Kernel Developers’ Manual

Michael W. Young
Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213
Version of:

10 August 1989

Abstract

This document describes the organization of the official kernel sources and build areas, the
recommended methods for getting a private copy of selected kernel sources and building your own

version of the kernel, and the required way of inserting your changes back into the official sources. It is
intended to be used by the kernel developers at CMU.

1. Introduction

This document describes the organization of the Mach kernel sources and the recommended ways of
makeing changes to them. This document is mainly useful to kernel maintainers at CMU, but it includes
some general information about choosing kernel configurations that might be useful to kernel maintainers
outside of CMU.

2. Background knowledge

2.1.RCS

RCS is used extensively to maintain a history of modifications to the kernel sources, and to aid in
managing concurrent lines of development. Therefore, a working knowledge of RCS is desirable. See
the online manual pages for rcs for a discussion of how revisions are managed. Most of the local
changes to the RCS programs were done to make the version control of a set of files stored in a directory
tree easier. Configuation rules and snapshot files have been introduced to facilitate the specification of
which version to chose from a set of files. Snapshot files are used to specify the version of each file that
make up a complete version of a set of files. Configuration rules specify some general rule like a date or
branch name which is used to select the desired version of each file.

A set of bscripts have been written to keep track of all the files and changes on a branch and to handle
the problems that arise from the separation of the RCS tree from the checked out versions of the files.
Further information can be found in the RCS cookbook which can be found in
[afs/cs/project/mach/doc/rcs-cookbook.PS and the man page for bci(1).

2.2. Andrew File System

The Andrew File System (AFS) is used to hold all of the kernel sources and compiled object files. An
understanding of the AFS filesystem in general, and its protection scheme in particular, are required. It
should be noted that all the processes on a machine with the same userid share the same AFS
authentication token. Thus if you run several processes under the same userid and one of them changes
the AFS authentication, the authentication changes for all the processes with that userid.

AFS recognizes the special name @sys in symbolic link names. When evaluating such a link name
@sys is bound to vax_mach, ibmrt_mach or sun3_mach depending on what type of machine the task is
executing on.

2.3. Make

The local version of make has been modified recently to deal with the problem of building programs for
serveral machine types from one set of sources. Features have been added to allow the objects to be
built in a directory other than the source directory. The make variable OBJECTDIR is used to specify
where the object files should be placed. The built-in make variable machine is set to vax, ibmrt or sun
depending on what machine type the make is being executed on. OBJECTDIR is typically defined in a file
called Makeconf as a function of machine and relative to the source tree. make will search up the tree
starting from the current working directory looking for a Makeconf file. The -N switch to make will supress
this search.

2.4. SUP

Sup is a program used at CMU to copy a consistent set of files from one machine to another. In our
current source distribution sup is only used to provide compatibililty for those machines that do not have
access to AFS. A copy of the latest and alpha sources is kept on wbl.mach.cs.cmu.edu as a sup
repository. For information on how to use sup see the manual page sup(1).

2.5. Other

Note that the machine names used by AFS: (vax_mach, ibmrt_mach, sun3_mach, those used by
make: vax, ibmrt, sun, and those used by the kernel: vax, ca, sun3 are all slightly different. This difference
accounts for the indirect linking to machine directories, and the various names for machine dependent
stuff.

The kernel specific scripts that are mentioned in this document can be found in /usr/mach/etc or
/afs/cs/mach/src/kernel/latest/src. The best versions of the rcs programs and bscripts can be found in
[afs/cs/@sys/{alpha,beta,omega}/usr/misc/.rcs. To get these on your machine use

nodm sc -rel ease beta cs.msc.rcs
If you set -release alpha you will get any new features more quickly. build and workon are released as
another misc collection: cs.misc.sdm. These program can be linked to in
lafs/cs/@sys/{alpha,beta,omega}/usr/misc/.sdm or supped to your machine by using the following
command.

nmodm sc ¢s. m sc. sdm

3. Organization of kernel source, release and build trees

The kernel source tree is defined by the mainline revision from the RCS tree rooted at
/afs/cs.cmu.edu/mach/rcs/kernel. This tree is structured exactly as the checked-out tree, and contains
only files of the form foo,v. For example, the source file conf/Makefile.template lives in the RCS tree as
conf/Makefile.template,v.

