
March 6, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5050

THE DISPLAY POSTSCRIPT® SYSTEM:
NeXT OVERVIEW

Technical Note #5050SC RRIPTTSOP

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Display PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Sys-
tems Incorporated. NeXT, the NeXT logo, Application Kit, Digital Librarian, Interface Builder and
Workspace Manager are trademarks and NextStep is a registered trademark of NeXT, Inc. Objective-
C is a registered trademark of The Stepstone Corp.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

THE DISPLAY POSTSCRIPT® SYSTEM:
NeXT OVERVIEW

Technical Note #5050

March 6, 1990
PostScript® Developer Support Group
(415) 961-4111

1. INTRODUCTION

This technical note is the first in a series of documents describing programming issues with

the Display POSTSCRIPT system. The examples used in the notes have been developed on

the NeXT computer and, as a result, are heavily dependent on the NeXT programming
environment. This document will provide an overview of that environment.

A number of other, more comprehensive sources of information on these topics is available

in the NeXT and Objective-C documentation. This document is intended to provide a
simple basis for the examples and programs that follow in subsequent technical notes.

2. OBJECT-ORIENTED PROGRAMMING

The easiest way to develop applications on the NeXT computer is to take advantage of the
object-oriented nature of the development environment. The concept behind object-
oriented programming is the organization of an application into distinct objects, an object
being a unit that contains both data and operators on the data. Data within an object can
only be accessed, in most cases, through the use of an operator within the object. This
organization allows for data to be hidden from areas that do not need to access it and tends
to simplify the management of data and operations on the data.

An object is essentially a combination of a structure containing data and of functions that
operate on that data. The difference from conventional programming is that the structure
and the operations are wholly owned by the object and another object cannot access the
data. A message can be sent from one object to another, however, instructing the receiver
to perform an operation in the receiver’s repertoire. Data necessary for the operation may
be passed along with the message.

 - subtract

 - divide
 - multiply

Data:
 x,y

Operations:
 - show
 - get

Object BObject A

Data:
 a,b

Operations:
 - add

SC RRIPTTSOP

4 ©1990 Adobe Systems Incorporated. All rights reserved.

A piece of data is called an instance variable and an operation is called a method. Objects
with the same instance variable descriptions and methods are members of the same class.
Different units within a class are called instances of the class. Each instance may have
different values for the same data types but they share and use the same methods on the
data. For example, if phone is a class, then two instances of the class would be John's phone
and Jane's phone. In the diagram above, two classes are shown, Object A is one instance
of one class and Object B is one instance of another class.

One of the key features to an object-oriented approach is the idea of inheritance. Objects
are grouped in a hierarchy with descendants retaining the data types and methods of the
ancestor. As a result, a method defined several steps up in the hierarchy chain can be used
to operate on a similar and yet distinct object. This approach saves code space and allows
for specific objects to be made out of a chain of more general and more abstract objects. In
the NeXT environment, a class may have only one superclass or, in other words, one
immediate parent, but the number in the chain is unlimited.

The methods of any ancestor can be added to or modified by a descendant and so it is easy
to use an object as a model and add or change a small number of characteristics. Creating
a descendant of an object is called subclassing and modifying a method is termed
overriding a method. An example of subclassing in order to modify a class might be
creating a subclass of a Button in the NeXT interface in order to turn it into a LightSwitch .
The general on/off nature of the button would be retained but the visual display and
interaction would be overridden and modified.

The following diagram shows the hierarchy within an abbreviated set of NeXT Application
Kit objects. Object is the topmost class in the hierarchy. Responder is simply a class that
handles events. Application , Window and View objects all receive events and so all are
subclasses of the Responder class.

The tree is arranged with the more general and abstract classes nearer the root. Each
subclass adds more specific characteristics to the tree. The advantage of going from general
to specific in a number of steps is that classes can be added to the tree with very little rework
or reordering. For example, a ChooseModem could be added as a branch under Panel and
next to ChoosePrinter. The only work that would be needed would be to include the
elements of a ChooseModem panel that make it unique in regards to a ChoosePrinter
panel or any other type of panel. Another example would be the addition of an EPSView
under View. (View is an object specifically designed for drawing on the screen with
PostScript language code. An EPSView would be an object designed specifically to image

Object

Responder

Panel

SavePanel FontPanel PrintPanel ChoosePrinter

WindowApplication View

©1990 Adobe Systems Incorporated. All rights reserved. 5

EPS files.) All the characteristics of a View would still hold true for an EPSView and so
none of the objects above would be affected. The only addition would be the subclass
EPSView and its special elements.

