
 Interface Builder™

and

 Object-Oriented Design
in the

 NeXTstep® Environment

by

Michael K. Mahoney

California State University, Long Beach

mahoney@csulb.edu

The original version of this tutorial was presented on 29 April 1991 at CHI ’91 in New Orleans.
CHI is the Computer-Human Interface Conference sponsored by ACM-SIGCHI.

Copyright ©1991 by Michael K. Mahoney

Portions of this tutorial taken from the NeXT manuals are
copyright ©1990 NeXT Computer, Inc.
and are used herein with permission.

SCaNeWS A Supplement

Mahoney - 2 - CHI ‘91 Tutorial

Abstract
NeXTstep’s Interface Builder and Application Kit objects are
powerful tools which drastically reduce the cost of developing
applications with graphical user interfaces. By working through this
tutorial you will learn how to build NeXTstep 2.0 user interfaces
(mostly in a graphical fashion), make connections between user
interface (and other) objects and generate skeletal Objective-C
language files without any programming! You’ll also get an
introduction to object-oriented programming using the Objective-C
language. The only prerequisite is a knowledge of the C
programming language.

The tutorial begins with a brief overview of the NeXTstep user
interface and the objects in its Application Kit. Then step-by-step
instructions for building several user interfaces for various
applications are given. By performing these steps you’ll learn how to
drag Application Kit objects (e.g. windows, buttons, forms, menus)
from interface object palettes into a developing application’s
windows and then customize these objects to suit an application.
You’ll set up interactions between these and custom objects (where
the computational engine of an application resides) by drawing
connection lines. Most of the types of operations available in
Interface Builder will be used in these applications.

Projects 1 and 2 are mainly concerned with showing how to use
Interface Builder to build simple interfaces and contain almost no
programming at all. Project 3 contains an introduction to displaying
custom graphics. Project 4 contains an introduction to handling
mouse events. Project 5 shows how to read information from a class
interface file into Interface Builder. Project 6 shows how to set up
your own interface object as an integral part of Interface Builder. The
content of several of Interface Builder’s windows will be discussed
after most projects. Other tools such as an icon builder and sound
editor will be used to build user interface features.

 Mahoney - 3 - CHI ’91 Tutorial

 Instructor Biography
Michael K. Mahoney is a Professor and chair of the Computer
Engineering and Computer Science at California State University,
Long Beach. He started programming a NeXT Computer in
January 1989, attended a developer workshop given by NeXT in
May 1989 and conducted three semesters of NeXT software
development seminars at CSULB. He has given presentations on
Interface Builder at ACM meetings in Seattle and Los Angeles and
presented the original version of this tutorial at CHI’91 in New
Orleans. He is currently directing several students who are
developing 3D computer graphics applications in the NeXTstep
environment.

Mike is founder and President of SCaN, the Southern California
NeXT Users’ group, which meets monthly at various sites in Los
Angeles County. He is also co-editor of SCaNeWS, which together
with this tutorial can be obtained from the nova.cc.purdue.edu
archive site and possibly others (see page 75).

Mike earned his Ph.D. in mathematics at the University of
California, Santa Barbara in 1979. He has published papers in
computer graphics, computer science education and mathematics.
He won campus-wide teaching awards at both UCSB and CSULB.

 5/7/91

Michael K. Mahoney

Computer Engineering and Computer Science Dept
California State University, Long Beach
Long Beach, CA 90840

(213) 985-1550
e-mail: mahoney@csulb.edu or
 mahoney@beach.csulb.edu

Mahoney - 4 - CHI ‘91 Tutorial

Table of Contents
 Page
Abstract 2
Instructor Biography 3
Table of Contents 4
NextApps and NextDeveloper Apps for Application Dev elopment 6

NeXTstep User Interface (Window Types) 7
NeXTstep User Interface (WriteNow Examples) 8

NeXTstep Menu Structure (WriteNow Examples) 9

NeXTstep Panels (WriteNow Examples) 10

Building an Icon with the Icon Application 12

Apps & Interface Builder (IB), Classes & Objects 13

Application Kit Hierarchy of Classes 14

Project 1A - OneButton (which makes a Sound) 15

Project 1A Step by Step 16

New Application in IB (screen dump) 18

OneButton in IB (screen dump) 19

OneButton in Workspace (screen dump) 20

Project 1A Wrap-up 21

The Files Created by IB 22

The File Window 23

The Sounds Window 24

Project 1B - OneButton (revised) 25

Project 1B Step by Step 26

OneButton with Icons in IB (screen dump) 30

OneButton with Application Icon in WM (screen dump) 31

Project 1B Wrap-up 32

The Icons Window 33

The Palettes Window (s) 34

(continues)

 Mahoney - 5 - CHI ’91 Tutorial

 Table of Contents (continued)
 Page
The Inspector Window(s) 36

The Project Inspector 37

Project 2 - Convert Kilometers to Miles (KmToMi) 38

The 4 Messages in KmToMi 39

Project 2 Step by Step 40

Outlet Connection (screen dump) 44

Unparse and performClick (screen dump) 45

KmToMi in Workspace (screen dump) 46

Project 2 Wrap-up 47

The Classes Window 48

Operations on Classes 49

The Application Development Process 50

Project 3 - SimpleGraphics (custom drawing in a window) 51

Project 3 Step by Step 52

SimpleGraphics in IB (screen dump) 55

SimpleGraphics in Workspace (screen dump) 56

SimpleGraphics Objective-C Files 57

Project 3 Wrap-up 61

Project 4 - PenDraw (handling Mouse Events) 62

Project 4 Step by Step 63

PenDraw Objective-C Language Files 65

Project 5 - Parse Example (making a class known to IB) 70

Project 5 Step by Step 71

Project 6 - SketchPalette (customizing Interface Builder) 72

What to do next? 73

Brief Glossary (mainly Objective-C terms) 74

References 75

Acknowledgments and Trademarks 76

Mahoney - 6 - CHI ‘91 Tutorial

NextApps and NextDeveloper Apps for
Application Development

The following application programs (which reside in the
 /NextApps or NextDeveloper/Demos folders) are
 useful for application development.

Interface Builder

Digital Librarian ™ (can search for
Application Kit objects and methods,
etc. in NeXT manuals)

Edit (editor for writing code)

Terminal (UNIX shell)

Yap (for writing and testing PostScript®
code)

Icon (for creating custom icons; a
 “CHI_Icon” will be created and
 used later in IB projects)

BusyBox (for learning about the
NeXTstep User Interface), in the
/NextDeveloper/Examples folder

Other useful applications for application development may be found
in the /NextDeveloper/Apps folder.

 Mahoney - 7 - CHI ’91 Tutorial

 NeXTstep User Interface
Window Types

• Standard Window - the main working area of an
application (e.g. the window containing the file
being edited in a word processor)

• Panel - used to give instructions to an application

• Menu - contains a list of commands

• Pop-up list - menu-like list that appears on top of a
button when the button is pressed

• Pull-down list - menu-like list that appears below a
button when the button is pressed

• Miniwindow - small titled window representing a
window that’s been miniaturized

• Freestanding (or docked) icon - represents the
whole application

The key window is the window associated with
keyboard actions. The main window is the standard
window where a user is currently working (and is
usually also the key window).

Mahoney - 8 - CHI ‘91 Tutorial

NeXTstep User Interface
(examples from the WriteNow® wordprocessor)

Application Icon Document Icon Miniwindow
(Dock, File Viewer, (File Viewer) (freestanding)
 or freestanding)

 Mahoney - 9 - CHI ’91 Tutorial

 NeXTstep Menu Structure
(examples from WriteNow)

main menu

Mahoney - 10 - CHI ‘91 Tutorial

NeXTstep Panels
(examples from WriteNow)

 Mahoney - 11 - CHI ’91 Tutorial

 NeXTstep Panels (cont.)
(examples from WriteNow)

Mahoney - 12 - CHI ‘91 Tutorial

 Building an Icon with the Icon App

By going through the steps below we will build an application icon, one
which can be used to identify an application in the Workspace.

When we’re done it will look something like this:

We associate an application icon with an application while in Interface
Builder. It must be 48 x 48 pixels in size and have an alpha channel. An
icon with these properties can also be used to identify document types
in the Workspace.

1. Launch the Icon application by double-clicking on its icon (in the
 /NextDeveloper/Demos folder).

2. Open an existing icon file (e.g. BusyBoxApp.tiff in the /NextDeveloper/
Examples/BusyBox folder) by choosing Open in Icon’s Image submenu
and finding the “.tiff” file. (This will insure that the size and properties will be
those of an application icon.)

3. Choose the rectangle (next to the white circle) in the Tools Palette .

4. Change the rectangle color to gray by choosing “Colors” in the Tools
submenu to open the Colors panel and then clicking on the color in the
panel.

5. Drag across the BusyBox icon so it’s completely gra y.

6. Choose the pencil in the Tools palette .

7. Change the color of the pencil to black (in the Colors panel) and make
the pencil width larger by clicking in the “Line Width ” box in the
Inspector panel .

8. Draw a “CHI symbol” or whatever else you want on top of the square gray
icon.

9. Save the image in your home folder with the name “CHI_Icon.tiff ” by
choosing “Save As ” in the Image submenu and typing “~/CHI_Icon.tiff ”.

