
SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
SINGLE OPERATOR CALLS VS. WRAPS
and the LINE DRAW APPLICATION

Technical Note #5052

March 5, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5052

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Display PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Sys-
tems Incorporated. NeXT, the NeXT logo, Application Kit, Digital Librarian, Interface Builder and
Workspace Manager are trademarks and NextStep is a registered trademark of NeXT, Inc. Objective-
C is a registered trademark of The Stepstone Corp.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

THE DISPLAY POSTSCRIPT® SYSTEM:
SINGLE OPERATOR CALLS VS. WRAPS
and the LINE DRAW APPLICATION

Technical Note #5052

March 5, 1990
PostScript® Developer Support Group
(415) 961-4111

1. INTRODUCTION

In this technical note, the use of single operator calls from the Client Library and the use
of wraps created with the pswrap translator facility are explored. The Client Library
contains the necessary procedures and calls to interface with the PostScript interpreter. One
subset of the Client Library is a collection of C-language function calls that interface with
single PostScript language operators. An example is the call, PSmoveto(). This function
takes an x and a y coordinate and makes it the current point in the graphic state.

The pswrap translator, on the other hand, provides the ability to define a custom sequence
of PostScript language operations that are callable as a C-language procedure. An example
of a wrap is shown below. This wrap takes 2 coordinate points as arguments and performs
a moveto and a lineto operation and then strokes the line.

This is the definition of the wrap that goes to the translator:

/* Wrap definition - examlewraps.psw */
defineps PSWDrawLine(float x1, y1, x2, y2)
x1 y1 moveto
x2 y2 lineto
stroke

endps

This is the C-language procedure call:

/* Wrap call in a C-language program */
#import <dpsclient/wraps.h>
#include "examplewraps.h"

main()
{
. . .
PSWDrawLine(100.0, 100.0, 200.0, 200.0);

. . .
}

SC RRIPTTSOP

©1990 Adobe Systems Incorporated. All rights reserved. 4

The LineDraw application will be used for examples. In this application, we show several
ways to draw lines. Timings are provided which allow for comparison between methods.
Each method uses either the single op calls or wraps.

As the times show, wraps are over 20% faster than the single op calls (6826 milliseconds
versus 8678 milliseconds in the example shown above). Binding procedures within the
wraps and performing much of the data presentation on the client side are also considered.
One of the largest impacts on display time is to delay stroking until it becomes necessary,
either through a change in a line attribute or the completion of all the paths. In the best case
scenario with all the lines the same width and color, this technique can improve display
time by 40% over a wrap that strokes every line and 60% over single op calls.

In addition, line widths equivalent to one pixel in device space have been special-cased
within the Display PostScript® system and as a result will print and display considerably
faster than other line widths. A line width setting of 0.15 is suggested to obtain the benefits
of this feature.

In the course of introducing single op calls and wraps, a little groundwork is provided on
the client-server architecture of the Display PostScript system and its use of contexts.

©1990 Adobe Systems Incorporated. All rights reserved. 5

2. CLIENT-SERVER MODEL

The Display PostScript system makes use of a client-server network architecture. The
interpreter is the server and each application is a client. The client and server are most often
separate processes on the same machine, but the client can also exist on a remote machine.
The client sends PostScript language code to the server either through single operator calls
or through wraps. Arguments can also be returned from the server. The Client Library
implements the client-server communication transparently with respect to the low level
communication protocols used by different windowing systems.

Each client within the Display PostScript system operates within a context. A context can
be thought of as a virtual printer. It has its own set of stacks, input/output facilities and
memory space. Separate contexts allow multiple applications to share one PostScript
interpreter running as a process in the server.

Although the Display PostScript system supports multiple contexts per client (application),
one context is usually sufficient for all drawing within an application and greatly simplifies
programming overhead. A single context can handle many Views, the Application Kit
object specifically designed for drawing on the screen. An example when a separate context
might be warranted is when importing EPS files. A separate context for EPS files will
simplify error recovery if the included EPS files contain PostScript language errors.

The server handles the scheduling associated with executing contexts in time slices. Each
client has access to a separate and private portion of virtual memory space within its
context. An additional portion of memory is shared among all clients. This portion is called,
surprisingly enough, shared VM and holds system fonts among other items. (Private VM
can also hold fonts but they are private to the client.)

