
Mach Bibliography

MT XINU, Inc.
2560 Ninth Street

Berkeley, CA 94710

September 1, 1989
Version 0.0

This bibliography suggests background reading about Mach for the forthcoming
MT XINU/CMU operating system release.1 The release will contain the Mach kernel
and libraries, based on CMU Release 2.5; both the Network File System (NFS)
and the Andrew File System (AFS); the X Window System, Version 11, Release 3
(including the Andrew Toolkit and Message System); Camelot; the 4.3BSD-tahoe
libraries and utilities; and various user-contributed software.

We have tried to include enough information about unpublished works so that
you will be able to obtain copies without too much trouble. Whenever possible, we
have included where to get these documents by anonymous FTP.

[1] Mike Accetta, Robert Baron, David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Mach: A New Kernel Foundation for UNIX Development.
Technical Report, School of Computer Science, Carnegie Mellon University,
Pittsburgh, August 1986. Also in Proceedings of the Summer 1986 USENIX
Conference, pp. 93–112, July 1986.

This paper describes Mach and the motivations which led to its design. Also
described are some of the details of its implementation and status at the time of
writing.

[2] Robert V. Baron, David Black, William Bolosky, Jonathan Chew, Richard P.
Draves, David B. Golub, Richard F. Rashid, Avadis Tevenian, Jr., and

1This material was developed under a subcontract sponsored by the Defense Advanced Research
Projects Agency (DoD), ARPA order 4864, monitored by the Space and Naval Warfare Systems Command
under Contract Number N00039-87-C-0251. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing offical policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or Department of the Navy, Space and Naval
Warfare Systems Command, or Carnegie Mellon University, unless designated by other documentation.

1



Michael Wayne Young. Mach Kernel Interface Manual. October 1988. Un-
published manuscript from the School of Computer Science, Carnegie Mellon
University.

This manual describes the interface to the Mach kernel in detail for a wide
variety of uniprocessor and multiprocessor architectures.

Copies are available on host wb1.cs.cmu.edu in /usr/mach/public/doc/manual.ps
through anonymous FTP. You may also order printed copies from the School
of Computer Science, Carnegie Mellon University by sending a message to
mach@cs.cmu.edu or by calling 412/268-7665.

[3] David L. Black. Mach Interface Proposals—Priorities, Handoff, Wiring. August
1989. Unpublished manuscript from the School of Computer Science, Carnegie
Mellon University.

This paper proposes three sets of changes: 1) export priorities on individaul
threads to users, introducing the notion of scheduling policies and support for
fixed-priority threads, 2) handoff scheduling, which specifies the next thread to
run and related mechanisms, and 3) wiring, which locks data and threads into
memory to prevent paging and swapping.

Copies are available through anonymous FTP on host wb1.cs.cmu.edu in
/usr/mach/public/doc/rfc/priority.ps.

[4] David L. Black. Mach Processor Allocation Interface. August 1989. Un-
published manuscript from the School of Computer Science, Carnegie Mellon
University.

This document is a basic proposal for a processor allocation and control kernel
interface which supports control over processors by user-mode programs. Appli-
cation areas include gang scheduling and a method for speeding up benchmarks;
both require allocating a specific number of processors to an application for the
exclusive use of that application.

Copies are available on host wb1.cs.cmu.edu in /usr/mach/public/doc/rfc/cpu.ps
through anonymous FTP.

[5] David L. Black. The Mach cpu server: An Implementation of Processor Allo-
cation. August 1989. Unpublished manuscript from the School of Computer
Science, Carnegie Mellon University.

This document describes the cpu server, a user-mode server which performs
processor allocation for the Mach operating system.

Copies are available through anonymous FTP on host wb1.cs.cmu.edu in
/usr/mach/public/doc/rfc/cpu server.ps.

[6] David L. Black, David B. Golub, Richard F. Rashid, Avadis Tevanian, Jr.,
and Michael W. Young. The Mach Exception Handling Facility. Technical

2



Report CMU-CS-88-129, School of Computer Science, Carnegie Mellon Uni-
versity, April 1988.

Exceptions are caused by the occurrence of unusual conditions during program
execution; raising an exception invokes the operating system to manage recovery
from the unusual condition. Although many exceptions can be handled and
dismissed transparently to the user (e.g., page faults), some must be exported in
some form (invoke handler, core dump, etc.). This paper concerns the design and
implementation of exception handling facilities that perform this exporting for
general purpose operating systems. It discusses both the overall design principles
for these facilities and the specific design and implementation of an exception
handling facility for the Mach operating system. It also discusses the support
provided to applications that use exception (e.g., debuggers) by this facility and
other Mach kernel facilities.