The mainline revision is left checked-out (unlocked, meaning that they are read-only) in a tree rooted at
/afs/cs.cmu.edu/mach/src/kernel/latest. This area is guarenteed to be in a consistant state only if the
.BCSlock file in that directory is empty. The checked out tree does not include embedded RCS
directories or links to them. This differs from how most installations use RCS. This division has the
advantage of providing a clean set of sources to be used by find or grep. The bscripts versions of RCS
commands can deal with this separation.

Occasionally, the latest kernel sources will be moved into the alpha release, and kernel binaries will be
distributed to appropriate machines. The sources corresponding to various releases are left checked-out
in /afs/cs.cmu.edu/unix/source/{alpha,beta,omega}/kernel.

Directories containing kernel compilations for various configurations are kept rooted at
/afs/cs.cmu.edu/mach/obj/@sys/kernel/latest. Binaries for released versions can be located by replacing
latest with the appropriate release name.

Each time the mainline is updated a variety of useful information about the release is created:
« The file conf/version.edit is incremented by one and checked into the RCS tree.

e The file ../kernel/latest/.BCSset-TRUNK which is a list of all the files that have changed
between this version and the previous one is created and checked in to the RCS tree.

* A set of complete snapshot files is generated and placed in .../kernel/latest/SNAPSHOTS
and the RCS tree. These snapshot files are named ALL, MI, ca, vax, sun3, mmax, pmax
,i386, and sqt and correspond to all the files in the kernel, all the machine independent files,
and all the files for each machine type.

» The entire tree is supped to /../wb1/usr/kernel/latest.

* A post is made to the mach-kernellog bboard with a summary of all the changes to this
version of the kernel.

» The new version number and date is placed in .../kernel/latest/VERSIONS.

4. Kernel AFS groups and privileges

To get write permission to any of the official kernel areas on AFS you must authenticate to AFS as one
of three users: kernel, kernsrc or kernbin. All three users have all Kernel viewing privileges, i.e are
members of Kernel:View.{IBM,SUN,ULTRIX,4BSD,SEQUENT,ENCORE,Local,NFS,Any} and have all
System viewing privileges, i.e. are members of
System:View.{IBM,SUN,ULTRIX,4BSD,SEQUENT,ENCORE,Local, NFS,Any}.

The write permissions of the three users are:

kernel is a member of Kernel:UpdateArchive which allows modification of the
[afs/cs/mach/rcs/kernel subtree.

kernsrc is a member of Kernel:UpdateSource which allows modification of the
/afs/cs/mach/src/kernel/{latest,alpha,beta,omega} subtrees.

kernbin is a member of Kernel:UpdateBinary which allows modification of the
[afs/cs/mach/obj/@sys/kernel/{latest,alpha,beta,omega} subtrees.

Before you authenticate to AFS as a special user, you should su or nu to set your userid to that user.
This will prevent you from inadvertly changing the AFS authentication of other processes using your
personal userid.

If you are going to check out files from the kernel sources using machtree or an update script, be sure
that the directories that will be created have restricted read access, either by having umask set to 27 if
you are creating unix directories, or by having the base directory set for reading only by you if you are
creating AFS directories. There is a script called setacl that will reset all the AFS directories to the correct
permissions in case you get them wrong.

5. Getting an initial set of sources

5.1. machtree

The recommended way to get a copy of the kernel sources is to use the machtree script. This method
is particulary suited to members of the kernel development group who wish to have their kernel changes
kept as a branch in the RCS tree and eventually plan to merge them into the mainline. This script sets up
the enviroment needed to make the bscripts, the kmerge script and make work correctly. See
/usr/mach/man/man8/machtree.8 for the complete documentation.

To use machtree, first, create an empty directory where you would like to work and cd there. Then
create an .BCSconfig file that describes the version of the kernel sources from which you wish to work. A
recommended form of the RCS configuration is based on a time. For example, the following is a valid
configuration file:

<88/ 07/ 13, 12: 00

The file .../kernel/latest/VERSIONS contains the time at which the sources corresponding to each new
version were deemed stable (i.e., unlocked after the merge process). Alternatively, machtree will create a
.BCSconfig file for you. Use the -help switch to machtree for a complete list of the options.

machtree uses the directory lists in /afs/cs/mach/src/kernel/latest/Directories to decide which files you
want to have checked out. For example
machtree M vax ca sun3

will check out only those files needed for those three machines.! In addition to building the directory
structure, the machtree program will create an RCS symbolic link in each directory that refers to the
appropriate directory in the real RCS tree. At the top level RCS will be a link to /afs/cs/mach/rcs/kernel
and at the lower levels, for example, kern/RCS will be a symbolic link to ../RCS/kern. Similarly, symbolic
links will be made for .BCSconfig, referring to the top-level file .BCSconfig. It will also create a copy of the
Directories directories at the top level. These files will allow the normal RCS utilities to be used in any
subdirectory, but will collect snapshot or configuration information in the top-level directory.