The structure of a context is the same across platforms. The creation and management of a
context, however, can be different. In the case of the NeXT computer, the Application
object within the Application Kit manages the handling of contexts. For the most part,
context operations are transparent to the developer. The main concern for the developer is
the execution of PostScript language operators within a context.

Client Server

Shared VM
(Fonts, etc.)

Library

wraps

Objective-C

Client

& C

Context

UNIX
stream

single
op calls

Stacks

I.O.

Private VM

Context

Stacks

I.O.

Private VM

(Mach
messaging
in the NeXT
environment)

©1990 Adobe Systems Incorporated. All rights reserved. 6

3. SINGLE OP CALLS

The Client Library manages the communication channel with the server. A major portion
of the library are two sets of calls that invoke single PostScript language operators. These
two sets are almost identical in function. The only difference is that the first group (found
in dpsops.h) takes as its first argument an explicit context in which to execute the operator.
Those in the second group (found in psops.h) do not take a context paramter because the
operators execute within the current context. Since most applications in the NeXT
environment only use one context, the second group of functions is usually used. The two
sets are identical in respect to number and purpose of the function calls, the only difference
is the context paramter that is passed in the dpsops.h set. Each PostScript language operator
has a corresponding single operator call in both dpsops.h and psops.h. Examples of each
for the PostScript language operator moveto are:

DPSmoveto(DPSContext ctxt; float x, y;);

PSmoveto(float x, y;);

A number of single operator calls require operands but do not take arguments. An example
is PSadd(). Two operands are needed but no arguments are taken.These types of operators
use operands from the operand stack. In cases such as these, the operands can be placed on
the stack either in a wrap that appears before the function call or through an operation that
has left data on the stack. Another way to place data on the stack in the NeXT
implementation is through the use of the PSsend... set of single operator calls:
PSsendboolean(), PSsendchararray(), PSsendfloat(), PSsendfloatarray(),
PSsendint(), PSsendintarray() and PSsendstring(). Each of these functions take
appropriate arguments and place them on the stack. Other calls can then be used to perform
operations with the arguments on the stack. A corresponding set of PSget... calls can be
used to retrieve objects from the operand stack.

Single operators are easy to use and can be used for such simple drawing as filling in a
rectangle or drawing a few lines. Anything more complex should use wraps designed
specifically for the operation. Each wrap call incurs a certain amount of processing
overhead withing the system, so combining operations from single op wraps into larger
wraps reduces the total execution time.

For the most part, single operator calls, or even wraps for that matter, should not be used if
the same operation can be done entirely within the client. For example, to obtain the angle
formed by a given x and y value, the UNIX function, atan(), should be used instead of the
PSatan() operator in the Client Library. Although PSatan() will work, the UNIX call is
more efficient. The PostScript language is better suited for imaging than for processing.

4. WRAPS

The Display PostScript system provides a translator called pswrap that takes a set of
PostScript language instructions and produces a C-language procedure call interface. In
other words, a group of PostScript language operators can be grouped together into one
procedure call which then can be used within an application. This approach is similar to the
idea of providing a C-language procedure call interface to a FORTRAN Library.
Arguments can be passed to and received from the server. The single op calls found in the
Client Library are a special set of pre-defined wraps.

©1990 Adobe Systems Incorporated. All rights reserved. 7

The pswrap translator is a stand-alone program that works like a compiler. The translator
takes the text representation of the PostScript language code and converts it into a C-
language source file of calls to the Client Library routines. The Client Library will handle
formatting the PostScript language operators into a binary format (a more efficiently
executed representation) and send them to the server. The pswrap translator produces a
source-level C-language file and an include file containing the function calls and the
external declarations. Once this C-language file has been compiled and linked within an
application, calls to the functions will send the binary representation to the interpreter.

pswrap -a -h DrawViewWraps.h -o DrawViewWraps.c DrawViewWraps.psw

cc -O -g -Wimplicit -c DrawViewWraps.c -o obj/DrawViewWraps.o

cc -O -g -Wimplicit -c DrawView.m -o obj/DrawView.o
cc -O -g -Wimplicit -c LineDraw_main.m -o obj/LineDraw_main.o

cc -O -g -Wimplicit -segcreate __ICON __header LineDraw.iconheader -segcreate
__ICON app LineDraw.tiff -segcreate __NIB LineDraw.nib LineDraw.nib
-o LineDraw obj/DrawViewWraps.o obj/DrawView.o obj/LineDraw_main.o -lNeXT_s -lsys_s

