
-- --

A

CSOUND

Manual for the

mAudio Processing Syste

and

sSupporting Program

Barry Vercoe
Media Lab

M.I.T.

--- -

-- --

-- --

Copyright 1986, 1991 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio,

w
Media Laboratory, M.I.T., Cambridge, Massachusetts,

ith partial support from the System Development Foundation
and from National Science Foundation Grant # IRI-8704665.

--

h
p
Permission to use, copy, or modify these programs and their documentation for educational and researc
urposes only and without fee is hereby granted, provided that this copyright and permission notice ap-

r
m
pear on all copies and supporting documentation. For any other uses of this software, in original o

odified form, including but not limited to distribution in whole or in part, specific prior permission
r

a
from M.I.T. must be obtained. M.I.T. makes no representations about the suitability of this software fo
ny purpose. It is provided "as is" without express or implied warranty.

-

-

- --

-- --

P

CONTENTS

REFACE v

11. A BEGINNING TUTORIAL
Introduction 1

1
T
The Orchestra File

he Score File 3
4

M
The csound Command

ore about the Orchestra 5

62. SYNTAX OF THE ORCHESTRA
STATEMENT TYPES 6

7
V
CONSTANTS AND VARIABLES

ALUE CONVERTERS: int, frac, abs, ftlen,
8

P
i, exp, log, sqrt, sin, cos, dbamp, ampdb

ITCH CONVERTERS: octpch, pchoct,
9

A
cpspch, octcps, cpsoct

RITHMETIC OPERATIONS 10
0

E
CONDITIONAL VALUES 1

XPRESSIONS 11
2

O
ASSIGNMENT STATEMENTS: =, init, tival, divz 1

RCHESTRA HEADER: sr, kr, ksmps, nchnls 13
4

P
INSTRUMENT BLOCKS: instr, endin 1

ROGRAM CONTROL:
goto, tigoto, if ... goto, timout 15

6
D

reinit, rigoto, rireturn 1
URATIONAL CONTROL:

ihold, turnoff 17
SIGNAL GENERATORS:

line, expon, linseg, expseg 18
9

t
phasor 1
able, tablei, oscil1, oscil1i 20

1
b
oscil, oscili, foscil, foscili 2

uzz, gbuzz 22
3

f
adsyn, pvoc 2
of 24

5
r
pluck 2
and, randh, randi 26

SIGNAL MODIFIERS:
linen, envlpx 27

9
l
port, tone, atone, reson, areson 2
pread, lpreson, lpfreson 30

1
d
rms, gain, balance 3

ownsamp, upsamp, interp, integ, diff, samphold 32
3

d
delayr, delayw, delay, delay1 3

eltap, deltapi 34
5

O
comb, alpass, reverb 3

PERATIONS WITH SPECTRAL DATA TYPES:

s
octdown, noctdft, specscal, specaddm,
pecdiff, specfilt, specdisp, specsum 36

SENSING & CONTROL:
tempest 38

9
S

xyin, tempo 3
OUNDFILE INPUT & OUTPUT:

--- -

- 2 -

in, ins, insq, soundin, out, outs, outq 40
1

S
pan 4

IGNAL DISPLAY: print, display, dispfft 42

33. STANDARD NUMERIC SCORE 4
Preprocessing of Standard Scores 43

4
R
Next-P and Previous-P Symbols 4

amping 45
6

I
Function Table Statement 4
nstrument Note Statements 47

8
T
Advance Statement 4

empo Statement 49
0

E
Sections of Score 5

nd of Score 51

24. GEN ROUTINES 5
GEN01, GEN02 52

3
G
GEN03 5

EN04 54
5

G
GEN05, GEN07 5

EN06 56
7

G
GEN08 5

EN09, GEN10 58
9

G
GEN11 5

EN12 60
1

G
GEN13, GEN14 6

EN15 62

35. CSCORE 6
Events, Lists, and Operations 63

4
C
Writing a Main Program 6

ompiling a Cscore Program 69

06. SCOT: A Score Translator 7
Orchestra Declaration 70

1
S
Function Declaration 7

core Section 71
1

S
Pitch and Rhythm 7

cot Example I 73
4

S
Groupettes 7

lurs and Ties 74
5

P
Parameters 7

field Macros 75
6

S
Divisi 7

cot Example II 76
7

O
Additional Features 7

utput Scores 79

17. The CSOUND Command 8
The Extract Feature 83

3

A

Independent Preprocessing 8

ppendix 1. An Orchestra QUICK REFERENCE 84

--- -

-- --

R

PREFACE

ealizing music by digital computer involves synthesizing audio signals with discrete points or samples
t

m
that are representative of continuous waveforms. There are several ways of doing this, each affording a differen

anner of control. Direct synthesis generates waveforms by sampling a stored function representing a single
;

s
cycle; additive synthesis generates the many partials of a complex tone, each with its own loudness envelope
ubtractive synthesis begins with a complex tone and filters it. Non-linear synthesis uses frequency modulation

d
a
and wave shaping to give simple signals complex characteristics, while sampling and storage of natural soun
llows it to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
a

c
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is really
omputer program that can produce sound, while a score is a body of data which that program can react to.

,
d
Whether a rise-time characteristic is a fixed constant in an instrument, or a variable of each note in the score
epends on how the user wants to control it.

The instruments in a Csound orchestra are defined in a simple syntax that invokes complex audio process-
-

d
ing routines. A score passed to this orchestra contains numerically coded pitch and control information, in stan
ard numeric score format. Although many users are content with this format, higher level score processing

a
f
languages are often convenient. The Scot language uses simple alphanumeric encoding of pitch and time, in
ashion that parallels traditional music notation; its translator produces a standard numeric score. The Cscore

.
O
program can expand an existing numeric score, according to user-supplied algorithms written in the C language

ne powerful score strategy, then, is to define a kernel score in Scot, translate it to numeric form, then expand
and modify the data using Cscore before sending it to a Csound orchestra for performance.

The programs making up the Csound system have a long history of development, beginning with the

t
Music 4 program written at Bell Telephone Laboratories in the early 1960’s by Max Mathews. That initiated
he stored table concept and much of the terminology that has since enabled computer music researchers to com-

M
municate. Valuable additions were made at Princeton by the late Godfrey Winham in Music 4B; my own

usic 360 (1968) was very indebted to his work. With Music 11 (1973) I took a different tack: the two distinct

i
networks of control and audio signal processing stemmed from my intensive involvement in the preceding years
n hardware synthesizer concepts and design. This division has been retained in Csound.

T
i

Because it is written entirely in C, Csound is easily installed on any machine running Unix or C. At MI
t runs on VAX/DECstations under Ultrix 4.0, on SUNs under OS 4.1, and on the Macintosh under ThinkC 4.0.

With this single language for audio signal processing, users move easily from machine to machine.

The 1991 version has many new features. First, I am indebted to others for the contribution of the phase
l

d
vocoder and FOF synthesis modules. This release also charts a new direction with the addition of a spectra
ata type, holding much promise for future development. Most importantly, with the advent of a new genera-

,
r
tion of RISC processors that are an order of magnitude faster than those on which computer music was born
esearchers and composers now have access to workstations on which realtime software synthesis with sensing

e
fi
and control is now a reality. This is perhaps the single most important development for people working in th

eld. This new Csound is designed to take maximum advantage of realtime audio processing, and to encourage
interactive experiments in this exciting new domain.

B.V.

--- -

-- --

Introduction

1. A BEGINNING TUTORIAL

The purpose of this section is to expose the reader to the fundamentals of designing and using computer
-

m
music instruments in Csound. Only a small portion of the language will be covered here, sufficient to imple

ent some simple instrument examples. The remaining sections in the text are arranged as a Reference manual
.

O
(not a tutorial), since that is the form the user will eventually find most helpful when inventing instruments

nce the basic concepts are grasped from this tutorial, the reader might let himself into the remainder of the text

T

by locating the information presented here in the Reference entries that follow.

he Orchestra File

Csound runs from two basic files: an orchestra file and a score file. The orchestra file is a set of instru-

a
ments that tell the computer how to synthesize sound; the score file tells the computer when. An instrument is

collection of modular statements which either generate or modify a signal; signals are represented by symbols,

4
which can be "patched" from one module to another. For example, the following two statements will generate a
40 Hz sine tone and send it to an output channel:

asig oscil 10000, 440, 1
out asig

The first line sets up an oscillator whose controlling inputs are an amplitude of 10000, a frequency of 440 Hz,

s
and a waveform number, and whose output is the audio signal asig. The second line takes the signal asig and
ends it to an (implicit) output channel. The two may be encased in another pair of statements that identify the

instrument as a whole:

instr 1
1asig oscil 10000, 440,

out asig

I

endin

n general, an orchestra statement in Csound consists of an action symbol followed by a set of input vari-

m
ables and preceded by a result symbol. Its action is to process the inputs and deposit the result where told. The

eaning of the input variables depends on the action requested. The 10000 above is interpreted as an amplitude
s

h
value because it occupies the first input slot of an oscil unit; 440 signifies a frequency in Hertz because that i
ow an oscil unit interprets its second input argument; the waveform number is taken to point indirectly to a

e
w
stored function table, and before we invoke this instrument in a score we must fill function table #1 with som

aveform.

The output of Csound computation is not a real audio signal, but a stream of numbers which describe
;

f
such a signal. When written onto a sound file these can later be converted to sound by an independent program
or now, we will think of variables such as asig as tangible audio signals.

e
d

Let us now add some extra features to this instrument. First, we will allow the pitch of the tone to b
efined as a parameter in the score. Score parameters can be represented by orchestra variables which take on

e
h
their different values on successive notes. These variables are named sequentially: p1, p2, p3, ... The first thre
ave a fixed meaning (see the Score File), while the remainder are assignable by the user. Those of significance

here are:

p3 - duration of the current note (always in seconds).
.

-

Thus in

p5 - pitch of the current note (in units agreed upon by score and orchestra)

- --

t

asig oscil 10000, p5, 1

- 2 -

he oscillator will take its pitch (presumably in cps) from score parameter 5.

t
b

If the score had forwarded pitch values in units other than cycles-per-second (Hertz), then these must firs
e converted. One convenient score encoding, for instance, combines pitch class representation (00 for C, 01

h
v
for C#, 02 for D, ... 11 for B) with octave representation (8. for middle C, 9. for the C above, etc.) to give pitc
alues such as 8.00, 9.03, 7.11. The expression

w

cpspch(8.09)

ill convert the pitch A (above middle C) to its cps equivalent (440 Hz). Likewise, the expression

w

cpspch(p5)

ill first read a value from p5, then convert it from octave.pitch-class units to cps. This expression could be
imbedded in our orchestra statement as

asig oscil 10000, cpspch(p5), 1

to give the score-controlled frequency we sought.

Next, suppose we want to shape the amplitude of our tone with a linear rise from 0 to 10000. This can be
done with a new action statement

amp line 0, p3, 10000

Here, amp will take on values that move from 0 to 10000 over time p3 (the duration of the note in seconds).
The instrument will then become

instr 1
0

a
amp line 0, p3, 1000
sig oscil amp, cpspch(p5), 1

e
out asig
ndin

The signal amp is not something we would expect to listen to directly. It is really a variable whose pur-

f
pose is to control the amplitude of the audio oscillator. Although audio output requires fine resolution in time
or good fidelity, a controlling signal often does not need that much resolution. We could use another kind of

signal for this amplitude control

kamp line 0, p3, 10000

in which the result is a new kind of signal. Signal names up to this point have always begun with the letter a
,

d
(signifying an audio signal); this one begins with k (for control). Control signals are identical to audio signals
iffering only in their resolution in time. A control signal changes its value less often than an audio signal, and

is thus faster to generate. Using one of these, our instrument would then become

instr 1
0

a
kamp line 0, p3, 1000
sig oscil kamp, cpspch(p5), 1

e
out asig
ndin

This would likely be indistinguishable in sound from the first version, but would run a little faster. In general,

t
instruments take constants and parameter values, and use calculations and signal processing to move first
owards the generation of control signals, then finally audio signals. Remembering this flow will help you write

efficient instruments with faster execution times.

We are now ready to create our first orchestra file. Type in the following orchestra using the system edi-
tor, and name it "intro.orc".

sr = 20000 ; audio sampling rate is 20 kHz

k
kr = 500 ; control rate is 500 Hz
smps = 40 ; number of samples in a control period (sr/kr)

--- -

- 3 -

nchnls = 1 ; number of channels of audio output

k
instr 1

ctrl line 0, p3, 10000 ; amplitude envelope
asig oscil kctrl, cpspch(p5), 1 ; audio oscillator

out asig ; send signal to channel 1

I

endin

t is seen that comments may follow a semi-colon, and extend to the end of a line. There can also be blank
e

s
lines, or lines with just a comment. Once you have saved your orchestra file on disk, we can next consider th
core file that will drive it.

The Score File

The purpose of the score is to tell the instruments when to play and with what parameter values. The
-

m
score has a different syntax from that of the orchestra, but similarly permits one statement per line and com

ents after a semicolon. The first character of a score statement is an opcode, determining an action request;
the remaining data consists of numeric parameter fields (pfields) to be used by that action.

Suppose we want a sine-tone generator to play a pentatonic scale starting at C-sharp above middle-C, with
notes of 1/2 second duration. We would create the following score:

; a sine wave function table

;
f1 0 256 10 1

a pentatonic scale

i
i1 0 .5 0 8.01
1 .5 . . 8.03

6
i
i1 1.0 . . 8.0
1 1.5 . . 8.08

0

T

e
i1 2.0 . . 8.1

he first statement creates a stored sine table. The protocol for generating wave tables is simple but powerful.
Lines with opcode f interpret their parameter fields as follows:

p1 - function table number being created
e

p
p2 - creation time, or time at which the table becomes readabl
3 - table size (number of points), which must be a power of two or one greater

H

p4 - generating subroutine, chosen from a prescribed list.

ere the value 10 in p4 indicates a request for subroutine GEN10 to fill the table. GEN10 mixes harmonic
r

s
sinusoids in phase, with relative strengths of consecutive partials given by the succeeding parameter fields. Ou
core requests just a single sinusoid. An alternative statement

w

f1 0 256 10 1 0 3

ould produce one cycle of a waveform with third harmonic three times as strong as the first.

3
s

The i-statements, or note statements, will invoke the p1 instrument at time p2, then turn it off after p
econds; it will pass all of its p-fields to that instrument. Individual score parameters are separated by any

s
3
number of spaces or tabs; neat formatting of parameters in columns is nice but unnecessary. The dots in p-field

and 4 of the last four notes invoke a carry feature, in which values are simply copied from the immediately
preceding note of the same instrument. A score normally ends with an e-statement.

The unit of time in a Csound score is the beat. In the absence of a Tempo statement, one beat takes one
r

a
second. To double the speed of the pentatonic scale in the above score, we could either modify p2 and p3 fo
ll the notes in the score, or simply insert the line

t

t 0 120

o specify a tempo of 120 beats per minute from beat 0.

--- -

- 4 -

Two more points should be noted. First, neither the f-statements nor the i-statements need be typed in
n

o
time order; Csound will sort the score automatically before use. Second, it is permissable to play more tha
ne note at a time with a single instrument. To play the same notes as a three-second pentatonic chord we

would create the following:

; a sine wave function

;
f1 0 256 10 1

five notes at once

i
i1 0 3 0 8.01
1 0 . . 8.03

6
i
i1 0 . . 8.0
1 0 . . 8.08

0

N

e
i1 0 . . 8.1

ow go into the editor once more and create your own score file. Name it "intro.sco".

The CSOUND Command

To request your orchestra to perform your score, type the command

T

csound intro.orc intro.sco

he resulting performance will take place in three phases:
n

y
1) sort the score file into chronological order. If score syntax errors are encountered they will be reported o
our console.

2) translate and load your orchestra. The console will signal the start of translating each instr block, and will

t
report any errors. If the error messages are not immediately meaningful, translate again with the verbose flag
urned on:

csound -v intro.orc intro.sco

3) fill the wave tables and perform the score. Information about this performance will be displayed throughout
in messages resembling

B 4.000 .. 6.000 T 3.000 TT 3.000 M 7929. 7929.

s
w
A message of this form will appear for every event in your score. An event is defined as any change of state (a

hen a new note begins or an old one ends). The first two numbers refer to beats in your original score, and
e

s
they delimit the current segment of sound synthesis between successive events (e.g. from beat 4 to beat 6). Th
econd beat value is next restated in real seconds of time, and reflects the tempo of the score. That is followed

a
by the Total Time elapsed for all sections of the score so far. The last values on the line show the maximum
mplitude of the audio signal, measured over just this segment of time, and reported separately for each channel.

s
Console messages are printed to assist you in following the orchestra’s handling of your score. You

hould aim at becoming an intelligent reader of your console reports. When you begin working with longer

r
scores and your instruments no longer cause surprises, the above detail may be excessive. You can elect to
eceive abbreviated messages using the -m option of the csound command.

e
d

When your performance goes to completion, it will have created a sound file named test in your soundfil
irectory. You can now listen to your sound file by typing

play test

aMore about the Orchestr

Suppose we next wished to introduce a small vibrato, whose rate is 1/50 the frequency of the note (i.e.

t
A440 is to have a vibrato rate of 8.8 Hz.). To do this we will generate a control signal using a second oscilla-
or, then add this signal to the basic frequency derived from p5. This might result in the instrument

k
instr 1

amp line 0, p3, 10000

-- --

- 5 -

1
a
kvib oscil 2.75, cpspch(p5)/50,
1 oscil kamp, cpspch(p5)+kvib, 1

e
out a1
ndin

Here there are two control signals, one controlling the amplitude and the other modifiying the basic pitch
-

c
of the audio oscillator. For small vibratos, this instrument is quite practical; however it does contain a miscon
eption that is worth noting. This scheme has added a sine wave deviation to the cps value of an audio oscilla-

-
t
tor. The value 2.75 determines the width of vibrato in cps, and will cause an A440 to be modified about one
enth of one semitone in each direction (1/160 of the frequency in cps). In reality, a cps deviation produces a

,
w
different musical interval above than it does below. To see this, consider an exaggerated deviation of 220 cps

hich would extend a perfect 5th above A440 but a whole octave below. To be more correct, we should first
.

I
convert p5 into a true decimal octave (not cps), so that an interval deviation above is equivalent to that below
n general, pitch modification is best done in true octave units rather than pitch-class or cps units, and there

exists a group of pitch converters to make this task easier. The modified instrument would be

instr 1
)

k
ioct = octpch(p5
amp line 0, p3, 10000

1
a
kvib oscil 1/120, cpspch(p5)/50,
sig oscil kamp, cpsoct(ioct+kvib), 1

e
out asig
ndin

This instrument is seen to use a third type of orchestra variable, an i-variable. The variable ioct receives
.

T
its value at an initialization pass through the instrument, and does not change during the lifespan of this note

here may be many such init time calculations in an instrument. As each note in a score is encountered, the
e

t
event space is allocated and the instrument is initialized by a special pre-performance pass. i-variables receiv
heir values at this time, and any other expressions involving just constants and i-variables are evaluated. At

u
this time also, modules such as line set up their target values (such as beginning and end points of the line), and
nits such as oscil do phase setup and other bookkeeping in preparation for performance. A full description of

s
init-time and performance-time activities, however, must be deferred to a general consideration of the orchestra
yntax.

-- --

-- --

2

- 6 -

. SYNTAX OF THE ORCHESTRA

An orchestra statement in Csound has the format:

label: result opcode argument1, argument2,... ;comments

n
(
The label is optional and identifies the basic statement that follows as the potential target of a go-to operatio
see Program Control Statements). A label has no effect on the statement per se.

s
a
Comments are optional and are for the purpose of letting the user document his orchestra code. Comment
lways begin with a semicolon (;) and extend to the end of the line.

y
h
The remainder (result, opcode, and arguments) form the basic statement. This also is optional, i.e. a line ma
ave only a label or comment or be entirely blank. If present, the basic statement must be complete on one

-
m
line. The opcode determines the operation to be performed; it usually takes some number of input values (argu

ents); and it usually has a result field variable to which it sends output values at some fixed rate. There are
four possible rates:

1) once only, at orchestra setup time (effectively a permanent assignment);

3
2) once at the beginning of each note (at initialization (init) time: I-rate);
) once every performance-time control loop (perf time control rate, or K-rate);

.4) once each sound sample of every control loop (perf time audio rate, or A-rate)

S

A

STATEMENT TYPE

n orchestra program in Csound is comprised of orchestra header statements which set various global parame-

t
ters, followed by a number of instrument blocks representing different instrument types. An instrument block, in
urn, is comprised of ordinary statements that set values, control the logical flow, or invoke the various signal

A

processing subroutines that lead to audio output.

n orchestra header statement operates once only, at orchestra setup time. It is most commonly an assignment

i
of some value to a global reserved symbol, e.g. sr = 20000. All orchestra header statements belong to a pseudo
nstrument 0, an init pass of which is run prior to all other instruments at score time 0. Any ordinary statement

A

can serve as an orchestra header statement, eg. gifreq = cpspch(8.09), provided it is an init-time only operation.

n ordinary statement runs at either init time or performance time or both. Operations which produce a result

r
formally run at the rate of that result (that is, at init time for I-rate results; at performance time for K- and A-
ate results), with the sole exception of the init opcode (q.v.). Most generators and modifiers, however, pro-

i
duce signals that depend not only on the instantaneous value of their arguments but also on some preserved
nternal state. These performance-time units therefore have an implicit init-time component to set up that state.