You may order printed copies from the School of Computer Science, Carnegie
Mellon University by sending a message to mach@cs.cmu.edu or by calling
412/268-7665.

[7] Eric C. Cooper and Richard P. Draves. C Threads. Technical Report CMU-
CS-88-154, School of Computer Science, Carnegie Mellon University, February
1988.

The C Threads package allows parallel programming in C under the Mach
operating system. The package provides multiple threads of control within a
single shared address space, mutual exclusion locks for protection of critical
regions, and condition variables for thread synchronization.

Copies are available on host wb1.cs.cmu.edu in /usr/mach/public/doc/threads.ps
through anonymous FTP. You may also order printed copies from the School of
Computer Science, Carnegie Mellon University by calling 412/268-7665.

[8] Richard P. Draves, Michael B. Jones, and Mary R. Thompson. MIG—The
MACH Interface Generator. July 1989. Unpublished manuscript from the
School of Computer Science, Carnegie Mellon University.

Matchmaker is a language for specifying and automating the generation of multi-
lingual interprocess communication interfaces. MIG is an interim implementa-
tion of a subset of the Matchmaker language that generates C and C++ remote
procedure call interfaces for interprocess communication between Mach tasks.

Copies are available on host wb1.cs.cmu.edu in /usr/mach/public/doc/mig.ps
through anonymous FTP. You may also order printed copies from the School of
Computer Science, Carnegie Mellon University by calling 412/268-7665.

[9] R. F. Rashid. From RIG to Accent to Mach: The Evolution of a Network
Operating System. In Proceedings of the ACM/IEEE Computer Society, Fall
Joint Computer Conference, ACM, November 1986.

3



This paper describes experiences gained during the design, implementation and
use of the CMU Accent Network Operating System, its predecessor, the Uni-
versity of Rochester RIG system and its successor CMU’s Mach multiprocessor
operating system. It outlines the major design decisions on which the Accent
kernel was based, how those decisions evolved from the RIG experiences and
how they had to be modified to properly handle general purpose multiprocessors
in Mach. Also discussed are some the the major issues in the implementation of
message-based systems, the usage patterns observed with Accent over a three
year period of extensive use at CMU and a timing analysis of various Accent
functions.

[10] Richard Rashid, Avadis Tevanian, Jr., Michael Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew. Machine-
Independent Virtual Memory Management for Paged Uniprocessor and Mul-
tiprocessor Architectures. Technical Report CMU-CS-87-140, School of Com-
puter Science, Carnegie Mellon University, July 1987. Also in Proceedings of
the 2nd Symposium on Architectural Support for Programming Languages and
Operating Systems, ACM, October, 1987.

This paper describes the design and implementation of virtual memory manage-
ment within the CMU Mach Operating System and the experiences gained by
the Mach kernel group in porting that system to a variety of architectures. As
of this writing, Mach runs on more than half a dozen uniprocessors and multi-
processors including the VAX family of uniprocessors and multiprocessors, the
IBM RT PC, the SUN 3, the Encore MultiMax, the Sequent Balance 21000
and several experimental computers. Although these systems vary considerably
in the kind of hardware support for memory management they provide, the
machine-dependent portion of Mach virtual memory consists of a single code
module and its related header file. This separation of software memory manage-
ment from hardware support has been accomplished without sacrificing system
performance. In addition to improving portability, it makes possible a relatively
unbiased examination of the pros and cons of various hardware memory man-
agement schemes, especially as they apply to the support of multiprocessors.

[11] Avadis Tevanian, Jr. Architecture-Independent Virtual Memory Management
for Parallel and Distributed Environments. PhD thesis, School of Computer
Science, Carnegie Mellon University, December 1987. Also as Technical Re-
port CMU-CS-88-106 from the School of Computer Science, Carnegie Mellon
University, 1987.

This thesis describes the design and implementation of a new, portable, memory
managment system and evaluates it by direct comparison with commercially
developed memory management systems. It is in production use at CMU, a
number of industrial organizations and research laboratories, and is a central
component of the Mach operating system, a distributed and parallel operating
system developed at Carnegie Mellon University. At the time of this writing,

4



it runs on more than half a dozen uniprocessors and multiprocessors including
the DEC VAX family of uniprocessors and multiprocessors, the IBM RT PC,
the SUN 3, the Encore MultiMax, the Sequent Balance 21000 and several
experimental computers.

[12] Avadis Tevanian, Jr. and Richard F. Rashid. Mach: A Basis for Future UNIX
Development. Technical Report CMU-CS-87-139, School of Computer Science,
Carnegie Mellon University, Pittsburgh, June 1987.

