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This document is a brief introduction to TCP/IP, followed by advice on what to read for more information.  This is not
intended to be a complete description.  It can give you a reasonable idea of the capabilities of the protocols.  But if you need
to know any details of the technology, you will want to read the standards yourself.  Throughout the text, you will find
references to the standards, in the form of "RFC" or "IEN" numbers.  These are document numbers. The final section of this
document tells you how to get copies of those standards.

1. What is TCP/IP?

TCP/IP is a set of protocols developed to allow cooperating computers to share resources across a network.  It was developed
by a community of researchers centered around the ARPAnet.  Certainly the ARPAnet is the best-known TCP/IP network.
However as of June, 87, at least 130 different vendors had products that support TCP/IP, and thousands of networks of all
kinds use it.

First some basic definitions.  The most accurate name for the set of protocols we are describing is the "Internet protocol
suite". TCP and IP are two of the protocols in this suite. (They will be described below.)  Because TCP and IP are the best
known of the protocols, it has become common to use the term TCP/IP or IP/TCP to refer to the whole family.  It is probably
not worth fighting this habit.  However this can lead to some oddities.  For example, I find myself talking about NFS as being
based on TCP/IP, even though it doesn’t use TCP at all.  (It does use IP.  But it uses an alternative protocol, UDP, instead of
TCP. All of this alphabet soup will be unscrambled in the following pages.)

The Internet is a collection of networks, including the Arpanet, NSFnet, regional networks such as NYsernet, local networks
at a number of University and research institutions, and a number of military networks.  The term "Internet" applies to this
entire set of networks.  The subset of them that is managed by the Department of Defense is referred to as the "DDN"
(Defense Data Network).  This includes some research-oriented networks, such as the Arpanet, as well as more strictly
military ones.  (Because much of the funding for Internet protocol developments is done via the DDN organization, the terms
Internet and DDN can sometimes seem equivalent.)  All of these networks are connected to each other.  Users can send
messages from any of them to any other, except where there are security or other policy restrictions on access.  Officially
speaking, the Internet protocol documents are simply standards adopted by the Internet community for its own use.  More
recently, the Department of Defense issued a MILSPEC definition of TCP/IP.  This was intended to be a more formal
definition, appropriate for use in purchasing specifications.  However most of the TCP/IP community continues to use the
Internet standards.  The MILSPEC version is intended to be consistent with it.

Whatever it is called, TCP/IP is a family of protocols.  A few provide "low-level" functions needed for many applications.
These include IP, TCP, and UDP. (These will be described in a bit more detail later.)  Others are protocols for doing specific
tasks, e.g. transferring files between computers, sending mail, or finding out who is logged in on another computer.  Initially
TCP/IP was used mostly between minicomputers or mainframes.  These machines had their own disks, and generally were
self-contained. Thus the most important "traditional" TCP/IP services are:

• file transfer.  The file transfer protocol (FTP) allows a user on any computer to get files from another computer, or to
send files to another computer.  Security is handled by requiring the user to specify a user name and password for the
other computer.  Provisions are made for handling file transfer between machines with different character set, end of
line conventions, etc. This is not quite the same thing as more recent "network file system" or "netbios" protocols,
which will be described below.  Rather, FTP is a utility that you run any time you want to access a file on another
system. You use it to copy the file to your own system.  You then work with the local copy.  (See RFC 959 for
specifications for FTP.)

• remote login.  The network terminal protocol (TELNET) allows a user to log in on any other computer on the network.
You start a remote session by specifying a computer to connect to.  From that time until you finish the session,
anything you type is sent to the other computer. Note that you are really still talking to your own computer.  But the
telnet program effectively makes your computer invisible while it is running.  Every character you type is sent directly
to the other system.  Generally, the connection to the remote computer behaves much like a dialup connection.  That is,
the remote system will ask you to log in and give a password, in whatever manner it would normally ask a user who
had just dialed it up.  When you log off of the other computer, the telnet program exits, and you will find yourself
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talking to your own computer.  Microcomputer implementations of telnet generally include a terminal emulator for
some common type of terminal.  (See RFC’s 854 and 855 for specifications for telnet.  By the way, the telnet protocol
should not be confused with Telenet, a vendor of commercial network services.)

• computer mail.  This allows you to send messages to users on other computers.  Originally, people tended to use only
one or two specific computers.  They would maintain "mail files" on those machines.  The computer mail system is
simply a way for you to add a message to another user’s mail file.  There are some problems with this in an
environment where microcomputers are used.  The most serious is that a micro is not well suited to receive computer
mail. When you send mail, the mail software expects to be able to open a connection to the addressee’s computer, in
order to send the mail.  If this is a microcomputer, it may be turned off, or it may be running an application other than
the mail system.  For this reason, mail is normally handled by a larger system, where it is practical to have a mail
server running all the time.  Microcomputer mail software then becomes a user interface that retrieves mail from the
mail server.  (See RFC 821 and 822 for specifications for computer mail.  See RFC 937 for a protocol designed for
microcomputers to use in reading mail from a mail server.)

These services should be present in any implementation of TCP/IP, except that micro-oriented implementations may not
support computer mail.  These traditional applications still play a very important role in TCP/IP-based networks.  However
more recently, the way in which networks are used has been changing. The older model of a number of large, self-sufficient
computers is beginning to change.  Now many installations have several kinds of computers, including microcomputers,
workstations, minicomputers, and mainframes.  These computers are likely to be configured to perform specialized tasks.
Although people are still likely to work with one specific computer, that computer will call on other systems on the net for
specialized services.  This has led to the "server/client" model of network services.  A server is a system that provides a
specific service for the rest of the network.  A client is another system that uses that service.  (Note that the server and client
need not be on different computers.  They could be different programs running on the same computer.)  Here are the kinds of
servers typically present in a modern computer setup.  Note that these computer services can all be provided within the
framework of TCP/IP.

• network file systems.  This allows a system to access files on another computer in a somewhat more closely integrated
fashion than FTP.  A network file system provides the illusion that disks or other devices from one system are directly
connected to other systems.  There is no need to use a special network utility to access a file on another system.  Your
computer simply thinks it has some extra disk drives.  These extra "virtual" drives refer to the other system’s disks.
This capability is useful for several different purposes.  It lets you put large disks on a few computers, but still give
others access to the disk space. Aside from the obvious economic benefits, this allows people working on several
computers to share common files.  It makes system maintenance and backup easier, because you don’t have to worry
about updating and backing up copies on lots of different machines.  A number of vendors now offer high-performance
diskless computers.  These computers have no disk drives at all. They are entirely dependent upon disks attached to
common "file servers". (See RFC’s 1001 and 1002 for a description of PC-oriented NetBIOS over TCP.  In the
workstation and minicomputer area, Sun’s Network File System is more likely to be used.  Protocol specifications for it
are available from Sun Microsystems.)

• remote printing.  This allows you to access printers on other computers as if they were directly attached to yours.  (The
most commonly used protocol is the remote lineprinter protocol from Berkeley Unix.  Unfortunately, there is no
protocol document for this.  However the C code is easily obtained from Berkeley, so implementations are common.)

• remote execution.  This allows you to request that a particular program be run on a different computer.  This is useful
when you can do most of your work on a small computer, but a few tasks require the resources of a larger system.
There are a number of different kinds of remote execution.  Some operate on a command by command basis.  That is,
you request that a specific command or set of commands should run on some specific computer.  (More sophisticated
versions will choose a system that happens to be free.)  However there are also "remote procedure call" systems that
allow a program to call a subroutine that will run on another computer.  (There are many protocols of this sort.
Berkeley Unix contains two servers to execute commands remotely:  rsh and rexec.  The man pages describe the
protocols that they use.  The user-contributed software with Berkeley 4.3 contains a "distributed shell" that will
distribute tasks among a set of systems, depending upon load.  Remote procedure call mechanisms have been a topic
for research for a number of years, so many organizations have implementations of such facilities.  The most
widespread commercially-supported remote procedure call protocols seem to be Xerox’s Courier and Sun’s RPC.
Protocol documents are available from Xerox and Sun.  There is a public implementation of Courier over TCP as part
of the user-contributed software with Berkeley 4.3.  An implementation of RPC was posted to Usenet by Sun, and also
appears as part of the user-contributed software with Berkeley 4.3.)

