
MACH Environment Manager

Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213
Version of:

8 January 1990

Abstract

The Environment Manager is a Mach server which facilities the sharing of named variables between
tasks.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4864, monitored by the Space and Naval Warfare Systems Command under contract
N00039-84-C-0467.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or of the U.S. Government.

1

1. Introduction
The Environment Manager is a server which facilitates the sharing of named variables between tasks.

An environment is a set of named variables, which can be read or changed via calls on an Environment
Port. A single environment may be shared between parent and child tasks, or an environment can be
copied, and a copy can be passed to a child task. It is also possible to get a read-only port to an
environment which allows reading but not modification of the environment.

The Environment Manager stores two types of named objects: strings and ports. The names of these
two types may not overlap, and each type must be set and retrieved by the appropriately typed primitives.
Sets of variables (called an environment) are accessible through a specific server port. There may be one
read/write and one read-only port to the same environment.

Environments are passed to child tasks in one of two ways. Either the parent’s environment_port is
passed to the child in which case the two processes share the same environment with both having equal
write access to all variables; or the parent clones his environment and passes a copy of it to the child. In
the latter case the two environments are then completely disjoint. It is also possible to create a new empty
(or default) environment.

It is also possible for one task to use more than one environment. In this way a task could have access
to a widely-shared "global" environment as well as its own local environment.

2. Types
The following types are defined as smallish fixed length strings in order to make the passing of them as

in-line message data efficient.

The following types can be included in C programs from <servers/emdefs.h>.

#define env_name_size (80)
#define env_val_size (256)

typedef char env_name_t[env_name_size]; /* environment variable name */
typedef char env_str_val_t[env_val_size]; /* string env variable value */

typedef env_name_t *env_name_list; /* list of names */
typedef env_str_val_t *env_str_list; /* list of string values */

3. Primitives
The following primitives are provided:

2

env_get_string
#include <servers/env_mgr.h>

kern_return_t env_get_string(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
env_str_val_t env_val;

kern_return_t env_set_string(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
env_str_val_t env_val;

kern_return_t env_del_string(env_port,env_name)
port_t env_port;
env_name_t env_name;

Arguments

env_port port identifying environment

env_name name of string to be found | set | deleted

env_val returned pointing to value of string

Description
env_get_string returns the value of the string variable with the name env_name.

env_set_string sets the string variable env_name to env_val;

env_del_string deletes the string variable env_name.

Returns

KERN_SUCCESS operation succeeded

ENV_UNKNOWN_PORT
env_port does not reference a known environment

ENV_VAR_NOT_FOUND
name does not exist.

ENV_WRONG_VAR_TYPE
names exists, but is a port variable

ENV_READ_ONLY env_port only allows read access to the environment. (env_set_string,
env_del_string)

See Also
env_get_port[3], env_new_conn[3], env_list_strings[3]

3

env_get_port
#include <servers/env_mgr.h>

kern_return_t env_get_port(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
port_t *env_val;

kern_return_t env_set_port(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
port_t env_val;

kern_return_t env_del_port(env_port,env_name)
port_t env_port;
env_name_t env_name;

Arguments

env_port port identifying environment

env_name name of port to be found | set | deleted

env_val returned pointing to value of port

Description
env_get_port returns the value of the port variable with the name env_name.

env_set_port sets the value of the port variable, env_name to env_val.

env_del_port deletes the port env_name;

Returns

KERN_SUCCESS variable found

ENV_UNKNOWN_PORT
ENV_PORT does not reference a known environment

ENV_VAR_NOT_FOUND
name does not exist.