Computing in the future will be supported by distributed computing environ-
ments. These environments will consist of a wide range of hardware architec-
tures in both the uniprocessor and multiprocessor domain. This paper discusses
Mach, an operating system under development at Carnegie Mellon University,
that has been designed with the intent to integrate both distributed and multi-
processor functionality. In addition, Mach provides the foundation upon which
future Unix development may take place in these new environments.

[13] Avadis Tevanian, Jr., Richard F. Rashid, David B. Golub, David L. Black, Eric
Cooper, and Michael W. Young. Mach Threads and the Unix Kernel: The Battle
for Control. Technical Report CMU-CS-87-149, School of Computer Science,
Carnegie Mellon University, August 1987.

This paper examines a kernel implemented lightweight process mechanism built
for the Mach operating system. The pros and cons of such a mechanism are
discussed along with the problems encountered during its implementation.

[14] Avadis Tevanian, Jr., Richard F. Rashid, Michael Young, David B. Golub,
Mary R. Thompson, William Bolosky, and Richard Sanzi. A Unix Interface
for Shared Memory and Memory Mapped Files Under Mach. Technical Re-
port, School of Computer Science, Carnegie Mellon University, Pittsburgh, July
1987.

This paper describes an approach to Unix shared memory and memory mapped
files currently in use at CMU under the Mach Operating System. It describes
the rationale for Mach’s memory sharing and file mapping primitives as well as
their impact on other system components and on overall performance.

[15] Mary R. Thompson. Mach Environment Manager. July 1988. Unpublished
manuscript from School of Computer Science, Carnegie Mellon University.

The Environment Manager is a Mach server which facilitates the sharing of
named variables between tasks. This paper discusses types, primitives, and in-
tegration with the Unix environment.

Copies are available on host wb1.cs.cmu.edu in /usr/mach/public/doc/envmgr.ps
through anonymous FTP. You may also order printed copies from the School of
Computer Science, Carnegie Mellon University by calling 412/268-7665.

5



[16] Linda R. Walmer and Mary R. Thompson. A Programmer’s Guide to the Mach
System Calls. February 1988. School of Computer Science, Carnegie Mellon
University.

This document is one of two tutorials designed to teach basic Mach programming
skills. This manual explains the use of the Mach kernel calls. The companion
document to this one, A Programmer’s Guide to the Mach User Environment
explains the use of higher level methods for implementing multi-threaded pro-
grams and interprocess communication. Before writing programs that use the
system calls directly, the user should be aware that the methods outlined in the
other document may be used to solve his problem more simply.

Copies are available through anonymous FTP on host wb1.cs.cmu.edu in
/usr/mach/public/doc/machsys.ps. You may also order printed copies from the
School of Computer Science, Carnegie Mellon University by calling 412/268-
7665.

[17] Linda R. Walmer and Mary R. Thompson. A Programmer’s Guide to the Mach
User Environment. February 1988. School of Computer Science, Carnegie
Mellon University.

This document is one of two tutorials designed to teach basic Mach programming
skills. This manual demonstrates the use of the C Threads library primitives in
writing a multithreaded program and the use of the Mach Interface Generator
(MIG) to generate remote procedure calls for interprocess communication. The
reader should be familiar with the basic Mach abstractions of ports, messages,
virtual memory, tasks and threads which the introduction to the companion
document, A Programmer’s Guide to the Mach System Calls, explains.

Copies are available through anonymous FTP on host wb1.cs.cmu.edu in
/usr/mach/public/doc/machuses.ps. You may also order printed copies from the
School of Computer Science, Carnegie Mellon University by calling 412/268-
7665.

[18] Michael Young, Avadis Tevanian, Jr., Richard Rashid, David Golub, Jeffrey Ep-
pinger, Jonathan Chew, William Bolosky, David Black, and Robert Baron. The
Duality of Memory and Communication in the Implementation of a Multiproces-
sor Operating System. Technical Report CMU-CS-87-155, School of Computer
Science, Carnegie Mellon University, August 1987. Also in Proceedings of the
11th Symposium on Operating Systems Principles, November, 1987.

An important component of the Mach design is the use of memory objects which
can be managed either by the kernel or by user programs through a message
interface. This feature allows applications such as transaction management sys-
tems to participate in decisions regarding secondary storage management and
page replacement. This paper explores the goals, design and implementation of
Mach and its external memory management facility. The relationship between

6



memory and communication in Mach is examined as it relates to overall per-
formance, applicability of Mach to new multiprocessor architectures, and the
sturcture of application programs.

7


