
SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
COORDINATE SYSTEM
and the STROKE ADJUST APPLICATION

Technical Note #5053

March 6, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5053

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Display PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Sys-
tems Incorporated. NeXT, the NeXT logo, Application Kit, Digital Librarian, Interface Builder and
Workspace Manager are trademarks and NextStep is a registered trademark of NeXT, Inc. LaserWrit-
erII NTX is a trademark of Apple Computer, Inc. Objective-C is a registered trademark of The Step-
stone Corp.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

THE DISPLAY POSTSCRIPT® SYSTEM:
COORDINATE SYSTEM
and the STROKE ADJUST APPLICATION

Technical Note #5053

March 6, 1990
PostScript® Developer Support Group
(415) 961-4111

1. INTRODUCTION

One of the key features of the PostScript language system is its device independence. This
technical note will show how this independence is possible by explaining the PostScript
language coordinate system. In addition to device independence, the PostScript language
coordinate system provides the capability to perform linear distortions such as scaling and
rotating text and graphics. This capability is what allows scalable fonts, text on a curve and
intricate objects rotated at any angle.

The meaning of a path and its relation to pixels will also be highlighted. The StrokeAdjust
application is used to show the effect that stroke adjustment has at the pixel level. Although
not an issue on high resolution devices, stroke adjustment can make a noticeable difference
on low resolution devices. The PostScript interpreter can adjust lines to a uniform width
despite the difference in line placement with regard to pixel boundary. This capability,
termed automatic stroke adjustment, is the default behavior for the Display PostScript
system and can be turned on and off. Automatic stroke adjustment is not available in current
PostScript interpreters in current printer products, so some applications may need to
include stroke adjustment procedures in their printer driver when printing on low resolution
devices. (A 300 dpi printer is considered a low resolution device.) These procedures are
contained in the Printing section.

SC RRIPTTSOP

©1990 Adobe Systems Incorporated. All rights reserved. 4

2. CARTESIAN COORDINATE SYSTEM

All drawing and creation of paths is performed using x and y coordinate points within a
Cartesian coordinate system. This coordinate system has an origin and x and y axes. The
common representation of a coordinate system is shown below. The origin is (0.0,0.0), the
y axis increases from bottom to top and the x axis increases from left to right.

This figure is the standard representation for a coordinate system. Other representations,
such as the y axis increasing from top to bottom instead of bottom to top, are just as
legitimate. Whatever type is used does not really matter as long as the drawing commands
match the particular origin location, axes orientation and unit length.

3. USER SPACE AND DEVICE SPACE

The PostScript language coordinate system is actually made up of two coordinate systems.
One system is called the user space and is used for all the drawing instructions. This system
has a look that is consistent across all devices. Any point drawn in this system will appear
in the same location in user space in one device as in user space in another. The second
coordinate system does not share this property. A point in this system on one device can,
and most often will, appear in quite a different location on a different device. This second
coordinate system is called the device space. The device space is used to address actual
pixels within the imageable area. Since devices vary in resolution and imaging direction,
different device space coordinate system representations are necessary, containing
different origins, axes orientations and unit lengths.

The application developer does not have to be aware of the differences in device spaces
because the PostScript interpreter performs the translation from the user space to the device
space automatically. As a result, the application does not have to be concerned with printing
or displaying to different types of devices. One set of drawing instructions drawn with
respect to a single coordinate system is sufficient. The interpreter will handle the translation
from user space to device space for a given device, deciding which pixels are turned on and
which ones are not.

(0.0,0.0)

(0.0,4.0)

(4.0,0.0) (8.0,0.0)

(0.0,8.0) (8.0,8.0)
(4.0,8.0)

(8.0,4.0)

x axis

y axis

©1990 Adobe Systems Incorporated. All rights reserved. 5

In the drawing below, the user space is on the left and two different device spaces are shown

on the right. The first device space is from the NeXT MegaPixel Display. Its device space
coordinate system happens to match the user space coordinate system. The second space is

from the Apple LaserWriter II NTX. Its origin and unit length are different from the user
space. In both cases, the interpreter manages the mapping from user space to device space.

The standard or default user space has the origin in the lower left corner of the page with
the positive y axis extending vertically upward and with the positive x axis extending
horizontally to the right. The length of a unit along the x axis and along the y axis is 1/72

of an inch.1 The NeXT MegaPixel Display, an Apple LaserWriter II NTX and even a View
object in the NeXT Application Kit have the same default user space. In each case, the
dimensions of the display or page (the imageable area) may be different but the origin, axes
orientation and unit size are all the same. (Well almost the same: 72 units on the NeXT
monitor does not equal 1 inch. The monitor reduces 72 units to 72/92 of an inch. This
reduction has no real bearing on display because it is constant across all drawing. It's not
even noticed until someone holds a ruler up to a ruler in an application and says, “Wait. One
inch at 100% magnification is really only 72/92 of an inch”.)