DrawViewWraps.psw

DrawViewWraps.hDrawViewWraps.c

Other Source Files

#import DrawViewWraps.h

(included in
other files)

©1990 Adobe Systems Incorporated. All rights reserved. 8

The pswrap translator has the following invocation in the shell:

pswrap [-ar] [-o outputCfile] [-h outputHfile] [-s length] [inputFile]

-a uses ANSI C procedure syntax
-o specifies the outputCfile (default is standard out)
-h generates the external declarations in the header file specified
-s Max length of string input in PS program
-r Wrap can be used in a shared lib, generates extra code, use only if necessary
outputCfile is the source file name desired (the .c extension should be included)
outputHfile is the header file name desired (the .h extension should be included)
inputFile is the .psw or .pswm file (default is standard in)

The makefile generated by Interface Builder will invoke pswrap provided the wrap file is
included in the Project Inspector. The header (.h) and source (.c) files do not need to be
included in the Project Inspector. The wrap file is sufficient. The header file, however,
should be declared as an import in the files that call the wraps. In the LineDraw application,
WorldView.m imports DrawViewWraps.h, the header file for DrawViewWraps.psw.

4.1 Wrap Declarations
This section briefly describes the wrap syntax used in the examples. The pswrap
documentation provided by Adobe Systems Incorporated. contains a more comprehensive
explanation of the wrap syntax. This documentation should be referred to should any
questions arise.

Each definition contains three parts:

• defineps / endps pairing

• C-language procedure call definition (including argument types)

• PostScript language code

defineps/endps Pairing
Each wrap is enclosed between a defineps and endps pairing. All the text included between
the pairing, except for the procedure call definition, should be PostScript language
operators. The text is processed by the translator and converted into binary objects. All text
not included between the pairings is passed to the source level C-language file untouched.
As a result, comments inside each defineps / endps should be a PostScript language
comment (%). Comments outside each defineps / endps should be C-language comments
(/* ... */).

Procedure Call Definition
The call definition contains the procedure name and argument list in parenthesis. The
procedure is of type void. No other return type is possible. By default the procedure names
are external, but they can be declared static. Arguments can be passed to the server and
returned from the server.

©1990 Adobe Systems Incorporated. All rights reserved. 9

PostScript Language Code
All text included between a defineps and an endps should be PostScript language operators
or arguments declared in the procedure call definition. The pswrap translator performs the
conversion of the text into binary objects but does not validate the operations. Errors in the
body of a wrap will not be caught during translation but will instead cause exceptions at
run-time.

5. LINE DRAW EXAMPLES

The purpose of the LineDraw application is to draw lines and then time the results. This
application contains one example of using single operator calls and four using variations of
wraps. The wraps can be found in DrawViewWraps.psw; the invocations in
DrawView.m.

Six arrays of floating point numbers store values that are used to draw the lines – X, Y, X1,
Y1, C and W. The arrays store the starting x and y points, the ending x and y points and the
color and line width for each line. These arrays are populated when the user selects certain
controls in the interface. The starting x and y point and the ending x an y point for each line
is generated with the rand() function and modified to fall with the bounding rectangle of
the view in the application. The color and line width can be set to specific values for each
set of lines or generated randomly, again modified to fall within certain ranges. The ability
to display sets of lines with uniform color and line widths as well as randomly generated
color and line widths provides the best and worst cases for display times.

Each of the five examples of displaying lines has been placed in a separate method. These
methods are messaged by the drawSelf:: method if the menu item for the specific drawing
operation has been turned on. The recommended steps for drawing in a view is to place the
drawing in drawSelf:: (or have drawSelf:: call procedures or message other methods to
perform the drawing). When the view is to be displayed, the display method defined in the
View class should be messaged. The display method will in turn message drawSelf::. In
this application, the Draw button messages a method in the DrawView class which in turn
messages display.