This diagram is a very brief introduction to a hierarchy of objects and touches on only a
small portion of the Application Kit objects and their capabilities. The NeXT
documentation and later sections provide much more detail in this area. One important item
to note is that objects can contain or hold references to other objects without being related
to the contained objects. An example from the Application Kit is the case of a Window and
its Views. A Window and a View are not directly related. They share the same parent but
are not directly related. Nonetheless, a Window can hold references to many Views and
can control their display. In fact, a View cannot exist on its own; it must be assigned to a
Window.

3. OBJECTIVE-C

Objective-C is the object-oriented programming language used on the NeXT machine. It is
an extension of the C programming language and does not change or affect any standard C
language capabilities. Objective-C syntax can be mixed freely with standard C constructs.

3.1 Defining a Class
Developing with Objective-C means first creating classes. Each class is defined using two
types of files, an interface file (.h) and an implementation file (.m). The interface file
contains the syntactical definition of the instance variables and the methods while the
implementation file contains the code that implements these methods. Although multiple
classes can be declared in the same interface and implementation files, it is customary to
declare only one class per set.

The WorldView class in the example below is the only class that had to be created for the
HelloWorld application. The rest of the functionality required for this application is
provided by the NeXT Application Kit.

6 ©1990 Adobe Systems Incorporated. All rights reserved.

The interface file, WorldView.h , defines the new class as a subclass of View. View is a
class provided by NeXT in the Application Kit. Since WorldView is a subclass of View, it
inherits all the instance variables and methods that are defined for View and for View's
ancestors. Only one additional instance variable is needed, DrawHello, and it is defined as
a boolean type. (BOOL is a data type defined by the Application Kit that can be assigned
the values YES and NO.)

The methods are listed next – drawHello:, clearHello:, and drawSelf::. (The colons
signify that arguments will be passed to the methods; each colon signifies one argument.
The type of the argument is also included, except when the type is the default type which
is an object identifier of type id.)

The @interface and the @end are Objective-C directives that enclose the definition of the
class. Class methods are implemented by class objects and are preceded by a plus sign.
Instance methods are implemented by instance objects and are preceded by a minus sign.
In the case below, the methods are only referenced by instances of the class and so they are
marked with a minus sign.

/* WorldView.h
 *
 * The instance variable, DrawHello, is toggled between YES and NO and
 * indicates whether the "Hello World" message should be displayed
 * in the view.
 */

#import <appkit/View.h>

/* WorldView is a subclass of View. It inherits */
/* all View’s instance variables and methods. */
@interface WorldView:View
{

BOOL DrawHello;
}

- drawHello:sender;
- clearHello:sender;
- drawSelf:(NXRect *)r :(int) count;

@end

©1990 Adobe Systems Incorporated. All rights reserved. 7

The implementation file, WorldView.m , contains the list of header files from which
definitions are used within the methods and then the methods themselves. Note that the
syntax of the methods matches the syntax in the interface file. A warning would be
generated at compile time were this not the case. Don't be concerned with any of the
constructs in the methods. There are still several items that have been left behind the
curtain, a few of which will be brought out in a little while.

/*WorldView.m
 *
 * WorldView is a subclass of View. It simply displays and clears a
 * message in the view. The [self display]; message calls a method
 * that is defined in the superclass, View. The display method calls
 * the drawSelf:: method after performing some view overhead. The
 * method, "drawSelf::", should not be called directly in order to
 * conform to Application Kit programming rules.
 */

#import "WorldView.h"
#import <dpsclient/wraps.h>

@implementation WorldView

- drawHello:sender
{

DrawHello = YES;
[self display];
return self;

}

- clearHello:sender
{

DrawHello = NO;
[self display];
return self;

}

/* The first two lines clear the view. The remainder display the
 * message in the view. */
- drawSelf:(NXRect *) r: (int) count
{

PSsetgray(NX_LTGRAY);
PSrectfill(bounds.origin.x, bounds.origin.y,

bounds.size.width, bounds.size.height);

if (DrawHello)
 {

PSsetgray (NX_BLACK);
PSmoveto (100.0, 100.0);
PSselectfont ("Times-Roman", 40.0);
PSshow ("Hello World");

}

return self;
}
@end

8 ©1990 Adobe Systems Incorporated. All rights reserved.