1. The unit size, 1/72 of an inch, is very close to the size of a printer's point (1/72.27 inch), which is a standard
measuring unit in the printing industry.

User Space Device Space

(0.0,0.0)

(0.0,200.0) (200.0,200.0)

(200.0,0.0)

R
(0.0,0.0)

(0.0,200.0) (200.0,200.0)

(200.0,0.0)

R NeXT

(-59.0,3268.0)

(-59.0,2434.66)
(773.33,2434.66)

(773.33,3268.0)

R
Apple

LaserWriter II NTX

MegaPixel DisplayInterpreter
Mapping

©1990 Adobe Systems Incorporated. All rights reserved. 6

4. TRANSFORMATIONS

The conversion from one coordinate system to the other is specified by a transformation
matrix. This matrix specifies how the x and y values for a point in one coordinate space are
mapped into the x and y values of the corresponding point in another coordinate space. The
matrix used to transform coordinates from the user space to the device space is called the
current transformation matrix (CTM). The CTM can be altered and changed to cause a
different mapping from user space to device space.

A convenient way to understand the alteration of the CTM is to visualize the user space as
changing either by moving the origin to a different position on the display or page
(translating), altering the angle of the axes (rotating) or changing the length of a unit
(scaling). The PostScript language system contains specific operators to perform these
types of transformations - translate, rotate and scale.

The translate operator moves the origin to a different location on the page leaving the
orientation of the axes and the unit size unchanged. The rotate operator rotates the
coordinate system about the origin by the specified angle. The scale operator alters the units
of the axes independent of each other. For example, the coordinate system can be scaled so
that a unit in the x direction is actually twice the size of a unit in the y direction (similar to
what is shown in the Scale example above).

There are a variety of uses for these types of transformations. A single arrow description
can be used to display at any angle by rotating the user space before displaying the arrow.
The origin of the user space can be moved to the upper left corner of the page and then the
user space scaled so the y axes is positive towards the bottom of the page. This setup

T

T

T
TTranslate

Rotate

Scale

©1990 Adobe Systems Incorporated. All rights reserved. 7

facilitates the placement of text and, in fact, the Text object in the Application Kit uses this
orientation. A single circle description can be used to display any type of oval by rotating
and scaling the circle before display. These types of transformations provide a number of
ways to simplify drawing and produce many interesting results.

For an explanation of the matrix mathematics involved with transformations of the CTM,
please refer to the Coordinate Systems and Transformations section in the PostScript
Language Reference Manual (commonly referred to as the Red Book).

5. PATHS

A path in the PostScript language is a set of line, arc and Bezier curve segments. These
segments can be continuous (a single moveto) or disjoint (multiple moveto's interspersed
within the set). The segments within a path have no width and the shape formed by the path
has no fill until the path is rendered with one of the painting operators such as stroke or fill.
At the time of rendering, the values for the current graphic state variables are used to
determine what pixels to turn on. Before the execution of the stroke or fill, the line width
or color settings have no bearing on the path. Only at the time of rendering are these values
taken into account.

Filling a path fills the inside of the path with the current fill rule. The fill does not extend
outside the path, although any pixel that the path passes through will be colored as well.

Stroking a path extends the width of the path by the current line width setting. One half of
the line width extends on each side of the path. The line width corresponds to points in the
current user space so that any scaling operation will have a corresponding effect on the line
width.

©1990 Adobe Systems Incorporated. All rights reserved. 8

The examples below show a path and its subsequent stroking and filling in some
unspecified device space with an unspecified line width. The path is simply a mathematical
representation of an arc. The stroked path and the filled path are the pixel representations
in device space.

The placement of the path within a pixel is an important factor in determining what pixels
to turn on when stroking. The example below shows four instances where a vertical path
falls at different locations within a pixel column. In the first case, a line width setting
equivalent to one pixel in device space will result in a one pixel line. In the second, third
and fourth cases, a line width setting equal to one pixel will result in a two pixel line. Only
in the first case, does the line width not extend across pixel boundaries. In the others, it
does.

Stroke

Fill

Path

Line Width
in User Space

Line Width
in Device Space

©1990 Adobe Systems Incorporated. All rights reserved. 9

6. STROKE ADJUSTMENT

For high resolution devices, the placement does not really matter because the pixel size is
so small that an additional pixel here and there is inconsequential. For lower resolution
devices such as a display or a 300 dpi printer, this issue can be important. The
StrokeAdjust application shows the effect that random line position has on the actual pixel
width of lines. The Display PostScript system can perform an automatic adjustment to paths
that will render them with uniform widths. This capability is called automatic stroke
adjustment and it works by adjusting the placement of every path so that the paths fall at
precise locations within pixels. The stroke adjustment is turned on by default but it can be
turned off with the setstrokeadjust operator.