• name servers. In large installations, there are a number of different collections of names that have to be managed.  This
includes users and their passwords, names and network addresses for computers, and accounts.  It becomes very
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tedious to keep this data up to date on all of the computers.  Thus the databases are kept on a small number of systems.
Other systems access the data over the network.  (RFC 822 and 823 describe the name server protocol used to keep
track of host names and Internet addresses on the Internet.  This is now a required part of any TCP/IP implementation.
IEN 116 describes an older name server protocol that is used by a few terminal servers and other products to look up
host names.  Sun’s Yellow Pages system is designed as a general mechanism to handle user names, file sharing groups,
and other databases commonly used by Unix systems.  It is widely available commercially.  Its protocol definition is
available from Sun.)

• terminal servers.  Many installations no longer connect terminals directly to computers.  Instead they connect them to
terminal servers.  A terminal server is simply a small computer that only knows how to run telnet (or some other
protocol to do remote login).  If your terminal is connected to one of these, you simply type the name of a computer,
and you are connected to it.  Generally it is possible to have active connections to more than one computer at the same
time. The terminal server will have provisions to switch between connections rapidly, and to notify you when output is
waiting for another connection.  (Terminal servers use the telnet protocol, already mentioned. However any real
terminal server will also have to support name service and a number of other protocols.)

• network-oriented window systems. Until recently, high-performance graphics programs had to execute on a computer
that had a bit-mapped graphics screen directly attached to it.  Network window systems allow a program to use a
display on a different computer. Full-scale network window systems provide an interface that lets you distribute jobs
to the systems that are best suited to handle them, but still give you a single graphically-based user interface.  (The
most widely-implemented window system is X. A protocol description is available from MIT’s Project Athena.  A
reference implementation is publically available from MIT. A number of vendors are also supporting NeWS, a
window system defined by Sun.  Both of these systems are designed to use TCP/IP.)

Note that some of the protocols described above were designed by Berkeley, Sun, or other organizations.  Thus they are not
officially part of the Internet protocol suite.  However they are implemented using TCP/IP, just as normal TCP/IP application
protocols are.  Since the protocol definitions are not considered proprietary, and since commercially-support implementations
are widely available, it is reasonable to think of these protocols as being effectively part of the Internet suite.  Note that the
list above is simply a sample of the sort of services available through TCP/IP. However it does contain the majority of the
"major" applications.  The other commonly-used protocols tend to be specialized facilities for getting information of various
kinds, such as who is logged in, the time of day, etc.  However if you need a facility that is not listed here, we encourage you
to look through the current edition of Internet Protocols (currently RFC 1011), which lists all of the available protocols, and
also to look at some of the major TCP/IP implementations to see what various vendors have added.

2. General description of the TCP/IP protocols

TCP/IP is a layered set of protocols.  In order to understand what this means, it is useful to look at an example.  A typical
situation is sending mail.  First, there is a protocol for mail.  This defines a set of commands which one machine sends to
another, e.g. commands to specify who the sender of the message is, who it is being sent to, and then the text of the message.
However this protocol assumes that there is a way to communicate reliably between the two computers.  Mail, like other
application protocols, simply defines a set of commands and messages to be sent.  It is designed to be used together with TCP
and IP. TCP is responsible for making sure that the commands get through to the other end.  It keeps track of what is sent,
and retransmitts anything that did not get through.  If any message is too large for one datagram, e.g. the text of the mail,
TCP will split it up into several datagrams, and make sure that they all arrive correctly.  Since these functions are needed for
many applications, they are put together into a separate protocol, rather than being part of the specifications for sending mail.
You can think of TCP as forming a library of routines that applications can use when they need reliable network
communications with another computer.  Similarly, TCP calls on the services of IP.  Although the services that TCP supplies
are needed by many applications, there are still some kinds of applications that don’t need them.  However there are some
services that every application needs.  So these services are put together into IP.  As with TCP, you can think of IP as a
library of routines that TCP calls on, but which is also available to applications that don’t use TCP.  This strategy of building
several levels of protocol is called "layering". We think of the applications programs such as mail, TCP, and IP, as being
separate "layers", each of which calls on the services of the layer below it.  Generally, TCP/IP applications use 4 layers:

• an application protocol such as mail
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• a protocol such as TCP that provides services need by many applications

• IP, which provides the basic service of getting datagrams to their destination

• the protocols needed to manage a specific physical medium, such as Ethernet or a point to point line.

TCP/IP is based on the "catenet model".  (This is described in more detail in IEN 48.)  This model assumes that there are a
large number of independent networks connected together by gateways.  The user should be able to access computers or other
resources on any of these networks.  Datagrams will often pass through a dozen different networks before getting to their
final destination.  The routing needed to accomplish this should be completely invisible to the user.  As far as the user is
concerned, all he needs to know in order to access another system is an "Internet address".  This is an address that looks like
128.6.4.194. It is actually a 32-bit number.  However it is normally written as 4 decimal numbers, each representing 8 bits of
the address.  (The term "octet" is used by Internet documentation for such 8-bit chunks.  The term "byte" is not used, because
TCP/IP is supported by some computers that have byte sizes other than 8 bits.)  Generally the structure of the address gives
you some information about how to get to the system.  For example, 128.6 is a network number assigned by a central
authority to Rutgers University.  Rutgers uses the next octet to indicate which of the campus Ethernets is involved.  128.6.4
happens to be an Ethernet used by the Computer Science Department.  The last octet allows for up to 254 systems on each
Ethernet. (It is 254 because 0 and 255 are not allowed, for reasons that will be discussed later.)  Note that 128.6.4.194 and
128.6.5.194 would be different systems.  The structure of an Internet address is described in a bit more detail later.

Of course we normally refer to systems by name, rather than by Internet address.  When we specify a name, the network
software looks it up in a database, and comes up with the corresponding Internet address.  Most of the network software deals
strictly in terms of the address.  (RFC 882 describes the name server technology used to handle this lookup.)

TCP/IP is built on "connectionless" technology.  Information is transfered as a sequence of "datagrams".  A datagram is a
collection of data that is sent as a single message.  Each of these datagrams is sent through the network individually.  There
are provisions to open connections (i.e.  to start a conversation that will continue for some time).  However at some level,
information from those connections is broken up into datagrams, and those datagrams are treated by the network as
completely separate.  For example, suppose you want to transfer a 15000 octet file.  Most networks can’t handle a 15000
octet datagram.  So the protocols will break this up into something like 30 500-octet datagrams. Each of these datagrams will
be sent to the other end.  At that point, they will be put back together into the 15000-octet file.  However while those
datagrams are in transit, the network doesn’t know that there is any connection between them.  It is perfectly possible that
datagram 14 will actually arrive before datagram 13.  It is also possible that somewhere in the network, an error will occur,
and some datagram won’t get through at all.  In that case, that datagram has to be sent again.

Note by the way that the terms "datagram" and "packet" often seem to be nearly interchangable.  Technically, datagram is the
right word to use when describing TCP/IP.  A datagram is a unit of data, which is what the protocols deal with.  A packet is a
physical thing, appearing on an Ethernet or some wire.  In most cases a packet simply contains a datagram, so there is very
little difference.  However they can differ.  When TCP/IP is used on top of X.25, the X.25 interface breaks the datagrams up
into 128-byte packets.  This is invisible to IP, because the packets are put back together into a single datagram at the other
end before being processed by TCP/IP.  So in this case, one IP datagram would be carried by several packets.  However with
most media, there are efficiency advantages to sending one datagram per packet, and so the distinction tends to vanish.