3.2 Messages
Instead of using only function calls as in conventional C programming, messages are used
in Objective-C. (Function calls are still used and are quite handy in Objective-C
programming but their explanation will be left for the examples.) A message is essentially
a call to an object telling it to perform a certain method. (Arguments that the object may
need can also be passed in the message.) The message syntax is shown below.

[<object id> <method>]; --No arguments

[<object id> <method>:<argument>]; --One argument

[<object id> <method>:<argument> <methodcont>:<argument> ...];
--n arguments

Methods can return values. In most cases, the return value is the default type, id. The square
brackets, [], simply identify the expression as an Objective-C message. The semi-colon is
necessary after the closing bracket because, in this case, the message is a C program
statement and all program statements in C must be terminated by a semicolon. All messages
may not be program statements. Consider a message in an if statement; in this case, a semi-
colon would not follow the message. For this example, the method should return a BOOL
value.

if ([<object id> <method>])
{ <statement> };

object id
Each message is sent to a specific object. An object id is used to identify objects. The object
id should be the first element in the message. An object id is a special C type that is assigned
to the object at run-time when it is created by the system. If the id of an object is known by
another object, the other object has the ability to send the first object a message. A number
of ways exist for an object to learn the id of another object.

method
The method is the name defined in the interface file. The name of the method is case
sensitive and includes the argument names. A run-time error will result if the method name
invoked is different from that defined (provided no other method matches the name
invoked). A method name is also referred to as a selector.

©1990 Adobe Systems Incorporated. All rights reserved. 9

argument
The colon signifies that an argument is to be passed to the object. The same type of
agreement between sender and receiver in regards to number and type of arguments has to
occur in a message call as it does in a function call or else similar errors will result. The
method name can be broken and separated by colon-argument pairs. The line below
illustrates this condition. The name of the method is replaceSubview:with:. The argument
viewId1 is inserted after the first colon, a space separates viewId1 and with and then the
argument viewId2 is inserted after the second colon.

[objectId replaceSubview:viewId1 with:viewId2];

The keys to messaging are 1) knowing the id of the object to send the message to 2)
knowing the name of the correct method or selector and 3) knowing what arguments are
passed to that method. A mix-up in ids could send the message to an object of another class.
In this case, a run-time error would occur if the selector could not be found. A spelling error
in the selector would produce a similar error.

3.3 Return Arguments
A message can return a value. The most common return type is the default type which is an
object id. All the methods in WorldView return an object id indicated by the return of self
in each method in WorldView.m . Self is a special object identifier that means the object's
own id. Since the default is returned, no type definition has to be included in the message
sequence defined in WorldView.h . In many cases, the return argument is important and is
used by the sender as in the case of nesting messages shown below. In other cases, the
return argument is ignored.

If we want a method to return a type other than the default, we would need to include a type
definition for the method in the interface and implementation files. In the if statement
above, the method specified would return a boolean value (it better or we may have some
problems). The next line shows a method definition in an interface file that would return an
integer.

- (int) getIntValue; /* This method returns an integer value. */

3.4 Nesting
Messages can be nested together. The inner messages are resolved first. The following
example shows a nesting arrangement. In this example, an object, identified by the variable
matrixID , is sent a message to return the selected cell. The cell id that is returned is then
sent a message to return the cell's state. The state is then assigned to the boolean value,
BoolValue. (Matrix and Cell are Application Kit objects. What the actual messages mean
may become more apparent when they are seen in an example.)

BOOL BoolValue;
BoolValue = [[matrixID selectedCell] state];

10 ©1990 Adobe Systems Incorporated. All rights reserved.

3.5 Messaging ‘self’ and ‘super’
Two special object identifiers can be used when messaging. The first is self and refers to
the object's own id. In WorldView.m , the line [self display]; appears twice. The method,
display, is defined in the View class, of which WorldView is a subclass. Sending a
message to self is a common occurrence. It is simply a way to invoke a method within the
same object.

The second special identifier is super. It refers to the object's parent or superclass. In the
case of the WorldView class, the superclass would be View. The super identifier is useful
for invoking a method in the superclass when it has been overridden in the subclass.
Messaging the method with self would invoke the method in the subclass. Messaging with
super would invoke the method in the superclass. This identifier is handy when the
subclass wants to add a characteristic to a method but still perform the functions of the
method in the superclass. The example below illustrates this point.

