
The Mach cpu_server:
An Implementation of Processor Allocation

David L.Black

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213
Version of:

14 August 1990

Abstract

The CPU-Server is a user-mode server that performs processor allocation for the Mach operating system.
This document describes the server and it’s user interfaces.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4864, monitored by the Space and Naval Warfare Systems Command under contract
N00039-84-C-0467.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or of the U.S. Government.

1

1. Introduction
This document describes the cpu_server, a user-mode server that performs processor allocation for the

Mach operating system, and its library interfaces. The server implements processor allocation policy; the
actual mechanisms are contained in the Mach kernel (see related document). The library interfaces hide
the details of server interaction from applications with simple scheduling requirements. This server is an
example implementation of processor allocation policy; many other policies can be implemented using the
mechanisms provided by the kernel.

Not all releases of Mach support this server. It is mainly interesting on multi-processor machines, so no
major effort has been made to support it on the standard uni-processor versions of Mach. However, the
new releases of Mach support it on all machines. On systems that support it, this software (MiG interface
to server and library interfaces) is available in the cpu library (/usr/mach/lib/libcpu.a, -lcpu command to ld).

2. Concepts
The server performs processor allocation by assigning processors to processor sets provided by its

clients. This allows the clients to use and manage the processors without giving clients complete control
over them; only the server has the port capabilities required to reassign processors. Processor sets are
entities exported by the Mach kernel; threads assigned to a processor set run exclusively on processors

tmassigned to that set and vice versa (with the exception of some Unix system calls).

The server interface is designed around a class of objects called requests. A request consists of the
following components:

• A run duration,

• A sequence of <processor set, number of processor> pairs.
A request is satisfied by assigning each processor set its corresponding number of processors for the run
duration specified. The server enforces internal limits on the number of processors and the maximum run
time. Current limits are 15 minutes and 75% or less of the processors on the system.

3. Implementation
The server satisfies requests in a greedy fashion with strict adherence to the order in which they are

received. For example, if the server has 10 processors and receives requests for 4, 7, and 2 processors,
it will satisfy the request for 4 first, and then the requests for 7 and 2 together. This algorithm was chosen
for its simplicity and lack of starvation; more sophisticated algorithms that make better use of the
processors by satisfying requests out of order could be used.

The server implementation was based on the cthreads library and the Mach Interface Generator(MiG).
Two threads are used internally; one manages the assignment of processors to requests, the other
manages all interactions with clients. Clients communicate with the server via rpcs; MiG-generated
interfaces hide the details of the message formats. In addition the server can optionally generate
notification messages to indicate that processors have been allocated to a request and that processors
are about to be removed from a request; these messages can be used for internal synchronization of
applications that require multiple processors for proper execution.

2

4. Interface
The server’s interface to its clients uses remote procedure calls to implement the following primitives:

• cpu_request_create(server, total_processors, run_time, *delay, *request) -- create a
request for total_processors processors for run_time seconds. The request object and a
delay estimate are returned. The initial server port (server) is obtained by looking up the
name "cpu_server" with the local name service.

• cpu_request_add(request, processor_set, processors, *processors_left) -- Add the tuple
<processor_set, processors> to the specified request. Return the number of processor
remaining in the request (i.e. that can be used in future cpu_request_add calls).

• cpu_request_set_notify(request, notify_port) - Ask the server to send a notification
message to notify_port after the processors are allocated and 1 second before removing the
processors. Applications that receive these messages can use them to make sure that
execution only takes place while all of the processors are allocated; the end message can be
used to initiate a barrier synchronization to stop cleanly, and the start message can be used
to exit the barrier.

• cpu_request_activate(request, options, total_time, *delay) -- Activate the request (i.e.
request the server to satisfy it). A maximum delay until the requested processors will be
allocated is returned. No further cpu_request_add calls are permitted on the request. The
following options are supported:

• Destroy - Destroy the processor sets when the request is completed. This is intended
to support naive users by preventing a program that overruns its request from going
into suspended animation; destroying its processor sets forces the program back into
the default processor set where it will continue to run.

• Repeat - Repeat the request for total_time. The time for each instance of the request
is specified by the run_time argument of the cpu_request_create operation that
created the request.

• cpu_request_activate_task(request, options, total_time, task, *delay) -- Identical to
cpu_request_activate, but informs the server that the application using the processor sets is
a task; this allows the server to optimize assignment and removal of processors by using
task_suspend and task_resume -- processor assignment is much faster if the processor is
idle.

• cpu_request_destroy(request) - Destroy the specified request, freeing any processors that
were allocated to it. If the Notify end option applies, an end notification will be sent and the
freeing of the processors will be delayed by 1 second.