2.1 The TCP level

Two separate protocols are involved in handling TCP/IP datagrams.  TCP (the "transmission control protocol") is responsible
for breaking up the message into datagrams, reassembling them at the other end, resending anything that gets lost, and putting
things back in the right order.  IP (the "internet protocol") is responsible for routing individual datagrams.  It may seem like
TCP is doing all the work.  And in small networks that is true.  However in the Internet, simply getting a datagram to its
destination can be a complex job.  A connection may require the datagram to go through several networks at Rutgers, a serial
line to the John von Neuman Supercomputer Center, a couple of Ethernets there, a series of 56Kbaud phone lines to another
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NSFnet site, and more Ethernets on another campus.  Keeping track of the routes to all of the destinations and handling
incompatibilities among different transport media turns out to be a complex job.  Note that the interface between TCP and IP
is fairly simple.  TCP simply hands IP a datagram with a destination.  IP doesn’t know how this datagram relates to any
datagram before it or after it.

It may have occurred to you that something is missing here.  We have talked about Internet addresses, but not about how you
keep track of multiple connections to a given system.  Clearly it isn’t enough to get a datagram to the right destination.  TCP
has to know which connection this datagram is part of. This task is referred to as "demultiplexing."  In fact, there are several
levels of demultiplexing going on in TCP/IP.  The information needed to do this demultiplexing is contained in a series of
"headers". A header is simply a few extra octets tacked onto the beginning of a datagram by some protocol in order to keep
track of it.  It’s a lot like putting a letter into an envelope and putting an address on the outside of the envelope.  Except with
modern networks it happens several times.  It’s like you put the letter into a little envelope, your secretary puts that into a
somewhat bigger envelope, the campus mail center puts that envelope into a still bigger one, etc.  Here is an overview of the
headers that get stuck on a message that passes through a typical TCP/IP network:

We start with a single data stream, say a file you are trying to send to some other computer:

......................................................

TCP breaks it up into manageable chunks.  (In order to do this, TCP has to know how large a datagram your network can
handle. Actually, the TCP’s at each end say how big a datagram they can handle, and then they pick the smallest size.)

.... .... .... .... .... .... .... ....

TCP puts a header at the front of each datagram.  This header actually contains at least 20 octets, but the most important ones
are a source and destination "port number" and a "sequence number".  The port numbers are used to keep track of different
conversations. Suppose 3 different people are transferring files.  Your TCP might allocate port numbers 1000, 1001, and
1002 to these transfers.  When you are sending a datagram, this becomes the "source" port number, since you are the source
of the datagram.  Of course the TCP at the other end has assigned a port number of its own for the conversation.  Your TCP
has to know the port number used by the other end as well.  (It finds out when the connection starts, as we will explain
below.) It puts this in the "destination" port field.  Of course if the other end sends a datagram back to you, the source and
destination port numbers will be reversed, since then it will be the source and you will be the destination.  Each datagram has
a sequence number.  This is used so that the other end can make sure that it gets the datagrams in the right order, and that it
hasn’t missed any.  (See the TCP specification for details.)  TCP doesn’t number the datagrams, but the octets.  So if there are
500 octets of data in each datagram, the first datagram might be numbered 0, the second 500, the next 1000, the next 1500,
etc. Finally, I will mention the Checksum.  This is a number that is computed by adding up all the octets in the datagram
(more or less - see the TCP spec).  The result is put in the header.  TCP at the other end computes the checksum again.  If
they disagree, then something bad happened to the datagram in transmission, and it is thrown away.  So here’s what the
datagram looks like now.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Acknowledgment Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data | |U|A|P|R|S|F| |
| Offset| Reserved  |R|C|S|S|Y|I| Window |
| | |G|K|H|T|N|N| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | Urgent Pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| your data ... next 500 octets |
| ...... |
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If we abbreviate the TCP header as "T", the whole file now looks like this:

T.... T.... T.... T.... T.... T.... T....

You will note that there are items in the header that I have not described above.  They are generally involved with managing
the connection.  In order to make sure the datagram has arrived at its destination, the recipient has to send back an
"acknowledgement". This is a datagram whose "Acknowledgement number" field is filled in.  For example, sending a packet
with an acknowledgement of 1500 indicates that you have received all the data up to octet number 1500.  If the sender
doesn’t get an acknowledgement within a reasonable amount of time, it sends the data again.  The window is used to control
how much data can be in transit at any one time.  It is not practical to wait for each datagram to be acknowledged before
sending the next one.  That would slow things down too much.  On the other hand, you can’t just keep sending, or a fast
computer might overrun the capacity of a slow one to absorb data.  Thus each end indicates how much new data it is
currently prepared to absorb by putting the number of octets in its "Window" field.  As the computer receives data, the
amount of space left in its window decreases.  When it goes to zero, the sender has to stop.  As the receiver processes the
data, it increases its window, indicating that it is ready to accept more data.  Often the same datagram can be used to
acknowledge receipt of a set of data and to give permission for additional new data (by an updated window).  The "Urgent"
field allows one end to tell the other to skip ahead in its processing to a particular octet.  This is often useful for handling
asynchronous events, for example when you type a control character or other command that interrupts output.  The other
fields are beyond the scope of this document.

2.2 The IP level

TCP sends each of these datagrams to IP.  Of course it has to tell IP the Internet address of the computer at the other end.
Note that this is all IP is concerned about.  It doesn’t care about what is in the datagram, or even in the TCP header.  IP’s job
is simply to find a route for the datagram and get it to the other end.  In order to allow gateways or other intermediate systems
to forward the datagram, it adds its own header.  The main things in this header are the source and destination Internet
address (32-bit addresses, like 128.6.4.194), the protocol number, and another checksum.  The source Internet address is
simply the address of your machine. (This is necessary so the other end knows where the datagram came from.)  The
destination Internet address is the address of the other machine.  (This is necessary so any gateways in the middle know
where you want the datagram to go.) The protocol number tells IP at the other end to send the datagram to TCP.  Although
most IP traffic uses TCP, there are other protocols that can use IP, so you have to tell IP which protocol to send the datagram
to. Finally, the checksum allows IP at the other end to verify that the header wasn’t damaged in transit.  Note that TCP and
IP have separate checksums.  IP needs to be able to verify that the header didn’t get damaged in transit, or it could send a
message to the wrong place.  For reasons not worth discussing here, it is both more efficient and safer to have TCP compute a
separate checksum for the TCP header and data.  Once IP has tacked on its header, here’s what the message looks like:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TCP header, then your data ...... |
| |

If we represent the IP header by an "I", your file now looks like this:

IT.... IT.... IT.... IT.... IT.... IT.... IT....

6



Again, the header contains some additional fields that have not been discussed.  Most of them are beyond the scope of this
document. The flags and fragment offset are used to keep track of the pieces when a datagram has to be split up. This can
happen when datagrams are forwarded through a network for which they are too big.  (This will be discussed a bit more
below.) The time to live is a number that is decremented whenever the datagram passes through a system.  When it goes to
zero, the datagram is discarded.  This is done in case a loop develops in the system somehow.  Of course this should be
impossible, but well-designed networks are built to cope with "impossible" conditions.

At this point, it’s possible that no more headers are needed.  If your computer happens to have a direct phone line connecting
it to the destination computer, or to a gateway, it may simply send the datagrams out on the line (though likely a synchronous
protocol such as HDLC would be used, and it would add at least a few octets at the beginning and end).

