between machireso provides network-wide
port registration and lookup functions. The names of thedls arenet name_check_i n and
net nane_| ook _up. The man sectionet nane. 3 documents them. The other general purpose
Mach server is the Environment Manager. It can register okdp ports or named strings but
does not communicate with other Environment Managers. Timetions that it provides are
documented in the manu@he Mach Environment Manager or in the man sectionsnv_conn. 3,
env_list. 3,andenv_port. 3. Ingeneral, one decides to register a port with the NetMsgBe
if it is to be known by tasks on arbitrary remote machines imitthe local network. Ports are
registered with the Environment Manager if they are to belusdy by tasks which share access
to the same Environment Manager. Often such tasks are pahtecfame creation tree or are
performing a computation on a single node.

The examples in this document demonstrate the creatiorské tand threads, message passing
between tasks, shared memory communication between tagkbhr@ads, and the use of the virtual
memory primitives.

1.2 Basic Mach Concepts 3

from multiple clients may find one request blocked, but be=dblcontinue working on another
request. Creating or destroying a thread is also a much lgmmnsive operation than creating or
destroying a task.

1.2.3 Communications

There are two basic ways to communicate between tasks oebetthreads within a task: shared
memory and message passing (IPC). The most obvious and hpyotvest efficient form of
communication between two threads in the same task is thrslugred memory. The most common
form of communication between tasks is through messagéengasslowever, threads in the same
task may send messages to each other as long as the prograassful about which threads
are waiting for messages on which ports. Also, it is possibtea task to share memory with
tasks that have a common ancestor. Since these tasks wikhipisobe on the same machine this
sharing can be efficient. Unrelated tasks can also share rgelng that style of memory sharing
is made potentially more complex when two unrelated tasksnat located on the same node.
Memory sharing between unrelated tasks is not coveredsnuakborial. When two threads/tasks are
using the same memory, locking is often needed. Unfortiydtardware mechanisms for locking
memory locations vary from one machine to another. The Matir€ads library package provides
machine-independent locking primitives. Tasks that dos& the C threads library must provide
their own locking protocols.

124 Virtual Memory Primitivesversus Malloc

The Mach kernel provides a set of primitives to allow a progrer to manipulate the virtual
address space of a task. The two most fundamental onegmam@ | ocat e to get new virtual
memory andvm deal | ocat e to free virtual memory. The programmer also has availabde th
UNIX functionssbr k, mal | oc andcal | oc.

The decision to use one allocation method rather than anstioelld be based on several factors.
sbr k is now obsolete and only retained for backward compatjbilith older UNIX programs. It
is not recommended that new programs which expect to use Kéathres should usebr k. In
fact,sbr k callsvm al | ocat e toincrease the user’s address space. al | ocat e always adds
new, zero-filled virtual memory in paged-aligned, multipfepage-sized chunks (where a page is
currenly 4K or 8K bytes).Mal | oc allocates approximately the size it is asked for (plus a few
bytes) out of a pre-allocated heapal | oc is the same asal | oc except that it zeros the memory
before returning it.mal | oc andcal | oc are library subroutine calls whilem al | ocat e is a
kernel syscall which is somewhat more expensive.

The the most obvious basis on which to choose an allocatioctifan is the size of the desired
space. There is one other consideration, however, whitteidésirability of page-aligned storage.
If the memory that is allocated is to be passed out-of-lina message, it is more efficient if it is
page-aligned. Note that it is essential that the correcfiatzdion function be used. If memory
has beervm al | ocat ed it must bevm deal | ocat ed, ifitwasmal | oced it must bd r eed.
Memory that is received out-of-line from a message has beeral | ocat ed by the kernel.

2 1 INTRODUCTION

Aug. 1986 or in thevlach Kernel Interface Manual. The latter document gives the complete calling
semantics for all the Mach system calls.

1.2.1 Ports, Port Namesand Port Sets

Recently a new abstraction has been added to Mactpadtteet. A port set is a group of ports
which can be received on in parallel. That is, a thread canrdimar ecei ve call on a port set and
will receive the first message that appears on any of the potte set. In earlier versions of Mach
there was only one port set, which was the set okakbl ed ports. Port sets are only used for
receiving messages, you can not send to a port set. Whengpertseated they are not a member
of any port set but may be added to a port set by thepaallt _set _add. A port may be a member
of only one port set at a time, and the task must have receisrio a port before it can enter it
into a port set. A port set cannot be sent in a message. If anisles to transfer an entire port
set to another task, each of the ports must be sent as a separatvith receive rights and then the
receipient must redefine a new port set with all the portsin it

A port nane is a new term used to refine the way in which ports are refepedhe use of
the term port or the typpor t -t implies that the task has at least send rights for the por.t&m
port nane and typeport _nane_t implies that the task may not have any rights to the port and
could be holding its name for some other task. The only plawereithe distinction is important in
code is the type used during message passing. If thepgpe -t is used, the kernel will map the
port rights to the receipient of the message. If the fgpet _nane_t is used no rights mapping is
done and the agrument gets passed as a simple integer. édltypegport _t, port_nane-t
andport _set _nane_t are defined to be the same basic C type and may be used intgectday
in C code. This allows for backwards compatibility with catiat was written when onlgor t _t
existed and allows primitives to work for either ports, pgats or port names.