A

The run time of an operation which produces no result is apparent in the opcode.

rguments are values that are sent to an operation. Most arguments will accept arithmetic expressions com-
;

t
posed of constants, variables, reserved globals, value converters, arithmetic operations and conditional values
hese are described below.

-- --

c

CONSTANTS AND VARIABLES

- 7 -

onstants are floating point numbers, such as 1, 3.14159, or -73.45 . They are available continuously and do

v

not change in value.

ariables are named cells containing numbers. They are available continuously and may be updated at one of

o
the four update rates (setup only, I-rate, K-rate, or A-rate). I- and K-rate variables are scalars (i.e. they take on
nly one value at any given time) and are primarily used to store and recall controlling data, that is, data that

u
changes at the note rate (for I-variables) or at the control rate (for K-variables). I- and K-variables are therefore
seful for storing note parameter values, pitches, durations, slow-moving frequencies, vibratos, etc. A-variables,

K
on the other hand, are arrays or vectors of information. Though renewed on the same perf-time control pass as

-variables, these array cells represent a finer resolution of time by dividing the control period into sample
e

(
periods (see ksmps below). A-variables are used to store and recall data changing at the audio sampling rat
e.g. output signals of oscillators, filters, etc.).

A further distinction is that between local and global variables. local variables are private to a particular instru-

m
ment, and cannot be read from or written into by any other instrument. Their values are preserved, and they

ay carry information from pass to pass (e.g. from initialization time to performance time) within a single
r

i
instrument. Local variable names begin with the letter p, i, k, or a. The same local variable name may appea
n two or more different instrument blocks without conflict.

d
b
global variables are cells that are accessible by all instruments. The names are either like local names precede
y the letter g, or are special reserved symbols. Global variables are used for broadcasting general values, for

.
m
communicating between instruments (semaphores), or for sending sound from one instrument to another (e.g

ixing prior to reverberation).

Given these distinctions, there are eight forms of local and global variables:

l

r

type when renewable Local Globa

eserved symbols permanent -- rsymbol

i
score parameter fields I-time pnumber --
nit variables I-time iname giname

e
a
control signals P-time, K-rate kname gknam
udio signals P-time, A-rate aname ganame

-
m
where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring to a score state

ent pfield, and name is a string of letters and/or digits with local or global meaning. As might be inferred,

t
score parameters are local I-variables whose values are copied from the invoking score statement just prior to
he Init pass through an instrument.

-- --

VALUE CONVERTERS:

- 8 -

ftlen(x) (init-rate args only)

)
f
int(x) (init- or control-rate args only
rac(x) " "

i

dbamp(x) " "

(x) (control-rate args only)

e
abs(x) (no rate restriction)
xp(x) " "

"
s
log(x) "
qrt(x) " "

"
c
sin(x) "
os(x) " "

w

ampdb(x) " "

here the argument within the parentheses may be an expression.

n
b
Value converters perform arithmetic translation from units of one kind to units of another. The result can the
e a term in a further expression.

ftlen(x) returns the size (no. of points) of stored function table no. x.

f

int(x) " " integer part of x.

rac(x) " " fractional part of x.

.

i

dbamp(x) " " decibel equivalent of the raw amplitude x

(x) " an Init-type equivalent of the argument, thus permitting a K-time value
to be accessed in at init-time or reinit-time, whenever valid.

.

e

abs(x) " the absolute value of x

xp(x) " e raised to the xth power.

.

s

log(x) " the natural log of x (x positive only)

qrt(x) " " square root of x (x non-negative).

c

sin(x) " " sine of x (x in radians).

os(x) " " cosine of x (x in radians).

.ampdb(x) " " amplitude equivalent of the decibel value x
Thus 60 db gives 1000, 66 db gives 2000, 72 db gives 4000,

.

N

78 db gives 8000, 84 db gives 16000 and 90 db gives 32000

ote that for log, sqrt, and ftlen the argument value is restricted.

s
n
Note also that ftlen will always return a power-of-2 value, i.e. the function table guard point (see F statement) i
ot included.

-- --

PITCH CONVERTERS

- 9 -

octpch(pch) (init- or control-rate args only)

c
pchoct(oct) " "
pspch(pch) " "

"
c
octcps(cps) "
psoct(oct) (no rate restriction)

.

T

where the argument within the parentheses may be a further expression

hese are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

name abbreviation

o
octave point pitch-class (8ve.pc) pch
ctave point decimal oct

s

T

cycles per second cp

he first two forms consist of a whole number, representing octave registration, followed by a specially inter-

p
preted fractional part. For pch the fraction is read as two decimal digits representing the 12 equal-tempered
itch classes from .00 for C to .11 for B. For oct, the fraction is interpreted as a true decimal fractional part of

-
c
an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the fraction is pre
eded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above, etc. Thus A440

f
t
can be represented alternatively by 440 (cps), 8.09 (pch), 8.75 (oct), or 7.21 (pch), etc. Microtonal divisions o
he pch semitone can be encoded by using more than two decimal places.

d
m
The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the secon

orpheme describing the source and the first morpheme the object (result). Thus

w

cpspch(8.09)

ill convert the pitch argument 8.09 to its c.p.s. (or hertz) equivalent, giving the value of 440. Since the argu-
r

t
ment is constant over the duration of the note, this conversion will take place at I-time, before any samples fo
he current note are produced. By contrast, the conversion

w

cpsoct(8.75 + K1)

hich gives the value of A440 transposed by the octave interval K1, will repeat the calculation every K-period

N

since that is the rate at which K1 varies.

.B. The conversion from pch or oct into cps is not a linear operation but involves an exponential process

p
which may be time-consuming if executed repeatedly at audio rates. Audio-rate arguments within cpsoct are
ermitted but should be used sparingly.

-- --

ARITHMETIC OPERATIONS:

- 10 -

-a
+a
a && b (logical AND; not audio-rate)

a
a ee b (logical OR; not audio-rate)

+ b

a
a - b

* b
a / b

.

A

where the arguments a and b may be further expressions

rithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND, logical OR,
,

e
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these operators
ither of which could take it as its left or right argument, as in

In such cases three rules apply:

a + b * c.

1) * and / bind to their neighbors more strongly than + and -.
Thus the above expression is taken as

a + (b * c),
.

2
with * taking b and c and then + taking a and b*c

) + and - bind more strongly than &&, which in turn is stronger than ee:
a && b - c ee d is taken as (a && (b - c)) ee d

,3) When both operators bind equally strongly
the operations are done left to right:

a - b - c is taken as (a - b) - c.

.

C

Parentheses may be used as above to force particular groupings

ONDITIONAL VALUES:
(a > b ? v1 : v2)

)
(
(a < b ? v1 : v2
a >= b ? v1 : v2)

)
(
(a <= b ? v1 : v2
a == b ? v1 : v2)

w

(a != b ? v1 : v2)

here a, b, v1 and v2 may be expressions, but a, b not audio-rate.

s
t
In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a les
han b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the condi-

-
e
tional expression has the value of v1; if the relation is false, the expression has the value of v2. (For conveni
nce, a sole ’=’ will function as ’==’.)

N.B.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

e
w
In terms of binding strength, all conditional operators (i.e., the relational operators (>, <, etc.), and ? and :) ar

eaker than the arithmetic and logical operators (+ , - , *, /, && and ee).

Example:
(k1 < p5/2 + p6 ? k1 : p7)

binds the terms p5/2 and p6. It will return the value k1 below this threshold, else the value p7.

--- -

- 11 -

E

EXPRESSIONS:

xpressions may be composed to any depth from the components shown above.

n
a
Each sub-expression (part of an expression) is evaluated at its own proper rate. For instance, if the terms withi

sub-expression all change at the control rate or slower, the sub-expression will be evaluated only at the control

E

rate; that result might then be used in an audio-rate evaluation.

xamples:

k1 + abs(p5/2 + sqrt(k2))
2

T

int(p5) + frac(p5) * 100/1

he above are legal expressions. They may be placed in unit generator argument positions or be part of an

S

assignment statement (q.v.).

TATEMENT TYPES:

There are nine statement types, each of which provides a heading for the descriptive sections that follow in this
document:

assignment statements
s

i
orchestra header statement
nstrument block statements

d
program control statements
uration control statements

s
s
signal generator statement
ignal modifier statements

s
signal display statements
oundfile access statements

T

INTERPRETIVE NOTE:

hroughout this document, opcodes are indicated in boldface and their argument and result mnemonics, when
t

i
mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs), and the resul
s denoted the letter r. Both are preceded by a type qualifier i, k, a or x (e.g. kamp, iphs, ar). The prefix i

,
m
denotes scalar values valid at note Init time; prefixes k or a denote control (scalar) and audio (vector) values

odified and referenced continuously throughout performance (i.e. at every control period while the instrument

a
is active). Arguments are used at the prefix-listed times; results are created at their listed times, then remain
vailable for use as inputs elsewhere. The validity of inputs is defined by the following:

a
arguments with prefix i must be valid at Init time;
rguments with prefix k can be either control or Init values (which remain valid);

a
arguments with prefix a must be vector inputs;
rguments with prefix x may be either vector or scalar (the compiler will distinguish).

M

All arguments, unless otherwise stated, can be expressions whose results conform to the above.

ost opcodes (such as linen and oscil) can be used in more than one mode, which one being determined by the

-

prefix of the result symbol.

- --

ASSIGNMENT STATEMENTS

- 12 -

ir = iarg
g

a
kr = kar
r = xarg

a
kr init iarg
r init iarg

i

ir tival

r divz ia, ib, isubst (these not yet implemented)

a
kr divz ka, kb, ksubst
r divz xa, xb, ksubst

= (simple assignment) - Put the value of the expression iarg (karg, xarg) into the named result. This provides a

i

means of saving an evaluated result for later use.

nit - Put the value of the I-time expression iarg into a K- or A-variable, i.e., initialize the result. Note that init
t

c
provides the only case of an Init-time statement being permitted to write into a Perf-time (K- or A-rate) resul
ell; the statement has no effect at Perf-time.

tival - Put the value of the instrument’s internal "tie-in" flag into the named I-variable. Assigns 1 if this note

t
has been ’tied’ onto a previously held note (see I Statement); assigns 0 if no tie actually took place. (See also
igoto.)

divz - Whenever b is not zero, set the result to the value of a/b; when b is zero, set it to the value of subst

E

instead.

xample:

kcps = i2/3 + cpsoct(k2 + octpch(p5))

--- -

- 13 -

ORCHESTRA HEADER STATEMENTS

sr = n1
2

k
kr = n

smps = n3
4

T

nchnls = n

hese statements are global value assignments, made at the beginning of an orchestra, before any instrument
.

O
block is defined. Their function is to set certain reserved symbol variables that are required for performance

nce set, these reserved symbols can be used in expressions anywhere in the orchestra.

.

k

sr= (optional) - set sampling rate to n1 samples per second per channel. The default value is 10000

r= (optional) - set control rate to n2 samples per second. The default value is 1000.

t
v
ksmps= (optional) - set the number of samples in a Control Period. This value must equal sr/kr. The defaul

alue is 10.

nchnls= (optional) - set number of channels of audio output to n4. (1 = mono, 2 = stereo, 4 = quadraphonic.)

I

The default value is 1 (mono).

n addition, any global variable can be initialized by an init-time assignment anywhere before the first instr

A

statement.

ll of the above assignments are run as instrument 0 (i-pass only) at the start of real performance.

Example of header assignments:

sr = 10000

k
kr = 500
smps = 20

.
g
gi1 = sr / 2
a1 init 0

)

-

gitranspose = octpch(.01

- --

INSTRUMENT BLOCK STATEMENTS

- 14 -

instr i, j, ...

.

.
<body

.

. of
instrument>

e
.
ndin

These statements delimit an instrument block. They must always occur in pairs.

i

instr - begin an instrument block defining instruments i, j, ...

, j, ... must be numbers, not expressions. Any positive integer is legal, and in any order, but excessively high

e

numbers are best avoided.

ndin - end the current instrument block.

T

Note:

here may be any number of instrument blocks in an orchestra.

g
i
Instruments can be defined in any order (but they will always be both initialized and performed in ascendin
nstrument number order).

Instrument blocks cannot be nested (i.e. one block cannot contain another).

--- -

- 15 -

PROGRAM CONTROL STATEMENTS

igoto label
l

k
tigoto labe

goto label
l

i
goto labe
f ia R ib igoto label

l
i
if ka R kb kgoto labe
f ia R ib goto label

w

timout istrt, idur, label

here label is in the same instrument block and is not an expression, and where R is one of the Relational

T

operators (>, <, >=, <=, ==, !=) (and = for convenience, see also under Conditional values).

hese statements are used to control the order in which statements in an instrument block are to be executed.

i

I-time and P-time passes can be controlled separately as follows:

goto - During the I-time pass only, unconditionally transfer control to the statement labeled by label.

-
v
tigoto - similar to igoto, but effective only during an I-time pass at which a new note is being ’tied’ onto a pre

iously held note (see I Statement); no-op when a tie has not taken place. Allows an instrument to skip initiali-

k

zation of units according to whether a proposed tie was in fact successful (see also tival, delay).

goto - During the P-time passes only, unconditionally transfer control to the statement labeled by label.

i

goto - (combination of igoto and kgoto) Transfer control to label on every pass.

f...igoto - conditional branch at I-time, depending on the truth value of the logical expression "ia R ib". The

i

branch is taken only if the result is true.

f...kgoto - conditional branch during P-time, depending on the truth value of the logical expression "ka R kb".

i

The branch is taken only if the result is true.

f...goto - combination of the above. Condition tested on every pass.

n
s
timout - conditional branch during P-time, depending on elapsed note time. istrt and idur specify time i
econds. The branch to label will become effective at time istrt, and will remain so for just idur seconds. Note

E

that timout can be reinitialized for multiple activation within a single note (see example next page).

xample:

if k3 > p5+10 kgoto next

-- --

r
reinit label

- 16 -

igoto label

T

rireturn

hese statements permit an instrument to reinitialize itself during performance.

d
w
reinit - whenever this statement is encountered during a P-time pass, performance is temporarily suspende

hile a special Initialization pass, beginning at label and continuing to rireturn or endin, is executed. Perfor-

r

mance will then be resumed from where it left off.

igoto - similar to igoto, but effective only during a reinit pass (i.e., No-op at standard I-time). This statement

r

is useful for bypassing units that are not to be reinitialized.

ireturn - terminates a reinit pass (i.e., No-op at standard I-time). This statement, or an endin, will cause nor-

E

mal performance to be resumed.

xample:

The following statements will generate an exponential control signal whose value moves from 440 to 880

r

exactly ten times over the duration p3.

eset: timout 0, p3/10, contin ;after p3/10 seconds,

c
reinit reset ; reinit both timout

ontin: k1 expon 440, p3/10, 880 ; and expon
f

-

rireturn ; then resume per

- --

DURATION CONTROL STATEMENTS

- 17 -

ihold
ff

T

turno

hese statements permit the current note to modify its own duration.

s
a
ihold - this I-time statement causes a finite-duration note to become a ’held’ note. It thus has the same effect a

negative p3 (see Score I-statement), except that p3 here remains positive and the instrument reclassifies itself
r

n
to being held indefinitely. The note can be turned off explicitly with turnoff, or its space taken over by anothe
ote of the same instrument number (i.e. it is tied into that note). Effective at I-time only; no-op during a reinit

t

pass.

urnoff - this P-time statement enables an instrument to turn itself off. Whether of finite duration or ’held’, the
r

n
note currently being performed by this instrument is immediately removed from the active note list. No othe
otes are affected.

T

Example:

he following statements will cause a note to terminate when a control signal passes a certain threshold (here
the Nyquist frequency).

k1 expon 440, p3/10, 880 ;begin gliss and continue

t
if k1 < sr/2 kgoto contin ; until Nyquist detected
urnoff ; then quit

-

contin: a1 oscil a1, k1, 1

- --

SIGNAL GENERATORS

- 18 -

kr line ia, idur1, ib
b

k
ar line ia, idur1, i

r expon ia, idur1, ib
b

k
ar expon ia, idur1, i

r linseg ia, idur1, ib[, idur2, ic[...]]
]

k
ar linseg ia, idur1, ib[, idur2, ic[...]
r expseg ia, idur1, ib[, idur2, ic[...]]

]

O

ar expseg ia, idur1, ib[, idur2, ic[...]

utput values kr or ar trace a straight line (exponential curve) or a series of line segments (exponential seg-

I

ments) between specified points.

NITIALIZATION

ia - starting value. Zero is illegal for exponentials.

ib, ic, etc. - value after dur1 seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

.

i

idur1 - duration in seconds of first segment. A zero or negative value will cause all initialization to be skipped

dur2, idur3, etc. - duration in seconds of subsequent segments. A zero or negative value will terminate the ini-

i
tialization process with the preceding point, permitting the last-defined line or curve to be continued indefinitely
n performance. The default is zero.

T

PERFORMANCE

hese units generate control or audio signals whose values can pass through 2 or more specified points. The
e

t
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will truncat
he specified pattern, while a longer one will cause the last-defined segment to continue on in the same direction.

Example:

k2 expseg 440, p3/2, 880, p3/2, 440

This statement creates a control signal which moves exponentially from 440 to 880 and back, over the duration

-

p3.

- --

a
kr phasor kcps[, iphs]

- 19 -

r phasor xcps[, iphs]

.

I

Produce a normalized moving phase value

NITIALIZATION

iphs (optional) - initial phase, expressed as a fraction of a cycle (0 to 1). A negative value will cause phase ini-

P

tialization to be skipped. The default value is zero.

ERFORMANCE

An internal phase is successively accumulated in accordance with the cps frequency to produce a moving phase

W

value, normalized to lie in the range 0.<= phs < 1.

hen used as the index to a table unit, this phase (multiplied by the desired function table length) will cause it

N

to behave like an oscillator.

ote that phasor is a special kind of integrator, accumulating phase increments that represent frequency settings.

Example:

k1 phasor 1 ;cycle once per second
e

a
kpch table k1*12, 1 ;through 12-note pch tabl
1 oscil p4, cpspch(kpch), 2 ;with continuous sound

--- -

- 20 -

]
i
ir table indx, ifn[, ixmode][, ixoff][, iwrap
r tablei indx, ifn[, ixmode][, ixoff][, iwrap]

]
k
kr table kndx, ifn[, ixmode][, ixoff][, iwrap
r tablei kndx, ifn[, ixmode][, ixoff][, iwrap]

a
ar table andx, ifn[, ixmode][, ixoff][, iwrap]
r tablei andx, ifn[, ixmode][, ixoff][, iwrap]

k
kr oscil1 idel, kamp, idur, ifn
r oscil1i idel, kamp, idur, ifn

.

I

Table values are accessed by direct indexing or by incremental sampling

NITIALIZATION

ifn - function table number. tablei, oscil1i require the extended guard point.

.

i

ixmode (optional) - ndx data mode. 0 = raw ndx, 1 = normalized (0 to 1). The default value is 0

xoff (optional) - amount by which ndx is to be offset. For a table with origin at center, use tablesize/2 (raw) or

i

.5 (normalized). The default value is 0.

wrap (optional) - wraparound ndx flag. 0 = nowrap (ndx<0 treated as ndx=0; ndx>tablesize sticks at ndx=size),

i

1 = wraparound. The default value is 0.

del - delay in seconds before oscil1 incremental sampling begins.

l
i
idur - duration in seconds to sample through the oscil1 table just once. A zero or negative value will cause al
nitialization to be skipped.

t

PERFORMANCE

able invokes table lookup on behalf of init, control or audio indices. These indices can be raw entry numbers

b
(0,1,2...siz-1) or scaled values (0 to 1-e). Indices are first modified by the offset value then checked for range
efore table lookup (see iwrap). If ndx is likely to be full scale, or if interpolation is being used, the table

.

o

should have an extended guard point. table indexed by a periodic phasor (see phsor) will simulate an oscillator

scil1 accesses values by sampling once through the function table at a rate determined by idur. For the first

t
idel seconds, the point of scan will reside at the first location of the table; it will then begin moving through the
able at a constant rate, reaching the end in another idur seconds; from that time on (i.e. after idel + idur

a
seconds) it will remain pointing at the last location. Each value obtained from sampling is then multiplied by an
mplitude factor kamp before being written into the result.

-
c
tablei and oscil1i are interpolating units in which the fractional part of ndx is used to interpolate between adja
ent table entries. The smoothness gained by interpolation is at some small cost in execution time (see also

n
t
oscili, etc.), but the interpolating and non-interpolating units are otherwise interchangable. Note that whe
ablei uses a periodic index whose modulo n is less than the power of 2 table length, the interpolation process

-

requires that there be an (n+1)th table value that is a repeat of the 1st (see F statement in Score).