2.3 The Ethernet level

However most of our networks these days use Ethernet.  So now we have to describe Ethernet’s headers.  Unfortunately,
Ethernet has its own addresses.  The people who designed Ethernet wanted to make sure that no two machines would end up
with the same Ethernet address.  Furthermore, they didn’t want the user to have to worry about assigning addresses. So each
Ethernet controller comes with an address builtin from the factory.  In order to make sure that they would never have to reuse
addresses, the Ethernet designers allocated 48 bits for the Ethernet address. People who make Ethernet equipment have to
register with a central authority, to make sure that the numbers they assign don’t overlap any other manufacturer.  Ethernet is
a "broadcast medium".  That is, it is in effect like an old party line telephone.  When you send a packet out on the Ethernet,
every machine on the network sees the packet.  So something is needed to make sure that the right machine gets it.  As you
might guess, this involves the Ethernet header.  Every Ethernet packet has a 14-octet header that includes the source and
destination Ethernet address, and a type code.  Each machine is supposed to pay attention only to packets with its own
Ethernet address in the destination field.  (It’s perfectly possible to cheat, which is one reason that Ethernet communications
are not terribly secure.)  Note that there is no connection between the Ethernet address and the Internet address.  Each
machine has to have a table of what Ethernet address corresponds to what Internet address.  (We will describe how this table
is constructed a bit later.)  In addition to the addresses, the header contains a type code. The type code is to allow for several
different protocol families to be used on the same network.  So you can use TCP/IP, DECnet, Xerox NS, etc. at the same
time. Each of them will put a different value in the type field.  Finally, there is a checksum.  The Ethernet controller
computes a checksum of the entire packet.  When the other end receives the packet, it recomputes the checksum, and throws
the packet away if the answer disagrees with the original.  The checksum is put on the end of the packet, not in the header.
The final result is that your message looks like this:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethernet destination address (first 32 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethernet dest (last 16 bits)  |Ethernet source (first 16 bits)|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethernet source address (last 32 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP header, then TCP header, then your data |
| |

...
| |
| end of your data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethernet Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your file now looks like this:

EIT....C EIT....C EIT....C EIT....C EIT....C
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When these packets are received by the other end, of course all the headers are removed.  The Ethernet interface removes the
Ethernet header and the checksum.  It looks at the type code.  Since the type code is the one assigned to IP, the Ethernet
device driver passes the datagram up to IP.  IP removes the IP header.  It looks at the IP protocol field.  Since the protocol
type is TCP, it passes the datagram up to TCP.  TCP now looks at the sequence number. It uses the sequence numbers and
other information to combine all the datagrams into the original file.

The ends our initial summary of TCP/IP.  There are still some crucial concepts we haven’t gotten to, so we’ll now go back
and add details in several areas.  (For detailed descriptions of the items discussed here see, RFC 793 for TCP, RFC 791 for
IP, and RFC’s 894 and 826 for sending IP over Ethernet.)

3. Well-known sockets and the applications layer

So far, we have described how a stream of data is broken up into datagrams, sent to another computer, and put back together.
However something more is needed in order to accomplish anything useful.  There has to be a way for you to open a
connection to a specified computer, log into it, tell it what file you want, and control the transmission of the file.  (If you have
a different application in mind, e.g. computer mail, some analogous protocol is needed.) This is done by "application
protocols". The application protocols run "on top" of TCP/IP.  That is, when they want to send a message, they give the
message to TCP. TCP makes sure it gets delivered to the other end.  Because TCP and IP take care of all the networking
details, the applications protocols can treat a network connection as if it were a simple byte stream, like a terminal or phone
line.

Before going into more details about applications programs, we have to describe how you find an application.  Suppose you
want to send a file to a computer whose Internet address is 128.6.4.7.  To start the process, you need more than just the
Internet address.  You have to connect to the FTP server at the other end.  In general, network programs are specialized for a
specific set of tasks.  Most systems have separate programs to handle file transfers, remote terminal logins, mail, etc.  When
you connect to 128.6.4.7, you have to specify that you want to talk to the FTP server.  This is done by having "well-known
sockets" for each server.  Recall that TCP uses port numbers to keep track of individual conversations.  User programs
normally use more or less random port numbers.  However specific port numbers are assigned to the programs that sit
waiting for requests.  For example, if you want to send a file, you will start a program called "ftp".  It will open a connection
using some random number, say 1234, for the port number on its end.  However it will specify port number 21 for the other
end. This is the official port number for the FTP server.  Note that there are two different programs involved.  You run ftp on
your side.  This is a program designed to accept commands from your terminal and pass them on to the other end.  The
program that you talk to on the other machine is the FTP server.  It is designed to accept commands from the network
connection, rather than an interactive terminal.  There is no need for your program to use a well-known socket number for
itself. Nobody is trying to find it.  However the servers have to have well-known numbers, so that people can open
connections to them and start sending them commands.  The official port numbers for each program are given in "Assigned
Numbers".

Note that a connection is actually described by a set of 4 numbers:  the Internet address at each end, and the TCP port number
at each end.  Every datagram has all four of those numbers in it.  (The Internet addresses are in the IP header, and the TCP
port numbers are in the TCP header.)  In order to keep things straight, no two connections can have the same set of numbers.
However it is enough for any one number to be different.  For example, it is perfectly possible for two different users on a
machine to be sending files to the same other machine.  This could result in connections with the following parameters:

Internet addresses TCP ports
connection 1  128.6.4.194, 128.6.4.7 1234, 21
connection 2  128.6.4.194, 128.6.4.7 1235, 21

Since the same machines are involved, the Internet addresses are the same.  Since they are both doing file transfers, one end
of the connection involves the well-known port number for FTP.  The only thing that differs is the port number for the
program that the users are running.  That’s enough of a difference.  Generally, at least one end of the connection asks the
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network software to assign it a port number that is guaranteed to be unique.  Normally, it’s the user’s end, since the server has
to use a well-known number.

Now that we know how to open connections, let’s get back to the applications programs. As mentioned earlier, once TCP
has opened a connection, we have something that might as well be a simple wire. All the hard parts are handled by TCP and
IP. However we still need some agreement as to what we send over this connection.  In effect this is simply an agreement on
what set of commands the application will understand, and the format in which they are to be sent.  Generally, what is sent is
a combination of commands and data.  They use context to differentiate.  For example, the mail protocol works like this:
Your mail program opens a connection to the mail server at the other end.  Your program gives it your machine’s name, the
sender of the message, and the recipients you want it sent to.  It then sends a command saying that it is starting the message.
At that point, the other end stops treating what it sees as commands, and starts accepting the message.  Your end then starts
sending the text of the message.  At the end of the message, a special mark is sent (a dot in the first column).  After that, both
ends understand that your program is again sending commands.  This is the simplest way to do things, and the one that most
applications use.

File transfer is somewhat more complex.  The file transfer protocol involves two different connections.  It starts out just like
mail. The user’s program sends commands like "log me in as this user", "here is my password", "send me the file with this
name". However once the command to send data is sent, a second connection is opened for the data itself.  It would certainly
be possible to send the data on the same connection, as mail does.  However file transfers often take a long time.  The
designers of the file transfer protocol wanted to allow the user to continue issuing commands while the transfer is going on.
For example, the user might make an inquiry, or he might abort the transfer.  Thus the designers felt it was best to use a
separate connection for the data and leave the original command connection for commands. (It is also possible to open
command connections to two different computers, and tell them to send a file from one to the other.  In that case, the data
couldn’t go over the command connection.)

Remote terminal connections use another mechanism still.  For remote logins, there is just one connection.  It normally sends
data. When it is necessary to send a command (e.g. to set the terminal type or to change some mode), a special character is
used to indicate that the next character is a command.  If the user happens to type that special character as data, two of them
are sent.

We are not going to describe the application protocols in detail in this document.  It’s better to read the RFC’s yourself.
However there are a couple of common conventions used by applications that will be described here.  First, the common
network representation: TCP/IP is intended to be usable on any computer.  Unfortunately, not all computers agree on how
data is represented.  There are differences in character codes (ASCII vs. EBCDIC), in end of line conventions (carriage
return, line feed, or a representation using counts), and in whether terminals expect characters to be sent individually or a line
at a time.  In order to allow computers of different kinds to communicate, each applications protocol defines a standard
representation. Note that TCP and IP do not care about the representation.  TCP simply sends octets.  However the programs
at both ends have to agree on how the octets are to be interpreted.  The RFC for each application specifies the standard
representation for that application.  Normally it is "net ASCII".  This uses ASCII characters, with end of line denoted by a
carriage return followed by a line feed.  For remote login, there is also a definition of a "standard terminal", which turns out
to be a half-duplex terminal with echoing happening on the local machine.  Most applications also make provisions for the
two computers to agree on other representations that they may find more convenient.  For example, PDP-10’s have 36-bit
words. There is a way that two PDP-10’s can agree to send a 36-bit binary file.  Similarly, two systems that prefer
full-duplex terminal conversations can agree on that.  However each application has a standard representation, which every
machine must support.