After all the files are checked out, machtree creates the necessary links for machine and
mach/machine directories. If your working directory is on a local file system machine links to vax, ca or
sun3 . If it is on AFS the directory MACHINE is created and links are made in it to ../vax_mach,
.Jfibmrt_mach and ../sun3_mach. machine is then linked to MACHINE/@sys. If the working directory is
on AFS the OBJS/{ibm032,vax,sun} directories are created to hold the object files. Then an appropriate
Makeconf file is created.

5.2. cupdate

If you want a copy of a specific version of the kernel sources, but are not intending to put any changes
back into the rcs tree, you may perfer to use the cupdate script. This script is driven off the snapshot files
in .../rcs/kernel/SNAPSHOTS.

To generate a complete system checkout of the Xnn version for three machine types to the current
directory run the following command:
cupdate -sXnn M ca sun3 vax
This will generate an rcsco script file in Xnn.upd. If one cds to /afs/cs/mach/rcs/kernel and runs it, all the
files will be checked out. This method does not create all the RCS and .BCSconfig links in your source
area. It will, however, setup the machine links and the OBJS directories.

cupdate is more useful when you wish to update your copy of the sources from one version to another.
For example, if your current set of files corresponds to X40 plus your own changes and you wish to

1The machtree program currently produces a message from the find program about each directory for which you do not have AFS
permission. If you don't need access to those (machine-specific) directories, just ignore the messages. To get AFS access, you'll
have to send mail to Gripe; they may require that you sign some confidentiality agreements as required by our source licenses.

update to X43 run
cupdate -sX43 -sX40 M ca ...

This will create an rcsco script in X43.upd that will checkout the files that have changed between X43
and X40. Note that this set of files should correspond to the union of the files in .BCSset-TRUNK for X43
and X40 for the machine types that you have requested. You can cd to /afs/cs/mach/rcs/kernel and run
this script to check out all the files that are different, or you may want to compare these files with the ones
that you have changed. When an update script is being generated, cupdate does not create any of the
machine or OBJS directories and links.

5.3. sup

If you do not have access to AFS, but want to get a copy of either the latest or alpha release of the
kernel sources, it is still possible to sup the kernel sources from wb1/usr/kernel/{latest|alpha}. To do this
you must set up the proper sup files on your target machine, and you will need to add a release for the
machine to which you wish to sup. To do this you must place the files <release>.host and <release>.list in
wb1/usr/kernel/{latest|alpha}/sup/mach.kernel, and place an appropriate line in the releases file in that
directory. This method has the least flexibility in terms of the release that you can select and in the
information it saves for subsequent updates. Also it will not create any of the extra files and links.

If you are unable to directly access the /usr/kernel area on wb1l by logging in on that machine as user
kernel, you may send mail to machlib@wb1 and request sup access to the kernel sources. Please state
what collections you wish (eg. what machine types you are building for and what the name of the machine
to which the sup is to be made. You will receive a sample supfile containing the crypts for your selected
collections, plus some instructions on how to use sup.

6. Selecting a configuration
Kernels come in many shapes, sizes, and with different sets of features. Before building a kernel
binary, you must decide on a configuration that describes the options you want.

Configuration names consist of groups of symbols separated by "+" or "-" signs. These symbols are
then used to select configuration lines from the files in conf/MASTERY{,.local}{,$machine}. Symbols in
capital letters are expanded according to the master files into groups of other symbols, until no further
expansions can take place.

A vanilla Mach research configuration is described by the symbol MACH for all architectures. From
there, you may add or subtract options as you desire. For example, to get a kernel with the experimental
emulation code, you would use a configuration called MACH+me.

The Facilities staff uses more complicated names in order to better match options and sizes to
particular classes of machines. [The MACH configuration tends to cause all known device drivers, large
kernel tables, and a maximum number of processors to be configured.] A quick primer on the naming
scheme used:

* The symbol STD is used as a basis for all non-custom kernels. It will build a kernel with
small table sizes, which can be modifed if necessary by patching the kernel.