- --

k
kr oscil kamp, kcps, ifn[, iphs]

- 21 -

r oscili kamp, kcps, ifn[, iphs]
]

a
ar oscil xamp, xcps, ifn[, iphs
r oscili xamp, xcps, ifn[, iphs]

]
a
ar foscil xamp, kcps, kcar, kmod, kndx, ifn[, iphs
r foscili xamp, kcps, kcar, kmod, kndx, ifn[, iphs]

.

I

Table ifn is incrementally sampled modulo the table length and the value obtained is multiplied by amp

NITIALIZATION

ifn - function table number. Requires a wrap-around guard point.

l
c
iphs (optional) - initial phase of sampling, expressed as a fraction of a cycle (0 to 1). A negative value wil
ause phase initialization to be skipped. The default value is 0.

T

PERFORMANCE

he oscil units output periodic control (or audio) signals consisting of the value of kamp (xamp) times the value
-

o
returned from control rate (audio rate) sampling of a stored function table. The internal phase is simultane
usly advanced in accordance with the cps input value. While the amplitude and frequency inputs to the K-

,
t
rate oscils are scalar only, the corresponding inputs to the audio-rate oscils may each be either scalar or vector
hus permitting amplitude and frequency modulation at either sub-audio or audio frequencies.

e
a
foscil is a composite unit that effectively banks two oscils in the familiar Chowning FM setup, wherein th
udio-rate output of one generator is used to modulate the frequency input of another (the "carrier"). Effective

,
t
carrier frequency = kcps*kcar, and modulating frequency = kcps*kmod. For integral values of kcar and kmod
he perceived fundamental will be the minimum positive value of kcps * (kcar - n*kmod), n = 0,1,2,... The

e
s
input kndx is the index of modulation (usually time-varying and ranging 0 to 4 or so) which determines th
pread of acoustic energy over the partial positions given by n = 0,1,2,..,etc. ifn should point to a stored sine

o

wave.

scili and foscili differ from oscil and foscil respectively in that the standard procedure of using a truncated
.

I
phase as a sampling index is here replaced by a process that interpolates between two successive lookups
nterpolating generators will produce a noticeably cleaner output signal, but they may take as much as twice as

f
long to run. Adequate accuracy can also be gained without the time cost of interpolation by using large stored
unction tables of 2K, 4K or 8K points if the space is available.

Example:

k1 oscil 10, 5, 1 ;5 cps vibrato
s

-

a1 oscil 5000, 440+k1, 1 ;around A440 +-10 cp

- --

- 22 -

]
a
ar buzz xamp, xcps, knh, ifn[, iphs
r gbuzz xamp, xcps, knh, klh, kr, ifn[, iphs]

I

Output is a set of harmonically related cosine partials.

NITIALIZATION

ifn - table number of a stored function containing (for buzz) a sine wave, or (for gbuzz) a cosine wave. In

i

either case a large table of at least 8192 points is recommended.

phs (optional) - initial phase of the fundamental frequency, expressed as a fraction of a cycle (0 to 1). A nega-

P

tive value will cause phase initialization to be skipped. The default value is zero.

ERFORMANCE

These units generate an additive set of harmonically related cosine partials of fundamental frequency xcps, and
s

d
whose amplitudes are scaled so their summation peak equals xamp. The selection and strength of partials i

etermined by the following control parameters:

.

k

knh - total number of harmonics requested. Must be positive

lh - lowest harmonic present. Can be positive, zero or negative. In gbuzz the set of partials can begin at any
s

w
partial number and proceeds upwards; if klh is negative, all partials below zero will reflect as positive partial

ithout phase change (since cosine is an even function), and will add constructively to any positive partials in

k

the set.

r - specifies the multiplier in the series of amplitude coefficients. This is a power series: if the klhth partial has

a
a strength coefficient of A, the (klh+n)th partial will have a coefficient of A * (kr**n), i.e. strength values trace
n exponential curve. kr may be positive, zero or negative, and is not restricted to integers.

e
m
buzz and gbuzz are useful as complex sound sources in subtractive synthesis. buzz is a special case of th

ore general gbuzz in which klh = kr = 1; it thus produces a set of knh equal-strength harmonic partials, begin-

i
ning with the fundamental. (This is a band-limited pulse train; if the partials extend to the Nyquist, i.e. knh =
nt(sr/2/fundamental freq.), the result is a real pulse train of amplitude xamp.) Although both knh and klh may be

-
t
varied during performance, their internal values are necessarily integer and may cause "pops" due to discontinui
ies in the output; kr, however, can be varied during performance to good effect. Both buzz and gbuzz can be

N

amplitude- and/or frequency-modulated by either control or audio signals.

.B. These two units have their analogs in GEN11, in which the same set of cosines can be stored in a function
d

s
table for sampling by an oscillator. Although computationally more efficient, the stored pulse train has a fixe
pectral content, not a time-varying one as above.

-- --

- 23 -

o
a
ar adsyn kamod, kfmod, ifiln
r pvoc ktimpnt, kfmod, ispecwp, ifilno

r
r
Output is an additive set of individually controlled sinusoids, using either an oscillator bank or phase vocode
esynthesis.

N

i

INITIALIZATIO

specwp - if non-zero, attempts to preserve the spectral envelope while its frequency content is varied by kfmod.

.
a
ifilno - control-file suffix (m) of a file named adsyn.m or pvoc.m, stemming from analysis of an audio signal
dsyn control contains breakpoint amplitude- and frequency-envelope values organized for oscillator resynthesis,

s
while pvoc control contains similar data organized for fft resynthesis. Note that memory usage depends on the
ize of the control files involved, which are stored internally during computation.

a

PERFORMANCE

dsyn synthesizes complex time-varying timbres through the method of additive synthesis. Any number of

p
sinusoids, each individually controlled in frequency and amplitude, can be summed by high-speed arithmetic to
roduce a high-fidelity result.

Component sinusoids are described by a control file (format described elsewhere) that specifies both frequency
-

q
and amplitude tracks in breakpoint fashion (to the millisecond). Through interpolation, the instantaneous fre
uency and amplitude values are used by an internal fixed-point oscillator that adds each active partial into an

r
t
accumulated output signal. There are no limits on the number of contributing partials, or on their behavior ove
ime. Any sound complex that can be described in terms of the behavior of sinusoids can be synthesized by

I

adsyn alone.

n addition, the sound described by the control file can be modified during actual synthesis. The signals kamod,

m
kfmod, will modify the amplitude and frequency, respectively, of each contributing partial. Note that these are

ultiplying factors, with kfmod being applied to the cps frequency. Thus the values .7,1.5 will give rise to a
e

a
softer sound, a perfect fifth higher; the values 1,1 will leave the sound unmodified. Each of these inputs can b

control signal.

pvoc implements signal reconstruction using an fft-based phase vocoder. The control data stems from a precom-

r
puted analysis file with a known frame rate. The passage of time through this file is specified by ktimpnt, which
epresents the time in seconds. ktimpnt must always be positive, but can move forwards or backwards in time,

v
be stationary or discontinuous, as a pointer into the analysis file. kfmod is a control-rate transposition factor: a
alue of 1 incurs no transposition, 1.5 transposes up a perfect fifth, and .5 down an octave.

t
t
This implementation of pvoc was written by Dan Ellis. It is based in part on the system of Mark Dolson, bu
he pre-analysis concept is new.

-- --

a

- 24 -

r fof xamp, xfund, xforma, xformb, koct, ktex, kband, kdebat, katt,

A

iolaps, ifna, ifnb, idur[, iphs][, icor]

udio output is a succession of FOF impulses. With xfund above c. 30 Hz these produce a formant (set of har-
-

m
monically related partials whose spectral envelope can be controlled by k-input parameters). With lower funda

entals this generator provides a special form of granular synthesis.

i

INITIALIZATION

olaps - the maximum number of overlapping FOFs in the note event. May be calculated as the maximum value
e

p
of xfund * (kdebat + katt), rounded up to an integer. Too small a value will result in a warning message; th
rogram will continue to run with possible distortion. An excessively large value will waste computation time.

-
p
ifna, ifnb - table numbers of stored functions. Normally both will reference the same sine wave table. As inter
olation is not used in the table lookup a table of at least 8192 is recommended.

e
b
idur - normally set to "p3" (the note length). A FOF impulse cannot be created unless it can complete its cours
efore time idur.

iphs (optional) - initial phase (of the fundamental) expressed as a fraction of a cycle (0 to 1). The default value

i

is 0.

cor (optional) - automatic correction of the spectrum, allowing for ktex and kband. Normalises the internal
.

A
amplitude, enabling xamp to specify the output amp relative to other formant regions (i.e. FOF unit-generators)

ccurate only if all generators concerned have the same fundamental frequency. This is designed to work
e

a
within the normal range of input values for vocal imitation; its use in other situations may produce strang
mplitudes. 1 = on, 0 = off; the default is 1.

x

PERFORMANCE

amp - amplitude. This also varies with the number of FOFs overlapping (and with ktex and kband if icor is

x

not on). The experienced user will learn to adjust xamp accordingly.

fund - the fundamental frequency (in Hertz).

xforma, xformb - the formant frequency. Changes to xforma only take effect at the start of a new FOF; each
-

m
FOF impulse has a fixed formant frequency from this input. xformb allows continuous change. The actual for

ant frequency is the sum of these two inputs.

ktex - attack time in seconds of the FOF impulse. The skirtwidth of the formant region (-40dB) varies in

k

inversely to this. A common value for vocal imitation is .003 .

band - bandwidth of the formant region at -6dB in Hz.

kdebat, katt - the start time (relative to the start of the FOF) and length (in seconds) of the sinusoidal rounding

T

at the end of each FOF impulse. Typical values are .01 and .007 .

he fof generator is written by Michael Clarke (Huddersfield Polytechnic, England) based on the CHANT pro-
t

o
gram from IRCAM (Xavier Rodet et al.). Each fof generator produces a single formant region, and the outpu
f five or more of these can be summed to produce a rich vocal imitation. FOF synthesis is a special form of

l
(
granular synthesis and this module has been specifically designed to facilitate transformations between voca
and other) imitation and granular textures.

-- --

- 25 -

]

A

ar pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2

udio output is a naturally decaying plucked string or drum sound based on the Karplus-Strong algorithms.

i

INITIALIZATION

cps - intended pitch value in cps, used to set up a buffer of 1 cycle of audio samples which will be smoothed
y

h
over time by a chosen decay method. icps normally anticipates the value of kcps, but may be set artificiall

igh or low to influence the size of the sample buffer.

ifn - table number of a stored function used to initialize the cyclic decay buffer. If ifn = 0, a random sequence

i

will be used instead.

meth - method of natural decay. There are six, some of which use parameters values that follow.

2
1 - simple averaging. A simple smoothing process, uninfluenced by parameter values.

- stretched averaging. As above, with smoothing time stretched by a factor of iparm1 (>= 1).
o3 - simple drum. The range from pitch to noise is controlled by a ’roughness factor’ in iparm1 (0 to 1). Zer

gives the plucked string effect, while 1 reverses the polarity of every sample (octave down, odd harmon-

4
ics). The setting .5 gives an optimum snare drum.

- stretched drum. Combines both roughness and stretch factors. iparm1 is roughness (0 to 1), and iparm2

5
the stretch factor (>= 1).

- weighted averaging. As method 1, with iparm1 weighting the current sample (the status quo) and iparm2

6
weighting the previous adjacent one. iparm1 + iparm2 must be <= 1.

- 1st order recursive filter, with coefs .5. Unaffected by parameter values.

s
a
iparm1, iparm2 (optional) - parameter values for use by the smoothing algorithms (above). The default value
re both 0.

E

A

PERFORMANC

n internal audio buffer, filled at I-time according to ifn, is continually resampled with periodicity kcps and the
t

o
resulting output is multiplied by kamp. Parallel with the sampling, the buffer is smoothed to simulate the effec

f natural decay.

Plucked strings (1,2,5,6) are best realized by starting with a random noise source, which is rich in initial har-

a
monics. Drum sounds (methods 3, 4) work best with a flat source (wide pulse), which produces a deep noise
ttack and sharp decay.

The original Karplus-Strong algorithm used a fixed number of samples per cycle, which caused serious quantiza-

g
tion of the pitches available and their intonation. This implementation resamples a buffer at the exact pitch
iven by kcps, which can be varied for vibrato and glissando effects. For low values of the orch sampling rate

e
n
(e.g. sr = 10000), high frequencies will store only very few samples (sr/icps). Since this may cause noticeabl

oise in the resampling process, the internal buffer has a minimum size of 64 samples. This can be further

-

enlarged by setting icps to some artificially lower pitch.

- --

k
kr rand xamp[, iseed]

- 26 -

r randh kamp, kcps[, iseed]
]

a
kr randi kamp, kcps[, iseed
r rand xamp[, iseed]

]
a
ar randh xamp, xcps[, iseed
r randi xamp, xcps[, iseed]

.

I

Output is a controlled random number series between +amp and -amp

NITIALIZATION

iseed (optional) - seed value for the recursive psuedo-random formula. A value between 0 and +1 will produce
t

s
an initial output of kamp * iseed. A negative value will cause seed re-initialization to be skipped. The defaul
eed value is .5 .

E

T

PERFORMANC

he internal psuedo-random formula produces values which are uniformly distributed over the range kamp to

T

-kamp. rand will thus generate uniform white noise with an R.M.S value of kamp/root 2.

he remaining units produce band-limited noise: the cps parameters permit the user to specify that new random
w

n
numbers are to be generated at a rate less than the sampling or control frequencies. randh will hold each ne
umber for the period of the specified cycle; randi will produce straight-line interpolation between each new

E

number and the next.

xample:

i1 = octpch(p5) ;center pitch, to be modified
-k1 randh 1,10 ;10 times/sec by random dis

;placements up to 1 octave

-

a1 oscil 5000, cpsoct(i1+k1), 1

- --

SIGNAL MODIFIERS

- 27 -

kr linen kamp, irise, idur, idec
c

k
ar linen xamp, irise, idur, ide
r envlpx kamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod]

]

l

ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod

inen - apply a straight line rise and decay pattern to an input amp signal.
l

"
envlpx - apply an envelope consisting of 3 segments: 1) stored function rise shape, 2) modified exponentia
pseudo steady state", 3) true exponential decay

i

INITIALIZATION

rise - rise time in seconds. A zero or negative value signifies no rise modification.

.

i

idur - overall duration in seconds. A zero or negative value will cause all initialization to be skipped

dec - decay time in seconds. A zero value indicates no decay modification. A value greater than idur

i

will cause a truncated decay pattern.

fn - function table number of stored rise shape with extended guard point.

s
p
iatss - attenuation factor, by which the last value of envlpx rise pattern will become modified during the note’
seudo "steady state." A factor >1 will cause an exponential growth, and a factor <1 an exponential decay. The

s
i
value 1 will maintain a true steady state at the last rise value. Note that this attenuation is not by fixed rate (a
n a piano), but is sensitive to a note’s duration. However, if iatss is negative (or if "steady state" < 4 k-periods)

i

a fixed attenuation rate of abs(iatss) per second will be used. 0 is illegal.

atdec - attenuation factor by which the closing "steady state" value is to be reduced exponentially over the

s
decay period. This value must be positive and will normally be of the order of .01 . A large or an excessively
mall value is apt to produce a cutoff which is audible. A zero or neg value is illegal.

l
t
ixmod (optional, between +-.9 or so) - exponential curve modifier, influencing the "steepness" of the exponentia
rajectory during the "steady state." Values less than zero will cause an accelerated growth or decay towards the

s
z
target (e.g. subito piano). Values greater than zero will cause a retarded growth or decay. The default value i
ero (unmodified exponential).

R

PERFORMANCE

ise-time modifications are applied for the first irise seconds, and decay-time modifications from time idur -

w
idec. If these two modification periods are separated in time there will be a real "steady state" period during

hich amp will be unmodified (linen) or modified by the first exponential pattern (envlpx). For linen, if the
l

s
rise and decay periods overlap then both modifications will be in effect for that time; for envlpx an overlap wil
imply cause a truncated decay pattern. If the overall duration idur is exceeded in performance, the final decay

e
c
pattern will continue on in the same direction, going negative for linen but tending asymptotically to zero in th
ase of envlpx.

-- --

Examples:

- 28 -

iiiiiiiiiiii . .
.

/
/ ‘. .

‘. .
.

/
/ ‘. .

‘. . ,.‘.
.

/
/ ‘. . ,‘ ‘

‘. .’ ‘.
.

/
/ ‘. / ‘

‘. / ‘.

E

/iiiiiiiiiiiiiiiiiiiiiiii‘iii/iiiiiiiiii‘

x 1. linen a) normal, b) with overlapping rise and decay

/
i
‘.

.
/
/ ‘

‘ .
.

/
/ ‘

‘ . . .
‘

/
/‘ /

‘/ ‘.
.

/
/ ‘

‘
.

/
/ ‘
ii‘...

Ex 2. envlpx with iatss = .5 and ixmod = 0

/‘
e

/
/
e
.

/
/

.
/ ‘- - - - i i i

‘
/
/‘ /

‘/ ‘.
.

/
/ ‘

‘
.

/
/ ‘
ii‘...

-

Ex 3. envlpx with iatss = .5 and ixmod = -.9

- --

a
kr port ksig, ihtim[, isig]

- 29 -

r tone asig, khp[, istor]
]

a
ar atone asig, khp[, istor
r reson asig, kcf, kbw[, iscl, istor]

]

A

ar areson asig, kcf, kbw[, iscl, istor

control or audio signal is modified by a low- or band-pass recursive filter with variable frequency response.

i

INITIALIZATION

sig - initial (i.e. previous) value for internal feedback. The default value is 0.

,
t
istor - initial disposition of internal data space. Since filtering incorporates a feedback loop of previous output
he initial status of the storage space used is significant. A zero value will clear the space; a non-zero value will

i

allow previous information to remain. The default value is 0.

scl - coded scaling factor for resonators. A value of 1 signifies a peak response factor of 1, i.e. all frequencies

r
other than kcf are attenuated in accordance with the (normalized) response curve. A value of 2 raises the
esponse factor so that its overall RMS value equals 1. (This intended equalization of input and ouput power

n
assumes all frequencies are physically present; hence it is most applicable to white noise.) A zero value signifies
o scaling of the signal, leaving that to some later adjustment (e.g. see balance). The default value is 0.

p

PERFORMANCE

ort applies portamento to a step-valued control signal. At each new step value, ksig is low-pass filtered to
-

i
move towards that value at a rate determined by ihtim. ihtim is the "half-time" of the function (in seconds), dur
ng which the curve will traverse half the distance towards the new value, then half as much again, etc., theoreti-

t

cally never reaching its asymptote.

one implements a first-order recursive low-pass filter in which the variable khp (in c.p.s.) determines the

r

response curve’s half-power point. Half power is defined as peak power / root 2.

eson is a second-order filter in which kcf controls the center frequency, or cps position of the peak response,

a

and kbw controls its bandwidth (the cps difference between the upper and lower half-power points).

tone, areson are filters whose transfer functions are the complements of tone and reson. atone is thus a form
r

c
of high-pass filter and areson a notch filter whose transfer functions represent the "filtered out" apsects of thei
omplements. Note, however, that power scaling is not normalized in atone, areson, but remains the true com-

,
w
plement of the corresponding unit. Thus an audio signal, filtered by parallel matching reson and areson units

ould under addition simply reconstruct the original spectrum. This property is particularly useful for controlled

C

mixing of different sources (e.g., see lpreson).

omplex response curves such as those with multiple peaks can be obtained by using a bank of suitable filters in
d

a
series. (The resultant response is the product of the component responses.) In such cases, the combine
ttenuation may result in a serious loss of signal power, but this can be regained by the use of balance.

--- -

- 30 -

]krmsr,krmso,kerr,kcps lpread ktimpnt, ifilno[, inpoles][, ifrmrate
ar lpreson asig

o

T

ar lpfreson asig, kfrqrati

hese units, used as a read/reson pair, use a control file of time-varying filter coefficients to dynamically modify

I

the spectrum of an audio signal.

NITIALIZATION

ifilno - control-file suffix (m) referring to a file named ’lp.m’ containing frames of reflection coefficients and
e

v
four special parameter values derived from n-pole linear predictive spectral analysis of a source file. A negativ
alue will cause file opening and initialization to be skipped.

s
a
inpoles, ifrmrate (optional) - number of poles, and frame rate per second in the lpc analysis. These argument
re required only when the control file does not have a header; they are ignored when a header is detected.

P

The default value for both is zero.

ERFORMANCE

lpread accesses a control file of time-ordered information frames, each containing n-pole filter coefficients
s

f
derived from linear predictive analysis of a source signal at fixed time intervals (e.g. 1/100 of a second), plu
our parameter values:

krmsr - root-mean-square (rms) of the residual of analysis,

k
krmso - rms of the original signal,
err - the normalized error signal,

l
kcps - pitch in cps.

pread gets its values from the control file according to the input value ktimpnt (in seconds). If ktimpnt

w
proceeds at the analysis rate, time-normal synthesis will result; proceeding at a faster, slower, or variable rate

ill result in time-warped synthesis. At each K-period, lpread automatically interpolates between adjacent

(
frames to more accurately determine the parameter values (presented as output) and the filter coefficient settings
passed internally to a subsequent lpreson).

