
FIG. 1. The header �le runFortObject.h.

FIG. 2. The implementation �le runFortObject.m.

FIG. 3. The Fortran �le hellosub.f.

FIG. 4. The implementation �le runFortObject.m.

FIG. 5. The �les make.preamble and make.postamble.

FIG. 6. The rhoSky Main Window.

FIG. 7. The rhoSky Plot Window.

FIG. 8. The updateOutputData, sendPlotDataToWindow, and provideDataStream

methods.

13



1

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Veterling, Numerical

Recipes: The Art of Scienti�c Computing (Cambridge U. P., New York, 1986),

esp. Chap. 15; see also W. H. Press and S. A. Teukolsky, Computers in Physics 6,

188-191 (1992).

2

From AT&T, available via anonymous FTP in a version speci�cally compiled for

the NeXT from sonata.cc.purdue.edu in /pub/next/2.0-release/binaries.

3

NeXT, Inc., NeXTstep Reference Manual, Addison Wesley, ISBN 0-201-58136-1,

1992; Useful supplementary documents available by anonymous FTP from the

sonata archive, Ref. 2, are: NeXT, Inc., NextStep Concepts, in directory /pub-

/next/docs; M. Mahoney, IB tutorial, in /pub/next/Newsletters/SCaNeWS;

and J. Glover, Short-Course on Object-Oriented Programming, UHOOPclass, in

/pub/next/docs.

4

Y. Igarashi et al., Nucl. Phys. B259, 721-729, 1985. This model has a defect: the

skyrmion solution is not really stable. See Z. F. Ezawa and T. Yanagida, Phys. Rev.

D 33, 237, 1986 and J. Kunz and D. Masak, Phys. Lett. B179, 146-152, 1986.

5

C. Fletcher, nxyPalette1.2, available from sonata, Ref. 2, in directory /pub-

/next/submissions.

6

D. Jesperson and T. Pulliam, nxyPlot1.8, available from sonata, Ref. 2, in direc-

tory /pub/next/submissions.

12



The interface described above is speci�c to one physics problem, but it is clear

that the principles involved can be applied to many di�erent problems involving

the solution of coupled di�erential equations. In fact, we already have adapted (re-

used) the code, with very little work, to solve some coupled equations for a quantum

hadrodynamic problem involving pions and �-mesons.

This conversion only took about eight hours and most of that time was spent in

writing the prologue to the code which describes the problem being solved. Essen-

tially, only the Fortran subroutines LOAD1, LOAD2, and DERIVS, which specify the

equations being solved, had to be changed. There were also some problem-speci�c

changes that had to be made to the input and output Forms of the Main Window

(di�erent coupling constants, di�erent numbers of functions to be solved for, etc.),

but these were minor.

In my experience as a programmer, the quickness of this turnaround, from original

conception to the production of useful results, was quite remarkable.

ACKNOWLEDGEMENTS

This work evolved from research done in collaboration with Michael Mattis and

James L. Hughes. I want to thank Bryan Travis, Jeremy Brackbill, James Guberna-

tus, and Klaus Lackner for useful discussions regarding the interface described here

and what other projects could be approached with it. An important component of the

rhoSky interface has been the nxyPalette for the Plot Window; its author, Charles

Fletcher of Techno-Sciences, Inc., was very helpful to me in getting it to work. Finally,

Kim Maltman made useful comments for improving the manuscript.

11



� provideDataStream, which tells nxyView where to �nd the data to plot.

(RunFortObjectInstance is nxyView's \delegate", which means that for some

messages received by nxyView, it asks its delegate to respond.)

Finally, there is one additional method (not mentioned in the header �le, i.e., not

\public"), displayIntmdteFs, for handling the display of intermediate results.

Likewise, the Fortran �le is now considerably expanded. The communication with

the Objective-C code continues to be, as above, through a set of subroutine calls.

These subroutines were \written" quickly by converting the original Fortran main

program (which itself largely consisted of subroutine calls) into several (top-level)

subroutines, already mentioned above with regard to the methods connected with

buttons: startsub, continuesub, and finishsub. There are two additional (top-

level) subroutines, writeplotdata, called by updateOutputData, and observables,

called by finishsub. The latter subroutine originally was a separate Fortran post-

processor program for calculating, from the �nal F , F

0

, G and G

0

, the quantities that

eventually appear in the m rho, M sky, and GoldRat FormCells in the Main Window.