• cpu_request_status(request, *reserved_processors, *assigned_processors, *active,
*options, *time) - Find out information about a request including whether it has processors
assigned to it, and how long until the assigned processors will be removed, or the maximum
delay until processors will be assigned to it.

• cpu_server_info(server, *max_time, *max_total_time, *max_processors, *delay) -- Obtain
information about the server. max_time is the maximum time for a single request in
cpu_request_create. max_total_time is the maximum total time for a repeating request
created by the Repeat option to cpu_request_activate or cpu_request_activate_task.
max_processors is the maximum number of processors for any request. delay is the current
maximum delay until a new request can be satisfied. The cpuinfo program uses this call to
determine if the cpu_server is available and what its current situation is.

3

5. Library Interfaces
The above server interface along with the kernel interface will be used directly by programs that require

explicit control over which threads are executing on which processors at which time. For applications with
less stringent processor allocation requirements, simple library interfaces which hide all of the internal
details of interaction with the kernel and server may be appropriate. Four interfaces have been
developed, the allocate, task, hook, and task-hook interfaces.

The allocate interface supports a single allocation of a pool of processors. It exports the following two
calls:

• allocate_processors(num_processors, time, interactive) - Allocate num_processors
processors for the specified time. If the time is larger than the server’s maximum slice time,
then a repeating request is automatically submitted. If interactive is TRUE, errors generate
printfs, and the user is asked whether the server’s maximum delay is acceptable; no
allocation is performed if the answer is no.

• deallocate_processors() - Free the processors allocated by allocate_processors. This
must be called by a thread in the same task as the thread that did the allocation.

allocate_processors does not return until the allocation of processors has started; it performs a
task_assign internally so that the initial thread and all threads and tasks subsequently created share the
allocated processors. If a program overruns its time allocation, it will continue to run, but without
dedicated processors.

The task interface is identical to the allocate interface, but is restricted to applications consisting of a
single task so that the server can exploit efficiencies available in this case (suspending the task before
removing processors). The server will perform its own task_suspend and task_resume calls on the task
in this case. The task interface exports the following two calls:

• task_allocate_processors(num_processors, num_seconds, interactive) - Identical to
allocate_processors, but also promises the server that all or the threads using the
processors will be in the current task.

• task_deallocate_processors() - Deallocate the processors allocated by
task_allocate_processors.

The hook interface supports allocation of a pool of processors, with user scheduling hooks. It exports
the following two calls:

• allocate_processors_with_hooks(num_processors, num_seconds, start_hook, end_hook,
interactive) - Allocate the specified number of processors for the specified number of
seconds. If the number of seconds is greater than the server’s maximum slice time, a
repeating request is automatically submitted. start_hook is called each time after the
processors are allocated. Similarly, end_hook is called approximately 1 second before any
processor deallocation. interactive functions identically to the previous interfaces.

• deallocate_processors_with_hooks() - Free the processors allocated by
allocate_processors_with_hooks. The end_hook will not be called, but users should be
aware of the race between this deallocate call and the server ending a time slice.

A thread must be dedicated to the allocate_processors_with_hooks call; i.e. the calling thread does not
return until the allocation request is finished or terminated. This dedicated thread is assigned to the
allocated processors (this can be reversed by performing a thread_assign_default or thread_assign as
part of the first invocation of start_hook. All threads within its task and subsequently created tasks are
also assigned (c.f. task_assign). Both start_hook and end_hook must return.

4

Finally, there is the task-hook interface, which combines the functionality of the hook interface with the
server optimization of the task interface; the calls in this interface are the hook interface calls with task_
prefixed. Users should note that the interfaces are independent; processors must be deallocated with the
deallocate call from the same interface that was used to allocate them.

6. Extensions
The cpu_server could be extended in a number of ways:

• Time Sensitivity - Allow more of the machine to be allocated during off peak periods.

• Request Size Sensitivity - Use a declining priority system instead of absolute ordering to
speed throughput. This is a standard technique from schedulers for physical memory
machines; other similar techniques are also applicable (the current processor allocation
problem for multiprocessors is essentially similar to the memory allocation problem for
schedulers for physical memory machines).

• User Sensitivity - Reserve some portion of the machine for certain users based on
administrative decisions (e.g. they paid for some portion of the machine, so they should
always be able to get at least that portion).

• Non-Uniform Topologies - For NUMA (Non Uniform Memory Access), all topology knowledge
and policy is located in the server. Techniques such as first-fit and best-fit may be applicable
to the processor allocation server for such a machine (e.g. the clustered Gigamax machine
being built by Encore).

In addition the server and the kernel interface (thread assignment) could be used directly in a language
runtime that is sophisticated enough to control and allocate processors to its threads.

i

Table of Contents
1. Introduction 1
2. Concepts 1
3. Implementation 1
4. Interface 2
5. Library Interfaces 3
6. Extensions 4