10. Quit the Icon Application .

11. Drag the “TIFF” icon titled “CHI_Icon.tiff ” onto the File Viewer’s Shelf .

 Mahoney - 13 - CHI ’91 Tutorial

 Applications and Interface Builder
An application can be thought of as having two parts

1. a user interface part , and

2. a computational part (where the programming logic unique to your
application, the non-interface code resides).

Interface Builder is a tool that

• lets you graphically (for the most part) specify your application’s user interface
part which consists of objects

• sets up the corresponding objects (e.g. buttons, menus, windows) for you

• lets you add your own custom objects (which may contain the computational
part)

• makes it easy for you to establish connections between these objects so that
messages can be passed between them

• greatly speeds up the application development process.

 Classes and Objects
• All NeXTstep applications use the Application Kit to implement a window-

based user interface.

• Buttons, sliders, menus, windows and more are defined as classes in the
Application Kit.

• Each class inherits both instance variables (data structures) and methods
(procedures) from all the classes above it in the hierarchy.

In the projects in this tutorial, we will use the Application Kit to

1. create objects (instances) belonging to the classes defined in the Kit (e.g.
we’ll create buttons, windows, menus, etc.)

2. define new subclasses of Application Kit classes and create instances of
the subclasses for our applications (which may contain new “instance”
variables and override methods)

Analogy: The following rough analogy between classes and objects comes from
Pascal (or C). A class is like a type declaration while an object is like a variable of
that type. Of course, there’s much more to classes and objects than types and
variables (e.g. inheritance, encapsulation, methods).

Mahoney - 14 - CHI ‘91 Tutorial

The Application Kit Hierarchy of Classes

W
in

do
w

N
X

B
itm

ap
Im

ag
eR

ep

N
X

Im
ag

eR
ep

N
X

Im
ag

e
N

X
Im

ag
e

N
X

C
ur

so
r

F
on

t

F
on

tM
an

ag
er

P
rin

tIn
fo

P
as

te
bo

ar
d

S
pe

ak
er

Li
st

en
er

N
X

Jo
ur

na
le

r

C
el

l

N
X

E
P

S
Im

ag
eR

ep

N
X

C
us

to
m

Im
ag

eR
ep

N
X

B
ro

w
se

rC
el

l

A
ct

io
nC

el
l

F
or

m
C

el
l

S
lid

er
C

el
l

N
X

C
ac

he
dI

m
ag

eR
ep

S
el

ec
tio

nC
el

l

R
es

po
nd

er
A

pp
lic

at
io

n

V
ie

w
F

or
m

T
ex

t

C
on

tr
ol

B
ox

N
X

S
pl

itV
ie

w

S
cr

ol
lV

ie
w

C
lip

V
ie

w

N
X

B
ro

w
se

r

M
at

rix

S
lid

er

S
cr

ol
le

r

N
X

C
ol

or
W

el
l

P
an

el

F
on

tP
an

el

P
rin

tP
an

el

N
X

Im
ag

e

O
bj

ec
t

P
op

U
pL

is
t

M
en

u

O
pe

nP
an

el
S

av
eP

an
el

N
X

C
ol

or
P

an
el

P
ag

eL
ay

ou
t

T
ex

tF
ie

ld

B
ut

to
n

M
en

uC
el

l
B

ut
to

nC
el

l

T
ex

tF
ie

ld
C

el
l

Courtesy of NeXT Computer, Inc

 Mahoney - 15 - CHI ’91 Tutorial

 Project 1A - OneButton
(a very simple application with

a window containing a single button
which makes a sound when pressed)

When Project 1A is complete, the main menu and
window of OneButton will look like

The objectives of Project 1A are to learn how to use
Interface Builder to

• create a complete application from scratch

• drag a button into an application’s interface

• add a sound to a button

• test an application’s interface (while in IB)

• “make” an application.

Mahoney - 16 - CHI ‘91 Tutorial

Project 1A Step by Step
1. Launch Interface Builder (IB) by double-clicking its icon (which resides in

the /NextApps folder). Only the main IB menu and Palettes window are
visible.

2. Choose New Application from the File submenu.

Three more windows appear - the File window containing icons, the main
menu (“UNTITLED”) and main window (“My Window”) of the new
application.

3. Choose Save As from the File submenu and enter “proj1/OneButton” .
Click on Create when prompted to create a new folder called “proj1” .

The interface file “OneButton.nib” will be saved in this newly created folder.

4. Choose Project from the File submenu and click the OK button in the
Project Inspector (which opens when Project is chosen) to create a
project of the Application type. (Other types of projects are discussed in
Project 6.)

The four files “IB.proj”, “OneButton.iconheader”, “OneButton_main.m ”
and “Makefile ” will be saved in the proj1 folder.

The content of these files is discussed on page 22. See the “New
Application in IB” screen dump on page 18. Note the files in the Workspace
Manager’s (WM) File Viewer .

5. Add a button to the application’s interface by dragging a “Button” icon
from the Palettes window into “My Window”.

6. Make the button larger by dragging on its handles.

7. Rename the button to “Funky Sound” by double-clicking on the name
“Button” and typing (without a Return) the new name.

8. Enlarge the “Funky Sound” text by repeatedly clicking Larger in IB’s
Format submenu.

9. Make “My Window” smaller by dragging on the 3 parts of its resize bar (at
the window’s bottom).

10. Force the button to make a sound when clicked by performing steps 11-
14 below.

11. Open the Sounds window by double-clicking on the Sounds suitcase icon
in the File window. Drag on its slider to find the sound icon labeled “Funk ”.

 Mahoney - 17 - CHI ’91 Tutorial

 12. Open the Sound Inspector by double-clicking the “Funk” icon in the
Sounds window. We can inspect or modify sounds in this inspector.

13. Play the sound “Funk” (a system sound) by clicking the Play button in the
Sound Inspector.

14. Add the “Funk” sound to the “Funky Sound” button by dragging the
“Funk” sound icon from the Sounds window and releasing it on top of the
button.

15. Test OneButton’s interface while in IB by choosing Test Interface from
IB’s File submenu. Click on the “Funky Sound” button to hear the “Funk”
sound.

16. End the interface test by double-clicking on the big switch icon
(which replaces the IB icon during interface testing) or by choosing
Quit from OneButton’s main menu.

17. Choose Save from the File submenu to update the “OneButton.nib” file
in the proj1 folder.

18. Choose Make from the File submenu.

A (UNIX) shell window will open (from the Workspace Manager, not the
Terminal app) and the application will be compiled into an executable file
called “OneButton.debug” (which contains symbol information for the GDB
debugger). The interface we created will be included in this file.

The Screen should look much like the “One Button in IB ” screen dump on
page 19.

19. Quit Interface Builder by choosing Quit from the Main menu (not
necessary but simplifies the screen).

20. Highlight the OneButton.debug icon in the WM’s File Viewer and drag it
onto the Shelf. Do the same for the OneButton.nib icon.

21. Launch the program OneButton by double-clicking on the
OneButton.debug icon on the Shelf.

The screen should look much like the “OneButton in Workspace” screen
dump on page 20. Note the listing of files at the bottom of the File Viewer.

22. Click the “Funky Sound” button and listen to the sound. Choose each
menu item and see what happens. (Only “Hide” and “Quit” work properly.)

23. Quit OneButton by choosing Quit from the Main menu. Close the UNIX
shell as well. Go to page 21 for a wrap-up of Project 1A.

Mahoney - 18 - CHI ‘91 Tutorial

New Application in IB

 Mahoney - 19 - CHI ’91 Tutorial

 OneButton in IB

Mahoney - 20 - CHI ‘91 Tutorial

OneButton In Workspace

 Mahoney - 21 - CHI ’91 Tutorial

 Project 1A Wrap-up

We

• designed a very simple application consisting
entirely of interface objects (a menu and a window
containing a button which produces sound when
pressed)

• tested the interface while still in Interface Builder

• compiled the system to get an executable file (via a
command which invokes the UNIX® “make” utility)

• executed (launched) the application from the
Workspace.

Note that Project 1A did not contain a computational
engine (e.g. a calculation in response to the clicking of
a button) and thus we didn’t need to write any code.

This rarely occurs.

Before revising OneButton (in Project 1B on page 25)
we discuss the files created by Interface Builder, and
the File and Sounds windows.

Mahoney - 22 - CHI ‘91 Tutorial

The Files Created by IB

In Project 1A Interface Builder created the following 5
files:

• OneButton.nib (which saves the interface
specifications made in Interface Builder)

• IB.proj (which keeps the parts of the project
organized)

• Makefile (specifies which files are used by the
compiler and linker to build the application; a UNIX
“make” file with extra NeXT goodies)

• OneButton_main.m (the main program file which
contains the main() Objective-C function)

• OneButton.iconheader (which saves the
information about the application and document
icons - see Project 1B)

Interface Builder will also create Objective-C class
interface (.h) and implementation (.m) files for a
new class when the Unparse command is given.

We’ll see this in Project 2 on page 38.

 Mahoney - 23 - CHI ’91 Tutorial

 The File Window
• contains icons which represent the objects that

make up your application and the resources that
can be assigned to certain objects in your
application.

• Below is the File window for a new application

• Square icons represent objects
These icons can be used as the source or destina-
tion of connections - we’ll see examples of this in
Project 2.

• Suitcase icons represent resources

Available resources are Icons, Sounds and Classes.
Double-clicking on a suitcase icon opens a window of
resources.