1.2.2 Tasksversus Threads

Mach tasks have independent address spaces and typicailpwoicate by sending messages to
each other. Separate tasks can be used to perform parts pfutation on different workstations
connected by a network. The port and message passing itcitit Mach have been designed
to allow transparent communication between tasks whettesr are on the same node or on two
separate nodes in a network. All message operations arédioéadependent and, in theory, it is
impossible to tell whether a message has been sent to oveddedm a task on the same machine
or a remote one. In practice, however, the timing and failoeles are different between local
messages and remote messages. System services such a&sfilenagtess and network message
communication are themselves implemented as tasks coroating via messages.

Threads, on the other hand, share their memory and accésswiigh the other threads in a task.
They often communicate within a task through shared memacgitions. Threads are intended
to allow separate execution units to work in parallel on thme problem. This gives a user an
easy way to get parallel computation on a multi-processora®ingle processor, multiple threads
may simplify the structure of a program that is logicallymipseveral different functions. Multiple
threads are also useful if some of a program’s actions magecadine of exection to be blocked,
while other lines of execution could usefully continue. EEaample, server that handles requests

1 Introduction

1.1 Tutorial Documents

This document is one of two tutorials designed to teach bislsich programming skills. This
manual explains the use of the Mach kernel calls. It begirtis an introduction to the basic Mach
abstractions of ports, messages, virtual memory, taskshaedds. It then contains a humber of
simple programs which send and receive Mach messages, amitusl memory.

There is a companion document to this orfe,Programmer’s Guide to the Mach User
Environment that explains the use of higher level methods for implenmentinulti-threaded
programs and interprocess communication. Before writimggrams that use the system calls
directly, the user should be aware that the methods outlm#te other document may be used to
solve his problem more simply.

The final section oA Programmer’s Guide to the Mach User Environment describes where to
find the mach environment on-line at CMU and how to use it.

1.2 Basic Mach Concepts

In many ways the Mach operating system can be viewed as anséxteof the UNIX operating
system. Existing 4.3bsd programs which do not use knowlatigat internal UNIX data structures
will continue to function in Mach. However, Mach provideswamber of new features not available
in traditional UNIX systems. The primary motivation for tdéferences between Mach and UNIX
was a desire to better support multiprocessors and to peawidolid foundation for distributed
computing.

In order to use Mach'’s new features, the programmer needsfantiliar with four fundamental
Mach abstractions:

e A taskis an execution environment, including a paged virtual egslispace and protected
access to system resources such as processors and posehaldor a task to be useful,
it must have at least one thread executing within it. Thusnwhe speak of communicating
with a task, it means to communicate with a thread runningpat task. A task with one
thread is the Mach equivalent of a traditional process.

e A thread is the basic unit of execution. It consists of a processde st execution stack
and a limited amount of per thread static storage. It sharesheer memory and resources
with all the other threads executing in the same task. A thcaa only execute in one task.

e A portis a communication channel - a logical queue of messagesqteat by the kernel.
Only one task can receive messages from a port, but all thekfiave access to the port
can send messages.

e A messageis a typed collection of data objects used in communicatietwben threads.

This tutorial presents and explains several simple progratmich make use of these Mach
abstractions to solve simple programming problems. A metaitkd explanation of the basic Mach
abstractions can be found in the Unix Review artitheeads of a New System, Richard F. Rashid,

A Programmer’sGuide to the Mach System Calls

Linda R. Walmer
Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Version of: December 28, 1989

Abstract

This documentis one of two tutorials designed to teach bdaih programming skills.
This manual explains the use of the Mach kernel calls. Thepemion document to this
one, A Programmer’s Guide to the Mach User Environment explains the use of higher
level methods for implementing multi-threaded prograntsiaterprocess communication.
Before writing programs that use the system calls diretlly,user should be aware that
the methods outlined in the other document may be used te &sproblem more simply.

Comments, suggestions and additions to this document dceme.

The material developed under this subcontract was or isssped by the Defense Advanced Research Projects Agency
(DoD), ARPA order 4864, monitored by the Space and Naval &varSystems Command under Contract Number NOO039-
87-C-0251.

The views and conclusions contained in this document arsetlud the authors and should not be interpreted as
representing official policies, either expressed or inthl@ the Defense Advanced Research Projects Agency or Bepar
of the Navy, Space and Naval Warfare Systems Command, ore@Gi@rMellon University, unless designated by other
documentation.

Contents
1 Introduction
1.1 TutorialDocuments.
1.2 BasicMachConcepts.
1.2.1 Ports,PortNamesandPortSets
122 TasksversusThreads
123 Communications
1.2.4 Virtual Memory Primitivesversus Malloc
1.25 Standard Mach Servers oL
2 Message Communication Between Processes
21 MachErrorPrinting.
2.2 PortAllocation.
2.3 PortDeallocation
2.4 Environment Manager Server/CheckinginaPort
2.5 Environment Manager Server/LookingupaPort.
2.6 SettingupaSimpleMessage o
27 SendingMessages
2.8 ReceivingMessages
29 SettingupaReplyMessage. o
2.10 RPC,Send/Receive
2.11 ANon-SimpleMessage L
2.12 Programming Example |, simipc.c oo oL

3 Useof Virtual Memory

3.1 Allocation, Deallocation,and Reading.
3.1.1 Virtual Memory Allocation oL
3.1.2 Virtual Memory Deallocation.
3.1.3 VirtualMemoryReading
3.1.4 Programming Example Il, vmead.c.

3.2 VirtualMemory Copying

3.3 Inheritance of Shared versus CopiedMemary
3.3.1 Virtual Memory, Inheritance oL
3.3.2 Programming Example Ill, cowtest.c,

4 Mach Environment