5.1 PSWMarkTime() and PSWReturnTime()
PSWMarkTime() and PSWReturnTime() are used in all the methods of drawing to
obtain the processing time for each example. PSWMarkTime() defines StartTime and
assigns it the value of the PostScript language operator, realtime, at the time of the wrap
invocation. PSWReturnTime() gets the current realtime value and subtracts StartTime.
The difference is returned from the server to the client in the output argument,
ElapsedTime. Output arguments appear after the input arguments in the wrap declaration
and are separated from the input arguments by a vertical slash (|). (A call to NXPing() is
inserted immediately after the PSWMarkTime() in order to flush the buffer to the server.
This ensures the immediate execution of the realtime operation. An NXPing() is not
necessary after the PSWReturnTime() because the inclusion of a return argument
automatically flushes the buffer.)

©1990 Adobe Systems Incorporated. All rights reserved. 10

The PostScript language wrap definitions:

/* Wrap definitions - DrawViewWraps.psw */
defineps PSWMarkTime()
/StartTime realtime def

endps

defineps PSWReturnTime(| int *ElapsedTime)
realtime StartTime sub
ElapsedTime

endps

And their invocations from the C-language world:

/* Wrap calls - DrawView.m */
int ElapsedTime;
. . .
PSWMarkTime(); NXPing();
. . .
PSWReturnTime(&ElapsedTime);

Whenever an output argument is encountered within a wrap, the topmost value on the
operand stack is removed and placed in the address that the output argument provides. Any
attempt by a subsequent PostScript language operator to use the value will either use the
wrong value or produce a stack underflow error message. If an output argument is used
multiple times within a wrap, its value upon return will be the last value assigned.

©1990 Adobe Systems Incorporated. All rights reserved. 11

5.2 Single Op Calls
The single operator calls in the Client Library are used just like other C-language function
calls. The calls are contained in the drawSingleOps² method. This method is messaged
within the drawSelf:: method.

-drawSingleOps
{
int ElapsedTime, counter;

PSWMarkTime(); NXPing();

PSsetgray(BGCOLOR);
PSrectfill(
0.0, 0.0, bounds.size.width, bounds.size.height);

PSsetgray(BGSTRCOLOR);
PSsetlinewidth(BGSTRWIDTH);
PSrectstroke(
0.0, 0.0, bounds.size.width, bounds.size.height);

for (counter = 0; counter < TotalLines; counter++)
{
PSsetlinewidth(W[counter]);
PSsetgray(C[counter]);
PSmoveto(X[counter], Y[counter]);
PSlineto(X1[counter], Y1[counter]);
PSstroke();

}

PSWReturnTime(&ElapsedTime);
[displaySingleOpTime setIntValue:ElapsedTime];

return self;
}

PSWMarkTime() and PSWReturnTime() are wraps used for timing. The others calls
are single operators calls from the Client Library, more specifically psops.h. The view is
first cleared by drawing over the previous drawing with the background color and then
stroking the border. The names in all capitals are pre-defined literals. The values passed to
PSrectfill() and PSrectstroke() are the origin and dimensions for the bounding rectangle
for the view.

Best Case (All lines uniform width and color)

Worst Case (All lines random width and color)

6305

8678

Single Operator Calls

The times, in milliseconds, are for drawing 1000 lines.

©1990 Adobe Systems Incorporated. All rights reserved. 12

The for loop draws one line each iteration. Some of the functions in the loop take
arguments, such as PSsetgray(). Others do not such as PSstroke(). The number and type
of arguments for each call can be found in the include files for the single op calls.

5.3 Simple Wraps
The second way of drawing lines uses very simple wrap definitions. The wrap definitions
appear first followed by their invocation in the DrawView class method, drawWraps. The
first wrap clears the screen and the second creates a line path and then strokes it.

PostScript language wraps:

/* Wrap definitions - DrawViewWraps.psw */
defineps PSWEraseView(

float BGColor, BGStrColor, BGStrWidth, BGrect[4])
BGColor setgray
BGrect rectfill
BGStrColor setgray
BGStrWidth setlinewidth
BGrect rectstroke

endps

defineps PSWDrawLine(float LineWidth, LineColor, X, Y, X1, Y1)
LineWidth setlinewidth
LineColor setgray
X Y moveto X1 Y1 lineto stroke

endps

C-language invocations:

/* Wrap call - DrawView.m*/
-drawWraps
{
int ElapsedTime, counter;
floatViewRect[4];