Finally, there are several lower-level routines needed for the Runge-Kutta integration,

such as DERIVS, which calculates the right-hand-sides of the four �rst-order equations.

What can not be shown in the �gures of this article is the real-time ease of use of the

rhoSky application. Calculation proceeds quickly, with results and graphs appearing

within a second or so after clicking a button. The interface in fact encourages a more

exploratory approach to the equations than one might undertake when searching for

solutions in a \batch mode". Most importantly, it is much more fun to \drive" than

the old command-line program ever was.

IV. PORTABILITY OF CONCEPT

10



The application also has a Plot Window for displaying the present (or �nal) cal-

culated F (r) and G(r) (Fig. 7). The code for plotting in this window was taken

from nxyPalette,

5

a custom-built object in the public domain. nxyPalette in turn

is based upon a publicly available NeXTstep plotting application, nxyPlot.

6

The

expanded RunFortObject.m �le, discussed below, includes three methods needed

for plotting (besides those methods already in the nxyView object provided by

nxyPalette). The graph in the Plot Window is updated after every pass (Run,

Continue, or Finish Up). As shown in Fig. 7, the user sees the curves, initially

discontinuous, smooth out as a solution is achieved.

As mentioned, the RunFortObject.m �le is more complex and now contains eight

methods. Some of these are connected to buttons:

� startFortMethod:sender, the action of the Run button, which calls the Fortran

subroutine startsub.

� continueFortMethod:sender, the action of the Continue button, which calls

subroutine continuesub.

� finishFortMethod:sender, the action of the Finish Up button, which calls

subroutine finishsub.

� clearForNewRun:sender, the action of the Clear button, which simply calls

the clearNXYView method provided by nxyView and clears the output Form

displays.

The three methods involved in plotting graphs are (Fig. 8):

� updateOutputData, which calls writeplotdata ().

� sendPlotDataToWindow, which also checks that the data is plottable.

9



� An input Form object for various input parameters: coupling constants of the

Lagrangian, particle masses, the matching radius r

F

� xf, the asymptotic radius

r

2

� x2, the Runge-Kutta precision parameter, and the value of F (0) (which is

usually taken to be �, as indicated in Eq.(3)).

� An input Form for the starting values of the four scale parameters (A, B, C, D)

which are adjusted to make F , G continuous and smooth at r

F

.

� A Form for showing the present values of the adjusted scale parameters.

� A Form for displaying the discontinuities at the match point and the calculated

corrections to the scale parameters.

� An output Form for displaying post-processed computations, such as the

Skyrmion mass, M sky.

� Default values in the Form Cells for input parameters; these can be changed by

user by clicking on the desired cells and editing them, before clicking on Run.

� Various control buttons:

Run|does a Clear and performs �rst pass of a new calculation with present

input parameters.

Continue|goes on to next pass, if desirable.

Finish Up|writes out �nal solution to output.data and perform and display

post-processing computations.

Clear|clears the Plot Window, discussed below, and the output form cells.

The evolution of the Main Window as one goes through the steps to �nd a solution

is shown in Fig. 5.

8



The rhoSky application calculates the classical pion and �-meson �eld functions for

a �-stablized skyrmion.

4

This is done using the so-called \Hedgehog Ansatz", which

assumes the �eld function solutions are particular tensor covariants times spherically

symmetric functions. In this case, since there are two meson �elds, there are two

functions, F (r) and G(r).

Mathematically, we want to solve two nonlinear di�erential equations for F and

G knowing the boundary conditions and indicial behavior at r = 0 and appropriate

asymptotic behavior (exponential damping). The equations are

r

2

F

00

+ 2rF

0

+ (a� 1) sin 2F

+2a(G� 1) sinF �m

2

�

r

2

sinF = 0 ; (1)

r

2

G

00

� (m

2

�

r

2

+ 2)G+ 3G

2

�G

3

+m

2

�

r

2

(1� cosF ) = 0 : (2)

Near r = 0 the solutions must behave as

F = � � Ar + O(r

3

) ; G = 2� Br

2

+O(r

4

) ; (3)

where the scale parameters A and B are constants to be determined by the nonlinear-

ity of the equations themselves. Similarly, the desired asymptotic behavior at large r

is

F (r)!C

exp(�m

�

r)

r

; (4)

G(r)!

m

2

�

(m

2

�

� 4m

2

�

)

F

2

(r)

2

+D exp(�m

�

r) ; (5)

where C and D are the other two scale parameters (constants) to be determined.