The error signal kerr (between 0 and 1) derived during predictive analysis reflects the deterministic/random
y

m
nature of the analyzed source. This will emerge low for pitched (periodic) material and higher for nois

aterial. The transition from voiced to unvoiced speech, for example, produces an error signal value of about
:

f
.3. During synthesis, the error signal value can be used to determine the nature of the lpreson driving function
or example, by arbitrating between pitched and non-pitched input, or even by determining a mix of the two. In

a
normal speech resynthesis, the pitched input to lpreson is a wideband periodic signal or pulse train derived from

unit such as buzz, and the non-pitched source is usually derived from rand. However, any audio signal can

l

be used as the driving function, the only assumption of the analysis being that it has a flat response.

pfreson is a formant shifted lpreson, in which kfrqratio is the (cps) ratio of shifted to original formant posi-

k
tions. This permits synthesis in which the source object changes its apparent acoustic size. lpfreson with
frqratio = 1 is equivalent to lpreson.

Generally, lpreson provides a means whereby the time-varying content and spectral shaping of a composite
f

l
audio signal can be controlled by the dynamic spectral content of another. There can be any number o
pread/lpreson (or lpfreson) pairs in an instrument or in an orchestra; they can read from the same or different

-

control files independently.

- --

- 31 -

]
a
kr rms asig[, ihp, istor
r gain asig, krms[, ihp, istor]

]

T

ar balance asig, acomp[, ihp, istor

he rms power of asig can be interrogated, set, or adjusted to match that of a comparator signal.

i

INITIALIZATION

hp (optional) - half-power point (in cps) of a special internal low-pass filter. The default value is 10.

P

istor (optional) - initial disposition of internal data space (see reson). The default value is 0.

ERFORMANCE

rms output values kr will trace the rms value of the audio input asig. This unit is not a signal modifier, but

g

functions rather as a signal power-guage.

ain provides an amplitude modification of asig so that the output ar has rms power equal to krms. rms and

b

gain used together (and given matching ihp values) will provide the same effect as balance.

alance outputs a version of asig, amplitude-modified so that its rms power is equal to that of a comparator sig-

b
nal acomp. Thus a signal that has suffered loss of power (eg., in passing through a filter bank) can be restored
y matching it with, for instance, its own source. It should be noted that gain and balance provide amplitude

E

modification only - output signals are not altered in any other respect.

xample:

asrc buzz 10000, 440, sr/440, 1 ;band-limited pulse train

a
a1 reson asrc, 1000, 100 ;sent through
2 reson a1, 3000, 500 ;2 filters

e

-

afin balance a2, asrc ;then balanced with sourc

- --

a
kr downsamp asig[, iwlen]

- 32 -

r upsamp ksig
]

k
ar interp ksig[, istor
r integ ksig[, istor]

k
ar integ asig[, istor]
r diff ksig[, istor]

k
ar diff asig[, istor]
r samphold xsig, kgate[, ival, ivstor]

M

ar samphold asig, xgate[, ival, ivstor]

odify a signal by up- or down-sampling, integration, and differentiation.

i

INITIALIZATION

wlen (optional) - window length in samples over which the audio signal is averaged to determine a downsam-

i

pled value. Maximum length is ksmps; 0 and 1 imply no window averaging. The default value is 0.

stor (optional) - initial disposition of internal save space (see reson). The default value is 0.

"
v
ival, ivstor (optional) - controls initial disposition of internal save space. If ivstor is zero the internal "hold
alue is set to ival; else it retains its previous value. Defaults are 0, 0 (i.e. init to zero).

d

PERFORMANCE

ownsamp converts an audio signal to a control signal by downsampling. It produces one kval for each audio

u

control period. The optional window invokes a simple averaging process to supress foldover.

psamp, interp convert a control signal to an audio signal. The first does it by simple repetition of the kval,

a
the second by linear interpolation between successive kvals. upsamp is a slightly more efficient form of the
ssignment ’asig = ksig’.

integ, diff perform integration and differentiation on an input control signal or audio signal. Each is the con-
f

l
verse of the other, and applying both will reconstruct the original signal. Since these units are special cases o
ow-pass and high-pass filters, they produce a scaled (and phase shifted) output that is frequency-dependent.

p
Thus diff of a sine produces a cosine, with amplitude 2*sin(pi*cps/sr) that of the original (for each component
artial); integ will inversely affect the magnitudes of its component inputs. With this understanding, these units

s

can provide useful signal modification.

amphold performs a sample-and-hold operation on its input according to the value of gate. If gate > 0, the

b
input samples are passed to the output; if gate <= 0, the last output value is repeated. The controlling gate can
e a constant, a control signal, or an audio signal.

Example:

asrc buzz 10000, 440, 20, 1 ;band-limited pulse train

a
adif diff asrc ;emphasize the highs
new balance adif, asrc ; but retain the power

l
a
agate reson asrc, 0, 440 ;use a lowpass of the origina
samp samphold anew, agate ; to gate the new audiosig

s

-

aout tone asamp, 100 ;smooth out the rough edge

- --

ar delayr idlt[, istor]

- 33 -

delayw asig
]

a
ar delay asig, idlt[, istor
r delay1 asig[, istor]

A signal can be read from or written into a delay path, or it can be automatically delayed by some time interval.

i

INITIALIZATION

dlt - requested delay time in seconds. This can be as large as available memory will permit. The space

r
required for n seconds of delay is 4n * sr bytes. It is allocated at the time the instrument is first initialized, and
eturned to the pool at the end of a score section.

.

P

istor (optional) - initial disposition of delay-loop data space (see reson). The default value is 0

ERFORMANCE

delayr reads from an automatically established digital delay line, in which the signal retrieved has been resident

s
for idlt seconds. This unit must be paired with and precede an accompanying delayw unit. Any other Csound
tatements can intervene.

delayw writes asig into the delay area established by the preceding delayr unit. Viewed as a pair, these two
f

i
units permit the formation of modified feedback loops, etc. However, there is a lower bound on the value o
dlt, which must be at least 1 control period (or 1/kr).

delay is a composite of the above two units, both reading from and writing into its own storage area. It can
y

p
thus accomplish signal time-shift, although modified feedback is not possible. There is no minimum dela
eriod.

delay1 is a special form of delay that serves to delay the audio signal asig by just one sample. It is thus func-

u
tionally equivalent to "delay asig,1/srate" but is more efficient in both time and space. This unit is particularly
seful in the fabrication of generalized non-recursive filters.

Example:

tigoto contin ;except on a tie,
g

c
a2 delay a1, .05, 0 ;begin 50 msec clean delay of si
ontin:

-- --

a
ar deltap kdlt

- 34 -

r deltapi xdlt

P

Tap a delay line at variable offset times.

ERFORMANCE

These units can tap into a delayr/delayw pair, extracting delayed audio from the idlt seconds of stored sound.

w
There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an audio tap

ith no change of original amplitude.

deltap extracts sound by reading the stored samples directly; deltapi extracts sound by interpolated readout. By
t

i
interpolating between adjacent stored samples deltapi represents a particular delay time with more accuracy, bu
t will take about twice as long to run.

The arguments kdlt, xdlt specify the tapped delay time in seconds. Each can range from 1 Control Period to the
e

u
full delay time of the read/write pair; however, since there is no internal check for adherence to this range, th
ser is wholly responsible. Each argument can be a constant, a variable, or a time-varying signal; the xdlt argu-

T

ment in deltapi implies that an audio-varying delay is permitted there.

hese units can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
r

s
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and dopple
hifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout; they are

N

well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of deltapi.

.B. K-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio sam-
-

e
ples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes, how
ver, one should provide a higher resolution audio-rate timeshift as input.

Example:

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2, .01, p3/2, 1 ;trace a distance in secs

r
a
ampfac = 1/atime/atime ; and calc an amp facto
dump delayr 1 ;set maximum distance

tamove deltapi atime ;move sound source pas
delayw asource ; the listener

-

out amove * ampfac

- --

a
ar comb asig, krvt, ilpt[, istor]

- 35 -

r alpass asig, krvt, ilpt[, istor]

A

ar reverb asig, krvt[, istor]

n input signal is reverberated for krvt seconds with "colored" (comb), flat (alpass), or "natural room" (reverb)

I

frequency response.

NITIALIZATION

ilpt - loop time in seconds, which determines the "echo density" of the reverberation. This in turn characterizes

b
the "color" of the comb filter whose frequency response curve will contain ilpt * sr/2 peaks spaced evenly

etween 0 and sr/2 (the Nyquist frequency). Loop time can be as large as available memory will permit. The
s

i
space required for an n second loop is 4n * sr bytes. comb and alpass delay space is allocated and returned a
n delay.

istor (optional) - initial disposition of delay-loop data space (cf. reson). The default value is 0.

T

PERFORMANCE

hese filters reiterate input with an echo density determined by loop time ilpt. The attenuation rate is indepen-

1
dent and is determined by krvt, the reverberation time (defined as the time in seconds for a signal to decay to
/1000, or 60 db down from its original amplitude). Output from a comb filter will appear only after ilpt

A

seconds; alpass output will begin to appear immediately.

reverb unit is composed of four comb filters in parallel followed by two alpass units in series. Looptimes

s
are set for optimal "natural room response." Core storage requirements for this unit are proportional only to the
ampling rate, each unit requiring approximately 3K words for every 10KC. It is usually expedient to mix

r
s
several signals together before reverberation. Since reverb output will begin to appear only after 1/20 second o
o of delay, and often with less than three-fourths of the original power, it is common to output both the source

E

and the reverberated signal together.

xample:

a1 oscili k1, a1, 1 ;create two signals

a
a2 oscili k2, a2, 2
3 reverb a1+a2, 1.5;mix, then reverberate

souts a1+a3, a2+a3 ;send 1 source + both reverb
;through each speaker

--- -

- 36 -

OPERATIONS USING SPECTRAL DATA-TYPES

dsig octdown asig, iocts, isamps[, idisprd]
]

w
wsig noctdft dsig, iprd, ifrqs, iq[, ihann, idbout, idsines

sig specscal wsigin, ifscale, ifthresh
]

w
wsig specaddm wsig1, wsig2[, imul2

sig specdiff wsigin
mwsig specfilt wsigin, ifhti

specdisp wsig, iprd[, iwtflg]
]

T

ksum specsum wsig[, interp

hese units generate and process non-standard audio data types, such as down-sampled time-domain audio sig-

t
nals and their frequency-domain (spectral) representations. The new data types (d-, w-) are self-defining, and
he contents are not processable by any other Csound units. The unit generators are experimental, and subject to

e
i
change between releases; they will also be joined by others later. Their inclusion here is to offer the user som
nitial experience in spectral data processing.

i

INITIALIZATION

disprd (optional) - if non-zero, display the output every idisprd seconds. The default value is 0 (no display).

t
t
ihann, idbout, idsines (optional) - if non-zero, then respectively: apply a hanning window to the input; conver
he output magnitudes to dB; display the windowed sinusoids used in DFT filtering. The default values are 0, 0,

i

0 (rectangular window, magnitude output, no sinusoid display).

mul2 (optional) - if non-zero, scale the wsig2 magnitudes before adding. The default value is 0.

o
w
iwtflg (optional) - wait flag. If non-zero, hold each display until released by the user. The default value is 0 (n

ait).

interp (optional) - if non-zero, interpolate the output signal ksum. The default value is 0 (repeat the signal value

P

between changes).

ERFORMANCE

octdown - put signal asig through iocts successive applications of octave decimation and downsampling, and
d

s
preserve isamps down-sampled values in each octave. Optionally display the composite buffer every idispr
econds.

noctdft - generate a constant-Q, exponentially-spaced DFT across all octaves of the multiply-downsampled input

p
dsig. Every iprd seconds, each octave of dsig is optionally windowed (ihann non-zero), filtered (using ifrqs
arallel filters per octave, exponentially spaced, and with frequency/bandwidth Q of iq), and the output magni-

,
w
tudes optionally converted to dB (idbout non-zero). This unit produces a self-defining spectral datablock wsig

hose characteristics are readable by any units that receive it as input, and for which it becomes the template

s

for output.

pecscal - scale an input spectral datablock with spectral envelopes. Function tables ifthresh and ifscale are ini-
-

t
tially sampled across the (logarithmic) frequency space of the input spectrum; then each time a new input spec
rum is sensed the sampled values are used to scale each of its magnitude channels as follows: if ifthresh is

-
t
non-zero, each magnitude is reduced by its corresponding table-value (to not less than zero); then each magni
ude is rescaled by the corresponding ifscale value, and the resulting spectrum written to wsig.

-
t
specaddm - do a weighted add of two input spectra. For each channel of the two input spectra, the two magni
udes are combined and written to the output according to: magout = mag1in + mag2in * imul2. The operation

--- -

- 37 -

-
s
is performed whenever the input wsig1 is sensed to be new. This unit will (at Initialization) verify the con
istency of the two spectra (equal size, equal period, equal mag types).

,
e
specdiff - find the positive difference values between consecutive spectral frames. At each new frame of wsigin
ach magnitude value is compared with its predecessor, and the positive changes written to the output spectrum.

s

This unit is useful as an energy onset detector.

pecfilt - filter each channel of an input spectrum. At each new frame of wsigin, each magnitude value is

f
injected into a 1st-order lowpass recursive filter, whose half-time constant has been initially set by sampling the
table ifhtim across the (logarithmic) frequency space of the input spectrum. This unit effectively applies a per-

t
sistence factor to the data occurring in each spectral channel, and is useful for simulating the energy integration
hat occurs during auditory perception.

specdisp - display the magnitude values of spectrum wsig every iprd seconds (rounded to some integral number

s

of wsig’s originating iprd).

pecsum - sum the magnitudes across all channels of the spectrum. At each new frame of wsig, the magnitudes

a
are summed and released as a scalar ksum signal. Between frames, the output is either repeated or interpolated
t the K-rate. This unit produces a k-signal summation of the magnitudes present in the spectral data, and is

E

thereby a running measure of its moment-to-moment overall strength.

xample:

asig in ;get external audio
s

w
dsamp octdown asig, 6, 180, 0 ;downsample in 6 octave

sig1 noctdft dsamp,.02,12,33,0,1,1 ; & calc 72-point dft (db)

w
wsig2 specdiff wsig1 ;sense onsets

sig3 specfilt wsig2, 2 ; & absorb slowly
a

s
specdisp wsig1, .1 ;display all spectr
pecdisp wsig2, .1

1
k

specdisp wsig3, .
stren specsum wsig3, 1 ;sum final mags, and ksmooth

--- -

- 38 -

SENSING & CONTROL

ktemp tempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim, ixfdbak,
istartempo, ifn[, idisprd, itweek]

.

I

Estimate the tempo of beat patterns in a control signal

NITIALIZATION

iprd - period between analyses (in seconds). Typically about .02 seconds.

.

i

imindur - minimum duration (in seconds) to serve as a unit of tempo. Typically about .2 seconds

memdur - duration (in seconds) of the kin short-term memory buffer which will be scanned for periodic pat-

i

terns. Typically about 3 seconds.

hp - half-power point (in cps) of a low-pass filter used to smooth input kin prior to other processing. This will

i

tend to suppress activity that moves much faster. Typically 2 cps.

thresh - loudness threshold by which the low-passed kin is center-clipped before being placed in the short-term

i

buffer as tempo-relevant data. Typically at the noise floor of the incoming data.

htim - half-time (in seconds) of an internal forward-masking filter that masks new kin data in the presence of

i

recent, louder data. Typically about .005 seconds.

xfdbak - proportion of this unit’s anticipated value to be mixed with the incoming kin prior to all processing.

i

Typically about .3.

startempo - initial tempo (in beats per minute). Typically 60.

d
o
ifn - table number of a stored function (drawn left-to-right) by which the short-term memory data is attenuate
ver time.

idisprd (optional) - if non-zero, display the short-term past and future buffers every idisprd seconds (normally a

i

multiple of iprd). The default value is 0 (no display).

tweek (optional) - fine-tune adjust this unit so that it is stable when analyzing events controlled by its own out-

P

put. The default value is 1 (no change).

ERFORMANCE

tempest examines kin for amplitude periodicity, and estimates a current tempo. The input is first low-pass

i
filtered, then center-clipped, and the residue placed in a short-term memory buffer (attenuated over time) where
t is analyzed for periodicity using a form of autocorrelation. The period, expressed as a tempo in beats per

-
t
minute, is output as ktemp. The period is also used internally to make predictions about future amplitude pat
erns, and these are placed in a buffer adjacent to that of the input. The two adjacent buffers can be periodically

T

displayed, and the predicted values optionally mixed with the incoming signal to simulate expectation.

his unit is useful for sensing the metric implications of any k-signal (e.g. the RMS of an audio signal, or the

E

second derivative of a conducting gesture), before sending to a tempo statement.

xample:
ksum specsum wsignal, 1 ; sum the amps of a spectrum

s

-

ktemp tempest ksum, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ; & look for beat

- --

- 39 -

]kx, ky xyin iprd, ixmin, ixmax, iymin, iymax[, ixinit, iyinit
tempo ktempo, istartempo

.

I

Sense the cursor position in an input window. Apply tempo control to an uninterpreted score

NITIALIZATION

iprd - period of cursor sensing (in seconds). Typically .1 seconds.

.

i

xmin, xmax, ymin, ymax - edge values for the x-y coordinates of a cursor in the input window

xinit, iyinit (optional) - initial x-y coordinates reported; the default values are 0,0. If these values are not within

i

the given min-max range, they will be coerced into that range.

startempo - initial tempo (in beats per minute). Typically 60.

x

PERFORMANCE

yin samples the cursor x-y position in an input window every iprd seconds. Output values are repeated (not

n
interpolated) at the K-rate, and remain fixed until a new change is registered in the window. There may be any
umber of input windows. This unit is useful for Realtime control, but continuous motion should be avoided if

t

iprd is unusually small.

empo allows the performance speed of Csound scored events to be controlled from within an orchestra. If the

p
csound command’s -B (beatmode) flag is set, scored events will be performed from their uninterpreted p2 and
3 (beat) parameters, at a default tempo of 60 beats per minute. When a tempo statement is activated in any

y
n
instrument (with ktempo > 0.), the operating tempo will be set to ktempo beats per minute. There may be an
umber of tempo statements in an orchestra, but coincident activation is best avoided.

Example:

kx,ky xyin .05, 30, 0, 120, 0, 75 ; sample the cursor
e

-

tempo kx, 75 ; and control the tempo of performanc

- --

a

SOUND INPUT & OUTPUT

- 40 -

1 in
s

a
a1, a2 in
1, a2, a3, a4 inq

a1 soundin ifilno[, iskptim][, iformat]
]

a
a1, a2 soundin ifilno[, iskptim][, iformat
1, a2, a3, a4 soundin ifilno[, iskptim][, iformat]

o
out asig
uts1 asig

g
o
outs2 asi
uts asig1, asig2

o
outq1 asig
utq2 asig

g
o
outq3 asi
utq4 asig

outq asig1, asig2, asig3, asig4

.

I

These units read/write audio data to/from an external device or stream

NITIALIZATION

ifilno - integer suffix (n) of a binary file named ’soundin.n’, assumed to be in the directory SFDIR (see also

i

GEN01).

skptim (optional) - time in seconds of input sound to be skipped. The default value is 0.

t
U
iformat (optional) - specifies the audio data file format (1 = 8-bit signed char, 2 = 8-bit A-law bytes, 3 = 8-bi

-law bytes, 4 = 16-bit short integers, 5 = 32-bit long integers, 6 = 32-bit floats). If iformat = 0 it is taken from

P

the soundfile header, and if no header from the csound -o command flag. The default value is 0.

ERFORMANCE

in, ins, inq - copy the current values from the standard audio input buffer. If the command flag -i is set, sound
r

o
is read continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer. Any numbe

f these units can read freely from this buffer.

soundin is functionally an audio generator that derives its signal from a pre-existing file. The number of chan-
t

i
nels read in is set by the number of result cells, a1, a2, etc. A soundin unit opens this file whenever the hos
nstrument is initialized, then closes it again each time the instrument is turned off. There can be any number of

t
soundin units within a single instrument or orchestra; also, two or more of them can read simultaneously from
he same external file.

out, outs, outq send audio samples to an accumulating output buffer (created at the beginning of performance)

n
which serves to collect the output of all active instruments before the sound is written to disk. There can be any
umber of these output units in an instrument. The type (mono, stereo, or quad) must agree with nchnls, but

c
units can be chosen to direct sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad
hannel 3, etc.