PSWMarkTime(); NXPing();
ViewRect[0] = ViewRect[1] = 0.0;
ViewRect[2] = bounds.size.width;
ViewRect[3] = bounds.size.height;
PSWEraseView(BGCOLOR, BGSTRCOLOR, BGSTRWIDTH, ViewRect);

for (counter = 0; counter < TotalLines; counter++)
{
PSWDrawLine(

W[counter], C[counter], X[counter], Y[counter],
X1[counter], Y1[counter]);

}

PSWReturnTime(&ElapsedTime);
[displayWrapTime setIntValue:ElapsedTime];

return self;
}

©1990 Adobe Systems Incorporated. All rights reserved. 13

The float array, ViewRect, is used to pass the bounding rectangle of the view to the wrap
in one structure rather than as four individual values, simplifying the call. In the wrap
declaration, the array is specified as a float array of size 4. Another example will show the
declaration and use of a dynamically sized array. The individual elements in an array can
be used within a wrap by specifying an index or the entire array by not including an index.
In PSWEraseView(), the entire array is placed on the operand stack.

As in the single operator example, the for loop draws one line per iteration. The coordinate
points for the line and the color and line width for each line are passed to the wrap. The
wrap sets the color and line width in the graphic state of the PostScript interpreter, creates
the path and then strokes it.

5.4 Wraps with Binding
This example is quite similar to the previous example except that PostScript language
procedures are called within the wrap instead of PostScript language operators. The
necessary PostScript language operators will appear in the procedures. A wrap called
PSWDefs() defines the procedures. It is called in the newFrame: method of the
DrawView class so that the definitions will exist in the server when the wraps invoke them.
These procedures are created so that they can be bound using the bind operator. Binding
replaces each executable operator name with its value. During execution of the procedures,
the interpreter will encounter pointers to the executable code that implements the operators
rather than the names of the operators.

Whenever the interpreter encounters a name, it looks the name up in the dictionaries on the
dictionary stack. Name lookups are fast but they still represent noticeable processing
overhead. Binding forces the look up of the names of the operators at definition time instead
of every time the operators are executed. Binding serves the most use for frequently called
sequences of code. (In this case, the view is not erased frequently so the savings is
negligible for the PostScript language procedure, EVB. The savings is much larger for
DLB , however, since this sequence is invoked many more times.)

The two procedures below in PSWDefs(), EVB and DLB , have been assigned short
names. In print drivers, the reduction in data communications overhead from using short
names can reduce processing time by up to 30%. The overhead of name length is
insignificant here due to pswrap name optimizations and the binary encoding scheme used
by the Display PostScript system. When this stream is converted to ASCII and sent to a
printer, short names for procedures are a worthwhile convention. Note that the wrap names

Best Case (All lines uniform width and color)

Worst Case (All lines random width and color)

4507

6826

Wraps

©1990 Adobe Systems Incorporated. All rights reserved. 14

have not been reduced. The wrap is a C-language function rather than an executable
PostScript language name. Long wrap names are desirable because they make the
application code easier to read and have no performance impact.

PostScript language wraps:

/* Wrap definitions - DrawViewWraps.psw */
defineps PSWDefs()
. . .
/EVB { % BGrect BGStrWidth BGStrColor BGColor
setgray 2 index rectfill
setgray setlinewidth rectstroke

} bind def

/DLB { % X1 Y1 X Y LineColor LineWidth
setlinewidth setgray
moveto lineto stroke

} bind def
. . .

endps

defineps PSWEraseViewBind(
float BGColor, BGStrColor, BGStrWidth, BGrect[4])

BGrect BGStrWidth BGStrColor BGColor EVB
endps

defineps PSWDrawLineBind(float LineWidth, LineColor, X, Y, X1, Y1)
X1 Y1 X Y LineColor LineWidth DLB

endps

C-language invocations:

/* Wrap call - DrawView.m */
-drawWrapsBind
{
int ElapsedTime, counter;
floatViewRect[4];

PSWMarkTime(); NXPing();
ViewRect[0] = ViewRect[1] = 0.0;
ViewRect[2] = bounds.size.width;
ViewRect[3] = bounds.size.height;
PSWEraseViewBind(BGCOLOR, BGSTRCOLOR, BGSTRWIDTH, ViewRect);

for (counter = 0; counter < TotalLines; counter++)
{
PSWDrawLineBind(

W[counter], C[counter], X[counter], Y[counter],
X1[counter], Y1[counter]);