9



3.1 An example application: SMTP

In order to give a bit better idea what is involved in the application protocols, I’m going to show an example of SMTP, which
is the mail protocol.  (SMTP is "simple mail transfer protocol.)  We assume that a computer called TOPAZ.RUTGERS.EDU
wants to send the following message.

Date: Sat, 27 Jun 87 13:26:31 EDT
From: hedrick@topaz.rutgers.edu
To: levy@red.rutgers.edu
Subject: meeting

Let’s get together Monday at 1pm.

First, note that the format of the message itself is described by an Internet standard (RFC 822).  The standard specifies the
fact that the message must be transmitted as net ASCII (i.e. it must be ASCII, with carriage return/linefeed to delimit lines).
It also describes the general structure, as a group of header lines, then a blank line, and then the body of the message.
Finally, it describes the syntax of the header lines in detail.  Generally they consist of a keyword and then a value.

Note that the addressee is indicated as LEVY@RED.RUTGERS.EDU.  Initially, addresses were simply "person at machine".
However recent standards have made things more flexible.  There are now provisions for systems to handle other systems’
mail. This can allow automatic forwarding on behalf of computers not connected to the Internet.  It can be used to direct mail
for a number of systems to one central mail server.  Indeed there is no requirement that an actual computer by the name of
RED.RUTGERS.EDU even exist.  The name servers could be set up so that you mail to department names, and each
department’s mail is routed automatically to an appropriate computer.  It is also possible that the part before the @ is
something other than a user name.  It is possible for programs to be set up to process mail.  There are also provisions to
handle mailing lists, and generic names such as "postmaster" or "operator".

The way the message is to be sent to another system is described by RFC’s 821 and 974.  The program that is going to be
doing the sending asks the name server several queries to determine where to route the message. The first query is to find out
which machines handle mail for the name RED.RUTGERS.EDU.  In this case, the server replies that RED.RUTGERS.EDU
handles its own mail. The program then asks for the address of RED.RUTGERS.EDU, which is 128.6.4.2.  Then the mail
program opens a TCP connection to port 25 on 128.6.4.2.  Port 25 is the well-known socket used for receiving mail.  Once
this connection is established, the mail program starts sending commands.  Here is a typical conversation.  Each line is
labelled as to whether it is from TOPAZ or RED.  Note that TOPAZ initiated the connection:

RED 220 RED.RUTGERS.EDU SMTP Service at 29 Jun 87 05:17:18 EDT
TOPAZ HELO topaz.rutgers.edu
RED 250 RED.RUTGERS.EDU - Hello, TOPAZ.RUTGERS.EDU
TOPAZ MAIL From:<hedrick@topaz.rutgers.edu>
RED 250 MAIL accepted
TOPAZ RCPT To:<levy@red.rutgers.edu>
RED 250 Recipient accepted
TOPAZ DATA
RED 354 Start mail input; end with <CRLF>.<CRLF>
TOPAZ Date: Sat, 27 Jun 87 13:26:31 EDT
TOPAZ From: hedrick@topaz.rutgers.edu
TOPAZ To: levy@red.rutgers.edu
TOPAZ Subject: meeting
TOPAZ
TOPAZ Let’s get together Monday at 1pm.
TOPAZ .
RED 250 OK
TOPAZ QUIT
RED 221 RED.RUTGERS.EDU Service closing transmission channel

First, note that commands all use normal text.  This is typical of the Internet standards.  Many of the protocols use standard
ASCII commands.  This makes it easy to watch what is going on and to diagnose problems.  For example, the mail program

10



keeps a log of each conversation.  If something goes wrong, the log file can simply be mailed to the postmaster.  Since it is
normal text, he can see what was going on.  It also allows a human to interact directly with the mail server, for testing.
(Some newer protocols are complex enough that this is not practical.  The commands would have to have a syntax that would
require a significant parser.  Thus there is a tendency for newer protocols to use binary formats.  Generally they are structured
like C or Pascal record structures.)  Second, note that the responses all begin with numbers. This is also typical of Internet
protocols. The allowable responses are defined in the protocol.  The numbers allow the user program to respond
unambiguously. The rest of the response is text, which is normally for use by any human who may be watching or looking at
a log.  It has no effect on the operation of the programs.  (However there is one point at which the protocol uses part of the
text of the response.)  The commands themselves simply allow the mail program on one end to tell the mail server the
information it needs to know in order to deliver the message.  In this case, the mail server could get the information by
looking at the message itself. But for more complex cases, that would not be safe.  Every session must begin with a HELO,
which gives the name of the system that initiated the connection.  Then the sender and recipients are specified.  (There can be
more than one RCPT command, if there are several recipients.)  Finally the data itself is sent.  Note that the text of the
message is terminated by a line containing just a period.  (If such a line appears in the message, the period is doubled.)  After
the message is accepted, the sender can send another message, or terminate the session as in the example above.

Generally, there is a pattern to the response numbers.  The protocol defines the specific set of responses that can be sent as
answers to any given command.  However programs that don’t want to analyze them in detail can just look at the first digit.
In general, responses that begin with a 2 indicate success.  Those that begin with 3 indicate that some further action is
needed, as shown above.  4 and 5 indicate errors.  4 is a "temporary" error, such as a disk filling.  The message should be
saved, and tried again later.  5 is a permanent error, such as a non-existent recipient.  The message should be returned to the
sender with an error message.

(For more details about the protocols mentioned in this section, see RFC’s 821/822 for mail, RFC 959 for file transfer, and
RFC’s 854/855 for remote logins.  For the well-known port numbers, see the current edition of Assigned Numbers, and
possibly RFC 814.)

4. Protocols other than TCP: UDP and ICMP

So far, we have described only connections that use TCP.  Recall that TCP is responsible for breaking up messages into
datagrams, and reassembling them properly.  However in many applications, we have messages that will always fit in a single
datagram. An example is name lookup.  When a user attempts to make a connection to another system, he will generally
specify the system by name, rather than Internet address.  His system has to translate that name to an address before it can do
anything. Generally, only a few systems have the database used to translate names to addresses.  So the user’s system will
want to send a query to one of the systems that has the database.  This query is going to be very short.  It will certainly fit in
one datagram.  So will the answer.  Thus it seems silly to use TCP.  Of course TCP does more than just break things up into
datagrams. It also makes sure that the data arrives, resending datagrams where necessary.  But for a question that fits in a
single datagram, we don’t need all the complexity of TCP to do this.  If we don’t get an answer after a few seconds, we can
just ask again.  For applications like this, there are alternatives to TCP.

The most common alternative is UDP ("user datagram protocol"). UDP is designed for applications where you don’t need to
put sequences of datagrams together.  It fits into the system much like TCP.  There is a UDP header.  The network software
puts the UDP header on the front of your data, just as it would put a TCP header on the front of your data.  Then UDP sends
the data to IP, which adds the IP header, putting UDP’s protocol number in the protocol field instead of TCP’s protocol
number. However UDP doesn’t do as much as TCP does.  It doesn’t split data into multiple datagrams. It doesn’t keep track
of what it has sent so it can resend if necessary.  About all that UDP provides is port numbers, so that several programs can
use UDP at once.  UDP port numbers are used just like TCP port numbers.  There are well-known port numbers for servers
that use UDP.  Note that the UDP header is shorter than a TCP header.  It still has source and destination port numbers, and a
checksum, but that’s about it.  No sequence number, since it is not needed.  UDP is used by the protocols that handle name
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lookups (see IEN 116, RFC 882, and RFC 883), and a number of similar protocols.

Another alternative protocol is ICMP ("Internet control message protocol").  ICMP is used for error messages, and other
messages intended for the TCP/IP software itself, rather than any particular user program.  For example, if you attempt to
connect to a host, your system may get back an ICMP message saying "host unreachable".  ICMP can also be used to find out
some information about the network.  See RFC 792 for details of ICMP.  ICMP is similar to UDP, in that it handles messages
that fit in one datagram.  However it is even simpler than UDP.  It doesn’t even have port numbers in its header.  Since all
ICMP messages are interpreted by the network software itself, no port numbers are needed to say where a ICMP message is
supposed to go.