* Multiprocessors are configured to have 16 or 32 processors. Devices specific to

multiprocessors are available by including the symbol MP.

* Device support options include: MF, for mainframe hosts only; WS, for workstations only;
MP, for multiprocessor hosts; ANY, for any host other including those with "special” devices;
Only one of these options should be necessary.

» There are also a number of experimental kernel features which appear and disappear
frequently. The symbol EXP selects the currently useful set that are believed to be working.

For example, a usable configuration for an IBM RT/PC might be STD+WS, while a more suitable
configuration for a multiprocessor Vax would be STD+ANY+16.

The standard configurations of the Mach 2.5 release include the in-kernel nfs and afs code. Since this
code cannot be shipped to external sites unless they have the necessary licenses, it may be necessary to
build without this code. This is done by specifying -nfs-afs after your configuration name.

7. Compiling a kernel

In order to build a kernel, there must be a directory in which object files should be created. The line
begining with OBJECTDIR= in the file Makeconf in your source directory must set OBJECTDIR equal to
that directory. machtree will create the OBJS/{vax,ibmrt,sun} directories for you and edit Makeconf to use
them with the following assignment:

OBJECTDI R=. . / OBJS/ $(machi ne)

where make will set $(machine) to vax,ibmrt or sun depending on what machine type you are executing
on.

If you did not use machtree to get your sources you must do this yourself. If you are only building the
kernel for one machine type, you need only create one object directory and set OBJECTDIR to it.

Now, merely run make specifying the configuration you wish to build:

cd nmy_kernel _sources
make CONFI G=MACH+ny_f eat ures

The command
make bui | dconf

will build a standard set of kernels. At the moment it builds three configuations for the sun and rt and five
for the vax.

The make command with no arguments will build whatever configuration is defined by a CONFIG= line
in Makeconf.

8. Making modifications

When you wish to make changes that can be stored in the RCS tree, you will need to use the bscripts.
These scripts require a number of implicit parameters which can either be kept in files in your source
area, or in environment variables or input as explicit parameters to each command. See bci(1) for a
detailed description of the bscript commands.

The one file that you must have in the base of your source area is: .BCSconfig-<branch_name> which

contains the configuration rules used to select files that are not on your branch. The following parameters
can be either files or environment variables: .BCSBRANCH file or BCSBRANCH environment variable
that specifies the RCS branch on which you would like to store your modifications: a .BCSVBASE file or
BCSVBASE enironment variable which contains the pathname of the RCS source tree. There are also
some parameters that must be environment variables. BCSBBASE which must be the complete
pathname of the base of your source files; RCS_AUTHCOVER which is the program to use for
authentication (/fusr/misc/.sdm/lib/authcover), AUTHCOVER_USER which is the user that has access to
the RCS tree (kernel); AUTHCOVER_TESTDIR which is the base of the RCS tree
(/afs/cs/mach/rcs/kernel). machtree will create the file variables.

Using the program /usr/cs/misc/.sdm/bin/workon with a project description will create all the necessary
files and environment variables listed above. workon will, however, insist on a Makeconf file existing in
the source_base directory.

A sample project description that could be used is:

proj ect kernel

proj ect base /afs/cs/user/<userid>/kernel
rcs_base /afs/cs. cnu. edu/ mach/ rcs/ ker nel
rcs_cover /usr/msc/.sdmlib/authcover
rcs_owner kernel

sour ce_base .

obj ect _base obj/ @ys

Place the project description on your LPATH with the name project/kernel. Then the command
wor kon -project kernel -branch mrt_X50
will exec a subshell, set all the necessary environment varibles, and cd to the source base directory. The
first time that workon is called it will create the following files:

.BCSVBASE containing the line
[af s/ cs/ mach/ rcs/ ker nel

.BCSconfig-mrt_X50 containing the line
<88/ 07/ 13, 12: 00
where the time will be the time workon was first run. You may need to modify this date to correspond with
the creation time of the kernel version that you want your branch relative to.

.BCSconfig-TRUNK containing the line
<>

.BCSpath-mrt_X50 containing the line

.BCSlock containing locking information.

The various bscripts will maintain the .BCSset-<branchname> file and an .BCSlog-<branchname> file
that contains your RCS log messages as you check in your changes. Note that the branch hame must
begin with your user name ($USER); you may use just that, or add a suffix.