-- --

- 41 -

]

D

a1, a2, a3, a4 pan asig, kx, ky, ifn[, imode][, ioffset

istribute an audio signal amongst four channels with localization control.

i

INITIALIZATION

fn - function table number of a stored pattern describing the amplitude growth in a speaker channel as sound

i

moves towards it from an adjacent speaker. Requires extended guard-point.

mode (optional) - mode of the kx, ky position values. 0 signifies raw index mode, 1 means the inputs are nor-

i

malized (0-1). The default value is 0.

offset (optional) - offset indicator for kx, ky. 0 infers the origin to be at channel 3 (left rear); 1 requests an axis

P

shift to the quadraphonic center. The default value is 0.

ERFORMANCE

pan takes an input signal asig and distributes it amongst four outputs (essentially quad speakers) according to
:

l
the controls kx and ky. For normalized input (mode=1) and no offset, the four output locations are in order
eft-front at (0,1), right-front at (1,1), left-rear at the origin (0,0), and right-rear at (1,0). In the notation (kx, ky),

M

the coordinates kx and ky, each ranging 0-1, thus control the ’rightness’ and ’forwardness’ of a sound location.

ovement between speakers is by amplitude variation, controlled by the stored function table ifn. As kx goes
,

w
from 0 to 1, the strength of the right-hand signals will grow from the left-most table value to the right-most

hile that of the left-hand signals will progress from the right-most table value to the left-most. For a simple
r

w
linear pan, the table might contain the linear function 0-1. A more correct pan that maintains constant powe

ould be obtained by storing the first quadrant of a sinusoid. Since pan will scale and truncate kx and ky in

k

simple table lookup, a medium-large table (say 8193) should be used.

x, ky values are not restricted to 0-1. A circular motion passing through all four speakers (escribed) would
y

w
have a diameter of root 2, and might be defined by a circle of radius R = root 1/2 with center at (.5,.5). kx, k

ould then come from Rcos(angle), Rsin(angle), with an implicit origin at (.5,.5) (i.e. ioffset=1). Unscaled raw
-

s
values operate similarly. Sounds can thus be located anywhere in the polar or cartesian plane; points lying out
ide the speaker square are projected correctly onto the square’s perimeter as for a listener at the center.

Example:
instr 1

k1 phasor 1/p3 ;fraction of circle
)

k
k2 tablei k1, 1, 1 ;sin of angle (sinusoid in f1
3 tablei k1, 1, 1, .25, 1 ;cos of angle (sin offset 1/4 circle)

a
a1 oscili 10000, 440, 1 ;audio signal ..

1,a2,a3,a4 pan a1, k2/2, k3/2, 2, 1, 1 ; sent in a circle (f2=1st quad sin)

e
outq a1, a2, a3, a4
ndin

-- --

SIGNAL DISPLAY

- 42 -

print iarg[, iarg, ...]
]

d
display xsig, iprd[, iwtflg

ispfft asig, iprd, iwsiz[, iwtyp][, idbout][, iwtflg]

-
n
These units will print orchestra Init-values, or produce graphic display of orchestra control signals and audio sig
als. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ascii characters.

i

INITIALIZATION

prd - the period of display in seconds.

iwsiz - size of the input window in samples. A window of iwsiz points will produce a Fourier transform of
-

m
iwsiz/2 points, spread linearly in frequency from 0 to sr/2. iwsiz must be a power of 2. The windows are per

itted to overlap.

iwtyp (optional) - window type. 0 = rectangular, 1 = hanning. The default value is 0 (rectangular).

0
(
idbout (optional) - units of output for the Fourier coefficients. 0 = magnitude, 1 = decibels. The default is
magnitude).

iwtflg (optional) - wait flag. If non-zero, each display is held until released by the user. The default value is 0

P

(no wait).

ERFORMANCE

print - print the current value of the I-time arguments (or expressions) iarg at every I-pass through the instru-

d

ment.

isplay - display the audio or control signal xsig every iprd seconds, as an amplitude vs time graph.

r
T
dispfft - display the Fourier Transform of the audio signal asig every iprd seconds using the Fast Fourie

ransform method.

Example:

k1 envlpx 1,.03,p3,.05,1,.5,.01 ;generate a note envelope

-

display k1, p3 ;and display entire shape

- --

-- --

3

- 43 -

. THE STANDARD NUMERIC SCORE

a
fi

A score is a data file that provides information to an orchestra about its performance. Like an orchestr
le, a score file is made up of statements in a known format. The Csound orchestra expects to be handed a

e
l
score comprised mainly of ascii numeric characters. Although most users will prefer a higher level scor
anguage such as provided by Cscore, Scot, or other score-generating programs, each resulting score must even-

d
tually appear in the format expected by the orchestra. A Standard Numeric Score can be created and edited
irectly by the beginner using standard text editors; indeed, some users continue to prefer it. The purpose of

T

this section is to describe this format in detail.

he basic format of a standard numeric score statement is:

s

T

opcode p1 p2 p3 p4 ... ;comment

he opcode is a single character, always alphabetic. Legal opcodes are f, i, a, t, s, and e, the meanings of

o
which are described in the following pages. The opcode is normally the first character of a line; leading spaces
r tabs will be ignored. Spaces or tabs between the opcode and p1 are optional.

l
s
p1, p2, p3, etc. are parameter fields (pfields). Each contains a floating point number comprised of an optiona
ign, digits, and an optional decimal point. Expressions are not permitted in Standard Score files. pfields are

C

separated from each other by one or more spaces or tabs, all but one space of which will be ignored.

ontinuation lines are permitted. If the first printing character of a new scoreline is not an opcode, that line will

C

be regarded as a continuation of the pfields from the previous scoreline.

omments are optional and are for the purpose of permitting the user to document his score file. Comments
-

t
always begin with a semicolon (;) and extend to the end of the line. Comments will not affect the pfield con
inuation feature.

Blank lines or comment-only lines are legal (and will be ignored).

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s statement. Before

b
being read by the orchestra, a score is preprocessed one section at a time. Each section is normally processed
y 3 routines: Carry, Tempo, and Sort.

1. Carry - within a group of consecutive i statements whose p1 whole numbers correspond, any pfield left

s
empty will take its value from the same pfield of the preceding statement. An empty pfield can be denoted by a
ingle point (.) delimited by spaces. No point is required after the last non-empty pfield. The output of Carry

-
m
preprocessing will show the carried values explicitly. The Carry Feature is not affected by intervening com

ents or blank lines; it is turned off only by a non-i statement or by an i statement with unlike p1 whole

A

number.

n additional feature is available for p2 alone. The symbol + in p2 will be given the value of p2+p3 from the

d
preceding i statement. This enables note action times to be automatically determined from the sum of preceding
urations. The + symbol can itself be carried. The + symbol is legal only in p2. E.g.,

0the statements i1 0 .5 100 will result in i1 0 .5 10
i. + i1 .5 .5 100

--- -

- 44 -

i i1 1 .5 100

g
a
The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input typin
nd will simplify later changes.

2. Tempo - this operation time warps a score section according to the information in a t statement. The tempo
s

r
operation converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the unit
equired by the orchestra. After time warping, score files will be seen to have orchestra-readable format demon-

strated by the following:

i p1 p2beats p2seconds p3beats p3seconds p4 p5

-
c
3. Sort - this routine sorts all action-time statements into chronological order by p2 value. It also sorts coin
ident events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f

a
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted into
scending p1 value order. If they also have the same p1 value, they will be sorted into ascending p3 value

-
m
order. Score sorting is done section by section (see s statement). Automatic sorting implies that score state

ents may appear in any order within a section.

N.B. The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score file, to produce

t
a new file in orchestra-readable format (see the Tempo example). Processing can be invoked either explicity by
he scsort command, or implicity by csound which processes the score before calling the orchestra. Source-

r
m
format files and orchestra-readable files are both in ascii-character form, and may be either perused or furthe

odified by standard text editors. User-written routines can be used to modify score files before or after the
-

m
above processes, provided the final orchestra-readable statement format is not violated. Sections of different for

ats can be sequentially batched; and sections of like format can be merged for automatic sorting.

Next-P and Previous-P Symbols

At the close of any of the above operation, three additional score features are interpreted during file wri-

i

teout: next-p, previous-p, and ramping.

statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
-

p
appropriate pfield value found on the next i statement (or previous i statement) that has the same p1. For exam
le, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played by this

o
instrument. np and pp symbols are recursive and can reference other np and pp symbols which can reference
thers, etc. References must eventually terminate in a real number or a ramp symbol (see below). Closed loop

e
t
references should be avoided. np and pp symbols are illegal in p1,p2 and p3 (although they may referenc
hese). np and pp symbols may be Carried. np and pp references cannot cross a Section boundary; any forward

or backward reference to a non-existent note-statement will be given the value zero. For example,

the statements i1 0 1 10 np4 pp5 will result in i1 0 1 10 20 0
0

i
i1 1 1 20 i1 1 1 20 30 2
1 2 1 30 i1 2 1 30 0 30

r
c
np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to glissando o
rescendo, for instance, toward the pitch or dynamic of some future event (which may or may not be immedi-

o
ately adjacent). Note that while the Carry feature will propagate np and pp through unsorted statements, the
peration that interprets these symbols is acting on a time-warped and fully sorted version of the score.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation of

p
a time-based ramp. Ramps are anchored at each end by the first real number found in the same pfield of a
receding and following note played by the same instrument. For example,

0the statements i1 0 1 100 will result in i1 0 1 10
i1 1 1 < i1 1 1 200

0
i
i1 2 1 < i1 2 1 30
1 3 1 400 i1 3 1 400

--- -

- 45 -

i1 4 1 < i1 4 1 200

R

i1 5 1 0 i1 5 1 0

amps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although they may
,

h
be referenced by these). Ramp symbols are illegal in p1,p2 and p3. Ramp symbols may be Carried. Note
owever, that while the Carry feature will propagate ramp symbols through unsorted statements, the operation

-
b
that interprets these symbols is acting on a time-warped and fully sorted version of the score. In fact, time
ased linear interpolation is based on warped score-time, so that a ramp which spans a group of accelerating

-

notes will remain linear with respect to strict chronological time.

- --

- 46 -

)F STATEMENT (or FUNCTION TABLE STATEMENT

f p1 p2 p3 p4 ...

This causes a GEN subroutine to place values in a stored function table for use by instruments.

PFIELDS

p1 Table number (from 1 to 100) by which the stored function will be known.

p

A negative number requests that the table be destroyed.

2 Action time of function generation (or destruction) in beats

p3 Size of function table (i.e. number of points).
Must be a power of 2, or a power-of-2 plus 1 (see below).

p

Maximum table size is 16777216 (2**24) points.

4 Number of the GEN routine to be called (see GEN ROUTINES).

p
p5 e

A negative value will cause rescaling to be omitted.

6 e Parameters whose meaning is determined by the particular GEN routine.

.

. e
e
e

S

.

PECIAL CONSIDERATIONS

Function tables are arrays of floating-point values. Arrays can be of any length in powers of 2; space allocation
d

l
always provides for 2**n points plus an additional guard point. The guard point value, used during interpolate
ookup, can be automatically set to reflect the table’s purpose: If size is an exact power of 2, the guard point

s
will be a copy of the first point; this is appropriate for interpolated wrap-around lookup as in oscili, etc., and
hould even be used for non-interpolating oscil for safe consistency. If size is set to 2**n + 1, the guard point

e
value automatically extends the contour of table values; this is appropriate for single-scan functions such in
nvlpx, oscil1, oscil1i, etc.

Table space is allocated in primary memory, along with instrument data space. The maximum table number has

A

a soft limit of 100; this can be extended if required.

n existing function table can be removed by an f statement containing a negative p1 and an appropriate action
e

n
time. A function table is also be removed by the generation of another table with the same p1. Functions ar
ot automatically erased at the end of a score section.

p2 action time is treated in the same way as in i statements with respect to sorting and modification by t state-
t

t
ments. If an f statement and an i statement have the same p2, the sorter gives the f statement precedence so tha
he function table will be available during note initialization.

h
t
An f 0 statement (zero p1, positive p2) may be used to create an action time with no associated action. Suc
ime markers are useful for padding out a score section (see s statement).

--- -

- 47 -

I STATEMENT (INSTRUMENT or NOTE STATEMENT)

i p1 p2 p3 p4 ...

This statement calls for an instrument to be made active at a specific time and for a certain duration. The
s

P
parameter field values are passed to that instrument prior to its Initialization, and remain valid throughout it

erformance.

PFIELDS

p1 Instrument number, usually a non-negative integer. An optional

b
fractional part can provide an additional tag for specifying ties
etween particular notes of consecutive clusters. A negative p1

p

(including tag) can be used to turn off a particular ’held’ note.

2 Starting time in arbitrary units called beats.

lp3 Duration time in beats (usually positive). A negative value wil
initiate a held note (see also ihold). A zero value will invoke

p
p4 e

an initialization pass without performance (see also instr).

5 e Parameters whose significance is determined by the instrument.

.

. e
e

S

B

SPECIAL CONSIDERATION

eats are evaluated as seconds unless there is a t statement in this section.

.

N

Starting or action times are relative to the beginning of a section (see s statement), which is assigned time 0

ote statements within a section may be placed in any order. Before being sent to an orchestra, unordered score
e

s
statements must first be processed by Sorter, which will reorder them by ascending p2 value. Notes with th
ame p2 value will be ordered by ascending p1; if the same p1, then by ascending p3.

-
s
Notes may be stacked, i.e., a single instrument can perform any number of notes simultaneously. (The neces
ary copies of the instrument’s data space will be allocated dynamically by the orchestra loader.) Each note will

m
normally turn off when its p3 duration has expired. However, an instrument may modify its own duration by

odifying its p3 value during note initialization.

An instrument may be turned on and left to perform indefinitely either by giving it a negative p3 or by including
-

c
an ihold in its I-time code. If a held note is active, an i statement with matching p1 will not cause a new allo
ation but will take over the data space of the held note. The new pfields (including p3) will now be in effect,

r
and an I-time pass will be executed in which the units can either be newly initialized or allowed to continue as
equired for a tied note (see tigoto). A held note may be succeeded either by another held note or by a note of

b
finite duration. A held note will continue to perform across section endings (see s statement). It is halted only
y turnoff or by an i statement with negative matching p1 or by an e statement.

--- -

- 48 -

A STATEMENT (or ADVANCE STATEMENT)

a p1 p2 p3

This causes score time to be advanced by a specified amount without producing sound samples.

PFIELDS

p1 carries no meaning. Usually zero
.

p
p2 Action time, in beats, at which advance is to begin
3 Durational span (distance in beats) of time advance.

S

p4,p5, etc carry no meaning.

PECIAL CONSIDERATIONS

This statement allows the beat count within a score section to be advanced without generating intervening sound
e

u
samples. This can be of use when a score section is incomplete (the beginning or middle is missing) and th
ser does not wish to generate and listen to a lot of silence.

-
m
p2 action time and p3 distance are treated as in i statements, with respect to sorting and modification by t state

ents.

An a statement will be temporarily inserted in the score by the Score Extract feature when the extracted segment

o
begins later than the start of a Section. The purpose of this is to preserve the beat count and time count of the
riginal score for the benefit of the peak amplitudes messages which are reported on the user console.

n
t
Whenever an a statement is encountered by a performing orchestra, its presence and effect will be reported o
he user’s console.

-- --

T STATEMENT (TEMPO STATEMENT)

- 49 -

t p1 p2 p3 p4 (unlimited)

This statement sets the tempo and specifies the accelerations and decelerations for the current section. This is

P

done by converting beats into seconds.

FIELDS

p1 must be zero
e

p
p2 initial tempo in beats per minut
3, p5, p7, ... times in beats (in non-decreasing order)

S

p4, p6, p8, ... tempi for the referenced beat times

PECIAL CONSIDERATIONS

Time and Tempo-for-that-time are given as ordered couples that define points on a "tempo vs time" graph. (The
-

m
time-axis here is in beats so is not necessarily linear.) The beat-rate of a Section can be thought of as a move

ent from point to point on that graph: motion between two points of equal height signifies constant tempo,

g
while motion between two points of unequal height will cause an accelarando or ritardando accordingly. The
raph can contain discontinuities: two points given equal times but different tempi will cause an immediate

M

tempo change.

otion between different tempos over non-zero time is inverse linear. That is, an accelarando between two

T

tempos M1 and M2 proceeds by linear interpolation of the single-beat durations from 60/M1 to 60/M2.

he first tempo given must be for beat 0.

A tempo, once assigned, will remain in effect from that time-point unless influenced by a succeeding tempo, i.e.

A

the last specified tempo will be held to the end of the section.

t statement applies only to the score section in which it appears. Only one t statement is meaningful in a sec-

i
tion; it can be placed anywhere within that section. If a score section contains no t statement, then beats are
nterpreted as seconds (i.e. with an implicit t 0 60 statement).

--- -

- 50 -

S STATEMENT

s anything

.

P

The s statement marks the end of a section

FIELDS

All pfields are ignored.

S

S

SPECIAL CONSIDERATION

orting of the i, f and a statements by action time is done section by section.

A

Time warping for to the t statement is done section by section.

ll action times within a section are relative to its beginning. A section statement establishes a new relative
-

d
time of 0, but has no other reinitializing effects (e.g. stored function tables are preserved across section boun
aries).

A section is considered complete when all action times and finite durations have been satisfied (i.e., the "length"
f

0
of a section is determined by the last occurring action or turn-off). A section can be extended by the use of an

statement.

A section ending automatically invokes a Purge of inactive instrument and data spaces.

e
m
N.B. Since score statements are processed section by section, the amount of memory required depends on th

aximum number of score statements in a section. Memory allocation is dynamic, and the user will be

F

informed as extra memory blocks are requested during score processing.

or the end of the final section of a score, the s statement is optional; the e statement may be used instead.

--- -

- 51 -

E STATEMENT

e anything

This statement may be used to mark the end of the last section of the score.

A

PFIELDS

ll pfields are ignored

S

T

SPECIAL CONSIDERATION

he e statement is contextually identical to an s statement. Additionally, the e statement terminates all signal

I

generation (including indefinite performance) and closes all input and output files.

f an e statement occurs before the end of a score, all subsequent score lines will be ignored.

-
i
The e statement is optional in a score file yet to be sorted. If a score file has no e statement, then Sort process
ng will supply one.

-- --

-- --

4

- 52 -

. GEN ROUTINES

-
a

The GEN subroutines are function-drawing procedures called by f statements to construct stored wavet
bles. They are available throughout orchestra performance, and can be invoked at any point in the score as

b
given by p2. p1 assigns a table number, and p3 the table size (see f statement). p4 specifies the GEN routine to

e called; each GEN routine will assign special meaning to the pfield values that follow.

T

GEN01, GEN02

ransfer data from a soundfile (GEN01) or from immediate pfields (GEN02) into a function table.

f
f # time size 1 filno skiptime format

time size 2 v1 v2 v3 . . .

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The max-

fi

imum tablesize is 16777216 (2**24) points.

lno, skiptime, format - directs GEN01 to read from soundin.filno, beginning at skiptime seconds into the file.
The parameter format specifies the audio data-file format:

1 - 8-bit signed character 4 - 16-bit short integers

3
2 - 8-bit A-law bytes 5 - 32-bit long integers

- 8-bit U-law bytes 6 - 32-bit floats
d

fl
If format = 0 the sample format is taken from the soundfile header, or by default from the csound -o comman

ag. The soundfile is assumed to be in the directory SFDIR (see also soundin). Reading stops at end-of-file or

v

when the table is full. Any table locations not filled will contain zeros.

1, v2, v3, ... - for GEN02 these values will be copied directly into the table space. The number of values is
s

c
limited by the compile-time variable PMAX, which controls the maximum pfields (currently 150). The value
opied may include the table guard point; any table locations not filled will contain zeros.

I

Note:

f p4 is positive, the table will be post-normalized (rescaled to a maximum absolute value of 1 after generation).

E

A negative p4 will cause rescaling to be skipped.

xample:

f 1 0 16 -2 0 1 2 3 4 5 6 7 8 9 10 11 0

This calls upon GEN02 to place 12 values plus an explicit wrap-around guard value into a table of size next-

-

highest power of 2. Rescaling is inhibited.

- --

T

GEN03

- 53 -

his subroutine generates a stored function table by evaluating a polynomial in x over a fixed interval and with
specified coefficients.

f # time size 3 xval1 xval2 c0 c1 c2 . . . cn

.

x

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement)

val1, xval2 - left and right values of the x interval over which the polynomial is defined (xval1 < xval2). These
-

t
will produce the 1st stored value and the (power-of-2 plus 1)th stored value respectively in the generated func
ion table.

c0, c1, c2, cn - coefficients of the nth-order polynomial

c + c x + c x + c x + . . . + c x n

C

0 1 2
2

3
3

n

oefficients may be positive or negative real numbers; a zero denotes a missing term in the polynomial. The

N

coefficient list begins in p7, providing an upper limit of 44 terms.

ote:

The defined segment [fn(xval1),fn(xval2)] is evenly distributed. Thus a 512-point table over the interval [-1,1]
,

b
will have its origin at location 257 (at the start of the 2nd half). Provided the extended guard point is requested
oth fn(-1) and fn(1) will exist in the table.

GEN03 is useful in conjunction with table or tablei for audio waveshaping (sound modification by non-linear

b
distortion). Coefficients to produce a particular formant from a sinusoidal lookup index of known amplitude can
e determined at preprocessing time using algorithms such as Chebyshev formulae. See also GEN13.