The Main Window for the rhoSky application is assembled using the Interface

Builder as in the \Hello, Fortran!" example discussed above, but it involves more

objects (Fig.1):

7



� The Fortran subroutine reads the input data from input.data and massages it.

It then writes its output to the �le output.data, closes the �le, and returns.

� runFortMethod continues by opening output.data, reads it, and �nally displays

the number there in outputForm, i.e., in the Main Window.

Three details in this code should be noted. First, Fortran is case-insensitive, but

Unix �lenames do care about case. Second, the codes in Figs. 2 and 3 include printf's

and print's, seen here as commented out, for debugging purposes. If the application

is launched from a terminal window (a shell), these debug printouts would appear

there. The ability to print out intermediate results turned out to be very useful for

debugging. Finally, it is necessary to include the #import statements for the header

�les appkit/Form.h and stdio.h, so that the C compiler will not complain about

things it cannot �nd.

The �nal step is to \make" the application, to test it, and to iterate as necessary.

The IB generates a standard Unix Make�le, which is not to be touched. However, the

code developer can customize that Make�le as needed by creating make.preamble

and make.postamble �les, which are read and executed by the standard Make�le. In

this particular application one needs to declare OTHER OFILES to force recompilation

of hellosub.f, if changed (Fig. 4). Also, to be able to �nd the Fortran I/O routines,

etc., one must declare the f2c library. (Alternatively, one could declare the library by

adding it to the \other libs" category in the Project Inspector window in the IB.)

Such a NeXTstep application does work, and, as a learning tool, it provided the

clues for how to frontend a more ambitious Fortran code, such as that discussed in

the next section.

III. THE FRONTEND FOR THE COUPLED ODE SOLVER CODE

6



RunFortObject is made the IB also creates an instance of it, RunFortObject-

Instance. In this class one declares the existence of two outlets, inputForm and

outputForm, and one method, runFortMethod:sender. (The argument \sender"

will refer to the Run button object.)

The RunFortObjectInstance's outlets, inputForm and outputForm, now need to

be speci�ed, i.e., the RunFortObjectInstance object must know what graphical ob-

jects elsewhere on the screen they refer to. Likewise, the Run button must know

what object to tell that it has been clicked and what message should be sent there.

These connections are made by dragging a line, again using the mouse, from the ob-

jects to their corresponding target objects. Thus code in the RunFortObject which

refers to, say, the outputForm will know which Form object in the Main Window

it should send the Fortran answer to for display. Similarly, the Run button is con-

nected to the RunFortObjectInstance as target and will trigger the action given by

runFortMethod.

Finally, by clicking on the Parse menu item, the IB creates a class header �le,

runFortObject.h (see Fig. 1), and a shell for the class implementation �le runFort-

Object.m. Nothing has to be done with the header �le but the runFortObject.m

�le needs 
eshing out with respect to its code. The following material was added, by

hand, to runFortMethod (see Fig. 2):

� First, read the inputForm, write its value to a �le, input.data, and close the

�le.

� Call the Fortran code, which is actually the subroutine hellosub in the

hellosub.f �le (see Fig. 3). The compiler-translator, f2c, creates a C func-

tion corresponding to this subroutine, hellosub (), which can then be called

by that name in the C code.

5



vice versa)?

II. TO PROVE THE CONCEPT

To answer that question, consider a simple \Hello, Fortran!" application, which

does the following:

� The user inputs (clicks, then types) a number into a small text window, a Form-

Cell object labeled \Input", in an on-screen window representing the \Hello,

Fortran!" application.

� Clicking on a Run button in that window reads that number and sends it to a

Fortran program.

� The Fortran code multiplies it by 7 and displays the \answer" in another Form-

Cell object (labeled \Output") in the window.

To build such a program as a NeXTstep application one �rst builds the window

using the Interface Builder

3

(IB), a developer's toolkit that comes with every NeXT

workstation having the extended distribution. How the IB is used will only be de-

scribed brie
y; the reader is referred to Ref. 3 for details.

After launching the IB, one uses the mouse to drag in and drop various graphical

objects from the IB palette in the application's Main Window. For the \Hello, For-

tran!" application it is only necessary to add two Forms (both one cell only) for input

and output and a Run button.