}

PSWReturnTime(&ElapsedTime);
[displayWrapBindTime setIntValue:ElapsedTime];

return self;
}

©1990 Adobe Systems Incorporated. All rights reserved. 15

5.5 Wraps with Interpreter Loop
The fourth example performs the drawing of the lines in a loop within the interpreter. As
the DLRB procedure shows, many stack operations such as roll ’s, dup’s and exch’s are
necessary. The resulting drawing time shows that this method is fairly slow when compared
to some of the other methods. In most circumstances, extensive programming with the
PostScript language should be avoided not only because of the slower performance but also
because of the unnecessary complexity added. The client should handle as much of the
presentation of the data as possible.

PostScript language wraps:

/* Wrap definitions - DrawViewWraps.m */
defineps PSWDefs()
. . .
/DLRB { % i - number of times to loop
0 1 3 -1 roll 1 sub { % for
dup PSW exch get setlinewidth
dup PSC exch get setgray
dup PSX exch get PSY 2 index get moveto
dup PSX1 exch get PSY1 2 index get lineto
stroke pop

} for
} bind def
. . .

endps

defineps PSWDrawLineRepeatBind(
float W[i], C[i], X[i], Y[i], X1[i], Y1[i]; int i)

/PSW W def
/PSC C def
/PSX X def /PSY Y def
/PSX1 X1 def /PSY1 Y1 def
i DLRB

endps

Best Case (All lines uniform width and color)

Worst Case (All lines random width and color)

4420

6668

Wraps with Binding

©1990 Adobe Systems Incorporated. All rights reserved. 16

C-language invocations:

/* Wrap call - DrawView.m */
-drawWrapsRepeat
{
int ElapsedTime;
floatViewRect[4];

PSWMarkTime(); NXPing();
ViewRect[0] = ViewRect[1] = 0.0;
ViewRect[2] = bounds.size.width;
ViewRect[3] = bounds.size.height;
PSWEraseViewBind(BGCOLOR, BGSTRCOLOR, BGSTRWIDTH, ViewRect);
PSWDrawLineRepeatBind(W, C, X, Y, X1, Y1, TotalLines);

PSWReturnTime(&ElapsedTime);
[displayWrapRepeatTime setIntValue:ElapsedTime];

return self;
}

This example erases the view with a wrap borrowed from the previous example. In the wrap
that displays the lines, PSWDrawLineRepeatBind(), the six arrays that define the lines
are passed to the server which then performs the loop for each line. This case shows the use
of dynamically sized arrays within wraps. The entire arrays and their size are passed as
arguments. In the wrap declaration, the array size variable is used to specify the size of the
arrays.

defineps PSWDrawLineRepeatBind(
float W[i], C[i], X[i], Y[i], X1[i], Y1[i]; int i)

This capability provides a good deal of freedom when passing data to the server. Other
technical notes will provide examples where passing large, dynamically sized arrays can
provide significant time savings. In this example, the benefit is lost because of the stack
manipulations necessary to display the lines.

Best Case (All lines uniform width and color)

Worst Case (All lines random width and color)

5551

7877

Wraps with Interpreter Loop

©1990 Adobe Systems Incorporated. All rights reserved. 17

5.6 Wraps with Optimized Stroking
This method of drawing lines is similar to the Wraps with Binding example except that the
stroking of the lines takes place only after the line width or color has changed. The path is
extended (with moveto's and lineto's) without stroking as long as the width and color are
the same. If the width or color changes or the number of lines end, the resulting path is
stroked and then the path begun anew. The PostScript language operator, stroke, paints a
line over the current path in the current color using the current line attributes (width, line
cap, etc.) in the graphic state. As long as the color or line attributes do not change,
significant stroke overhead can be eliminated by collecting a series of disconnected sub
paths and then performing a single stroke operation on the entire series.

A random ordering of the lines types does not show any advantage over stroking every line.
When the lines are grouped according to the same line attributes, however, this method is
the fastest of all the methods explored in this paper. This method of drawing may be useful
when displaying a grid or other drawings with lines of uniform color and line attributes. It
also means that there may be some advantage to ordering lines within an application’s data
structures according to similar line attributes.

PostScript language wraps:

/* Wrap definitions - DrawViewWraps.psw */
defineps PSWDefs()
. . .