Example:

f 1 0 1025 3 -1 1 5 4 3 2 1

This calls GEN03 to fill a table with a 4th order polynomial function over the x-interval -1 to 1. The origin will

-

be at the offset position 512. The function is post-normalized.

- --

T

GEN04

- 54 -

his subroutine generates a normalizing function by examining the contents of an existing table.

s

f # time size 4 source# sourcemode

ize - number of points in the table. Should be power-of-2 plus 1. Must not exceed (except by 1) the size of

s

the source table being examined; limited to just half that size if the sourcemode is of type offset (see below).

ource# - table number of stored function to be examined.

-
t
sourcemode - a coded value, specifying how the source table is to be scanned to obtain the normalizing func
ion. Zero indicates that the source is to be scanned from left to right. Non-zero indicates that the source has a

-
t
bipolar structure; scanning will begin at the mid-point and progress outwards, looking at pairs of points equidis
ant from the center.

T

Note:

he normalizing function derives from the progressive absolute maxima of the source table being scanned. The

v
new table is created left-to-right, with stored values equal to 1/(absolute maximum so far scanned). Stored
alues will thus begin with 1/(first value scanned), then get progressively smaller as new maxima are encoun-

s
tered. For a source table which is normalized (values <= 1), the derived values will range from 1/(first value
canned) down to 1. If the first value scanned is zero, that inverse will be set to 1.

G

The normalizing function from GEN04 is not itself normalized.

EN04 is useful for scaling a table-derived signal so that it has a consistent peak amplitude. A particular appli-

E

cation occurs in waveshaping when the carrier (or indexing) signal is less than full amplitude.

xample:

f 2 0 512 4 1 1

This creates a normalizing function for use in connection with the GEN03 table 1 example. Midpoint bipolar

-

offset is specified.

- --

T

GEN05, GEN07

- 55 -

hese subroutines are used to construct functions from segments of exponential curves (GEN05) or straight lines
(GEN07).

f # time size 5 a n1 b n2 c . . .
.

s

f # time size 7 a n1 b n2 c . .

ize - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

d
m
a, b, c, etc. - ordinate values, in odd-numbered pfields p5, p7, p9, ... For GEN05 these must be non-zero an

ust be alike in sign. No such restrictions exist for GEN07.

a
z
n1, n2, etc. - length of segment (no. of storage locations), in even-numbered pfields. Cannot be negative, but
ero is meaningful for specifying discontinuous waveforms (e.g. in the example below). The sum n1 + n2 +

w
will normally equal size for fully specified functions. If the sum is smaller, the function locations not included

ill be set to zero; if the sum is greater, only the first size locations will be stored.

I

Note:

f p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1 after generation). A

D

negative p4 will cause rescaling to be skipped.

iscrete-point linear interpolation implies an increase or decrease along a segment by equal differences between
e

i
adjacent locations; exponential interpolation implies that the progression is by equal ratio. In both forms th
nterpolation from a to b is such as to assume that the value b will be attained in the n+1 th location. For

r
discontinuous functions, and for the segment encompassing the end location, this value will not actually be
eached, although it may eventually appear as a result of final scaling.

f

Example:

1 0 256 7 0 128 1 0 -1 128 0

This describes a single-cycle sawtooth whose discontinuity is mid-way in the stored function.

--- -

- 56 -

T

GEN06

his subroutine will generate a function comprised of segments of cubic polynomials, spanning specified points
just three at a time.

f # time size 6 a n1 b n2 c n3 d . . .

.

a

size - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement)

, c, e ... - local maxima or minima of successive segments, depending on the relation of these points to adja-

b

cent inflexions. May be either positive or negative.

, d, f ... - ordinate values of points of inflexion at the ends of successive curved segments. May be positive or

n

negative.

1, n2, n3 ... - number of stored values between specified points. Cannot be negative, but a zero is meaningful

d
for specifying discontinuities. The sum n1 + n2 + ... will normally equal size for fully specified functions. (for

etails, see GEN05).

G

Note:

EN06 constructs a stored function from segments of cubic polynomial functions. Segments link ordinate
t

e
values in groups of 3: point of inflexion, maximum/minimum, point of inflexion. The first complete segmen
ncompasses b,c,d and has length n2+n3, the next encompasses d,e,f and has length n4+n5, etc. The first seg-

i
ment (a,b with length n1) is partial with only one inflexion; the last segment may be partial too. Although the
nflexion points b,d,f.. each figure in two segments (to the left and right), the slope of the two segments remains

-
n
independent at that common point (i.e. the 1st derivative will likely be discontinuous). When a,c,e... are alter

ately maximum and minimum, the inflexion joins will be relatively smooth; for successive maxima or succes-

E

sive minima the inflexions will be comb-like.

xample:

f 1 0 65 6 0 16 .5 16 1 16 0 16 -1

This creates a curve running 0 to 1 to -1, with a minimum, maximum and minimum at these values respectively.

-

Inflexions are at .5 and 0, and are relatively smooth.

- --

T

GEN08

- 57 -

his subroutine will generate a piecewise cubic spline curve, the smoothest possible through all specified points.

s

f # time size 8 a n1 b n2 c n3 d . . .

ize - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

n

a, b, c ... ordinate values of the function.

1, n2, n3 ... length of each segment measured in stored values. May not be zero, but may be fractional. A
s

f
particular segment may or may not actually store any values; stored values will be generated at integral point
rom the beginning of the function. The sum n1 + n2 + ... will normally equal "size" for fully specified func-

N

tions.

ote:

GEN08 constructs a stored table from segments of cubic polynomial functions. Each segment runs between two
h

v
specified points but depends as well on their neighbors on each side. Neighboring segments will agree in bot
alue and slope at their common point. (The common slope is that of a parabola through that point and its two

H

neighbors). The slope at the two ends of the function is constrained to be zero (flat).

int: to make a discontinuity in slope or value in the function as stored, arrange a series of points in the interval

E

between two stored values; likewise for a non-zero boundary slope.

xamples:

f 1 0 65 8 0 16 0 16 1 16 0 16 0

This example creates a curve with a smooth hump in the middle, going briefly negative outside the hump then

f

flat at its ends.

2 0 65 8 0 16 0 .1 0 15.9 1 15.9 0 .1 0 16 0

-

This example is similar, but does not go negative.

- --

T

GEN09, GEN10

- 58 -

hese subroutines generate composite waveforms made up of weighted sums of simple sinusoids. The
specification of each contributing partial requires 3 pfields using GEN09 but just 1 using GEN10.

f # time size 9 pna stra phsa pnb strb phsb . . .

s

f # time size 10 str1 str2 str3 str4

ize - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

,
s
pna, pnb, etc. - partial no. (relative to a fundamental that would occupy size locations per cycle) of sinusoid a
inusoid b, etc. Must be positive, but need not be a whole number, i.e., non-harmonic partials are permitted.

s

Partials may be in any order.

tra, strb, etc. - strength of partials pna, pnb, etc. These are relative strengths, since the composite waveform

p

will be rescaled later. Negative values are permitted and imply a 180 degree phase shift.

hsa, phsb, etc. - inital phase of partials pna, pnb, etc., expressed in degrees.

s
n
str1, str2, str3, etc. - relative strengths of the fixed harmonic partial numbers 1,2,3,etc., beginning in p5. Partial
ot required should be given a strength of zero.

B

Note:

oth subroutines generate stored functions as sums of sinusoids of different frequencies. The two major restric-

I

tions on GEN10 -- that the partials be harmonic and in phase -- do not apply to GEN09.

n either case the composite wave, once drawn, is then rescaled to unity if p4 was positive. A negative p4 will

E

cause rescaling to be skipped.

xample:

f 1 0 512 9 1 3 0 3 1 0 9 .3333 180

This combines partials 1, 3 and 9 in the relative strengths with which they are present in a square wave, except

-

that partial 9 is "upside down."

- --

T

GEN11

- 59 -

his subroutine generates an additive set of cosine partials, in the manner of csound generators buzz and gbuzz.

s

f # time size 11 nh lh r

ize - number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

l

nh - number of harmonics requested. Must be positive.

h (optional) - lowest harmonic partial present. Can be positive, zero or negative. The set of partials can begin
-

d
at any partial number and proceeds upwards; if lh is negative, all partials below zero will reflect in zero to pro

uce positive partials without phase change (since cosine is an even function), and will add constructively to any

r

positive partials in the set. The default value is 1.

(optional) - multiplier in an amplitude coefficient series. This is a power series: if the lhth partial has a

e
strength coefficient of A, the (lh+n)th partial will have a coefficient of A * r**n, i.e. strength values trace an
xponential curve. r may be positive, zero or negative, and is not restricted to integers. The default value is 1.

T

Note:

his subroutine is a non-time-varying version of the csound buzz and gbuzz generators, and is similarly useful
t

o
as a complex sound source in subtractive synthesis. With lh and r present it parallels gbuzz; with both absen

r equal to 1. it reduces to the simpler buzz (i.e. nh equal-strength harmonic partials beginning with the funda-

S

mental).

ampling the stored waveform with an oscillator is more efficient than using dynamic buzz units. However, the

p
spectral content is invariant, and care is necessary lest the higher partials exceed the Nyquist during sampling to
roduce foldover.

f

Examples:

1 0 2049 11 4
1

f
f 2 0 2049 11 4 1

3 0 2049 -11 7 3 .5

The first two tables will contain identical band-limited pulse waves of four equal-strength harmonic partials
,

a
beginning with the fundamental. The third table will sum seven consective harmonics, beginning with the third
nd at progressively weaker strengths (1, .5, .25, .125 ...). It will not be post-normalized.

--- -

- 60 -

T

GEN12

his generates the log of a modified Bessel function of the second kind, order 0, suitable for use in amplitude-
modulated FM.

f # time size -12 xint

size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The normal

x

value is power-of-2 plus 1.

int - specifies the x interval [0 to +xint] over which the function is defined.

T

Note:

his subroutine draws the natural log of a modified Bessel function of the second kind, order 0 (commonly writ-

T

ten as I subscript 0), over the x-interval requested. The call should have rescaling inhibited.

he function is useful as an amplitude scaling factor in cycle-synchronous amplitude-modulated FM. (See Pala-
-

m
min & Palamin, J. Audio Eng. Soc., 36/9, Sept. 1988, pp. 671-684.) The algorithm is interesting because it per

its the normally symmetric FM spectrum to be made asymmetric around a frequency other than the carrier,

m
and is thereby useful for formant positioning. By using a table lookup index of I(r - 1/r), where I is the FM

odulation index and r is an exponential parameter affecting partial strengths, the Palamin algorithm becomes

E

relatively efficient, requiring only oscil’s, table lookups, and a single exp call.

xample:

f 1 0 2049 -12 20

This draws an unscaled ln(I0(x)) from 0 to 20.

-- --

T

GEN13, GEN14

- 61 -

hese subroutines use Chebyshev coefficients to generate stored polynomial functions which, under waveshap-
ing, can be used to split a sinusoid into harmonic partials having a predefinable spectrum.

f # time size 13 xint xamp h0 h1 h2 . . . hn
n

s

f # time size 14 xint xamp h0 h1 h2 . . . h

ize - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The normal

x

value is power-of-2 plus 1.

int - provides the left and right values [-xint,+xint] of the x interval over which the polynomial is to be drawn.

n
These subroutines both call GEN03 to draw their functions; the p5 value here is therefor expanded to a
egative-positive p5,p6 pair before GEN03 is actually called. The normal value is 1.

.

h

xamp - amplitude scaling factor of the sinusoid input that is expected to produce the following spectrum

0, h1, h2, hn - relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will result when a sinusoid of
-

q
amplitude xamp * int(size/2)/xint is waveshaped using this function table. These values thus describe a fre
uency spectrum associated with a particular factor xamp of the input signal.

G

Note:

EN13 is the function generator normally employed in standard waveshaping. It stores a polynomial whose

w
coefficients derive from the Chebyshev polynomials of the first kind, so that a driving sinusoid of strength xamp

ill exhibit the specified spectrum at output. Note that the evolution of this spectrum is generally not linear with
n

t
varying xamp. However, it is bandlimited (the only partials to appear will be those specified at generatio
ime); and the partials will tend to occur and to develop in ascending order (the lower partials dominating at

d
low xamp, and the spectral richness increasing for higher values of xamp). A negative hn value implies a 180
egree phase shift of that partial; the requested full-amplitude spectrum will not be affected by this shift,

.
w
although the evolution of several of its component partials may be. The pattern +,+,-,-,+,+, ... for h0,h1,h2..

ill minimize the normalization problem for low xamp values (see above), but does not necessarily provide the

G

smoothest pattern of evolution.

EN14 stores a polynomial whose coefficients derive from Chebyshevs of the second kind.

f

Example:

1 0 1025 13 1 1 0 5 0 3 0 1

This creates a function which, under waveshaping, will split a sinusoid into 3 odd-harmonic partials of relative

-

strength 5:3:1.

- --

T

GEN15

- 62 -

his subroutine creates two tables of stored polynomial functions, suitable for use in phase quadrature opera-
tions.

f # time size 15 xint xamp h0 phs0 h1 phs1 h2 phs2 . .

l
v
size - number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The norma

alue is power-of-2 plus 1.

xint - provides the left and right values [-xint,+xint] of the x interval over which the polynomial is to be drawn.

n
This subroutine will eventually call GEN03 to draw both functions; this p5 value is therefor expanded to a
egative-positive p5,p6 pair before GEN03 is actually called. The normal value is 1.

.

h

xamp - amplitude scaling factor of the sinusoid input that is expected to produce the following spectrum

0, h1, h2, hn - relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will result when a sinusoid of
-

q
amplitude xamp * int(size/2)/xint is waveshaped using this function table. These values thus describe a fre
uency spectrum associated with a particular factor xamp of the input signal.

d
w
phs0, phs1, ... - phase in degrees of desired harmonics h0, h1, ... when the two functions of GEN15 are use

ith phase quadrature.

G

Note:

EN15 creates two tables of equal size, labelled f # and f #+1. Table # will contain a Chebyshev function of

C
the first kind, drawn using GEN13 with partial strengths h0cos(phs0), h1cos(phs1), ... Table #+1 will contain a

hebyshev function of the 2nd kind by calling GEN14 with partials h1sin(phs1), h2sin(phs2), ... (note the har-

q
monic displacement). The two tables can be used in conjunction in a waveshaping network that exploits phase
uadrature.

-- --

-- --

5

- 63 -

. CSCORE

-
t

Cscore is a program for generating and manipulating numeric score files. It comprises a number of func
ion subprograms, called into operation by a user-written main program. The function programs augment the C

e
d
language library functions; they can optionally read standard numeric score files, can massage and expand th

ata in various ways, then write the data out as a new score file to be read by a Csound orchestra.

a
m

The user-written main program is also in C. It is not essential to know the C language well to write
ain program, since the function calls have a simple syntax, and are powerful enough to do most of the compli-

E

cated work. Additional power can come from C later as the need arises.

vents, Lists, and Operations

An event in Cscore is equivalent to one statement of a standard numeric score. It is either created or

s
read in from an existing score file. An event is comprised of an opcode and an array of pfield values stored
omewhere in memory. Storage is organized by the following structure:

struct event {
char op; /* opcode */

s
char tnum;
hort pcnt;

float p[PMAX+1]; /* pfields */

A

};

ny function subprogram that creates, reads, or copies an event function will return a pointer to the storage
e

f
structure holding the event data. The event pointer can be used to access any component of the structure, in th
orm of e->op or e->p[n]. Each newly stored event will give rise to a new pointer, and a sequence of new

t
p
events will generate a sequence of distinct pointers that must themselves be stored away. Groups of even
ointers are stored in a list, which has its own structure:

struct evlist {
int nslots; /* size of this list */

/

A

};
struct event *e[1]; /* list of event pointers *

ny function that creates or modifies a list will return a pointer to the new list. The list pointer can be used to
-

m
access any of its component event pointers, in the form of a->e[n]. Event pointers and list pointers are thus pri

ary tools for manipulating the data of a score file.

Pointers and lists of pointers can be copied and reordered without modifying the data values they refer to.
,

t
This means that notes and phrases can be copied and manipulated from a high level of control. Alternatively
he data within an event or group of events can be modified without changing the event or list pointers. Cscore

-
p
provides a library of programming methods or function subprograms by which scores can be created and mani

ulated in this way.

In the following summary of Cscore function calls, some simple naming conventions are used:

t
the symbols e, f are pointers to events (notes);
he symbols a, b are pointers to lists(arrays) of such events;

;
t
the letters ev at the end of a function name signify operation on an event
he letter l at the start of a function name signifies operation on a list.

-

calling syntax description

- --

- 64 -

s
e
e = createv(n); create a blank event with n pfield

= defev("..."); defines an event as per the character string ...

e
e = copyev(f); make a new copy of event f

= getev(); read the next event in the score input file

p
putev(e); write event e to the score output file
utstr("..."); write the character string ... to score output

a
a = lcreat(n); create an empty event list with n slots

= lappev(a,e); append event e to list a
a

a
n = lcount(a); count the events now in list

= lcopy(b); copy the list b (but not the events)
t

a
a = lcopyev(b); copy the events of b, making a new lis

= lget(); read events from score input (to next s or e)
t

a
lput(a); write the events of list a to score outpu

= lsepf(b); separate the f statements from list b into list a

l
a = lcat(a,b); concatenate (append) the list b onto the list a
sort(a); sort the list a into chronological order by p[2]

)
a
a = lxins(b,"..."); extract notes of instruments ... (no new events

= lxtimev(b,from,to); extract notes of time-span, creating new events

l
relev(e); release the space of event e
rel(a); release the space of list a (but not events)

elrelev(a); release the events of list a, and the list spac

.Writing a Main program

The general format for a main program is:

m
#include <csound/cscore.h>

ain()
{

/* VARIABLE DECLARATIONS */

T

}
/* PROGRAM BODY */

he include statement will define the event and list structures for the program. The following C program will

(
read from a standard numeric score, up to (but not including) the first s or e statement, then write that data
unaltered) as output.

#include <csound/cscore.h>

{
main()

struct evlist *a; /* a is allowed to point to an event list */

/
l
a = lget(); /* read events in, return the list pointer *
put(a); /* write these events out (unchanged) */

A

}
putstr("e"); /* write the string e to output */

fter execution of lget(), the variable a points to a list of event addresses, each of which points to a
f

t
stored event. We have used that same pointer to enable another list function (lput) to access and write out all o
he events that were read. If we now define another symbol e to be an event pointer, then the statement

w

e = a->e[4];

ill set it to the contents of the 4th slot in the evlist structure. The contents is a pointer to an event, which is
r

-

itself comprised of an array of parameter field values. Thus the term e->p[5] will mean the value of paramete

- --

fi

- 65 -

eld 5 of the 4th event in the evlist denoted by a. The program below will multiply the value of that pfield by 2
before writing it out.

#include <csound/cscore.h>

{
main()

struct event *e; /* a pointer to an event */

a

struct evlist *a;

= lget(); /* read a score as a list of events */
/

e
e = a->e[4]; /* point to event 4 in event list a *
->p[5] *= 2; /* find pfield 5 and multiply its value by 2 */

p
lput(a); /* write out the list of events */
utstr("e"); /* add a "score end" statement */

N

}

ow consider the following score, in which p[5] contains frequency in cps.

f
f 1 0 257 10 1

2 0 257 7 0 300 1 212 .8

i
i 1 1 3 0 440 10000

1 4 3 0 256 10000
0

I

e
i 1 7 3 0 880 1000

f this score were given to the preceding main program, the resulting output would look like this:

f
f 1 0 257 10 1

2 0 257 7 0 300 1 212 .8

i
i 1 1 3 0 440 10000

1 4 3 0 512 10000 ; p[5] has become 512 instead of 256.

N

e
i 1 7 3 0 880 10000

ote that the 4th event is in fact the second note of the score. So far we have not distinguished between notes
s

b
and function table setup in a numeric score. Both can be classed as events. Also note that our 4th event ha

een stored in e[4] of the structure. For compatibility with Csound pfield notation, we will ignore p[0] and e[0]
-

v
of the event and list structures, storing p1 in p[1], event 1 in e[1], etc. The Cscore functions all adopt this con
ention.

As an extension to the above, we could decide to use a and e to examine each of the events in the list.

e
Note that e has not preserved the numeral 4, but the contents of that slot. To inspect p5 of the previous listed
vent we need only redefine e with the assignment

M

e = a->e[3];

ore generally, if we declare a new variable f to be a pointer to a pointer to an event, the statement

w

f = &a->e[4];

ill set f to the address of the fourth event in the event list a, and *f will signify the contents of the slot,
namely the event pointer itself. The expression

(*f)->p[5],

like e->p[5], signifies the fifth pfield of the selected event. However, we can advance to the next slot in the
evlist by advancing the pointer f. In C this is denoted by f++.

In the following program we will use the same input score. This time we will separate the ftable state-

s
ments from the note statements. We will next write the three note-events stored in the list a, then create a
econd score section consisting of the original pitch set and a transposed version of itself. This will bring about

-

an octave doubling.