If you are not using workon, you must set the BCSBBASE environment variable to the full path name of
your kernel source directory, as would be returned by pwd. The easiest way to do so is:

cd my_kernel _sources
set env BCSBBASE ‘ pwd’

You must also set all the AUTHCOVER variables by hand.

Then, you may check out sources from anywhere in the source tree, using the bco command. For
example,

cd my_kernel _sources
bco vax/ pmap.c

cd bsd

bco kern_exec.c

bco ../vnmvm map.c

The first time you run one of the bscripts, you will be asked to authenticate as the kernel AFS userid.

9. Checking in changes
In order to checkpoint your work, or to share your work with others, you may wish to periodically check
in your changes to the RCS tree. To do so, you run the bci program. For example:
bci -[switches] kern/mach. defs

If the bci program is run with no switches it will look for a whist style log entry between the HISTORY
and the $Log:$ line in your file to be used as an RCS log message. If there is no such entry, an editor will
be invoked, primed with the differences between your source file and the version from which you began.

If the file being checked in does not have a comment line containing the phrase Log, the bci program
will insist that you edit the source to include one. A line should be added after the HISTORY comment;
that line should begin with the appropriate comment leader, then Log.2

After an adequate log message is ready, the bci program will allow you to check the file in, make
further edits, or abort the checkin procedure.

If the file you are checking in did not exist in the source tree before, the bci program will ask you
whether an original source file from another software vendor (e.g., Berkeley, Sun, DEC) is available, and
if so, where the source file may be found. If your file is original to Mach, you should specify that it is
"local". If an original is provided, it will be checked in as revision 1.1. Local versions begin with revision
2.1.

10. Updating your branch

Often a developer may keep his changes on a branch for a considerable length of time before merging
them back into the mainline. As time goes by, it is a good idea to bring the branch up-to-date with
changes that have been taking place on the mainline.

’Hopefully, most source files will have these lines very soon, so this shouldn’t be an issue. In the near future, you may find
yourself adding Log lines to a number of files.

The easiest current procedure for updating an existing branch, for example, mrt_X92, to the current
sources, X99, is:
1. Be sure that all changed files are checked in on the old branch, mrt_X92.

2. Use "cupdate -sX99 -sX92 <dirlist>" to update your sources to X99 or use "machtree
<dirlist>" to check out a completely new X99 tree.

3. Do a "workon -project kernel -branch mrt_X99" to create the new branch and set you up to
be working on it.

4. Use a "bmerge -rmrt_X92 <filelist>" to merge the old branch into the new branch.

5. Use a "bci -xlog mrt_X92 <filelist>" to check the merged files into the new branch, doing the
right thing with the log messages.

6. Suspend the workon for branch mrt_X99. Enter a workon for branch mrt_X92 and remove
the old branch with "bcs -01- <filelist>". This removes all the old revisions for branch
mrt_X92, but still leaves the symbolic name.

7. Exit the workon for branch mrt_X92. Delete any extraneous .BCS*X92 files in your source
area. Do all further work on the mrt_X99 branch.

11. Merging your changes back to the mainline

The kmerge script must be used to merge your changes back to the mainline. Use of this script
ensures that all the steps specified in Section 2 take place, leaving the sources in a consistent and
predictable state.

For the kmerge script to execute correctly you must:
» Be running with userid of kernsrc and groups of systems and kernel To do this

nu kernsrc
Password: < type |local password for kernsrc >

and be sure that kersrc is a member of the kernel group which allows execution of the
reverse SUP to wb1.
» Be authenticated as kernsrc to AFS.
| og kernsrc
Password: < type AFS password for kernel >
» Have your USER environment variable set to your own userid. For example:
set env USER nywoung

» Have the rcs commands, /usr/misc/bin, on your PATH.

» Be executing on a machine that is able to sup the kernel sources to wb1. This requires an
entry for the machine in /wbl/usr/kernel/latest/sup/kernel. These files are suped from
[afs/cs/mach/kernel/latest/sup/kernel. To add a machine to this list, copy one of the existing
<HOSTNAME>.sup files giving it your HOSTNAME, and then edit the host= item to have
your machine name. The file .../latest/sup/xpatch.host must also be edited to have a line it in
for your machine. These files should then be checked in to the rcs tree. These files must be
suped (or otherwise copied) to wb1 before a sup from your host will work.