• Other object icons may appear in this window as
objects are added to the interface (see Project 1B).

Mahoney - 24 - CHI ‘91 Tutorial

The Sounds Window
• Double-clicking on the suitcase icon labeled

“Sounds” in the File window opens the Sounds
window below

• Icons representing other sounds may be created by
another application (e.g. SoundPlayer in the
 /NextDeveloper/Demos folder) and dragged into this
window from the Workspace. These sounds will then
be available for use in the interface being built in IB.

• To inspect one of these sounds, double-click on its
icon and use the Sound Inspector .

• To make an interface button produce sound when
pressed, drag the sound icon from this window and
release it on top of the button.

Sounds readily available
for the application’s

These six are system
 sounds and cannot be
edited. They can be
copied and the copy can

interface.

be renamed and edited.

 Mahoney - 25 - CHI ’91 Tutorial

 Project 1B - OneButton (revised)

(add panels, menus, and icons to Project 1A)

The objectives of Project 1B are to learn how to use
Interface Builder to

• add menu items

• add customized Info and Help panels

• make connections between these menu items and
panels in order to force the panels to appear when
the menu items are chosen

• add customized text to panels

• add an icon (previously created by the Icon
application) in several different ways

1. on a button

2. in Info and Help panels

3. as an application icon (which will appear in the
Workspace).

For a glimpse of the finished product, see page 31.

Mahoney - 26 - CHI ‘91 Tutorial

Project 1B Step by Step
Before starting Project 1B make sure that the OneButton.debug ,
OneButton.nib, and CHI_Icon.tiff icons are on the File Viewer’s Shelf .

1. Simultaneously launch Interface Builder and bring t he OneButton
interface into IB by double-clicking on the “OneButton.nib ” icon on the
Shelf.

2. Make the CHI_Icon available to the OneButton interf ace by dragging the
CHI_Icon.tiff icon from the File Viewer’s Shelf and releasing it on top of the
Icons suitcase in the IB’s File window.

Add the CHI_Icon to the project and copy it into the proj1 folder by
clicking on default buttons in the panels which open. The Icons window
opens. Drag on its slider until the CHI_Icon appears .

3. Open the NXImage Inspector by double-clicking on the CHI_Icon in the
Icons window (not necessary but allows us to inspect the icon). Note that its
dimensions are 48 x 48, the correct size for an application icon.

4. Make a copy of the CHI_Icon appear on the “Make Sou nd” button by
dragging the CHI_Icon from the Icons window and releasing it on top of the
button. Note that the Button Inspector opens.

5. Force the button’s title to be above the icon by clicking in the Button
Inspector at the top of the “Icon Position” diamond and then OK.

6. Rename OneButton’s “MyWindow” to “OneButton App” by clicking in it
(but not on the button), clicking in the Window Inspector (which opens
when “My Window” is clicked) and entering the new name (finish with a
Return or click OK).

7. Customize OneButton’s menu by performing steps 8-11 below.

8. Open the Menus palette by clicking on the left icon at the top of the
Palettes window.

9. Add an Info submenu to OneButton’s main menu by dragging the Info
submenu icon from the Menus palette to OneButton’s main menu and
releasing it just below the title bar.

10. Delete the Preferences and “Info...” menu items and the Edit submenu
by highlighting and then pressing the Delete key for each one.

 Mahoney - 27 - CHI ’91 Tutorial

 11. Enable the Info Panel menu item in OneButton’s Info submenu by
highlighting it, turning off the disable switch in the MenuCell Inspector and
clicking OK.

Enable the Help menu item in a similar fashion.

12. Add a customized Info panel by performing steps 13-16 below.

13. Open the Windows palette by clicking on the second icon (from the left) at
the top of the Palettes window.

14. Add an Info panel by dragging an Info icon from the Windows palette and
releasing it in the Workspace just below the OneButton App window. Note
the new icon (object) called “Info” in the File Window .

15. Make a copy of the CHI_Icon appear in the Info pane l by dragging its
icon from the Icons window on top of the generic icon (actually a disabled
button) in the Info panel and releasing it.

16. Customize the Info panel text by editing it with single- and double-clicks
and keyboard entry.

17. Make a connection between the Info Panel menu item and the Info
Panel by control-dragging from the item to the panel’s title bar (note the
black line) and double-clicking the “makeKeyAndOrderFront :” method in
the MenuCell Inspector (note the dimple).

When the Info menu item is chosen an action message will be sent to the
Info panel to become the key window and appear in front of all other
windows .

18. Add a customized Help panel (in a similar fashion to the way the Info
panel was added) by performing steps 19-31 below.

19. Add a new panel by dragging the Panel icon from the Windows palette
into the WM. Note the new icon called “Panel” in the File Window .

20. Change the title of this new panel to “Help” by dragging to “Attributes” in
the pop-up-list in the Window Inspector, and typing the new title.

21. Force the Help panel to show up when OneButton is l aunched by
turning on the “Visible at Launch Time ” switch in the Window Inspector
and then clicking OK.

22. Add the CHI_Icon to the Help panel by rubber-banding (press and drag)
around the CHI_Icon in the Info Panel, choosing Copy from IB’s Edit menu,
clicking in the Help panel, and then choosing Paste from IB’s Edit menu.
Drag the new CHI_Icon to the top left of the panel.

Mahoney - 28 - CHI ‘91 Tutorial

23. Add customized text to the Help panel by performing steps 24-26 below.

24. Open the Basic Views palette by clicking on the third icon (from the left)
at the top of the Palettes window.

25. Add text to the Help panel by dragging the Text icon from the Basic Views
palette and releasing it in the Help panel.

26. Change this text to “Press the Button!” by double-clicking on “Text ” and
typing the new text.

27. Make the text larger by repeatedly clicking Larger in IB’s Format menu.

28. Play with the attributes of the text in the TextFie ld Inspector (e.g. turn
off the editable switch) and then click OK.

29. Make the Help panel smaller by performing steps 30-31 below.

30. Make the Help panel’s resize bar appear (only within IB) by clicking on
the small resize button at the top left corner of the panel.

31. Make the panel smaller by dragging on one of the 3 parts of the resize
bar. Click on the resize button again to use another part of the resize bar.

32. Make a connection between the Help menu item and Help panel by
control-dragging from the item to the panel’s title bar and double-clicking on
the “makeKeyAndOrderFront :” method in the MenuCell Inspector.

33. Rearrange OneButton’s window and panels so that they don’t overlap
and the Help panel is in the middle. Do this by dragging on their title bars.

34. Change the Application icon (which will eventually appear in the
Workspace) by performing step 35 below.

35. Open the Project Inspector by dragging to Project in the pop-up list at the
top of the Inspector window. If Files is highlighted (in black) on the
“Attributes Files ” button just below the pop-up list, then click on this button
so Attributes is highlighted.

Make sure the generic icon is highlighted, click on the Set button (an Open
panel opens) and double-click on the CHI_Icon.tiff file in the Open panel. The
CHI_Icon appears in the Project Inspector.

The screen should look much like the “OneButton With Icons in IB” screen
dump on page 30.

36. Save your work by choosing Save from File submenu (5 files are updated).

 Mahoney - 29 - CHI ’91 Tutorial

 37. Create a new executable file OneButton.debug by choosing Make from
the File submenu (or use the key-equivalent Command-k).

38. Quit Interface Builder (so the screen is simpler).

39. Highlight the “OneButton.debug” file name in the File Viewer’s Shelf.
The CHI_Icon appears .

40. Launch the OneButton.debug application (by clicking on its icon) and
note that the Help panel appears but the Info Panel does not (see Step
21 above). Test the button and menu items and then quit.

See the “OneButton with Application Icon in WM” screen dump on page
31.

Go to page 32 for a wrap-up of Project 1B.

Performance Note : NeXT recommends that Info (and possibly) Help panels be
placed in interface (.nib) files other than the main one in order to improve the
performance of an application. Since an Info panel is rarely opened, there is little
reason to “unarchive” it before the user requests to see it.

A separate interface file was not used here in the interest of simplicity.

ScrollView Note : To get experience with a ScrollView object you can replace steps
25-28 with:

Click the right button at the top of the Palettes window to open the Scrolling Views
palette and drag a ScrollView object from it into the Help panel. Enter more than a
page of text and customize it using the ScrollView Inspector.

Mahoney - 30 - CHI ‘91 Tutorial

OneButton With Icons in IB

 Mahoney - 31 - CHI ’91 Tutorial

 OneButton with Application Icon in WM

Mahoney - 32 - CHI ‘91 Tutorial

Project 1B Wrap-up

We

• added a previously created icon to the project

• added and customized two panels with the icon and
text

• added two menu items

• connected the menu items to the panels so that the
panels would appear when the menu items are
chosen

• added an application icon which shows up in the
Workspace and identifies the application

• learned how to add and customize a new text object
to a panel.

We have not yet created an application with a
computational engine.

We’ll do this in the Project 2 after discussing the Palettes,
Icons, and Inspector windows.

 Mahoney - 33 - CHI ’91 Tutorial

 The Icons Window
• Double-clicking on the suitcase icon labeled “Icons”

in the File window opens the Icons Window below

• Other icons may be dragged into this window and
thus be made available for use in the interface
being built in IB.

• Custom icons can be created using the Icon
application in the /NextDeveloper/Demos folder.