7. PRINTING

The Display PostScript system can perform the stroke adjustment automatically. The
default setting is on and once set, no additional effort is necessary. When printing to a
device that does not have the automatic stroke adjustment capability, however, some
additional work may be required, depending on the nature of the application. The Display
PostScript system uses a very sophisticated algorithm for performing the automatic stroke
adjustment that would be difficult to emulate in the PostScript language. Though, a fairly
close implementation can be described as follows:

• convert the user space coordinates of each point to device space
 coordinates

• subtract one quarter of a pixel from each device space value

• round to the nearest whole device pixel

• add one quarter of a pixel

• convert from device space coordinates back to user space coordinates

Stroke Adjustment rounds the
endpoints of lines or curves to fall at
precise places in device space. The
optimal position is 1/4 pixel length in
from the bottom left corner.

©1990 Adobe Systems Incorporated. All rights reserved. 10

The repositioning of the endpoints at the one quarter mark within a pixel seems an unusual
location. But if the pixel boundary were chosen then all the lines would be of even pixel
width. Likewise, if the midpoint of each pixel were chosen, all the lines would be of odd
pixel width. The choice of one quarter selects one of the optimal locations for equal
distribution of even and odd pixel widths. The drawings below try to clarify this issue.

The procedures below can be used to perform the algorithm described above. The idea is
to replace the current path construction operators with modified ones to perform the
rounding. The comments indicate the operands of the particular operator.

/setstrokeadjust where
{ % stroke adjustment is available so make sure it is on
pop true setstrokeadjust

}
{ % stroke adjustment is not available so redefine the
 % path construction ops

/m
{ % x y m - moveto
transform
.25 sub round .25 add exch
.25 sub round .25 add exch
itransform
moveto

} bind def

/l
{ % x y l - lineto
transform
.25 sub round .25 add exch
.25 sub round .25 add exch
itransform
lineto

} bind def

Rounded to Pixel Boundary
 Even Pixel Widths

Rounded to Quarterpoint
Even/Odd Pixel Widths

Rounded to Midpoint
Odd Pixel Widths

©1990 Adobe Systems Incorporated. All rights reserved. 11

/c
{ % x1 y1 x2 y2 x3 y3 c - curveto

transform
.25 sub round .25 add exch
.25 sub round .25 add exch
itransform
curveto

} bind def

/rm
{ % dx dy rm - rmoveto
transform
round exch
round exch
itransform
rmoveto

} bind def

/rl
{ % dx dy rl - rlineto
transform
round exch
round exch
itransform
rlineto

} bind def

/rc
{ % dx1 dy1 dx2 dy2 dx3 dy3 rc - rcurveto

transform
round exch
round exch
itransform
rcurveto

} bind def
} ifelse

The curveto and rcurveto redefinitions only adjust the endpoints. They do not reposition
the control points. It is not necessary to adjust the control points except for the case where
the curve is a line or, in other words, where the control points lie on the line segment
between the start and end points of the curve. In this case, either the application may want
to turn the curve into a line segment or create a special curveto or rcurveto definition that
repositions the control points as well.

Note: The font handling mechanism performs this stroke adjustment
 positioning
automatically for Type 1 fonts on all PostScript interpreters. As a result, the
moveto operator used to set the current point before a show operation does not
need to be stroke adjusted.

©1990 Adobe Systems Incorporated. All rights reserved. 12

8. SUMMARY

The device independence of the PostScript language coordinate system is an important
feature for application developers. A common coordinate system, the user space, is used for
drawing on any device. The PostScript interpreter handles the conversion from the user
space to the device coordinate system, the device space. This conversion process uses a
matrix called the current transformation matrix or CTM to map a coordinate in one space
to the corresponding coordinate in the other space. Applications can draw in a common
coordinate system with the PostScript interpreter handling the particulars of the actual
device. One page description will suffice for all devices.

In addition to providing device independence, the user space/device space model permits
user space transformations such as translating of the origin, rotating of the axes and scaling
of the unit lengths of the axes. These operations can have a variety of benefits such as using
a single path representation to image in several locations at a different rotations and even
in different x-y proportions.

A path is a set of lines, arcs and curves that can be filled or stroked. On low resolution
devices, the location of a path within a pixel can cause lines with the same line width to turn
on a different number of pixels. This behavior can cause unattractive results when a grid or
other symmetrical group of lines is displayed. The Display PostScript system can adjust the
location automatically to produce lines with uniform pixel width. This adjustment is, by
default, turned on but it can be turned off with the setstrokeadjust operator. When
outputting to PostScript interpreters without automatic stroke adjustment, application
developers might want to redefine the path construction operators to manually adjust the
path placement.