5. Keeping track of names and information: the domain system

As we indicated earlier, the network software generally needs a 32-bit Internet address in order to open a connection or send
a datagram.  However users prefer to deal with computer names rather than numbers. Thus there is a database that allows the
software to look up a name and find the corresponding number.  When the Internet was small, this was easy.  Each system
would have a file that listed all of the other systems, giving both their name and number.  There are now too many computers
for this approach to be practical.  Thus these files have been replaced by a set of name servers that keep track of host names
and the corresponding Internet addresses.  (In fact these servers are somewhat more general than that.  This is just one kind of
information stored in the domain system.)  Note that a set of interlocking servers are used, rather than a single central one.
There are now so many different institutions connected to the Internet that it would be impractical for them to notify a central
authority whenever they installed or moved a computer.  Thus naming authority is delegated to individual institutions.  The
name servers form a tree, corresponding to institutional structure.  The names themselves follow a similar structure.  A
typical example is the name BORAX.LCS.MIT.EDU.  This is a computer at the Laboratory for Computer Science (LCS) at
MIT. In order to find its Internet address, you might potentially have to consult 4 different servers.  First, you would ask a
central server (called the root) where the EDU server is.  EDU is a server that keeps track of educational institutions.  The
root server would give you the names and Internet addresses of several servers for EDU.  (There are several servers at each
level, to allow for the possibly that one might be down.)  You would then ask EDU where the server for MIT is.  Again, it
would give you names and Internet addresses of several servers for MIT.  Generally, not all of those servers would be at
MIT, to allow for the possibility of a general power failure at MIT.  Then you would ask MIT where the server for LCS is,
and finally you would ask one of the LCS servers about BORAX.  The final result would be the Internet address for
BORAX.LCS.MIT.EDU. Each of these levels is referred to as a "domain".  The entire name, BORAX.LCS.MIT.EDU, is
called a "domain name".  (So are the names of the higher-level domains, such as LCS.MIT.EDU, MIT.EDU, and EDU.)

Fortunately, you don’t really have to go through all of this most of the time.  First of all, the root name servers also happen to
be the name servers for the top-level domains such as EDU.  Thus a single query to a root server will get you to MIT.
Second, software generally remembers answers that it got before.  So once we look up a name at LCS.MIT.EDU, our
software remembers where to find servers for LCS.MIT.EDU, MIT.EDU, and EDU.  It also remembers the translation of
BORAX.LCS.MIT.EDU. Each of these pieces of information has a "time to live" associated with it.  Typically this is a few
days. After that, the information expires and has to be looked up again.  This allows institutions to change things.

The domain system is not limited to finding out Internet addresses.  Each domain name is a node in a database.  The node can
have records that define a number of different properties. Examples are Internet address, computer type, and a list of services
provided by a computer.  A program can ask for a specific piece of information, or all information about a given name. It is
possible for a node in the database to be marked as an "alias" (or nickname) for another node.  It is also possible to use the
domain system to store information about users, mailing lists, or other objects.

There is an Internet standard defining the operation of these databases, as well as the protocols used to make queries of them.
Every network utility has to be able to make such queries, since this is now the official way to evaluate host names.
Generally utilities will talk to a server on their own system.  This server will take care of contacting the other servers for
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them. This keeps down the amount of code that has to be in each application program.

The domain system is particularly important for handling computer mail.  There are entry types to define what computer
handles mail for a given name, to specify where an individual is to receive mail, and to define mailing lists.

(See RFC’s 882, 883, and 973 for specifications of the domain system.  RFC 974 defines the use of the domain system in
sending mail.)

6. Routing

The description above indicated that the IP implementation is responsible for getting datagrams to the destination indicated
by the destination address, but little was said about how this would be done. The task of finding how to get a datagram to its
destination is referred to as "routing".  In fact many of the details depend upon the particular implementation.  However some
general things can be said.

First, it is necessary to understand the model on which IP is based.  IP assumes that a system is attached to some local
network. We assume that the system can send datagrams to any other system on its own network.  (In the case of Ethernet, it
simply finds the Ethernet address of the destination system, and puts the datagram out on the Ethernet.)  The problem comes
when a system is asked to send a datagram to a system on a different network.  This problem is handled by gateways.  A
gateway is a system that connects a network with one or more other networks.  Gateways are often normal computers that
happen to have more than one network interface.  For example, we have a Unix machine that has two different Ethernet
interfaces. Thus it is connected to networks 128.6.4 and 128.6.3.  This machine can act as a gateway between those two
networks. The software on that machine must be set up so that it will forward datagrams from one network to the other.  That
is, if a machine on network 128.6.4 sends a datagram to the gateway, and the datagram is addressed to a machine on network
128.6.3, the gateway will forward the datagram to the destination.  Major communications centers often have gateways that
connect a number of different networks.  (In many cases, special-purpose gateway systems provide better performance or
reliability than general-purpose systems acting as gateways.  A number of vendors sell such systems.)

Routing in IP is based entirely upon the network number of the destination address.  Each computer has a table of network
numbers. For each network number, a gateway is listed.  This is the gateway to be used to get to that network.  Note that the
gateway doesn’t have to connect directly to the network.  It just has to be the best place to go to get there. For example at
Rutgers, our interface to NSFnet is at the John von Neuman Supercomputer Center (JvNC). Our connection to JvNC is via a
high-speed serial line connected to a gateway whose address is 128.6.3.12.  Systems on net 128.6.3 will list 128.6.3.12 as the
gateway for many off-campus networks.  However systems on net 128.6.4 will list 128.6.4.1 as the gateway to those same
off-campus networks.  128.6.4.1 is the gateway between networks 128.6.4 and 128.6.3, so it is the first step in getting to
JvNC.

When a computer wants to send a datagram, it first checks to see if the destination address is on the system’s own local
network. If so, the datagram can be sent directly.  Otherwise, the system expects to find an entry for the network that the
destination address is on. The datagram is sent to the gateway listed in that entry.  This table can get quite big.  For example,
the Internet now includes several hundred individual networks.  Thus various strategies have been developed to reduce the
size of the routing table.  One strategy is to depend upon "default routes".  Often, there is only one gateway out of a network.
This gateway might connect a local Ethernet to a campus-wide backbone network.  In that case, we don’t need to have a
separate entry for every network in the world.  We simply define that gateway as a "default".  When no specific route is
found for a datagram, the datagram is sent to the default gateway.  A default gateway can even be used when there are several
gateways on a network.  There are provisions for gateways to send a message saying "I’m not the best gateway -- use this one
instead." (The message is sent via ICMP.  See RFC 792.)  Most network software is designed to use these messages to add
entries to their routing tables. Suppose network 128.6.4 has two gateways, 128.6.4.59 and 128.6.4.1.  128.6.4.59 leads to
several other internal Rutgers networks.  128.6.4.1 leads indirectly to the NSFnet.  Suppose we set 128.6.4.59 as a default
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gateway, and have no other routing table entries.  Now what happens when we need to send a datagram to MIT?  MIT is
network 18.  Since we have no entry for network 18, the datagram will be sent to the default, 128.6.4.59.  As it happens, this
gateway is the wrong one.  So it will forward the datagram to 128.6.4.1.  But it will also send back an error saying in effect:
"to get to network 18, use 128.6.4.1".  Our software will then add an entry to the routing table.  Any future datagrams to MIT
will then go directly to 128.6.4.1.  (The error message is sent using the ICMP protocol.  The message type is called "ICMP
redirect.")

Most IP experts recommend that individual computers should not try to keep track of the entire network. Instead, they should
start with default gateways, and let the gateways tell them the routes, as just described.  However this doesn’t say how the
gateways should find out about the routes.  The gateways can’t depend upon this strategy.  They have to have fairly complete
routing tables.  For this, some sort of routing protocol is needed. A routing protocol is simply a technique for the gateways to
find each other, and keep up to date about the best way to get to every network.  RFC 1009 contains a review of gateway
design and routing.  However rip.doc is probably a better introduction to the subject.  It contains some tutorial material, and a
detailed description of the most commonly-used routing protocol.