ENV_WRONG_VAR_TYPE
names exists, but is a string variable

ENV_READ_ONLY env_port only allows read access to the environment. (env_set_port
and env_del_port)

See Also
env_get_string[3], env_new_conn[3], env_list_strings[3]

4

env_list_strings
#include <servers/env_mgr.h>

kern_return_t env_list_strings(env_port,env_names,name_cnt,
env_string_vals,string_cnt)

port_t env_port;
env_name_list *env_names
int *name_cnt;
env_str_list *env_string_vals;
int *string_cnt);

kern_return_t env_list_ports(env_port,env_names,name_cnt,
env_port_vals,port_cnt)

port_t env_port;
env_name_list *env_names
int *name_cnt;
port_array_t *env_port_vals;
int *port_cnt);

kern_return_t env_set_stlist(env_port,env_names,name_cntf,
env_string_vals,string_cnt)

port_t env_port;
env_name_list env_names
int name_cnt;
env_str_list env_string_vals;
int string_cnt);

kern_return_t env_set_ptlist(env_port,env_names,name_cnt,
env_port_vals,port_cnt)

port_t env_port;
env_name_list env_names;
int name_cnt;
port_array_t env_port_vals;
int port_cnt);

Arguments

env_port port identifying environment

env_names pointer to list of names of all string variables

name_cnt number of names

env_string_vals
pointer to values of string variables (for env_list_strings) list of values
of string variables (for env_set_stlist)

string_cnt number of string values (equal to name_cnt)

env_port_vals pointer to values of port variables (for env_list_ports) list of values of
port variables (for env_set_ptlist)

port_cnt number of port values (equal to name_cnt)

Description
env_list_string returns a complete list of all the string variables in the environment specified by

env_port. The two arrays env_names and env_string_vals are returned in newly allocated virtual
memory. This memory should be released by a call to vm_deallocate once the items are no longer
needed.

env_list_ports returns a complete list of all the port variables in the environment specified by
env_port. The two arrays env_names and env_port_vals are returned in newly allocated virtual

5

memory. This memory should be released by a call to vm_deallocate once the items are no longer
needed.

env_set_stlist sets a number of string variables environment specified by env_port. This
primitive is provided for efficiency and is mainly intended to be used to set a Mach environment to be the
same as the Unix environ area.

env_set_ptlist sets a number of port variables environment specified by env_port. This primitive
is provided for efficiency.

Returns

KERN_SUCCESS operation succeeded

ENV_UNKNOWN_PORT
env_port does not reference a known environment

ENV_READ_ONLY env_port only allows read access to the environment (for env_set_stlist
and env_set_plist).

ENV_WRONG_VAR_TYPE
one of the variables was already defined as a port variable (for
env_set_stlist) or as as string variable (for env_set_ptlist).

See Also
env_get_string[3], env_get_port[3], env_new_conn[3]

6

env_new_conn
#include <servers/env_mgr.h>

void init_env_mgr(reply_port);
port_t reply_port;

kern_return_t env_new_conn(env_port,new_env_port)
port_t env_port;
port_t *new_env_port)

kern_return_t env_copy_conn(env_port,new_env_port)
port_t env_port;
port_t *new_env_port)

kern_return_t env_restrict_conn(env_port,new_env_port)
port_t env_port;
port_t *new_env_port)

kern_return-t env_disconnect(env_port)
port_t env_port;

Arguments

reply_port if equal PORT_NULL, a reply port will be allocated, otherwise reply_port
will be used by the interface to receive the message replies.

env_port port identifying environment

new_env_port returned pointing to value of new port

Description
init_env_mgr initializes the user interface to the Environment Manager. Must be called before any

of the other primitives are used. However,it is called by the library initialization program mach_init, so
the user does not need to make this call unless a different value of Reply_port is desired.

env_new_conn create a new, default environment to be handed to a new process. This could be
initialized with public values such as host_name and Network nameserver port.

env_copy_conn makes a complete copy of the environment specified by env_port, allocates the
new_env_port and returns it to the caller. Subquently, all requests on new_env_port will use the new
copy, and requests on env_port will continue to refer to the original version. Used by parent to pass a
copy of its environment to a child process.

env_restrict_conn makes a new port to the environment specified by env_port, through which
only reading will be allowed.

env_disconnect informs the environment manager that this enviroment is no longer needed.
EnvMgr will deallocate env_port;

Ownership rights to all the new environment ports are returned to the user. Thus when a process that
has created and environment dies, these rights are returned to the environment manager who will
disconnect (and destroy) the environment. If a creator process wishes its environment to live on after its
death, it must pass the ownership rights a process that will continue to exist as long as the environment
should exist.