» The /afs/cs/mach/kernel/latest/.BCSlock must either not exist, or have been locked by you on
the previous kmerge pass.

kmerge is called at least twice while doing a check-in. The first time it is called you must give it a list of
files to be merged. These files should already be checked-in to the rcs tree with a single branch name.

10

For example:
kmerge [-auto] ‘cat RCSset-mystuff’

kmerge will check the status of the lock by comparing the value of $USER to the name in the file if it
exists. If the file does not exist, kmerge creates it, locks it for you and gives you a chance to put a
comment in the file to say what you are changing. It will then prompt you for the branch name of your
changes. It will do a bgraft with that branch, copying over and compacting the log messages, and giving
you a chance to edit conflicting versions. If kmerge was called with the switch -auto, the files will be
automatically checked in if there are no conficts. If the -auto switch is not used, you must interactively
confirm the checkin of each file. During this process the .BCSlog-<branch_name> and
.BCSset-<branch_name> files are created. .BCSlog-<branch_name> contains log messages for all the
files that are being merged. .BCSset-<branch_name> contains a list of all the files that have been
merged. At the end of the check-in process, all the latest merged versions are left checked out in
.../latest/kernel.

Once your changes are merged and the resulting files checked out in latest, the first pass of kmerge
exits and you are expected to build the kernel for a vax, sun and rt using the latest sources. It is assumed
that you will build in /afs/cs/mach/build/{ibmrt_mach,sun3_mach,vax_mach}/latest/kernel. You should
decide if you want to build incrementally on top of the last kernel build or if you want to delete everything
in that area and build from scratch. You need to be authenticated as kernbin to write in this area. The
kernel Makefile uses an environment variable, RELEASE, and the make variable machine to chose the
appropriate build area. If this RELEASE is not set or set to latest, /afs/cs/mach/obj/@sys/kernel/latest will
be used for the build area.

To build the standard kernel configurations;

| og kernbin

Password: <type kernel AFS password >

<Decide if you wish to delete existing stuff from

[af s/ cs/ mach/ obj /{i bnrt_nach, sun3_nach, vax_mach}/ kernel /| at est. >
cd /afs/cs/ mach/ kernel /| at est

make bui |l dconf

This command builds one large, many featured, kernel for each machine type. The binaries are put in

/afs/cs/mach/build/<machine>latest/kernel/STD+ANY+EXP[+16] If you wish to try out other

configurations, for example the MACH configuration with the experimental features turned on, just type
make CONFI G=MACH+EXP

The kernels that have been built should be booted onto an appropriate machine and tested. A generic
test script can be found in /afs/cs/project/mach/root/tests/mach_tests. One should also try out the user
programs that depend on kernel structures. They include: ps, w, top, pstat, netstat, iostat adb, dbx and
gdb. If you have changed the proc.h, user.h, inode.h or network structures, in a way that breaks any of
these programs, you should either reconsider your change, or increment the value in sys/version and
build all the kernel-dependent user level programs with your new include files.

If bugs are found during the testing process, kmerge should be called again with a new list of files to be
merged. This process is repeated until the kernel has passed its tests.

Once the kernel has been tested, you execute kmerge again, this time with no arguments. It now

11

checks for any files that you may have changed in the ../kernel/latest area and asks you if you want to
check them in. It then creates the snapshot files, does the sup to wb1, and prompts you for a post to the
mach-kernellog bboard. At the end it checks in the .BCSset-TRUNK file and removes the
.BCSlog-TRUNK and .BCSlock files. Since several of these steps are time consuming and occasionally
cause the script to abort, the script will ask you if you have already successfully completed each step.
None of the steps are optional and if any files have been changed, the snapshots and the sup must be
redone. However, if you are rerunning the script for some other reason, you do not have to do these steps
twice.

The only things that are not currently done for you by kmerge is to update the Directories list, in case
you have created or deleted any directories in kernel and to check for an include version update.

g b~ Ww N

©O© 00N

Table of Contents

. Introduction
. Background knowledge

2.1.RCS

2.2. Andrew File System
2.3. Make

2.4, SUP

2.5. Other

. Organization of kernel source, release and build trees
. Kernel AFS groups and privileges
. Getting an initial set of sources

5.1. machtree

5.2. cupdate

5.3. sup

. Selecting a configuration
. Compiling a kernel

. Making modifications

. Checking in changes

10. Updating your branch
11. Merging your changes back to the mainline

COOOOUIURWWWNNNR R R R R