7. Details about Internet addresses: subnets and broadcasting

As indicated earlier, Internet addresses are 32-bit numbers, normally written as 4 octets (in decimal), e.g. 128.6.4.7.  There
are actually 3 different types of address. The problem is that the address has to indicate both the network and the host within
the network.  It was felt that eventually there would be lots of networks.  Many of them would be small, but probably 24 bits
would be needed to represent all the IP networks.  It was also felt that some very big networks might need 24 bits to represent
all of their hosts.  This would seem to lead to 48 bit addresses.  But the designers really wanted to use 32 bit addresses.  So
they adopted a kludge. The assumption is that most of the networks will be small.  So they set up three different ranges of
address. Addresses beginning with 1 to 126 use only the first octet for the network number. The other three octets are
available for the host number.  Thus 24 bits are available for hosts.  These numbers are used for large networks. But there
can only be 126 of these very big networks.  The Arpanet is one, and there are a few large commercial networks.  But few
normal organizations get one of these "class A" addresses.  For normal large organizations, "class B" addresses are used.
Class B addresses use the first two octets for the network number.  Thus network numbers are 128.1 through 191.254.  (We
avoid 0 and 255, for reasons that we see below.  We also avoid addresses beginning with 127, because that is used by some
systems for special purposes.)  The last two octets are available for host addesses, giving 16 bits of host address.  This allows
for 64516 computers, which should be enough for most organizations.  (It is possible to get more than one class B address, if
you run out.)  Finally, class C addresses use three octets, in the range 192.1.1 to 223.254.254.  These allow only 254 hosts on
each network, but there can be lots of these networks.  Addresses above 223 are reserved for future use, as class D and E
(which are currently not defined).

Many large organizations find it convenient to divide their network number into "subnets". For example, Rutgers has been
assigned a class B address, 128.6.  We find it convenient to use the third octet of the address to indicate which Ethernet a host
is on.  This division has no significance outside of Rutgers. A computer at another institution would treat all datagrams
addressed to 128.6 the same way.  They would not look at the third octet of the address.  Thus computers outside Rutgers
would not have different routes for 128.6.4 or 128.6.5.  But inside Rutgers, we treat 128.6.4 and 128.6.5 as separate
networks. In effect, gateways inside Rutgers have separate entries for each Rutgers subnet, whereas gateways outside
Rutgers just have one entry for 128.6. Note that we could do exactly the same thing by using a separate class C address for
each Ethernet.  As far as Rutgers is concerned, it would be just as convenient for us to have a number of class C addresses.
However using class C addresses would make things inconvenient for the rest of the world.  Every institution that wanted to
talk to us would have to have a separate entry for each one of our networks. If every institution did this, there would be far
too many networks for any reasonable gateway to keep track of.  By subdividing a class B network, we hide our internal
structure from everyone else, and save them trouble. This subnet strategy requires special provisions in the network
software. It is described in RFC 950.
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0 and 255 have special meanings. 0 is reserved for machines that don’t know their address.  In certain circumstances it is
possible for a machine not to know the number of the network it is on, or even its own host address.  For example, 0.0.0.23
would be a machine that knew it was host number 23, but didn’t know on what network.

255 is used for "broadcast".  A broadcast is a message that you want every system on the network to see.  Broadcasts are used
in some situations where you don’t know who to talk to.  For example, suppose you need to look up a host name and get its
Internet address.  Sometimes you don’t know the address of the nearest name server.  In that case, you might send the request
as a broadcast.  There are also cases where a number of systems are interested in information. It is then less expensive to
send a single broadcast than to send datagrams individually to each host that is interested in the information.  In order to send
a broadcast, you use an address that is made by using your network address, with all ones in the part of the address where the
host number goes.  For example, if you are on network 128.6.4, you would use 128.6.4.255 for broadcasts.  How this is
actually implemented depends upon the medium. It is not possible to send broadcasts on the Arpanet, or on point to point
lines. However it is possible on an Ethernet.  If you use an Ethernet address with all its bits on (all ones), every machine on
the Ethernet is supposed to look at that datagram.

Although the official broadcast address for network 128.6.4 is now 128.6.4.255, there are some other addresses that may be
treated as broadcasts by certain implementations.  For convenience, the standard also allows 255.255.255.255 to be used.
This refers to all hosts on the local network.  It is often simpler to use 255.255.255.255 instead of finding out the network
number for the local network and forming a broadcast address such as 128.6.4.255.  In addition, certain older
implementations may use 0 instead of 255 to form the broadcast address.  Such implementations would use 128.6.4.0 instead
of 128.6.4.255 as the broadcast address on network 128.6.4.  Finally, certain older implementations may not understand about
subnets. Thus they consider the network number to be 128.6.  In that case, they will assume a broadcast address of
128.6.255.255 or 128.6.0.0.  Until support for broadcasts is implemented properly, it can be a somewhat dangerous feature to
use.

Because 0 and 255 are used for unknown and broadcast addresses, normal hosts should never be given addresses containing 0
or 255.  Addresses should never begin with 0, 127, or any number above 223. Addresses violating these rules are sometimes
referred to as "Martians", because of rumors that the Central University of Mars is using network 225.

8. Datagram fragmentation and reassembly

TCP/IP is designed for use with many different kinds of network.  Unfortunately, network designers do not agree about how
big packets can be.  Ethernet packets can be 1500 octets long.  Arpanet packets have a maximum of around 1000 octets.
Some very fast networks have much larger packet sizes.  At first, you might think that IP should simply settle on the smallest
possible size.  Unfortunately, this would cause serious performance problems.  When transferring large files, big packets are
far more efficient than small ones.  So we want to be able to use the largest packet size possible.  But we also want to be able
to handle networks with small limits.  There are two provisions for this. First, TCP has the ability to "negotiate" about
datagram size.  When a TCP connection first opens, both ends can send the maximum datagram size they can handle. The
smaller of these numbers is used for the rest of the connection. This allows two implementations that can handle big
datagrams to use them, but also lets them talk to implementations that can’t handle them.  However this doesn’t completely
solve the problem.  The most serious problem is that the two ends don’t necessarily know about all of the steps in between.
For example, when sending data between Rutgers and Berkeley, it is likely that both computers will be on Ethernets.  Thus
they will both be prepared to handle 1500-octet datagrams.  However the connection will at some point end up going over the
Arpanet. It can’t handle packets of that size.  For this reason, there are provisions to split datagrams up into pieces.  (This is
referred to as "fragmentation".)  The IP header contains fields indicating the a datagram has been split, and enough
information to let the pieces be put back together.  If a gateway connects an Ethernet to the Arpanet, it must be prepared to
take 1500-octet Ethernet packets and split them into pieces that will fit on the Arpanet.  Furthermore, every host
implementation of TCP/IP must be prepared to accept pieces and put them back together.  This is referred to as "reassembly".
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TCP/IP implementations differ in the approach they take to deciding on datagram size.  It is fairly common for
implementations to use 576-byte datagrams whenever they can’t verify that the entire path is able to handle larger packets.
This rather conservative strategy is used because of the number of implementations with bugs in the code to reassemble
fragments. Implementors often try to avoid ever having fragmentation occur.  Different implementors take different
approaches to deciding when it is safe to use large datagrams.  Some use them only for the local network.  Others will use
them for any network on the same campus.  576 bytes is a "safe" size, which every implementation must support.