Now one creates a custom class, call it RunFortObject, by subclassing the generic

Object class. This object will contain all the specialized behavior we need to con-

trol the graphical interface window and access the Fortran module. At the time

4



chosen to have the input read from an editable input �le, but for present purposes it

was preferable to query the user.) This mode of operating was quite tolerable, perhaps

close to optimum, during the time I was running the code on a VAX mainframe.

Soon, however, because of a change of station, I had to transfer my Fortran com-

puting from the VAX to a NeXT workstation. Consideration of cost led me to use

the public domain \compiler" f2c, which translates Fortran code into C code, and

then compiles that.

2

This, as will be seen, turned out to be a serendipitous choice.

After the move to the NeXT, however, some things about running the program

in text mode became annoying. For example, performing another calculation meant

starting a new job and re-entering all the input parameters. Another annoyance was

the graphing of the resulting solutions. On the VAX, plots of solutions could be

made automatically (and somewhat interactively) by writing out the graphics �les

to my terminal running in Tektronix 4014 emulator mode. On the NeXT, however,

the plotting had to be done by post-processing an output �le after each run. I began

looking for a better way to work.

Perhaps more of a reason to make a change came from the di�culties of the nonlin-

ear equations themselves. It is sometimes tricky getting the code to �nd reasonable

Newton-Rapheson corrections if the initial scale parameters are poorly choosen. If

one could immediately see graphs of the results of the �rst pass, that would help in

making a good initial choice. (If it's very bad, one would not proceed with the run and

try another choice.) Likewise, seeing graphs of intermediate pass results would allow

user to opt out of what turned out to be a bad choice of starting scale parameters.

Thus, it soon became obvious that one should try putting a user-friendly interface,

a frontend, on the Fortran ODE solver program. However, the NeXTstep operating

system and graphical user interface is based on Objective-C, an object-oriented ex-

tension of C. So the basic question is how to get Objective-C to talk to Fortran (and

3



I. INTRODUCTION AND BACKGROUND

In the course of my research as a nuclear physicist I recently had occasion to write

a Fortran code for solving coupled, nonlinear di�erential equations. The code, which

originally ran on a VAX, used appropriate Numerical Recipes

1

to carry out a Runge-

Kutta integration of the equations.

In particular, the code solves second-order coupled ODEs for two functions, F (r)

and G(r), which is a system of four �rst-order equations when recast for the Runge-

Kutta procedure. The boundary conditions at the origin are known and the equations

themselves determine indicial behaviors near r = 0. There are also desired asymptotic

behaviors at large distances (e.g., exponential fallo�s). However, one doesn't know

the sizes of derivatives at the origin or the asymptotic normalizations, since these

are determined by the nonlinearities of the equations. So, what the user of the code

does is to choose these four scale parameters arbitrarily for a �rst pass through the

equations. These parameters are then subsequently re�ned by successive iterations

until the equations are well-satis�ed.

This procedure involves shooting out from the origin, using an adaptive Runge-

Kutta routine, to some intermediate distance, r

F

(e.g., 0.5 fm). Then one shoots back

from a large value of r (e.g., 2 fm) to r

F

. The discontinuities at r

F

(in the functions F

and G and their derivatives) then determine, using a generalized Newton-Rapheson

technique, corrections to the initial scale parameters that should tend to drive the

next discontinuities toward zero. The code then goes on to do another pass through

the above shooting procedure. The program continues iterating until it achieves a

good solution.

This Fortran program was invoked from and ran in a (text only) terminal window.

The user could semi-interactively input parameters, i.e., the code would use defaults

and query the user on each if he or she wanted to make a change. (One could have

2



An Interactive NeXTstep Interface to a Fortran Code

for Solving Coupled Di�erential Equations

Richard R. Silbar

Theoretical Division, Los Alamos National Laboratory

University of California, Los Alamos, New Mexico 87545

(Received August 15, 1992)

This paper describes a user-friendly frontend to a Fortran program that in-

tegrates coupled nonlinear ordinary di�erential equations. The user interface

is built using the NeXTstep Interface Builder, together with a public-domain

graphical palette for displaying intermediate and �nal results. The main prob-

lem is how to communicate between the Objective-C environment of NeXTstep

and the Fortran code. This is resolved by breaking up the Fortran into separate

subroutines, corresponding to the various control buttons in the interface. These

subroutines are then compiled in such a way that they can be called as ordinary

C functions.

Los Alamos National Laboratory Preprint LA-UR-92-2541

Submitted to Computers in Physics

1