7

Returns

KERN_SUCCESS new_env_port references a new default environment

ENV_NO_MORE_CONN
implementation restriction, no more connections to the Environment Manager
are available.

ENV_UNKNOWN_PORT
env_port does not reference a known environment

See Also
env_get_string[3], env_get_port[3], env_list_strings[3], mach_init[3]

8

4. Integration with Unix environ
In order to allow binary compatibility with Unix, the environ area will have to be maintained and

passed on as usual by execve. If execve also clones the current Mach environment and passes the
new port on to the child, then the Mach environment will have the same copy semantics as the Unix
environ. If execve were to enter all the variables in environ into the Mach environment then new
programs could get all their variables from the Mach environment. The primitive env_set_slist is
provided to allow a set of environment string variables to be entered with one message.

If getenv is changed to call get_env_string, after failing to find a variable in the environ area,
then old programs will be able to find environment variables set by new programs in the Mach
environment. The environment_port will be passed to a new task as part of the few special ports that
all processes know about.

At some point, the shells will have to be changed to use the Mach environment in addition to the
environ area. Existing Unix variables could be entered in both places while Mach variables would be
put in the Mach environment only.

9

I. Summary of Calls

The following is a summary of the C calls to the Environment Manger. The page on which the
operation is fully described appears within square brackets.

[2] kern_return_t env_get_string(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
env_str_val_t env_val;

[2] kern_return_t env_set_string(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
env_str_val_t env_val;

[2] kern_return_t env_del_string(env_port,env_name)
port_t env_port;
env_name_t env_name;

[3] kern_return_t env_get_port(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
port_t *env_val;

[3] kern_return_t env_set_port(env_port,env_name,env_val)
port_t env_port;
env_name_t env_name;
port_t env_val;

[3] kern_return_t env_del_port(env_port,env_name)
port_t env_port;
env_name_t env_name;

[4] kern_return_t env_list_strings(env_port,env_names,name_cnt,
env_string_vals,string_cnt)

port_t env_port;
env_name_list *env_names
int *name_cnt;
env_str_list *env_string_vals;
int *string_cnt);

[4] kern_return_t env_list_ports(env_port,env_names,name_cnt,
env_port_vals,port_cnt)

port_t env_port;
env_name_list *env_names
int *name_cnt;
port_array_t *env_port_vals;
int *port_cnt);

[4] kern_return_t env_set_stlist(env_port,env_names,name_cntf,
env_string_vals,string_cnt)

port_t env_port;
env_name_list env_names
int name_cnt;

10

env_str_list env_string_vals;
int string_cnt);

[4] kern_return_t env_set_ptlist(env_port,env_names,name_cnt,
env_port_vals,port_cnt)

port_t env_port;
env_name_list env_names;
int name_cnt;
port_array_t env_port_vals;
int port_cnt);

[6] void init_env_mgr(reply_port);
port_t reply_port;

[6] kern_return_t env_new_conn(env_port,new_env_port)
port_t env_port;
port_t *new_env_port)

[6] kern_return_t env_copy_conn(env_port,new_env_port)
port_t env_port;
port_t *new_env_port)

[6] kern_return_t env_restrict_conn(env_port,new_env_port)
port_t env_port;
port_t *new_env_port)

[6] kern_return-t env_disconnect(env_port)
port_t env_port;

i

Table of Contents
1. Introduction 1
2. Types 1
3. Primitives 1
4. Integration with Unix environ 8
I. Summary of Calls 9