- free
{

[self freeMemory];
[super free];

return self;
}

A subclass has been created and the free method has been overridden to include a message
to freeMemory. Since we also want to perform the free operations that appear in the
superclasses, we need to message the free method of the superclass with [super free]. If
[super free] were not used, none of the free operations of the superclasses would be
performed.

4. NeXT APPLICATION KIT CLASSES

The NeXT Application Kit provides a set of classes that may be used within an application.
The examples in the technical notes use many of these classes. The NeXT documentation
contains a comprehensive listing of the classes including their instance variables and their
methods. This section will provide a simple overview of the classes more commonly used
in the examples. Many of the classes listed are not separate and distinct. Rather, a large
number are subclasses of other classes.

4.1 Object
The top class in the Application Kit hierarchy is titled Object. It is the root of all Objective-
C inheritance hierarchies, so all other classes inherit from it. The Object class provides its
subclasses with a framework for creating, freeing, copying and archiving object — to name
just a few of its operations.

4.2 Responder
Responder is an abstract class that forms the basis for command and event processing in
the Application Kit. Many of the major classes in the Application Kit inherit from the
Responder class. Responders are linked in one-way chain. Events are passed through the

©1990 Adobe Systems Incorporated. All rights reserved. 11

chain. Each responder in the chain will look at the event in turn. If the class cannot handle
the event, it will be passed on to the next responder in the chain. Application , View,
Window and Control are subclasses of Responder.

4.3 Application
The Application class contains some of the methods necessary for a NextStep application.
It provides the framework for program execution. Every program has one and only one
instance of the Application class. Creating an instance of this class connects the program
to the Window Server and initializes the PostScript environment. The Application object
is usually the first object to receive events from the Window Server. It will often pass the
events to windows which pass them to views. The events then begin to proceed through the
responder chain.

4.4 View
The View class provides much of the structure for drawing on the screen. Any graphical
object that draws on the screen inherits from View. The HelloWorld example subclasses
View with WorldView in order to draw “Hello World” on the screen. The View class can
respond to events. As a result, mouse tracking loops are often placed in View subclasses.

4.5 Window
The Window class manages a window within an application including the interaction with
the Window Server. Methods are available to display, hide, resize and close windows along
with a host of other types of operations. A Window object can hold references to a number
of Views and can control their display. Events passed to the window can also be passed to
one of these Views.

4.6 Control
The Control class is the superclass for a number of classes needed for the graphical
interface of an application. Sliders, Fields and Buttons, classes also defined in the
Application Kit, inherit from control. A control is an abstract entity that is concerned with
handling an event. A different and unrelated class, Cell, is used to provide the visual aspect
to the control.

4.7 Cell
The Cell class provides the mechanism to display buttons, icons and text without the
overhead of a full View subclass. Cells are used by the Control class and its subclasses to
handle the visual aspects of the control.

Note: Cells are not a subclass of Control. Rather a Control object uses a Cell or
a number of Cells to control the visual interaction of displaying, editing,
formatting, highlighting and tracking.

12 ©1990 Adobe Systems Incorporated. All rights reserved.

5. INTERFACE BUILDER

Interface Builder is an application provided with the NeXT computer to graphically
construct the user interface of an application. Windows can be created and buttons and text
fields inserted to quickly develop a large portion of the look of the application.

At some point, NextStep applications will probably have to create separate subclasses of
existing classes and compose Objective-C files. These classes and files will contain the core
of an application, the part that is distinct from the interface.

The Interface Builder provides a quick way to create many of the common features of an
application. In HelloWorld , only one class was created, a subclass of View. The other
classes were Application Kit classes brought in through Interface Builder.

Interface Builder provides the ability to create a variety of objects as well as the ability to
connect one object to another (have one object message another object in response to a
certain event). The objects that can be created and connected are a subset of the classes that
are contained in the Application Kit. For example, a slider can be connected to a text field
so that the slider will message the text field when the slider has been moved. As a result,
the text field can display the value of the slider. Technical Note #5051 will explore the
Interface Builder in more detail.

6. SUMMARY

The NeXT programming environment is built around an object-oriented approach.
Objective-C, an extension to the C language, is used as the base programming language.
The Application Kit is a set of predefined classes that may can be incorporated within an
application. These classes provide a solid basis for the development of most applications.
Interface Builder is an application provided with the NeXT computer to graphically
construct a user interface for an application. Using Interface Builder, windows can be
created and buttons and text fields inserted to quickly develop a large portion of the
interface of an application.