- --

B

- 66 -

y pointing the variable f to the first note-event and incrementing f inside a while block which iterates n
-

s
times (the number of events in the list), one statement can be made to act upon the same pfield of each succes
ive event.

#include <csound/cscore.h>

{
main()

struct event *e,**f; /* declarations. see pp.8-9 in the */
/

i
struct evlist *a,*b; /* C language programming manual *
nt n;

a = lget(); /* read score into event list "a" */
/

l
b = lsepf(a); /* separate f statements *
put(b); /* write f statements out to score */

e
lrelev(b); /* and release the spaces used */

= defev("t 0 120"); /* define event for tempo statement */

l
putev(e); /* write tempo statement to score */
put(a); /* write the notes */

p
putstr("s"); /* section end */
utev(e); /* write tempo statement again */

/
n
b = lcopyev(a); /* make a copy of the notes in "a" *

= lcount(b); /* and count the number copied */

w
f = &a->e[1];

hile (n--) /* iterate the following line n times: */
/

a
(*f++)->p[5] *= .5; /* transpose pitch down one octave *
= lcat(b,a); /* now add these notes to original pitches */

p
lput(a);
utstr("e");

T

}

he output of this program is:

f
f 1 0 257 10 1

2 0 257 7 0 300 1 212 .8

i
t 0 120

1 1 3 0 440 10000
0

i
i 1 4 3 0 256 1000

1 7 3 0 880 10000

t
s

0 120
i 1 1 3 0 440 10000

0
i
i 1 4 3 0 256 1000

1 7 3 0 880 10000
0

i
i 1 1 3 0 220 1000

1 4 3 0 128 10000
0

N

e
i 1 7 3 0 440 1000

ext we extend the above program by using the while statement to look at p[5] and p[6]. In the original

o
score p[6] denotes amplitude. To create a diminuendo in the added lower octave, which is independent from the
riginal set of notes, a variable called dim will be used.

m
#include <csound/cscore.h>

ain()
{

struct event *e,**f;

-

struct evlist *a,*b;

- --

i

- 67 -

nt n, dim; /* declare new variable as integer */

b
a = lget();

= lsepf(a);

l
lput(b);
relev(b);

e = defev("t 0 120");

l
putev(e);
put(a);

;
p
putstr("s")
utev(e); /* write out another tempo statement */

n
b = lcopyev(a);

= lcount(b);
dim = 0; /* initialize dim to 0 */

w
f = &a->e[1];

hile (n--){
(*f)->p[6] -= dim; /* subtract current value of dim */

/
d
(*f++)->p[5] *= .5; /* transpose, move f to next event *

im += 2000; /* increase dim for each note */

a
}

= lcat(b,a);

p
lput(a);
utstr("e");

T

}

he increment of f in the above programs has depended on certain precedence rules of C. Although this

s
keeps the code tight, the practice can be dangerous for beginners. Incrementing may alternately be written as a
eparate statement to make it more clear.

while (n--){
(*f)->p[6] -= dim;

d
(*f)->p[5] *= .5;
im += 2000;

U

}
f++;

sing the same input score again, the output from this program is:

f
f 1 0 257 10 1

2 0 257 7 0 300 1 212 .8

i
t 0 120

1 1 3 0 440 10000
0

i
i 1 4 3 0 256 1000

1 7 3 0 880 10000

t
s

0 120
i 1 1 3 0 440 10000 ; Three original notes at

.
i
i 1 4 3 0 256 10000 ; beats 1,4 and 7 with no dim

1 7 3 0 880 10000
i 1 1 3 0 220 10000 ; three notes transposed down one octave

.
i
i 1 4 3 0 128 8000 ; also at beats 1,4 and 7 with dim

1 7 3 0 440 6000

I

e

n the following program the same three-note sequence will be repeated at various time intervals. The

g
starting time of each group is determined by the values of the array cue. This time the dim. will occur for each

roup of notes rather than each note. Note the position of the statement which increments the variable dim

--- -

- 68 -

outside the inner while block.

#include <csound/cscore.h>

int cue[3]={0,10,17}; /* declare array of 3 integers */

{
main()

struct event *e, **f;

i
struct evlist *a, *b;
nt n, dim, cuecount, holdn; /* declare new variables */

b
a = lget();

= lsepf(a);

l
lput(b);
relev(b);

e = defev("t 0 120");

n
putev(e);

= lcount(a);
holdn = n; /* hold the value of "n" to reset below */

d
cuecount = 0; /* initilize cuecount to "0" */
im = 0;

while (cuecount <= 2) { /* count 3 iterations of inner "while" */
/

n
f = &a->e[1]; /* reset pointer to first event of list "a" *

= holdn; /* reset value of "n" to original note count */
while (n--) {

(*f)->p[6] -= dim;
(*f)->p[2] += cue[cuecount]; /* add values of cue */

p
}

f++;

rintf("%s %d0, "; diagnostic: cue=", cue[cuecount]);

d
cuecount++;
im += 2000;

p
}

lput(a);

utstr("e");

H

}

ere the inner while block looks at the events of list a (the notes) and the outer while block looks at each
-

s
repetition of the events of list a (the pitch group repetitions). This program also demonstrates a useful trouble
hooting device with the printf function. The semi-colon is first in the character string to produce a comment

p
statement in the resulting score file. In this case the value of cue is being printed in the output to insure that the

rogram is taking the proper array member at the proper time. When output data is wrong or error messages are

U

encountered, the printf function can help to pinpoint the problem.

sing the identical input file, the C program above will generate:

f
f 1 0 257 10 1

2 0 257 7 0 300 1 212 .8

;

t 0 120

diagnostic: cue= 0

i
i 1 1 3 0 440 10000

1 4 3 0 256 10000

-- --

;

i 1 7 3 0 880 10000

- 69 -

diagnostic: cue= 10

i
i 1 11 3 0 440 8000

1 14 3 0 256 8000
0

;

i 1 17 3 0 880 800

diagnostic: cue= 17

i
i 1 28 3 0 440 4000

1 31 3 0 256 4000
0

F

e
i 1 34 3 0 880 400

urther development of these scores will lead the composer to techniques of score manipulation which are
.

T
similar to serial techniques of composition. Pitch sets may be altered with regard to any of the parameter fields

he programing allows for transpositions, time warping, pitch retrograding and dynamic controls, to name a few.

Compiling a Cscore program

A Cscore program named example.c can be compiled and linked with its library modules by the com-
mand:

$ cc example.c -lcscore

:The resulting executable file is called "a.out". It is run by typing

$ a.out (no input, output printed on the screen)

)

$

$ a.out < scorin (input score named scorin, output on screen

a.out < scorin > scorout (input as above, output into a file)

--- -

-- --

6

- 70 -

. SCOT: A Score Translator

o
t

Scot is a language for describing scores in a fashion that parallels traditional music notation. Scot is als
he name of a program which translates scores written in this language into standard numeric score format so

s
that the score can be performed by Csound. The result of this translation is placed in a file called score. A
core file written in Scot (named file.sc, say) can be sent through the translator by the command

T

scot file.sc

he resulting numeric score can then be examined for errors, edited, or performed by typing

csound file.orc score

dAlternatively, the comman

csound file.orc -S file.sc

would combine both processes by informing Csound of the initial score format.

e
f

Internally, a Scot score has at least three parts: a section to define instrument names, a section to defin
unctions, and one or more actual score sections. It is generally advisable to keep your score sections short to

facilitate finding errors. The overall layout of a Scot score has three main sections:

orchestra { }
}

s
functions {
core { }

The last two sections may be repeated as many times as desired. The functions section is also optional.

l
Throughout this Scot document, bear in mind that you are free to break up each of these divisions into as many
ines as seem convenient, or to place a carriage return anywhere you are allowed to insert a space, including

e
s
before and after the curly brackets. Furthermore, you may use as many spaces or tabs as you need to make th
core easy to read. Scot imposes no formatting restrictions except that numbers, instrument names, and key-

n
words (for example, orchestra) may not be broken with spaces. You may insert comments (such as measure
umbers) anywhere in the score by preceding them with a semicolon. A semicolon causes Scot to ignore the

O

rest of a line.

rchestra Declaration Section

The orchestra section of a Scot score serves to designate instrument names for use within the score. This

t
is a matter of convenience, since an orchestra knows instruments only by numbers, not names. If you declare
hree instruments, such as:

orchestra { flute=1 cello=2 trumpet=3 }

Csound will neither know nor care what you have named the note lists. However, when you use the name
t

w
$flute, Scot will know you are referring to instr 1 in the orchestra, $cello will refer to instr 2, and $trumpe

ill be instr 3. You may meaningfully skip numbers or give several instruments the same number. It is up to
s

a
you to make sure that your orchestra has the correct instruments and that the association between these name
nd the instruments is what you intend. There is no limit (or a very high one, at least) as to how many instru-

F

ments you can declare.

unction Declaration Section

The major purpose of this division is to allow you to declare function tables for waveforms, envelopes,

b
etc. These functions are declared exactly as specified for Csound. In fact, everything you type between the

rackets in this section will be passed directly to the resulting numeric score with no modification, so that

--- -

- 71 -

s
s
mistakes will not be caught by the Scot program, but rather by the subsequent performance. You can use thi
ection to write notes for instruments for which traditional pitch-rhythm notation is inappropriate. The most

i
common example would be turning on a reverb instrument. Instruments referenced in this way need not appear
n the Scot orchestra declaration. Here is a possible function declaration:

f
functions {
1 0 256 10 1 0 .5 0 .3

0
i
f2 0 256 7 0 64 1 64 .7 64
9 0 -1 3 ; this turns on instr 9

Score Section

}

The Scot statements contained inside the braces of each score statement is translated into a numeric score
s

a
Section (q.v.). It is wise to keep score sections small, say seven or eight measures of five voices at a time. Thi
voids overloading the system, and simplifies error checking.

:The beginning of the score section is specified by typing

score {

Everything which follows this until the braces are closed is within a single section. Within this section you
r

o
write measures of notes in traditional pitch and rhythm notation for any of the instrument names listed in you
rchestra declaration. These notes may carry additional information such as slurs, ties and parameter fields. Let

us now consider the format for notes entered in a Scot score.

The first thing to do is name the instrument you want and the desired meter. For example, to write some
4/4 measures for the cello, type:

$cello
"

T

!ti "4/4

he dollar sign and exclamation point tell Scot that a special declarator follows. The time signature declarator is

P

optional; if present, Scot will check the number of beats in each measure for you.

itch and Rhythm

The two basic components of a note statement are the pitch and duration. Pitch is specified using the

o
alphabetic note name, and duration is specified using numeric characters. Duration is indicated at the beginning
f the note as a number representing the division of a whole beat. You may always find the number specifying

n
i
a given duration by thinking of how many times that duration would fit in a 4/4 measure. Also, if the duratio
s followed by a dot (‘.’) it is increased by 50%, exactly as in traditional notation. Some sample durations are

listed below:

whole note 1
2

d
half note
ouble dotted quarter 4..

q
dotted quarter note 4.
uarter note 4

e
half note triplet 6
ighth note 8

2
s
eighth note triplet 1
ixteenth note 16

2

P

thirty-second note 3

itch is indicated next by first (optionally) specifying the register and then the note name, followed by an
d

t
accidental if desired. Normally, the "octave following" feature is in effect. This feature causes any note name
o lie within the interval of an augmented fourth of the previous note, unless a new register is chosen. The first

-

note you write will always be within a fourth of middle c unless you choose a different register.

- --

F

- 72 -

or example, if the first note of an instrument part is notated g flat, the scot program assigns the pitch
l

b
corresponding to the g flat below middle c. On the other hand, if the first note is f sharp, the pitch assigned wil
e the f sharp above middle c. Changes of register are indicated by a preceding apostrophe for each octave dis-

a
placement upward or a preceding comma for each octave displacement downward. Commas and apostrophes
lways displace the pitch by the desired number of octaves starting from that note which is within an augmented

fourth of the previous pitch.

If you ever get lost, prefacing the pitch specification with an ‘=’ returns the reference to middle c. It is

c
usually wise to use the equals sign in your first note statement and whenever you feel uncertain as to what the
urrent registration is. Let us now write two measures for the cello part, the first starting in the octave below

middle c and the second repeating but starting in the octave above middle c:

$cello
"

4
!ti "4/4
=g 4e 4d 4c/ 4=’g 4e 4d 4c

As you can see, a slash indicates a new measure and we have chosen to use the dummy middle c to indicate the
new register. A more convenient way of notating these two measures would be to type the following:

$cello
"

4
!ti "4/4
=g e d c/ ’’g e d c

You may observe in this example that the quarter note duration carries to the following notes when the follow-

f
ing durations are left unspecified. Also, two apostrophes indicate an upward pitch displacement of two octaves
rom two g’s below middle c, where the pitch would have fallen without any modification. It is important to

remember three things, then, when specifying pitches:

1) Note pitches specified by letter name only (with or without

f
accidental) will always fall within an interval of a fourth
rom the preceding pitch.

2) These pitches can be octave displaced upward or downward

a
by preceding the note letter with the desired number of
postrophes or commas.

3) If you are unsure of the current register, you may begin
h

a
the pitch component of the note with an equals sign whic
cts as a dummy middle c.

:The pitch may be modified by an accidental after the note name

n natural

-
sharp

(hyphen) flat
p

-
double shar
- (double hyphen) double flat

Accidentals are carried throughout the measure just as in traditional music notation. However, an accidental

f
specified within a measure will hold for that note in all registers, in contrast with traditional notation. There-
ore, make sure to specify n when you no longer want an accidental applied to that pitch-class.

d
a

Pitches entered in the Scot score are translated into the appropriate octave point pitch-class value an
ppear as parameter p5 in the numeric score output. This means you must design your instruments to accept p5

as pitch.

Rests are notated just like notes but using the letter r instead of a pitch name. 4r therefore indicates a
quarter rest and 1r a whole rest. Durations carry from rest to rest or to following pitches as mentioned above.

The tempo in beats per minute is specified in each section by choosing a single instrument part and using
e

b
tempo statements (e.g. t90) at the various points in the score as needed. A quarter note is interpreted as a singl
eat, and tempi are interpolated between the intervening beats (see score t statement).

--- -

- 73 -

Scot Example I

; A BASIC Tune
orchestra { guitar=1 bass=2 }

f
functions {
1 0 512 10 1 .5 .25 .126

1

s
}
f2 0 256 7 1 120 1 8 0 128

core { ;section 1

!
$guitar
ti "4/4"

4=c 8d e- f r 4=’c/
/

$
8.b- 16a a- g g- f 4e- c
bass

2=,,c ’a-/

s
}
g =,c/

core { ;section 2

!
$guitar
ti "4/4"

6=’c r c 4..c## 16e- /

$
6f r f 4..f## 16b /
bass

4=,,c ’g ,c ’g/

}
2=a- g /

.The score resulting from this Scot notation is shown at the end of this chapter

sGroupette

Duration numbers can have any integral value; for instance,

5
!time "4/4"
cdefg/

would encode a measure of 5 in the time of 4 quarter notes. However, specification of arbitrary rhythmic group-

g
ings in this way is at best awkward. Instead, arbitrary portions of the score section may be enclosed in
roupette brackets. The durations of all notes inside groupette brackets will be multiplied by a fraction n/d,

t
where the musical meaning is d in the time of n. Assuming d and n here are integers, groupette brackets may
ake these several forms:

{d:n: :} d in the time of n
d

{
{d:: :} n will be the largest power of 2 less than
: :} d=3, n=2 (normal triplets)

.

-

It can be seen that the second and third form are abbreviations for the more common kinds of groupettes

- --

(

- 74 -

Observe the punctuation of each form carefully.) Groupettes may be nested to a reasonable depth. Also,

i
groupette factors apply only after the written duration is carried from note to note. Thus, the following example
s a correct specification for two measures of 6/8 time:

/

T

!time "6/8" 8cde {4:3: fgab :} / crc 4.c

he notes inside the groupette are 4 in the space of 3 8th notes, and the written-8th-note duration carries nor-

s
mally into the next measure. This closely parallels the way groupette brackets and note durations interact in
tandard notation.

Slurs and Ties

Now that you understand part writing in the Scot language, we can start discussing more elaborate
e

n
features. Immediately following the pitch specification of each note, one may indicate a slur or a tie into th
ext note (assuming there is one), but not both simultaneously. The slur is typed as a single underscore (‘i’)

e
and a tie as a double underscore (‘ii’). Despite the surface similarity, there is a substantial difference in the
ffect of these modifiers.

For purposes of Scot, tied notes are notes which, although comprised of several graphic symbols, represent
t

c
only a single musical event. (Tied notes are necessary in standard music notation for several reasons, the mos
ommon being notes which span a measure line and notes with durations not specifiable with a single symbol,

S
such as quarter note tied to a sixteenth.) Notes which are tied together are summed by duration and output by

cot as a single event. This means you cannot, for example, change the parameters of a note in the middle of a
r

e
tie (see below). Two or more notes may be tied together, as in the following example, which plays an f# fo
leven beats:

!ti "4/4"
1 f#ii / 1 f#ii / 2. f# 4r /

By contrast, slurred notes are treated as distinct notes at the Csound level, and may be of arbitrary pitch. The

b
presence of a slur is reflected in parameter p4, but the slur has no other meaning beyond the interpretation of p4
y your instrument. Since instrument design is beyond the scope of this manual, it will suffice for now to

d
a
explain that the Scot program gives sets p4 to one of four values depending on the existence of a slur before an
fter the note in question. This means Scot pays attention not only to the slur attached to a given note, but

t
whether the preceding note specified a slur. The four possibilities are as follows, where the p4 values are taken
o apply to the note ‘d’:

4c d (no slur) p4 = 0

4
4c di (slur after only) p4 = 1
ci d (slur before only)p4 = 2

3

Parameters

4ci di (before & after) p4 =

The information contained in the Scot score notation we have considered so far is manifested in the output
score in parameters p1 through p5 in the following way:

p1: instrument number
t

p
p2: initialization time of instrumen
3: duration

n
p
p4: slur informatio
5: pitch information in octave point pitch-class notation

.
T
Any additional parameters you may want to enter are listed in brackets as the last part of a note specification

hese parameters start with p6 and are separated from each other with spaces. Any parameters not specified for

s
a particular note have their value carried from the most recently specified value. You may choose to change
ome parameters and not others, in which case you can type a dot (‘.’) for parameters whose values don’t

u
change, and new values for those that do. Alternatively, the construction N:, where N is an integer, may be
sed to indicate that the following parameter specifications apply to successive parameters starting with parame-

-

ter N. For example:

- --

- 75 -

c

H

4e[15000 3 4 12:100 150] gi di[10000 . 5]

ere, for the first two quarter notes p6, p7, p8, p12, and p13 respectively assume the values 15000, 3, 4, 100,

s
and 150. The values of p9 through p11 are either unchanged, or implicitly zero if they have never been
pecified in the current section. On the third quarter note, the value of p6 is changed to 10000, and the value of

p8 is changed to 5. All others are unchanged.

Normally, parameter values are treated as globals -- that is, a value specification will carry to successive
e

a
notes if no new value is specified. However, if a parameter specification begins with an apostrophe, the valu
pplies locally to the current note only, and will not carry to successive notes either horizontally or vertically

P

(see divisi below).

field Macros

Scot has a macro text substitution facility which operates only on the pfield specification text within
r

i
brackets. It allows control values to be specified symbolically rather than numerically. Macro definitions appea
nside brackets in the orchestra section. A single bracketed list of macro definitions preceding the first instru-

f
ment declaration defines macros which apply to all instruments. An additional bracketed list of definitions may
ollow each instrument to specify macros that apply to that particular instrument.

orchestra {
[pp=2000 p=4000 mp=7000 mf=10000 f=20000 ff=30000

v
modi = 11: w = 1 x = 2 y = 3 z = 4
ib = "10:1 " novib = "10:0 1"

v
]

iolin = 1 [pizz = " 20:1" arco = " 20:0"]
]

s
}
serpent = 3 [ff = 25000 sfz = ’f sffz = ’ff

core {
$violin =4c[mf modi z.y novib] d e a[’f vib3] /

/8 b[pizz]c 4d[f] 2c[ff arco]
/$serpent =,4.c[mp modi y.x] 8b 2c

’g[f] ,c[ff] /

A

}

s can be seen from this example, a macro definition consists of the macro name, which is a string of alphabetic

b
characters, followed by an equal sign, followed by the macro value. As usual, spaces, tabs, and newlines may
e used freely. The macro value may contain arbitrary characters, and may be quoted if spacing characters need

to be included.