• To inspect one of these icons, double-click on it and
use the Icon Inspector .

• To make an icon appear on top of a button in an
interface, drag it from the Icons window and release
it on top of the button.

• Application icons are set using the Project
Inspector. They must be 48 x 48 pixels in size and
have alpha channels (see the Icon application).

Icons readily available for
the application’s interface.

Mahoney - 34 - CHI ‘91 Tutorial

The Palettes Window
• contains 4 palettes which give you access to the

Application Kit’s primary user interface objects.

• The palette that is visible is determined by clicking
one of the four buttons at the top of the window.

Menus palette

 Windows palette

 Left button
highlighted

These objects may be
dragged anywhere within
 a menu or submenu in
the application’s
interface.

 Second button
highlighted

These objects may be
dragged anywhere within
 the Workspace and will
expand to a window or
panel.

 Mahoney - 35 - CHI ’91 Tutorial

 The Palettes Window (cont.)

 Basic Views palette

 Scrolling Views palette

Additional palettes may be added with custom subclass-
es of View. See Project 6 (SketchPalette).

 Third button
highlighted

These objects may be
dragged anywhere within
 a window or panel in the
application’s interface.

 Right button
highlighted

These two objects

 ScrollView) may be
dragged anywhere within

(NXBrowser and

a window or panel in the
application’s interface.

Mahoney - 36 - CHI ‘91 Tutorial

The Inspector Window(s)
The Inspector window is the location where nongraphic

features of the objects in the application are edited.

The display inside the Inspector window changes often
and usually depends on which object in the interface
is selected. It can also be changed explicitly by
choosing one of the 6 items in its pop-up list.

The display falls into one of the following 6 groups.

• Attributes - changes depending on the object
selected; mainly for editing nongraphic attributes

• Connections - for viewing and setting up
connections for outlets and action messages

• Autosizing - where you can specify how an object
will respond when its window or superview is resized

• Miscellaneous - place where you set the location
and dimensions of the selected View or Window

• Class - for viewing and editing outlets and actions

• Project - see the next page

See the NeXTstep Concepts manual for details.

Several different types of Inspector window displays can
be seen in the screen dumps in this tutorial.

 Mahoney - 37 - CHI ’91 Tutorial

 The Project Inspector
opens when Project is chosen from IB’s File submenu

or from the Inspector window’s pop-up list.

It contains two windows, one for the Attributes of the
project and one for the Files of the project.

Application icons and document icons (e.g. icons for
“.wn” documents for WriteNow) can be set up in the
Attributes Project Inspector.

Below we see the two Project Inspector windows for
OneButton .

 Attributes Files

Mahoney - 38 - CHI ‘91 Tutorial

Project 2 - KmToMi
(Convert Kilometers to Miles)

KmToMi is a simple application whose interface consists
of a menu and a window which contains an input area ,
an output area and a button . It will look like:

When the button is pressed it will send an action
message to a custom object (the target) to invoke a
method (procedure). This method will then read a
kilometer value from the input text area (called a Form
object), convert it to miles, and send (write) the result to
the output text area (another Form). See the next page.

The main objectives of Project 2 are to

1. create an application with a computational engine

2. learn how to use Interface Builder to create a
subclass and instantiate it, make connections
between objects, and use and customize more
user interface objects

3. understand the process of editing an Objective-C
Language file containing a class implementation.

 Mahoney - 39 - CHI ’91 Tutorial

 The 4 Messages in KmToMi

// ConvertObject.m
// Generated by IB (except for 4 lines)
#import “ConvertObject.h”
#import <appkit/Form.h> // inserted

@implementation ConvertObject
- convertMethod:sender
{
 float miles; // inserted
 // read input and convert
 miles = (0.62 * [kmOutlet floatValueAt:0]);
 [miOutlet setFloatValue:miles at:0];
 return self; // send output and return
}
@end // see the ConvertObject.h file on page 43

The general format of a message is

 [receivingObject methodName:arguments]

[Button performClick]

Mahoney - 40 - CHI ‘91 Tutorial

Project 2 Step by Step
1. Launch Interface Builder (IB) and choose New Application from its File

submenu.

2. Choose Save As from the File submenu and save as “proj2/KmToMi”
(“Kilometers to Miles” in the newly created proj2 folder). Choose Project
from the File submenu and create a project as before.

3. Add an input area interface to the application’s main window by
performing steps 4-8 below.

4. Drag a “Box” icon from the Basic Views palette into the top left corner of
“My Window” and then drag on its handles to make it larger. (The “Box”
object is purely cosmetic.)

5. Rename the box to “Input” by double-clicking on “Box” and typing the
new name. Then make “Input” larger by repeatedly choosing Larger from
IB’s Format submenu.

6. Drag a Form icon (“Field 1:”, “Field 2:” etc.) from the Basic Views palette
into the “Input” box. This icon actually contains two Form objects, each
consisting of a title and a (white) text area.

7. We will only need one of the Forms so Alt-drag upward on the icon’s
bottom middle handle to get rid of the “Field 2:” Form . (Dragging
downward will create more Forms, if needed.)

8. Rename the Form field to “Kilometers” by double-clicking on “Field 1:”
twice and entering the new name. Then make the Form text larger by
repeatedly clicking on Larger in IB’s Format submenu.

9. Add an output area interface to the application’s main window by
performing steps 10-11 below.

10. Make a copy of the Input area interface (Box and Form) by dragging
(rubber-banding) a rectangle around it and choosing Copy and then
Paste from IB’s Edit submenu (or use the key-equivalents Command-c
and Command-v).

11. Drag the copy to the right and rename the copied Box to “Output” and the
copied Form to “Miles” (use double-clicks).

12. Add a button to “My Window” as in Project 1A. Enlarge the button and its
text and rename it “Convert” .

 Mahoney - 41 - CHI ’91 Tutorial

 13. Customize the application’s main window (“My Window”) by performing
steps 14-15 below.

14. Make “My Window” smaller using its resize bar.

15. Drag to Attributes in the Inspector’s pop-up list, rename “My Window” to
“Kilometers to Miles”, turn off the “Resize Bar” switch and then click OK.

16. Create a subclass “ConvertObject” of the class “Obj ect” by performing
steps 17-20 below.

17. Open the Classes window by double-clicking on the Classes suitcase
icon in the File window.

18. Select “Object ” in the Classes window browser by scrolling to the far left
and clicking on “Object”.

19. Drag to Subclass in the “Operations” pull-down list . Note that a new
class “MyObject” appears.

20. Rename this new subclass “ConvertObject” by double-clicking on
“MyObject” under the icon well in the Classes window and entering the new
name.

21. Create an instance object of the ConvertObject clas s by dragging to
Instantiate in the “Operations” pull-down list.

Note the new icon labeled “ConvertObjectInstance” in the File window.
We can now make connections with this icon (object).

22. Add outlets called “kmOutlet” and “miOutlet” to the ConvertObject
class by performing steps 23-24 below.

These outlets will be made to point to the Form objects so that
“ConvertObject” can send them messages.

23. Open the Class Inspector by dragging to Class in the Inspector’s pop-up
list.

24. Highlight (in black) Outlet on the “Outlet Action” button , click in the white
text area, and enter “kmOutlet ” and then “miOutlet ”. (Outlet names should
begin with a lower case letter.)

25. Make a connection between the “ConvertObjectInstance” icon (object)
and the “Kilometers” Form object by control-dragging from the icon to
the Form (note the direction) and then double-clicking on the “kmOutlet ”
outlet in the CustomObject Inspector.

Mahoney - 42 - CHI ‘91 Tutorial

Make sure that the gray (not black) rectangle surrounds the Form before
releasing the mouse button. Read the help messages near the bottom of the
CustomObject Inspector. See the “Outlet Connection” screen dump on
page 44.

26. Make a connection between the “ConvertObjectInstance” icon (object)
and the “Miles” Form object in a similar fashion. Double-click on
“miOutlet ” in the CustomObject Inspector.

27. Add a method called “convertMethod:” to the (target) ConvertObject
class by performing steps 28-29 below.

This method will be set up to perform an action in response to an action
message received from the “Convert” button following a click.

28. Open the Class Inspector by dragging to the Class item in the Inspector’s
pop-up list.

29. Highlight (in black) Action on the “Outlet Action” button and enter
“convertMethod:” . (Method names should begin with a lower case letter.)

30. Make a connection between the “Convert” button and the
“ConvertObjectInstance” icon (object) by control-dragging from the
button to the icon (note the direction) and double-clicking on the
“convertMethod:” method in the Button Inspector (note the dimple).

31. Make a connection between the “Kilometers” Form and the “Convert”
button by control-dragging from the Form to the button and double-clicking
on the “performClick:” method in the FormCell Inspector .

When the Return key is pressed after typing in a number in “Kilometers” Form
in the active application, an action message will be sent to the “Convert”
button to perform as if it had been clicked.

32. Add an icon to indicate the Return key functionalit y by opening the
Icons window (double-click the icons suitcase), dragging a NXreturnSign
icon and releasing it on top of the “Convert” button.

33. Create class interface (ConvertObject.h) and implementation
(ConvertObject.m) Objective-C Language files by dragging to Unparse in
the “Operations” pull-down list in the Classes window.

Make sure the “ConvertObject” class in the Classes window is highlighted
first. Add these files to the project when prompted.