/MLB { % X1 Y1 X Y
moveto
lineto

} bind def

/SLB { % LineColor LineWidth
setlinewidth
setgray
stroke

} bind def
. . .

endps

defineps PSWMakeLineBind(float X, Y, X1, Y1)
X1 Y1 X Y MLB

endps

defineps PSWStrokeLineBind(float LineWidth, LineColor)
LineColor LineWidth SLB

endps

©1990 Adobe Systems Incorporated. All rights reserved. 18

C-language calls:

/* Wrap call - DrawView.m */
-drawOptimizedStroke
{
int ElapsedTime,counter;
float ViewRect[4];

PSWMarkTime(); NXPing();
ViewRect[0] = ViewRect[1] = 0.0;
ViewRect[2] = bounds.size.width;
ViewRect[3] = bounds.size.height;
PSWEraseViewBind(BGCOLOR, BGSTRCOLOR, BGSTRWIDTH, ViewRect);

for (counter = 0; counter < TotalLines; counter++)
{
PSWMakeLineBind(

X[counter], Y[counter], X1[counter], Y1[counter]);

if (!((counter != TotalLines -1) &&
(C[counter] == C[counter + 1]) &&
(W[counter] == W[counter+1])))

{
PSWStrokeLineBind(W[counter], C[counter]);

}
}

PSWReturnTime(&ElapsedTime);
[displayOptimizedStroke setIntValue:ElapsedTime];

return self;
}

Note: The PostScript interpreters in most printers have a 1500 point path length
limit. For printer compatibility, it may be wise to place a ceiling on the number of
points allowed in a path when using this stroke delaying technique. The limit is
larger for the first release of the Display PostScript system.

Also Note: This optimization technique should not be used when filling objects.
The performance is not improved and the results are visually unpredictable due
to the interactions between the PostScript language fill rule and overlapping
subpaths. It is best to draw and fill each object individually.

Best Case (All lines uniform width and color)

Worst Case (All lines random width and color)

2755

7212

Wraps with Optimized Stroking

©1990 Adobe Systems Incorporated. All rights reserved. 19

6. SMALL WIDTH LINES

Line widths equivalent to one pixel in device space display considerably faster than other
line widths because the interpreter contains optimizations for these lines. A line width
setting of 0.15 is suggested to obtain the benefits of this feature without the absolute device
dependence of a zero line width. (A zero line width is, by definition, one pixel on all
devices.) A line width setting of 0.15 will produce a one pixel line on devices with
resolutions of 400 dpi or less but will still be perceptible on higher resolution devices.

Small line widths are desirable for such uses as displaying a wire frame drawing of an
image. In this instance, a line width setting of 0.15 will display much faster than one that
does not use the optimization feature. The table below gives two times, in milliseconds, for
drawing 1000 lines - once with a 0.15 point line width, the another with a two point line
width.

Optimized Stroke Method (Uniform line color)

.15 Point Line Width 1779

2.0 Point Line Width 2755

©1990 Adobe Systems Incorporated. All rights reserved. 20

7. SUMMARY

The Display PostScript system uses a client-server architecture. The clients send drawing
instructions to the server. The server maintains a context for each client. The server
contains the memory and stacks for each context. Although a client can have multiple
contexts, one context per client or application is recommended except for unusual
circumstances. Drawing instructions can be sent from the client to the server either through
single operator calls or through wraps.

The single operator calls are an easy way to send drawing instructions to the server.
Anything but the simplest drawing should probably make use of wraps, though. The
pswrap translator takes PostScript language instructions and produces a C-language
procedure call interface which can then be used in an application. Creating a custom wrap
can produce significant improvements over the single operator calls. Additional
improvements can be gained by binding procedures used in wraps and by performing most
of the data presentation on the client side. Delaying stroking until necessary can also
produce large gains when the paths share the same line attributes. The table below
summarizes times, in milliseconds, obtained from the LineDraw application for drawing
1000 lines.

Best Case (All lines uniform width and color)

Wraps with Optimized Stroking 2755

Wraps with Binding 4420

Wraps 4507

Wraps with Interpreter Loop 5551

Single Operator Calls 6305

Worst Case (All lines random width and color)

Wraps with Binding 6668

Wraps 6826

Wraps with Optimized Stroking 7212

Wraps with Interpreter Loop 7877

Single Operator Calls 8678