When a macro name is encountered in bracketed pfield lists in a score section, that name is replaced with
,

a
the macro text with no additional punctuation supplied. The macro text may itself invoke other macros
lthough it is a serious error for a macro to contain itself, directly or indirectly. Since macro names are

,
m
identified as strings of alphabetic characters, and no additional spaces are provided when a macro is expanded

acros may easily perform such concatenations as found in the first serpent note above, where the integer and
,

a
fractional parts of a single pfield are constructed. Also, a macro may do no more than define a symbolic pfield
s in the definition of modi. The primary intention of macros is in fact not only to reduce the number of char-

r
i
acters required, but also to enable symbolic definitions of parameter numbers and parameter values. Fo
nstance, a particular instrument’s interpretation of the dynamic ff can be changed merely by changing a macro

D

value, rather than changing all occurrences of that particular value in the score.

ivisi

Notes may be stacked on top of each other by using a back arrow (‘<’) between the notes of the divisi.

n
Each time Scot encounters a back arrow, it understands that the following note is to start at the same time as the
ote to the left of the back arrow. Durations, accidentals and parameters carry from left to right through the

v
divisi. Each time these are given new values, the notes to the right of the back arrows also take on the new
alues unless they are specified again.

-- --

W

- 76 -

hen writing divisi you can stack compound events by enclosing them in parentheses. Also, divisi which
-

u
occur at the end of the measure must have the proper durations or the scot program will mis-interpret the meas
re duration length.

Scot Example II

orchestra { right=1 left=2 }

s
functions { f1 0 256 10 1}
core {

$right !key "-b"
; since p5 is pitch, p7 is set to the pitch of next note

!
!ti "2/4"
next p5 "p7" ;since p5 is pitch, p7 refers to pitch of next note

e
t
!next p6 "p8" ;If p6 is vol, say, then p8 refers to vol of next not
90

8r c[3 np5]<e<=’g r c<f<a / t90 r d-<g<b r =c[5]<f<aii /

t
!ti "4/4"
80

4di<fii<(8a gii) 4c<(8fe)<4g 4.c<f<f 8r/

!
$left !key "-b"
next p5 "p7"

"
!
!next p6 "p8
ti "2/4"

8=,c[3 np5] r f r/ e r f r/

2
!ti "4/4"
bi[5]<(4=,bic) 4.a<f 8r/

N

}

otice in this example that the tempo statements occurred in instrument ‘right’ only. Also, all notes had
n

u
p6=3 until the third measure, at which point p6 took on the value 5 for all notes. The next parameter optio
sed is described under Additional Features. The output score of above is given at the end.

Additional Features

Several options can be included in any of the individual instrument parts within a section. A sample state-

a
ment follows the description of each option. The keyword which follows the ‘!’ in these statements may be
bbreviated to the first two characters.

-- --

Key Signatures

- 77 -

Any desired key signature is specified by listing the accidentals as they occur in a key signature statement.

D
Thereafter, all notes of that instrument part are sharpened or flattened accordingly. For example, for the key of

, type

!key "#fc"

Accidental Following

Accidental following may be turned on or off as needed. When turned off, accidentals no longer carry
throughout the measure as in traditional notation. This convention is sometimes used in contemporary scores.

!accidentals "off"

Octave Following

Turning off octave following indicates that pitches stay in the same absolute octave register until explicitly
d

w
moved. An absolute octave starts at pitch c and ends at the b above it. The octave middle-c-to-b is indicate

ith an equals sign (‘=’) and octave displacement is indicated with the appropriate number of commas or apos-
trophes. These displacements are cummulative. For example,

!octaves "off"

s

4=’c g b ’c

tarts at the c above middle c and ends at two c’s above middle c.

Vertical Following

Turning off vertical following means that durations, register, and parameters only carry horizontally from
note to note and not vertically as described in the section on divisi.

!vertical "off"

Transposition

Any instrument part can be transposed to another key by indicating the intervalic difference between the
a

w
notated key and the desired key. This difference is always taken with reference to middle c - to transpose

hole step upward, for example, type

T

!transpose "d"

his indicates that the part is transposed by the interval difference between middle c and d.

Next-value and Previous-value Parameteres

In order to play a note, it is sometimes necessary for an instrument to know what value one or more
s

d
parameters will have for the next note. For instance, an instrument might be designed which glisse
uring the last portion of its performance (perhaps only when a slur is indicated) from its written pitch to the

t
n
pitch of the next note. This can only be done, of course, if the instrument can know what the pitch of the nex
ote will be. The necessary information can be provided using next-value parameters. A next value parameter

might be declared by

!next p5 "p6"

which is interpreted to mean that for the current instrument, p6 will contain the next note’s p5 value. This holds

o
true globally for all occurences of this instrument until further modifications. If for any reason you wish to
verride this value, p6 may be filled in explicitly. This is sometimes useful for the last note of a section, for

S
which p6 will otherwise assume the p5 value for the current note. The next-value feature is illustrated in the

cot example II.

-- --

T

- 78 -

he necessary information may also be provided using standard numeric score next-value parameters. A
e

f
parameter argument containing the symbol npx (where x is an integer) will substitute parameter number x of th
ollowing note for that instrument. Similarly, the value of a parameter occurring during the previous note may

r
f
be referenced with the symbol ppx (where x is an integer). Details of the next- and previous-value paramete
eature may be found in the Numeric Scores section.

Pfields containing the symbol < will be replaced by values derived from linear interpolation of a time-

f
based ramp. Ramp endpoints are defined by the first real number found in the same pfield of a preceding and
ollowing note played by the same instrument. Details of the ramping feature are likewise found in the

f

Numeric Scores section.

0 Statements

In each score section, Scot automatically produces an f0 statement with a p2 equal to the ending time of
r

p
the last note or rest in the section. Thus, ‘dead time’ at the end of a section for reverberation decay or whateve
urpose may be specified musically by rests in one or more parts. See the eighth rest at the end of Scot exam-

-

ple II and its output score shown below.

- --

Output Scores

- 79 -

Output file score from Scot Example I.

f
f1 0 512 10 1 .5 .25 .126
2 0 256 7 1 120 1 8 0 128 1

i
i1.01 0 1 0 8.00
1.01 1 0.5 0 8.02

3
i
i1.01 1.5 0.5 0 8.0
1.01 2 0.5 0 8.05

i
i1.01 3 1 0 9.00
1.01 4 0.75 0 8.10

9
i
i1.01 4.75 0.25 0 8.0
1.01 5 0.25 0 8.08

7
i
i1.01 5.25 0.25 0 8.0
1.01 5.5 0.25 0 8.06

5
i
i1.01 5.75 0.25 0 8.0
1.01 6 1 0 8.03

0
i
i1.01 7 1 0 8.0
2.01 0 2 0 6.00

8
i
i2.01 2 2 0 6.0
2.01 4 2 0 6.07

0
t
i2.01 6 2 0 7.0
0 60

i
s
f0 8

1.01 0 0.6667 0 9.00
0

i
i1.01 1.3333 0.6667 0 9.0
1.01 2 1.75 0 9.02

3
i
i1.01 3.75 0.25 0 9.0
1.01 4 0.6667 0 9.05

5
i
i1.01 5.3333 0.6667 0 9.0
1.01 6 1.75 0 9.07

9
i
i1.01 7.75 0.25 0 9.0
2.01 0 1 0 6.00

7
i
i2.01 1 1 0 6.0
2.01 2 1 0 6.00

7
i
i2.01 3 1 0 6.0
2.01 4 2 0 7.08

7
t
i2.01 6 2 0 7.0
0 60

O

s
f0 8

utput file score from Scot Example II.

c
f1 0 256 10 1

r1 n 7 5
6

i
c r1 n 8
1.01 0.5000 0.5000 0 8.00 3 8.00 3

3
i
i1.02 0.5000 0.5000 0 8.04 3 8.05
1.03 0.5000 0.5000 0 8.07 3 8.09 3

3
i
i1.01 1.5000 0.5000 0 8.00 3 8.01
1.02 1.5000 0.5000 0 8.05 3 8.07 3

3

-

i1.03 1.5000 0.5000 0 8.09 3 8.10

- --

i
i1.01 2.5000 0.5000 0 8.01 3 8.00 5

- 80 -

1.02 2.5000 0.5000 0 8.07 3 8.05 5
5

i
i1.03 2.5000 0.5000 0 8.10 3 8.09
1.01 3.5000 0.5000 0 8.00 5 8.02 5

5
i
i1.02 3.5000 0.5000 0 8.05 5 8.05
1.01 4.0000 1.0000 1 8.02 5 8.00 5

5
i
i1.03 3.5000 1.0000 0 8.09 5 8.07
1.01 5.0000 1.0000 2 8.00 5 8.00 5

5
i
i1.02 4.0000 1.5000 0 8.05 5 8.04
1.02 5.5000 0.5000 0 8.04 5 8.05 5

5
i
i1.03 4.5000 1.5000 0 8.07 5 8.05
1.01 6.0000 1.5000 0 8.00 5 8.00 5

5
i
i1.02 6.0000 1.5000 0 8.05 5 8.05
1.03 6.0000 1.5000 0 8.05 5 8.05 5

c
c r2 n 7 5

r2 n 8 6
i2.01 0.0000 0.5000 0 7.00 3 7.05 3

3
i
i2.01 1.0000 0.5000 0 7.05 3 7.04
2.01 2.0000 0.5000 0 7.04 3 7.05 3

5
i
i2.01 3.0000 0.5000 0 7.05 3 7.10
2.01 4.0000 2.0000 1 7.10 5 7.09 5

5
i
i2.02 4.0000 1.0000 1 6.10 5 7.00
2.02 5.0000 1.0000 2 7.00 5 7.05 5

5
i
i2.01 6.0000 1.5000 2 7.09 5 7.09
2.02 6.0000 1.5000 0 7.05 5 7.05 5

t0 60 0.0000 90.0000 2.0000 90.0000 4.0000 80.0000 4.0000 90.0000

-

e
s
f0 8.0000

- --

-- --

7

- 81 -

. The CSOUND Command

e
s

csound is a command for passing an orchestra file and score file to Csound to generate a soundfile. Th
core file can be in one of many different formats, according to user preference. Translation, sorting, and for-

s
matting into orchestra-readable numeric text is handled by various preprocessors; all or part of the score is then
ent on to the orchestra. Orchestra performance is influenced by command flags, which set the level of displays

c
and console reports, specify I/O filenames and sample formats, and declare the nature of realtime sensing and
ontrol.

The format of a command is:

e

w

csound [-flags] orchname scorenam

here the arguments are of 2 types: flag arguments (beginning with a "-"), and name arguments (such as
filenames). Certain flag arguments take a following name or numeric argument. The available flags are:

-I, -n sound output inhibitors

-
-iName, -oName sound I/O filenames
bNumb, -h audio buffer & header control

-
-c, -a, -u, -s, -l, -f audio output formats
v, -mNumb, -d, -g message & display levels

-
-S, -xName score formats
B, -RName, -MName realtime event control

e
o
Flags may appear anywhere in the command line, either separately or bundled together. A flag taking a Nam
r Number will find it in that argument, or in the immediately subsequent one. The following are thus

equivalent commands:

csound -nm3 orchname -Sxxfilename scorename
e

A

csound -n -m 3 orchname -x xfilename -S scorenam

ll flags and names are optional. The default values are:

e

w

csound -s -otest -b iobufsamps -m7 orchname scorenam

here iobufsamps is a locally defined value (see below),

,

a

and orchname is a file containing Csound orchestra code

nd scorename is a file of score data in standard numeric score format; if omitted,
.

C

csound will use the previously processed score.srt in the current directory

sound reports on the various stages of score and orchestra processing as it goes, doing various syntax and error

i
checks along the way. Once the actual performance has begun, any error messages will derive from either the
nstrument loader or the unit generators themselves. A csound command may include any rational combination

c

of the following flag arguments:

sound -I
I-time only. Allocate and initialize all instruments as per the score, but skip all P-time processing (no k-signals

o
or a-signals, and thus no amplitudes and no sound). Provides a fast validity check of the score pfields and
rchestra i-variables.

N
csound -n

osound. Do all processing, but bypass writing of sound to disk. This flag does not change the execution in any

--- -

- 82 -

c

other way.

sound -i isfname
Input soundfile name (interpreted as for output names, below). The name stdin will cause audio to be read from

c

standard input.

sound -o osfname
Output soundfile name. Sound is written to the file osfame in the user soundfile directory (set by the environ-

r
/
ment variable SFDIR). If no name is given, the default name will be test. If osfname is of the form ./name o
path/name, sound will be written into the current or specified directory. If SFREMOTE is enabled at Csound

e
n
installation, and osfname is of the form machine:/path/name, sound will be written to the remote machine. Th

ame stdout will cause audio to be written to standard output.

N
csound -b Numb

umber of audio samples per soundio buffer. Typically 512. A larger number is more efficient, but small

c

numbers reduce the delay in realtime performances.

sound -h
No header on output soundfile. Don’t write a file header, just binary samples.

A
csound {-c, -a, -u, -s, -l, -f}

udio sample format of the output soundfile. One of:

a
c 8-bit signed character

8-bit a-law
w

s
u 8-bit u-la

short integer

f
l long integer

single-precision float (not playable, but can be read by -i, soundin and GEN01)

V
csound -v

erbose translate and run. Prints details of orch translation and performance, enabling errors to be more clearly

c

located.

sound -m Numb
Message level for standard (terminal) output. Takes the sum of 3 print control flags, turned on by the following

t
v
values: 1 = note amplitude messages, 2 = samples out of range message, 4 = warning messages. The defaul
alue is m7 (all messages on).

S
csound -d

uppress all displays.

R
csound -g

ecast graphic displays into ascii characters, suitable for any terminal.

I
csound -S
nterpret scorename as a Scot file and create a standard score file (named "score") from it, then sort and perform

c

that.

sound -x xfile
Extract a portion of the sorted score score.srt, according to xfile (see extract below).

U
csound -B

se the uninterpreted Beats of score.srt for this performance. In this mode, the beat rate of score performance

-

is controllable from within the orchestra (see the tempo unit).

- --

R
csound -R devname

- 83 -

ead Realtime Line-oriented score events from device devname.

R
csound -M devname

ead MIDI events from device devname.

The EXTRACT feature:

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated as i, f and t. The time points denote the begininng and end of
the extract in terms of:

[section no.] : [beat no.].

Each of the three parts is also optional. The default values for missing i, f or t are:

e

all instruments, begining of score, end of score.

xtract reads an orchestra-readable score file and produces an orchestra-readable result. Comments, tabs

t
and extra spaces are flushed, w and a statements are added and an f0 reflecting the extract length is appended to
he output. Following an extract process, the abbreviated score will contain all function table statements,

t
together with just those note statements that occur in the from-to interval specified. Notes lying completely in
he interval will be unmodified; notes that lie only partly within will their p3 durations truncated as necessary.

Independent Preprocessing:

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance
s

i
(it exists as soon as score preprocessing has completed), the user may sometimes want to run these phase
ndependently. The command

w

scot filename

ill process the Scot formatted filename, and leave a standard numeric score result in a file named score for
perusal or later processing;

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in outfile.

-
g
Likewise extract, also normally invoked as part of the csound command, can be invoked as a standalone pro

ram:

extract xfile < score.sort > score.extract

This command expects an already sorted score. An unsorted score should first be sent through scsort then piped
to the extract program:

scsort < scorefile e extract xfile > score.extract

--- -

-- --

A

- 84 -

ppendix 1. An Orchestra QUICK REFERENCE

VALUE CONVERTERS

ftlen(x) (init-rate args only)
)

f
int(x) (init- or control-rate args only
rac(x) " "

i
dbamp(x) " "
(x) (control-rate args only)

e
abs(x) (no rate restriction)
xp(x) " "

"
s
log(x) "
qrt(x) " "

"
c
sin(x) "
os(x) " "

ampdb(x) " "

SPITCH CONVERTER

octpch(pch) (init- or control-rate args only)

c
pchoct(oct) " "
pspch(pch) " "

"
c
octcps(cps) "
psoct(oct) (no rate restriction)

PROGRAM CONTROL

igoto label
l

k
tigoto labe

goto label
l

i
goto labe
f ia R ib igoto label

l
i
if ka R kb kgoto labe
f ia R ib goto label

timout istrt, idur, label

SSIGNAL GENERATOR

kr line ia, idur1, ib
b

k
ar line ia, idur1, i

r expon ia, idur1, ib
b

k
ar expon ia, idur1, i

r linseg ia, idur1, ib[, idur2, ic[...]]
]

k
ar linseg ia, idur1, ib[, idur2, ic[...]
r expseg ia, idur1, ib[, idur2, ic[...]]

]

k

ar expseg ia, idur1, ib[, idur2, ic[...]

r phasor kcps[, iphs]
]

-

ar phasor xcps[, iphs

- --

- 85 -

]
i
ir table indx, ifn[, ixmode][, ixoff][, iwrap
r tablei indx, ifn[, ixmode][, ixoff][, iwrap]

]
k
kr table kndx, ifn[, ixmode][, ixoff][, iwrap
r tablei kndx, ifn[, ixmode][, ixoff][, iwrap]

a
ar table andx, ifn[, ixmode][, ixoff][, iwrap]
r tablei andx, ifn[, ixmode][, ixoff][, iwrap]

k
kr oscil1 idel, kamp, idur, ifn
r oscil1i idel, kamp, idur, ifn

]
k
kr oscil kamp, kcps, ifn[, iphs

r oscili kamp, kcps, ifn[, iphs]
]

a
ar oscil xamp, xcps, ifn[, iphs
r oscili xamp, xcps, ifn[, iphs]

]
a
ar foscil xamp, kcps, kcar, kmod, kndx, ifn[, iphs
r foscili xamp, kcps, kcar, kmod, kndx, ifn[, iphs]

a
ar buzz xamp, xcps, knh, ifn[, iphs]
r gbuzz xamp, xcps, knh, klh, kr, ifn[, iphs]

a
ar adsyn kamod, kfmod, ifilno
r pvoc ktimpnt, kfmod, ispecwp, ifilno

,ar fof xamp, xfund, xforma, xformb, koct, ktex, kdebat, katt
iolaps, ifna, ifnb, idur[, iphs][, icor]

k

ar pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]

r rand xamp[, iseed]
]

k
kr randh kamp, kcps[, iseed

r randi kamp, kcps[, iseed]

a
ar rand xamp[, iseed]
r randh xamp, xcps[, iseed]

]

S

ar randi xamp, xcps[, iseed

IGNAL MODIFIERS

kr linen kamp, irise, idur, idec
c

k
ar linen xamp, irise, idur, ide
r envlpx kamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod]

]

k

ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod

r port ksig, ihtim[, isig]

a
ar tone asig, khp[, istor]
r atone asig, khp[, istor]

]
a
ar reson asig, kcf, kbw[, iscl, istor
r areson asig, kcf, kbw[, iscl, istor]

]krmsr,krmso,kerr,kcps lpread ktimpnt, ifilno[, inpoles][, ifrmrate
ar lpreson asig

o

k

ar lpfreson asig, kfrqrati

r rms asig[, ihp, istor]
]

a
ar gain asig, krms[, ihp, istor
r balance asig, acomp[, ihp, istor]

--- -

- 86 -

a
kr downsamp asig[, iwlen]
r upsamp ksig

]
k
ar interp ksig[, istor
r integ ksig[, istor]

k
ar integ asig[, istor]
r diff ksig[, istor]

k
ar diff asig[, istor]
r samphold xsig, kgate[, ival, ivstor]

a

ar samphold asig, xgate[, ival, ivstor]

r delayr idlt[, istor]

a
delayw asig

r delay asig, idlt[, istor]

a

ar delay1 asig[, istor]

r deltap kdlt
t

a

ar deltapi xdl

r comb asig, krvt, ilpt[, istor]
]

a
ar alpass asig, krvt, ilpt[, istor
r reverb asig, krvt[, istor]

OPERATIONS USING SPECTRAL DATA TYPES

dsig octdown asig, iocts, isamps[, idisprd]
]

w
wsig noctdft dsig, iprd, ifrqs, iq[, ihann, idbout, idsines

sig specscal wsigin, ifscale, ifthresh
]

w
wsig specaddm wsig1, wsig2[, imul2

sig specdiff wsigin
mwsig specfilt wsigin, ifhti

specdisp wsig, iprd[, iwtflg]
]

S

ksum specsum wsig[, interp

ENSING & CONTROL

ktemp tempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim, ixfdbak,
]istartempo, ifn[, idisprd, itweek

]kx, ky xyin iprd, ixmin, ixmax, iymin, iymax[, ixinit, iyinit
tempo ktempo, istartempo

a

SOUND INPUT & OUTPUT

1 in
s

a
a1, a2 in
1, a2, a3, a4 inq

a1 soundin ifilno[, iskptim][, iformat]
]

a
a1, a2 soundin ifilno[, iskptim][, iformat
1, a2, a3, a4 soundin ifilno[, iskptim][, iformat]

o
out asig
uts1 asig

g
o
outs2 asi
uts asig1, asig2

o
outq1 asig
utq2 asig

-- --

o
outq3 asig

- 87 -

utq4 asig
outq asig1, asig2, asig3, asig4

]

S

a1, a2, a3, a4 pan asig, kx, ky, ifn[, imode][, ioffset

IGNAL DISPLAY

print iarg[, iarg, ...]
]

d
display xsig, iprd[, iwtflg

ispfft asig, iprd, iwsiz[, iwtyp][, idbout][, iwtflg]

--- -