See the “Unparse and performClick” screen dump on page 45.

 Mahoney - 43 - CHI ’91 Tutorial

 34. Bring these two files into the Edit application by highlighting Files on the
“Attributes Files” button in the Project Inspector and double-clicking on
“ConvertObject.[hm]” .

35. Insert the Objective-C line #import <appkit/Form.h>
after the line “ #import “ConvertObject.h” ” in the ConvertObject.m file.

36. Insert the 3 Objective-C lines
float miles;

miles = (0.62 * [kmOutlet floatValueAt:0]);

[miOutlet setFloatValue:miles at:0];

before “return self;” in the “convertMethod :” method in the ConvertObject.m
file.

See the contents of the ConvertObject.m on page 39.
See the contents of the ConvertObject.h at the bottom of this page.

37. Choose Save from Edit’s File submenu and Hide from Edit’s main menu.

38. Choose Make from IB’s File submenu and save the interface file when
prompted. Quit IB.

39. Launch KmToMi by clicking in the Shell window (to activate it) and then
entering KmToMi.debug .

40. Test KmToMi by clicking in the “Kilometers” white text area, typing a real
number and pressing Return or clicking on the “Convert” button . Try it a
few more times and then Quit KmToMi.

See the “KmToMi in Workspace” screen dump on page 46.

Go to page 47 for a wrap-up of Project 2.

ConvertObject.h file
/* Generated by Interface Builder */

#import <objc/Object.h>

@interface ConvertObject:Object

{

 id miOutlet;

 id kmOutlet;

}

- convertMethod:sender;

@end

Mahoney - 44 - CHI ‘91 Tutorial

Outlet Connection (KmToMi)

 Mahoney - 45 - CHI ’91 Tutorial

 Unparse and performClick (KmToMi)

Mahoney - 46 - CHI ‘91 Tutorial

KmToMi in Workspace

 Mahoney - 47 - CHI ’91 Tutorial

 Project 2 Wrap-up
We

• created a simple interface with two forms, two
boxes and a button

• created our own subclass of “Object” and
instantiated it

• made “outlet” connections between objects (which
set up outlet pointers from one object to another)

• made “target/action” connections between objects

• “Unparsed” the interface to create Objective-C
Language class interface and implementation files

• “Edit-ed” the class implementation file by adding a
computational engine, and

• compiled and tested the application.

Warning: if you Unparse a second time, then the class
files will be overwritten and your code may be lost.

In Project 3 (on page 51) we’ll see how to do special
drawing in a window.

First we discuss the Classes window, Operations from
its pull-down list, and the application development
process.

Mahoney - 48 - CHI ‘91 Tutorial

The Classes Window
• Double-clicking on the suitcase icon labeled

“Classes” in the File window opens the Classes
Window below

• By clicking on the scroller arrows you can see the
inheritance hierarchy of the Application Kit
objects available to an interface in IB.

• To inspect one of these classes, double-click its
name and look in the Class Inspector.

• The pull-down list titled “Operations” contains four
significant items which are discussed on the next
page.

 pull-down

list

 Mahoney - 49 - CHI ’91 Tutorial

 Operations on Classes
(accessible from the pull-down list labeled

“Operations” in the Classes window)

1. Subclass - defines a subclass of the selected class

Usually only the “Object” , “View” or “Application”
classes will need to be “subclassed”.

A subclass of “Object” is generally used to contain
the code which controls the application and/or the
code for the computational engine.
A subclass of “View” is generally used to contain
code for special drawing (graphics) in a window.
For subclasses of “Application” see Yap or Draw.

2. Instantiate - creates an object of the selected
class and places its icon in the File window.
This allows you to make connections with this object.
This operation is disabled for “View” subclasses.
Instead, drag a “CustomView” icon from Basic
Views palette and use the Inspector window.

3. Unparse - generates class interface (.h) and
skeletal class implementation (.m) files based
on the class highlighted in the Classes window

4. Parse - for reading the class definition from an
interface (.h) file. Do Project 5 to see how it works.

Mahoney - 50 - CHI ‘91 Tutorial

The Application Development Process

 Courtesy of NeXT Computer, Inc.

Class interfaces
Object specifications
Connection information
Sounds
Icons

Interface Builder

Makefile
Interface file
Class interface files
Class implementation files
Other source files

Executable File

Interface section

Parse

Unparse

Application Kit
library

Other
libraries

Revise

Mach
sections

Project

make

2

3 Compile

1

4 Run

Create
Interface

Create
Project

...

Interface File

 Mahoney - 51 - CHI ’91 Tutorial

 Project 3 - SimpleGraphics
(display a circle or square which moves
with a slider in a custom View object)

When launched, SimpleGraphics main window will look
like

The objectives of are to learn how to use IB to

• add a custom “View” object (for special drawing)

• add radio buttons , a switch button and a slider

• make connections between the interface objects
and the custom View object.

We’ll also learn more about Objective-C Language and
Display PostScript® graphics functions.

Mahoney - 52 - CHI ‘91 Tutorial

Project 3 Step by Step
1. Launch IB and choose New Application , Save As and then Project from

its File submenu. Save as “proj3/SimpleGraphics ”.

2. Create a subclass of the View class called “SimpleView ” by opening the
Classes window, highlighting “View ” in its browser, dragging to Subclass
in the “Operations” pull-down list and renaming “MyView”.

3. Add a custom “View” object of the “SimpleView” clas s by performing
steps 4-5 below.

4. Drag a “CustomView” icon from the Basic Views palette into “My Window”.

5. Change the class of the “CustomView” icon (object) to “SimpleView”
by dragging to Attributes in the Inspector’s pop-up list and then double-
clicking on “SimpleView” .

Note that the name of the “CustomView” icon changes to “SimpleView”. We
have actually instantiated an object of the “Simple View” class. “View”
objects cannot be “Instantiate(d)” via the “Operati ons” pull-down list .

6. Make “SimpleView” 300 x 300 pixels square by dragging to
Miscellaneous in the CustomView Inspector , changing the width and
height to 300 and pressing Return.

7. Drag “SimpleView” so that there’s some room on the left side of “My
Window” for some radio buttons and on the right side for a vertical slider.
Resize “My Window” appropriately.

8. Add a “boxed” pair of customized radio buttons to the interface by
performing steps 9-12 below.

9. Drag a “Box” icon from the Basic Views palette to the left of “SimpleView”.
Make it and its text larger and rename it “Primitive ”.

10. Drag a “Radio Radio” icon from the Basic Views palette into the
“Primitive” Box.

11. Spread the 2 buttons out by dragging (without the Alternate key) on the
handles of the “Radio Radio” icon and make the text larger.

(Using the Alternate key while dragging on these buttons will create more of
them.)

 Mahoney - 53 - CHI ’91 Tutorial

 12. Rename the buttons “Circle” and “Square” by double-clicking on the top
“Radio”, typing “Circle”, pressing the Tab key and typing “Square”.

13. Add a “fill toggle” switch to the interface by dragging a “Switch” icon
from the Basic Views palette below the “Primitive” Box. Make its text larger
and rename it “Fill” .

14. Add a “Y-location” Slider to the interface by performing steps 15-17
below.

15. Drag a vertical Slider object from the Basic Views palette into “My
Window” to the right of “SimpleView”.

16. Make the slider the same height as “SimpleView” by dragging to
Miscellaneous in the Slider Inspector, changing its height to 300 and
pressing Return.

17. Make the slider’s range be 0-300 and its current (initial) value be 0 by
dragging to Attributes in the Slider Inspector and entering the values.

18. Add the 4 action methods “displayCircle:”, “display Square:”,
“fillToggle:” and “sliderMoved:” to the SimpleView class by performing
steps 19-20 below.

19. Click “SimpleView” in “My Window” and then drag to Class in the
CustomView Inspector ’s pop-up list.

20. Highlight “Action” on the “Outlet Action” button and enter the 4 method
names in step 18 above.

21. Make a connection between the “Circle” radio button and
“SimpleView ” by performing steps 22-23 below.

22. Double-click on the “Circle” radio button so that it’s highlighted (in dark
gray).

23. Control-drag from the “Circle” radio button to “SimpleView” and then double-
click on the “displayCircle:” method in the ButtonCell Inspector .

If a SimpleGraphics user clicks the “Circle” radio button, then the button will
send an action message to SimpleView which invokes “displayCircle:”.

See the “SimpleGraphics in IB” screen dump on page 55.

24. Make a similar connection between the “Square” radio button and
“SimpleView ”. Double-click on the “displaySquare:” method.

Mahoney - 54 - CHI ‘91 Tutorial

25. Make a connection between the “Fill” switch and “SimpleView ” by
clicking on the switch, control-dragging from the switch to “SimpleView” and
then double-clicking on the “fillToggle :” method in the Inspector.

26. Make a connection between the slider and “SimpleView ” by clicking on
the slider, control-dragging from the slider to “SimpleView” and then double-
clicking on the “sliderMoved :” method in the Inspector.

27. Create class interface (“SimpleView.h”) and class implementation
(“SimpleView.m”) files by dragging to Unparse in the “Operations” pull-
down list in the Classes window. Add these two files to the project.

28. Bring these two files into the Edit application by double-clicking on
“SimpleView.[hm] ” in the “Files” window of the Project Inspector.