9. Ethernet encapsulation: ARP

There was a brief discussion earlier about what IP datagrams look like on an Ethernet.  The discussion showed the Ethernet
header and checksum.  However it left one hole: It didn’t say how to figure out what Ethernet address to use when you want
to talk to a given Internet address.  In fact, there is a separate protocol for this, called ARP ("address resolution protocol").
(Note by the way that ARP is not an IP protocol.  That is, the ARP datagrams do not have IP headers.)  Suppose you are on
system 128.6.4.194 and you want to connect to system 128.6.4.7.  Your system will first verify that 128.6.4.7 is on the same
network, so it can talk directly via Ethernet.  Then it will look up 128.6.4.7 in its ARP table, to see if it already knows the
Ethernet address.  If so, it will stick on an Ethernet header, and send the packet.  But suppose this system is not in the ARP
table. There is no way to send the packet, because you need the Ethernet address.  So it uses the ARP protocol to send an
ARP request.  Essentially an ARP request says "I need the Ethernet address for 128.6.4.7".  Every system listens to ARP
requests. When a system sees an ARP request for itself, it is required to respond. So 128.6.4.7 will see the request, and will
respond with an ARP reply saying in effect "128.6.4.7 is 8:0:20:1:56:34".  (Recall that Ethernet addresses are 48 bits.  This is
6 octets. Ethernet addresses are conventionally shown in hex, using the punctuation shown.)  Your system will save this
information in its ARP table, so future packets will go directly.  Most systems treat the ARP table as a cache, and clear
entries in it if they have not been used in a certain period of time.

Note by the way that ARP requests must be sent as "broadcasts".  There is no way that an ARP request can be sent directly to
the right system.  After all, the whole reason for sending an ARP request is that you don’t know the Ethernet address.  So an
Ethernet address of all ones is used, i.e. ff:ff:ff:ff:ff:ff.  By convention, every machine on the Ethernet is required to pay
attention to packets with this as an address.  So every system sees every ARP requests.  They all look to see whether the
request is for their own address.  If so, they respond.  If not, they could just ignore it.  (Some hosts will use ARP requests to
update their knowledge about other hosts on the network, even if the request isn’t for them.) Note that packets whose IP
address indicates broadcast (e.g. 255.255.255.255 or 128.6.4.255) are also sent with an Ethernet address that is all ones.

10. Getting more information

This directory contains documents describing the major protocols.  There are literally hundreds of documents, so we have
chosen the ones that seem most important.  Internet standards are called RFC’s.  RFC stands for Request for Comment.  A
proposed standard is initially issued as a proposal, and given an RFC number.  When it is finally accepted, it is added to
Official Internet Protocols, but it is still referred to by the RFC number.  We have also included two IEN’s.  (IEN’s used to be
a separate classification for more informal documents.  This classification no longer exists -- RFC’s are now used for all
official Internet documents, and a mailing list is used for more informal reports.)  The convention is that whenever an RFC is
revised, the revised version gets a new number.  This is fine for most purposes, but it causes problems with two documents:
Assigned Numbers and Official Internet Protocols.  These documents are being revised all the time, so the RFC number
keeps changing.  You will have to look in rfc-index.txt to find the number of the latest edition.  Anyone who is seriously
interested in TCP/IP should read the RFC describing IP (791). RFC 1009 is also useful.  It is a specification for gateways to
be used by NSFnet.  As such, it contains an overview of a lot of the TCP/IP technology.  You should probably also read the
description of at least one of the application protocols, just to get a feel for the way things work.  Mail is probably a good one
(821/822). TCP (793) is of course a very basic specification.  However the spec is fairly complex, so you should only read
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this when you have the time and patience to think about it carefully.  Fortunately, the author of the major RFC’s (Jon Postel)
is a very good writer.  The TCP RFC is far easier to read than you would expect, given the complexity of what it is
describing. You can look at the other RFC’s as you become curious about their subject matter.

Here is a list of the documents you are more likely to want:

rfc-index list of all RFC’s

rfc1065/6/7 Simple Network Management Protocol (SNMP).  A protocol to get information from gateways and hosts,
to monitor failures, and to reconfigure gateways and hosts remotely.  This protocol will be the foundation
for network management activities involving TCP/IP.  RFC 1028 documents the Simple Gateway
Monitoring Protocol (SGMP), which is an interim protocol on which SNMP is based.  SGMP will be
replaced by SNMP during 1988/89.

rfc1064,1056,937
protocols for reading mail on PC’s

rfc1062 Assigned Numbers.  If you are working with TCP/IP, you will probably want a hardcopy of this as a
reference. It’s not very exciting to read, but is essential.  It lists all the offically defined well-known ports
and lots of other things.

rfc1059 Network Time Protocol.  A protocol for synchronizing the time on all your machines.  Also allows you to
get time from one of the national time standards.

rfc1058 Routing Information Protocol.  Details of the most commonly-used routing protocol.

rfc1057 RPC. A protocol for remote procedure calls.  Sun’s Network File System is based on this.  The actual
NFS protocol specification is currently available only from Sun.  Sun supplies a public domain
implementation of RPC.  Aside from its use by NFS (whose implementation is not public domain), RPC
has been used by a number of groups for building server/client systems such as remote database servers.
See also RFC 1014.

rfc1042 IP encapsulation for IEEE 802 networks.  This will be used for the IEEE token ring, broadband, etc.  In
principle it seems that this would cover Ethernet, since Ethernet is IEEE 802.3. However the normal
encapsulation used on Ethernet is defined by RFC 894.

rfc1032/3/4/5
domains (the database used to go from host names to Internet address and back -- also used to handle
UUCP these days).  This includes protocol standards, as well as information directed at people who are
going to have to set up a domain name server.  Every site should have a copy of these documents.

rfc1014 XDR: External Data Representation Standard.  This is part of the specifications for Sun’s RPC protocol
(RFC 1057), which is the protocol underlying Sun’s Network File System.

rfc1013 X Window System Protocol, Version 11.  Documents the most commonly used remote window system.

rfc1012 list of all RFC’s below 1000, with somewhat more information than rfc-index.

rfc1011 Official Protocols.  It’s useful to scan this to see what tasks protocols have been built for. This defines
which RFC’s are actual standards, as opposed to requests for comments.

rfc1009 NSFnet gateway specifications.  A good overview of IP routing and gateway technology.

rfc1001/2 netBIOS: networking for PC’s

rfc959 FTP (file transfer)

rfc950 subnets

rfc894 how IP is to be put on Ethernet, see also rfc825

rfc854/5 telnet - protocol for remote logins

rfc826 ARP - protocol for finding out Ethernet addresses

rfc821/2 mail

rfc814 names and ports - general concepts behind well-known ports

rfc793 TCP

rfc792 ICMP

rfc791 IP

rfc768 UDP
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ien-116 old name server (still needed by several kinds of system)

ien-48 the Catenet model, general description of the philosophy behind TCP/IP

The following documents are somewhat more specialized.

rfc1055 SLIP (IP for dialup lines)

rfc1054 IP multicasting

rfc1048 Bootp, a protocol often used to allow diskless systems to find their IP address.

rfc813 window and acknowledgement strategies in TCP

rfc815 datagram reassembly techniques

rfc816 fault isolation and resolution techniques

rfc817 modularity and efficiency in implementation

rfc879 the maximum segment size option in TCP

rfc896 congestion control

rfc827,888,904,975,985
EGP and related issues

To those of you who may be reading this document remotely instead of at Rutgers: The most important RFC’s have been
collected into a three-volume set, the DDN Protocol Handbook.  It is available from the DDN Network Information Center,
SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025 (telephone: 800-235-3155).  You should be able
to get them via anonymous FTP from sri-nic.arpa.  File names are:

RFC’s:
rfc:rfc-index.txt
rfc:rfcxxx.txt

IEN’s:
ien:ien-index.txt
ien:ien-xxx.txt

Sites with access to UUCP but not FTP may be able to retreive them via UUCP from UUCP host rutgers.  The file names
would be

RFC’s:
/topaz/pub/pub/tcp-ip-docs/rfc-index.txt
/topaz/pub/pub/tcp-ip-docs/rfcxxx.txt

IEN’s:
/topaz/pub/pub/tcp-ip-docs/ien-index.txt
/topaz/pub/pub/tcp-ip-docs/ien-xxx.txt

Note that SRI-NIC has the entire set of RFC’s and IEN’s, but rutgers and topaz have only those specifically mentioned
above.
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