29. Insert the 3 instance variable and “initFrame” and “drawSelf” method
declarations in the “SimpleView.h ” file. See page 57 for details.

30. Insert the code specified on pages 58-60 in the “SimpleView.m” file. In
particular, insert the complete “initFrame” and “drawSelf” methods and add
the “guts” of the “displayCircle:”, “displaySquare:”, “fillToggle:” and
“sliderMoved:” methods (or get the files via e-mail from Mahoney).

31. Save the two files and quit Edit .

32. Activate IB, choose Save and then Quit IB .

33. Open a shell window, enter “cd ~/proj3”, “make” and then “SimpleGraphics”.

34. Click near the middle of the slider, click on the “Square” radio button and
then click on the “Fill” switch.

See the “SimpleGraphics in Workspace” screen dump on page 56. Note
the output from the “printf” statements in the shel l.

35. Quit SimpleGraphics.

36. Add the capability to print SimpleView’s contents by performing steps
37-38 below.

37. Open the Menus Palette , drag the menu item labeled “Item” into
SimpleGraphics main menu, and rename it “Print...”.

38. Connect the new menu item to SimpleView by control-dragging from it to
SimpleView and double-clicking “printPSCode:” in the Inspector window.

39. Save, make, execute and test SimpleGraphics (in particular “Print...”).

 Mahoney - 55 - CHI ’91 Tutorial

 SimpleGraphics in IB

Mahoney - 56 - CHI ‘91 Tutorial

SimpleGraphics in Workspace

 Mahoney - 57 - CHI ’91 Tutorial

 SimpleGraphics Objective-C Files
SimpleGraphics_main.m

// Generated by NeXT’s Interface Builder (except fo r the comments) when “Project” chosen.

 // the code in this file should not be edited

#import <stdlib.h> // required for the UNIX exi t() function

#import <appkit/Application.h> // required for the “Application” object (which

 // will be the interface file’s owner)

void main(int argc, char *argv[]) // every (Obj ective-) C program starts with main()

{

 NXApp = [Application new]; // create a new App lication object and give it a name

 [NXApp loadNibSection:”SimpleGraphics.nib” owner:N XApp]; // load interface section

 [NXApp run]; // start event loop // from the executable

 [NXApp free]; // free the objects following a us er’s choice to Quit the app

 exit(0);

}

SimpleView.h
// Generated by IB during “Unparse” (except for the instance vars and the last two methods).

#import <appkit/View.h> // required because we’ re subclassing the View object

@interface SimpleView:View // “SimpleView” is a subclass of “View”

{ int primitiveToDisplay; // determines which graphics primitive is displayed

 int fillFlag; // determines whether primitive is filled or not

 float sliderYvalue; // determines the Y posit ion of the primitive

}

// TARGET-ACTION METHODS // these were genera ted by IB

- displayCircle:sender;; // invoked when “Circ le” radio button clicked

- displaySquare:sender; // invoked when “Squar e” radio button clicked

- fillToggle:sender; // invoked when “Fill” sw itch clicked

- sliderMoved:sender; // invoked when Slider m oved

// OVERRIDDEN VIEW METHODS // these were ins erted

- initFrame:(const NXRect *) frameRect; // in itializes SimpleView

- drawSelf:(NXRect *)rects :(int) rectCount; / / contains PostScript drawing functions

@end

Mahoney - 58 - CHI ‘91 Tutorial

SimpleView.m

// 2/1/91

// The skeleton was generated by Interface Builder when “Unparse” was chosen.

// The rest was inserted by Mike Mahoney.

// The lines that were inserted can be discovered b y reading the comments.

// The “printf” lines are for learning purposes onl y. They show that the “initFrame” method

// is automatically invoked at launch time and tha t the “drawSelf” method is invoked as

// a result of the “display” method being invoked . Do not invoke “drawSelf” directly.

// Launch “SimpleGraphics” from a shell window to s ee the output from “printf” statements.

 // (e.g. see the shell output on page 56)

#import "SimpleView.h" // generated by IB

#import <appkit/Slider.h> // inserted because message sent to slider

#import <dpsclient/wraps.h> // inserted for PS and NX graphics functions

 // #import <appkit/appkit.h> could be used here to include all App kit

 // interface (.h) files but would slow c ompilation considerably

@implementation SimpleView

#define CIRCLE 1 // #define(s) and decla rations inserted

#define SQUARE 2

 // initFrame is automatically invoked when Simp leGraphics is launched.

-initFrame:(const NXRect *) frameRect // th is entire method was inserted

{

 printf ("Executing 'initFrame' method \n");

 [super initFrame:frameRect]; // initialize Si mpleView object

 primitiveToDisplay = CIRCLE; // CIRCLE primit ive displayed initially

 fillFlag = 0; // no fill initially

 sliderYvalue = 0.0; // primitive at the botto m of SimpleView initially

 return self;

}

 Mahoney - 59 - CHI ’91 Tutorial

 SimpleView.m (continued)

 // displayCircle is invoked when the “Circle” r adio button is clicked

- displayCircle:sender // We set up a target/ac tion connection with this method in IB.

{ // IB generated the skeleton, the “guts” were inserted.

 printf ("Executing 'displayCircle' \n"); / / these 3 lines were inserted

 primitiveToDisplay = CIRCLE;

 [self display]; // "display" message is sent to this SimpleView object

 // The "display" method sets up a drawing con text

 return self; // and then invokes our "drawSelf" method.

}

- displaySquare:sender // very similar to th e displayCircle method above

{ // invoked whenever the “Square” radio button is clicked

 printf ("Executing 'displaySquare' \n");

 primitiveToDisplay = SQUARE;

 [self display];

 return self;

}

 // fillToggle is invoked whenever the “Fill” s witch is clicked

- fillToggle:sender // We set up a target/actio n connection with this method in IB.

{ // IB generated the skeleton, the "guts" were inserted.

 printf ("Executing 'fillToggle' \n");

 fillFlag = !fillFlag; // toggle the fill flag (inserted)

 [self display];

 return self;

}

 // sliderMoved is invoked whenever the Slider is moved

- sliderMoved:sender // We set up a target/acti on connection with this method in IB.

{ // IB generated the skeleton, the "guts" were inserted.

 printf ("Executing 'sliderMoved' \n");

 sliderYvalue = [sender floatValue]; // read slider value from slider object

 [self display]; // (the "sender" of the message

 return self; // which invokes this meth od)

}

Mahoney - 60 - CHI ‘91 Tutorial

SimpleView.m (continued)

 // The drawSelf:: method is invoked when Simple Graphics is launched.

 // It is also invoked whenever a “display” mess age is received by this object.

-drawSelf:(NXRect *)rects :(int) rectCount / / This entire method was inserted.

{

 printf ("Executing 'drawSelf' \n \n");

 // The "PS" functions are Display PostSc ript functions.

 // The NX functions are NeXTstep graphics fu nctions.

 PSsetgray (NX_WHITE); // set the draw ing color to white

 NXRectFill (&bounds); // fill the enti re SimpleView with a white rectangle

 // "bounds" is an inherited C struct initializ ed to SimpleView's dimensions

 PSsetgray (NX_BLACK); // set the drawing color to black

 NXFrameRect(&bounds); // draw a black boundar y around all of SimpleView

 PSnewpath(); // begin a new outline path

 PSsetlinewidth (3.0);

 switch (primitiveToDisplay) { // di splay a circle or square depending

 // on the value of "primitiveToDisplay"

 case CIRCLE: PSarc (bounds.size.width/2.0 , sl iderYvalue,

 40.0, 0.0, 360.0); // radius is 40.0

 break;

 case SQUARE: PSmoveto (bounds.size.width/2.0 - 40.0 , sliderYvalue - 40.0);

 PSrlineto (0.0, 80.0);

 PSrlineto (80.0, 0.0); / / relative line draws

 PSrlineto (0.0, -80.0);

 PSclosepath();

 break;

 } /* end switch */

 if (fillFlag) PSfill(); // "paint" the enclos ed area on the screen

 else PSstroke(); // "paint" the outline path on the screen

 return self;

} /* end drawSelf */

@end // end SimpleView implementation

 Mahoney - 61 - CHI ’91 Tutorial

 Project 3 Wrap-up
We

• created a subclass “SimpleView” of the “View” class

• customized and instantiated the subclass (to get an
object of the “SimpleView” class)

• added the following control objects to the interface

1. two radio buttons (in a cosmetic Box object)
2. a “switch” button
3. a slider

• added 4 methods to the “SimpleView” object (one
for each of the control objects mentioned above)

• made target-action connections between these
control objects and methods

• discovered how to display graphics in a custom
View object by inserting Display PostScript and
NeXT graphics functions in the View’s “drawSelf::”
method (which is invoked whenever a “display”
message is received).

Note : to get copies of these source files, see page 73

Mahoney - 62 - CHI ‘91 Tutorial

Project 4 - PenDraw
(allow a user to draw with a “pen” in a

custom View object)

After a little “drawing”, PenDraw’s main menu and
window will look like

The main objectives of PenDraw are to learn how to

• set up an event loop to handle mouseDown and
mouseMoved events in a custom View

• change the cursor (to the “pencil” at the right)

• set up a correspondence between a Slider and
Form.

 Mahoney - 63 - CHI ’91 Tutorial

 Project 4 Step by Step
1. Launch IB and choose New Application , Save As and then Project from

its File submenu. Save as “proj4/PenDraw ”.

2. Create a subclass of the View class called “PenView ” by opening the
Classes window, highlighting “View ” in its browser, dragging to Subclass
in the “Operations” pull-down list and renaming “MyView”.

3. Add a custom “View” object of the “PenView” class by performing
steps 4-5 below.

4. Drag a “CustomView” icon from the Basic Views palette into “My Window”.

5. Change the class of the “CustomView” icon (object) to “PenView” by
dragging to Attributes in the Inspector’s pop-up list and then double-
clicking on “PenView” .

6. Make “PenView” as large as “My Window” (by dragging on its handles)
except leave about an inch at the bottom for a Box, Slider and Form.

7. Add a Box object as in the screen dump on page 62. Rename the Box
object “Pen Width” and make the text larger.

8. Add a Slider object as in the screen dump on page 62. Change its range
to 1-10 and initialize it to 1 in the Slider Inspector.

9. Add a Form object inside the Box to the right of the Slider. Alt-drag on the
bottom middle handle to get rid of one of the Forms and then delete the
“Field 1:” text on the remaining Form (double-click and use the Delete key).

(We use a Form object here because the Text object can’t handle floating
point data.)

10. Add a menu item called “Clear” below “Info” in PenDraw’s main menu
(drag “Item” from Menus palette and rename). Delete the “Edit” submenu.

11. Add a key-equivalent to the “Clear” menu item by double-clicking on the
right side of the menu item and typing an upper-case “C”.

12. Add an outlet called “formOutlet” to the PenView cl ass. (Click on
PenView and then drag to Class in the CustomView Inspector.)

13. Add actions methods called “changePenWidth” and “cl earView” to
the PenView class.

Mahoney - 64 - CHI ‘91 Tutorial

14. Set up an “outlet” connection from “PenView” to the Form. Double-
click on “formOutlet:” in the CustomView Inspector. (Make sure the gray ,
not black, rectangle surrounds the Form.)

15. Set up an “action” connection from the Slider to “P enView”. Double-
click on the “changePenWidth:” method in the Slider Inspector.

16. Set up an “action” connection from the “Clear” menu item to
“PenView”. Double-click on the “clearView:” method in the MenuCell
Inspector.

17. Add the “pencil.tiff” file to the project by highlighting “.tiff ” in the Files
Project Inspector, clicking the “Add ...” button, and finding the file in the /
NextDeveloper/Examples/Draw folder. Copy the “pencil.tiff” file into the
Project folder when prompted.

18. *Create class interface (“PenView.h”) and class implementation
(“PenView.m”) files by dragging to Unparse in the “Operations” pull-down
list in the Classes window. Add these two files to the project.

19. Insert the code on pages 65-69 into the PenView.h and Penview.m
files (or copy these files into the proj4 folder - see the note below).

20. “Make” PenDraw using IB’s File submenu item or in a Shell window.

21. Launch PenDraw and test its “PenWidth” Slider, “Clear” menu item and
key-equivalent ‘C’. Note how the cursor changes within the PenView border.

*Note: You can skip steps 18 and 19 above if you have the PenView source files
available. In this case, add these files to the Project using the Files Project Inspector
in a similar fashion to what was done with the “.tiff” file in step 17 above. This time
highlight “[.hm] ”.

I will e-mail you copies of the source code for projects 3 and 4 in this tutorial if you
send a request to the address mahoney@csulb.edu

 Mahoney - 65 - CHI ’91 Tutorial

 PenDraw Objective-C Files

PenDraw_main.m
This file is generated by Interface Builder when “P roject” is chosen in IB’s File submenu.

It is exactly the same as the SimpleGraphics_main.m file on page 58, except that the

PenDraw.nib interface section is loaded instead of the SimpleGraphics.nib section.

PenView.h
// Generated mostly by Interface Builder when the “ Unparse” command was chosen,

// The last 3 instance variables and the last 4 (OV ERRIDDEN) methods were inserted.

 // Mike Mahoney, 2/1/91.

#import <appkit/View.h>

@interface PenView:View

{

 id formOutlet; // pointer to the Form object

 float penWidth; // contains the width of the p en (initialized in initFrame)

 id pencilCursor; // pointer to NXCursor object which looks like a pencil

 NXPoint hotSpot; // point on the pencilCursor i mage that's aligned

} // with the mouse (initialized in initFra me)

// OUTLET INITIALIZATION METHOD

// The system will initialize IB-set outlets. However, if we want to perform other

// initializations we can use “set” methods. They are automatically called at launch time.

- setFormOutlet:sender; // sets initia l float value in Form to Slider value

// TARGET/ACTION METHODS

- changePenWidth:sender; // invoked when t he "penWidth" Slider is moved

- clearView:sender; // invoked when the "Clear" menu item is chosen

// OVERRIDDEN VIEW METHODS // these were inserted

- initFrame:(const NXRect *) frameRect;

- drawSelf:(NXRect *)rects :(int) rectCount; // used only to clear PenView

- mouseDown: (NXEvent *) ptr; // to grab cont rol when mouse pressed in PenView

- resetCursorRects; // resets cursor rectangl e (automatically

@end // invoked, don't invoke directly

Mahoney - 66 - CHI ‘91 Tutorial

PenView.m

// PenView.m

// Skeleton generated by Interface Builder.

// The rest was inserted by Mike Mahoney on 2/1/91 .

#import "PenView.h"

#import <appkit/Application.h> // these six imp orts were inserted

#import <appkit/NXCursor.h>

#import <appkit/Form.h>

#import <appkit/Slider.h>

#import <appkit/Window.h>

#import <dpsclient/wraps.h>

@implementation PenView

- initFrame:(const NXRect *) frameRect

{

 [super initFrame:frameRect];

 penWidth = 1.0;

 // load pencilCursor

 pencilCursor = [NXCursor newFromImage:[NXImage new FromSection:"pencil.tiff"]];

 hotSpot.x = 0.0; hotSpot.y = 15.0; // hotS pot is the point on the 16 x 16 cursor

 [pencilCursor setHotSpot:&hotSpot]; // imag e that's aligned with the mouse

 // the origin of a cursor is at upper left corner

 return self;

}

 Mahoney - 67 - CHI ’91 Tutorial

 PenView.m (continued)

 // This method was included to initialize the Form text to the

- setFormOutlet:sender // penWidth value set in initFrame above.

{ // It also initializes the formOutlet, but th at would have been

 formOutlet = sender; // done automatically by t he system if this wasn’t here.

 [formOutlet setFloatValue: penWidth at:0];

 return self;

}

- changePenWidth:sender // gets the penWidth valu e from the Slider object (the "sender")

{

 penWidth = [sender floatValue]; // ge t the penWidth value

 [formOutlet setFloatValue: penWidth at:0]; // update Form with new penWidth value

 return self;

}

- clearView:sender // used only to clear Pe nView

{ // see the drawSelf method below

 [self display]; // sets up a graphics context a nd invokes drawSelf below

 return self;

}

- drawSelf:(NXRect *)rects :(int) rectCount; // used only to clear PenView

{ // see the clearView method above

 PSsetgray (NX_WHITE);

 NXRectFill (&bounds); // fill entire PenView with white

 PSsetgray (NX_BLACK);

 NXFrameRect (&bounds); // draw a black frame around PenView

 return self;

}

Mahoney - 68 - CHI ‘91 Tutorial

PenView.m (continued)

- resetCursorRects // resets PenView's cursor r ectangle

{ // so pencil shows up inside PenView

 [self addCursorRect:&bounds cursor:pencilCursor]; // set cursor rectangle

 return self; // for details look up these metho ds in View class docs.

}

- mouseDown: (NXEvent *) theEvent // our own i mplementation of mouseDown

{ // invoked every time the mouse button is press ed down inside PenView

 NXPoint currentPos, oldPos;

 NXEvent *nextEvent;

 BOOL looping = 1; // true

 int oldMask; // mouse event masks

 int checkMask;

 oldMask = [window eventMask];

 checkMask = NX_MOUSEUPMASK | NX_MOUSEDRAGGEDMASK;

 [window setEventMask: (oldMask | checkMask)];

 [self lockFocus]; // locks the PS focus on PenV iew prior to any drawing

 // lockFocus/unlockFocus not needed in drawSel f

 oldPos = theEvent -> location; // get startin g location for a very short line

 [self convertPoint: &oldPos fromView:nil]; // converts oldPos from "My Window"

 // coordinates to penView's coords.

 PSsetlinewidth (penWidth);

 Mahoney - 69 - CHI ’91 Tutorial

 PenView.m (continued)

 while (looping) { // takes over event loop whi le mouse is pressed down

 nextEvent = [NXApp getNextEvent: checkMask];

 // if mouseup, looping = FALSE

 looping = (nextEvent -> type != NX_MOUSEUP);

 if (looping) {

 currentPos = nextEvent -> location;

 [self convertPoint: ¤tPos fromView:nil];

 if ((currentPos.x != oldPos.x) | (currentPos.y ! = oldPos.y)) {

 PSnewpath (); // don't use drawSelf becaus e

 PSmoveto (oldPos.x, oldPos.y); // o f dynamic drawing

 PSlineto (currentPos.x, currentPos.y);

 PSstroke ();

 oldPos = currentPos;

 [window flushWindow]; // needed else drawin g is only

 // shown when Slider is moved

 }

 }

 } /* end while */

 [self unlockFocus]; // companion to [self lock Focus]

 [window setEventMask: oldMask];

 return self;

} /* end of mouseDown */

@end // implementation

Mahoney - 70 - CHI ‘91 Tutorial

Project 5 - Parse Example
(use source files from Project 2, KmToMi,
 to show how to use the Parse operation)

In this example we parse a class interface (.h) file so that
the outlets and methods of the associated class are
known to IB. The resulting app, called ParseKmToMi,
will function exactly the same as KmToMi when
complete. See the Project 2 screen dump on page 46
for a picture of the finished product.

The Parse button in the Operations pull-down list in the
Classes window reads the class definition for the
selected class from an interface file. IB looks for the
class interface file in the current project folder. If IB
finds it, then the class is displayed in its proper place
in the Classes window browser.

You can only use the Parse button if you have previously
specified the class’s position in the class hierarchy
and copied the files into the project folder.

A simpler method of adding an existing class to the
hierarchy in IB is to drag the “.h” icon for the interface
file into the File or Classes window. IB will then
automatically parse the interface file.

 Mahoney - 71 - CHI ’91 Tutorial

 Project 5 Step by Step
1. Before launching IB, create a folder called proj5 and copy the files

ConvertObject.m and ConvertObject.h from the proj2 folder into it.

2. Launch IB and choose New Application , Save As and then Project from
its File submenu. Save as “ParseKmToMi ” in the proj5 folder.

3. Create a subclass of the Object class called “ConvertObject ” by
opening the Classes window, highlighting “Object ” in its browser, dragging
to Subclass in the “Operations” pull-down list and renaming “MyObject”.

4. Parse the “ConvertObject.h” file by dragging to Parse in the Operations
pull-down list. Click “Replace ” when you get the panel which says “Parsed
file has different actions or outlets”.

Drag to Attributes in the Inspector’s pop-up-list and note that the outlets
“kmOutlet” and “miOutlet” and the “convertMethod” method appear (since
they were specified in the “ConvertObject.h” file).

5. Create an instance object (and icon) of the Convert Object class by
dragging to Instantiate in the “Operations” pull-down list.

6. Add the ConvertObject class to the project by highlighting “[.hm]
(class) ” in the Files Project Inspector, clicking “Add ...” and double-clicking
ConvertObject.m in the Open panel.

7. Build the KmToMi interface and make the KmToMi connections by
working through the appropriate steps in Project 2. You will need to do the
following steps: 3-15, 25-26, and 30-32 (inclusive). Then “make”, launch
and test ParseKmToMi.

Note: This project could have been done slightly more easily by deleting steps 1,3
and 4 and performing the following after step 2.

Locate the ConvertObject.h file in the File Viewer (in the proj2 folder) and drag it’s
icon into IB’s File window.

The “Classes” suitcase icon opens and the ConvertObject class is added to the class
hierarchy for the project. Double-click on the “Classes” suitcase icon to see the
ConvertObject class in the hierarchy.

Mahoney - 72 - CHI ‘91 Tutorial

Project 6 - SketchPalette
(add a user-defined Palette to IB’s Palettes window)

After setting up and loading the new Palette, IB’s Palettes and Inspector windows will
look like:

This example can be found on-line by searching for SketchPalette in the
“Developer RelNotes ” documentation using Digital Librarian . This example is on-
line only in the extended software release.

Note the new Palette
and the new slider in
the Palettes window.

The main window of an

 SketchPalette with a line
 width of about 6.

 application which uses

 Mahoney - 73 - CHI ’91 Tutorial

 What to do next
1. Projects in this tutorial:

Carefully work through the projects in this tutorial on a computer
running NeXTstep 2.0 and think about objects and connections as
you do them.

I will e-mail you copies of the source code for projects 3 and 4 in
this tutorial if you send a request to the address
mahoney@csulb.edu

2. NeXT Interface Builder Tutorial and Reference:

Carefully read through the Chapter 8 of the NeXTstep Concepts
manual. In particular, work through projects in the Interface
Builder tutorial there.

3. The NeXTstep Advantage booklet

This 107 page booklet from NeXT gives an excellent overview of
the NeXTstep development environment and guides the reader
through the development of a nontrivial example called Plotter.
The Plotter app contains many of the features found in NeXTstep
applications, including Listener/Speaker and delegates which
weren’t discussed in this tutorial.

4. Examples (including source code) in the
/NextDeveloper/Examples folder .

Many valuable features and techniques are demonstrated in these
examples. Looking through them is probably the fastest way to
learn how to add features to your own applications using Interface
Builder, the Objective-C Language and PostScript programming.
To get an overview of each of the examples, read the contents of
the README.rtf file which resides in the /NextDeveloper/
Examples folder.

Mahoney - 74 - CHI ‘91 Tutorial

Brief Glossary
(mainly Objective-C Language terms)

object - a programming unit that groups together a data structure (instance variables) and
the operations (methods) that can use or affect that data; the central focus of object-oriented
programming.

class - a particular kind of object. Objects that have access to the same methods and have
the same types of instance variables belong to the same class. A class definition declares the
instance variables and defines the methods for all members of the class.

subclass - for any given class of objects, any class that’s one step below it in the inheritance
hierarchy.

inheritance hierarchy - the hierarchy of classes that’s defined by the arrangement of
superclasses and subclasses. Every class (except Object, which is at the root of the hierarchy)
has a superclass, and any class may have an unlimited number of subclasses. Through its
superclass, each class inherits from those above it in the hierarchy.

method - a procedure that can be executed by an object

message - the method name and arguments that are sent to an object; it tells the receiving
object what to do. The format is [receiver methodname (plus arguments)].

action message - a message sent by a control object (such as a Button or Slider) in
response to a user action (such as clicking the button or dragging the slider’s knob).

instance variable - a variable that’s part of an object’s private data structure. Instance
variables are declared in a class definition and become part of all the objects that are instances
of the class.

target - the object that receives action messages from a control (button, menu item, etc.)

control object - a graphical object (e.g. button, slider) which a user can operate to give
instructions to an application

outlet - a pointer to an object which needs to be sent messages

interface file - a file that declares the interface to a new class

implementation file - a file that contains the code that implements a new class

 Mahoney - 75 - CHI ’91 Tutorial

 References
The most important reference is the NeXT Developer’s Library , which

consists of 10 manuals. One of these manuals, NeXTstep Concepts,
is the best place for beginning developers. Unfortunately, the version
of NeXTstep Concepts shipped in April 1991 is based on NeXTstep
1.0, and it is not on-line with the 2.0 Release. For further references,
see the Suggested Reading in the /NextLibrary/Documentation/
NextDev/Summaries/Reading.rtf file.

• NeXTstep User Interface Guidelines : Chapter 2 of NeXTstep
Concepts, the files in the /NextLibrary/Documentation/NextDev/
Notes/UIUpdate.rtf folder and the BusyBox example.

• Interface Builder : Chapter 8 of NeXTstep Concepts and the
file InterfaceBuilder.rtf in the /NextLibrary/Documentation/
NextDev/ReleaseNotes folder.

• Objective-C and Object-Oriented Programming : Chapter 3 of
NeXTstep Concepts; Object-Oriented Programming: An
Evolutionary Approach by Brad J. Cox (Addison Wesley,
1986); Intro to Objective-C on the NeXT Machine by Gerrit
Huizenga (obtain by downloading the file /pub/next/docs/ObjC-
frame.ps.Z from the sonata site given below).

• PostScript and Drawing: Chapter 4 of NeXTstep Concepts;
PostScript Language Tutorial and Cookbook and the PostScript
Language Reference Manual, 2nd edition, Adobe Systems,
(Addison Wesley, 1985, 1990).

• Internet archive sites: lynx.cs.orst.edu
 nova.cc.purdue.edu

 sonata.cc.purdue.edu
 wuarchive.wustl.edu

Mahoney - 76 - CHI ‘91 Tutorial

Acknowledgments
Congratulations to Jean-Marie Hullot (and Lee Boynton) for a fantastic tool

that will save many programmers many hours and allow nonprogrammers
to easily design user interfaces for NeXTstep apps.

Thanks to Bruce Blumberg, Conrad Geiger, Eric Larson, Ali Ozer, Sara
Benson and of course Steve Jobs of NeXT Computer, Inc.

Thanks also to Dennis Volper, Dave Bradley, Chuck Schneebeck, Bob
Clover, Lorraine Rapp, Yvette Perry, Stein Tumert and especially
Henry Chiu at CSU Long Beach.

A special thanks to the 1990 and 1991 CHI tutorials chairs, Wendy Kellogg
(IBM) and Tom Hewett (Drexel University).

These notes were composed using FrameMaker™ on a NeXT Computer.

All of the windows and screen dumps were captured with the Grab Application
and imported (thanks Keith Ohlfs of NeXT - for Icon too).

TradeMarks
NeXT, Workspace Manager, Application Kit, Interface Builder, and

Digital Librarian are trademarks, and the NeXT logo and NeXTstep
are registered trademarks of NeXT Computer, Inc.

WriteNow is a registered trademark of T/Maker Company.

PostScript and Display PostScript are registered trademarks of Adobe
Systems Incorporated.

UNIX is a registered trademark of UNIX Systems Laboratories.

FrameMaker is a registered trademark of Frame Technology Corporation.

