
©1990 Adobe Systems Incorporated. All rights reserved. 1

SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
NeXT INTERFACE BUILDER
and the HELLO WORLD APPLICATION

Technical Note #5051

March 6, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5051

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Display PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Sys-
tems Incorporated. NeXT, the NeXT logo, Application Kit, Digital Librarian, Interface Builder and
Workspace Manager are trademarks and NextStep is a registered trademark of NeXT, Inc. Objective-
C is a registered trademark of The Stepstone Corp.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
NeXT INTERFACE BUILDER
and the HELLO WORLD APPLICATION

Technical Note #5051

March 6, 1990
PostScript ® Developer Support Group
(415) 961-4111

1. INTRODUCTION

HelloWorld is a simple application with two purposes — to show how to use Interface
Builder to create an application and to introduce drawing in a view.

HelloWorld has a menu and a window. There are four buttons on the menu - Hello World,
Clear, Hide and Quit. When Hello World is selected, the text, “Hello World”, is displayed
in the window. When Clear is selected, the window is cleared. Hide hides the application
and Quit quits the application.

2. INTERFACE BUILDER

Interface Builder is an application supplied with the NeXT computer that allows
developers to quickly create a user interface for an application. Windows, buttons, sliders
and other related Application Kit objects can be graphically placed on the screen and
incorporated into an application. The attributes of an object can be edited. An example is
giving a window a title and a buffered backing instead of a retained backing. Certain
connections can be made between objects so that, for example, selecting a menu item will
cause a window to appear or sliding a slider will change the value in a text field.

Interface Builder creates and stores the interface instructions in a .nib file (which stands for
NeXT Interface Builder). This file is then linked to the application.

4 ©1990 Adobe Systems Incorporated. All rights reserved.

3. HELLOWORLD APPLICATION

This section and the sections that follow will use Interface Builder to create the user
interface for HelloWorld. The first step is to launch Interface Builder and select the New
Application menu option which appears under File option in the main menu. A menu, a
window and several panels should appear.

3.1 Nib File
This newly created nib file should be saved into a new directory. Select Save and in the
Name entry field enter a new directory name followed by a slash and a file name —
HelloWorld/HelloWorld.nib. Then click OK or type return. (A panel will appear
confirming the creation of the path ~/HelloWorld if it does not exist. Answer Yes.) Now
select the Project menu option, again under the File option. The Project Inspector panel
will appear with a message asking if a project file should be created in the directory. Again
answer Yes. This step creates the Makefile, HelloWorld.iconheader,
HelloWorld_main.m and IB.proj files.

©1990 Adobe Systems Incorporated. All rights reserved. 5

3.2 Menu
Now that some of the project administration is out of the way, let's move to the application
itself. The first step is to modify the menu. Delete the Info... and Edit menu items.
Selecting and then cutting or clicking the Delete in the Interface Builder Edit submenu will
accomplish this. Next, additional menu items should be placed in the menu. Click the
rightmost of the three icons at the top of the Palettes panel (the menu icon). Select and drag
an Item bar from the palette. Place it in the menu and then release. The Item bar should
appear in the menu resized to match the existing items. Add another by repeating the
process or by selecting the existing Item bar in the menu and copying/pasting.

Change the text in the top item bar to Hello World by double clicking in the cell, selecting
the existing text and typing “Hello World”. (A return or movement to another cell will
cause the menu to resize to the correct size and show all the text.) Change the text in the
second item bar to Clear by double clicking, selecting and then typing “Clear”. The Hide
and Quit menu items are fine the way they are.

3.3 WorldView
Next, a view should be placed in the window. Resize the window to the desired size and
move it to where you want it to first appear when the application launches. (The title of the
window can be changed from MyWindow to Hello World through the Attributes
Inspector.) Change the Palette panel to sliders/buttons/text fields and then select and drag
the CustomView object into the window. Enlarge the CustomView in the window. It does
not have to enclose the entire window but should be large enough to contain the “Hello
World” message. When the application runs, the view will not appear like the CustomView
in Interface Builder. The background of the view will be drawn to match the background
of the window.

6 ©1990 Adobe Systems Incorporated. All rights reserved.

The next step is to turn this object into a subclass of View so that drawing instructions can
be added. Double click the Classes icon in the Objects panel at the lower left. A Classes
in Hello panel should appear. Scroll through and select the View class. The subclasses of
View should be Box, Control, ScrollView and Text. None of these should be selected.
Move to the Operations button and select Subclass. A subclass named Subclass1 should
appear in the panel next to View. Change the name of Subclass1 to WorldView in the text
entry under the icon. (WorldView should be a subclass of view and not a subclass of Box,
Control, ScrollView or Text.)

Once the WorldView subclass has been created, the CustomView object in the window
needs to be changed from a View class to a WorldView class. Move to the Inspector panel
and change it from Project Inspector to Attributes Inspector (the button at the top will
do this). Then select the CustomView in the window. The Attributes panel should show
CustomView as a View class. Change the class from View to WorldView and select OK
or type a return. The CustomView in the window should now be renamed WorldView.

©1990 Adobe Systems Incorporated. All rights reserved. 7

3.4 Method Names
Our next step is to make the connections between the menu items and the methods that will
be in the WorldView class. In order to form these connections graphically, we must first
define the methods of WorldView within Interface Builder. Select WorldView and then
change the Inspector panel from an Attributes Inspector to a Class Inspector. An outlet/
action panel should appear with the single action printPSCode: in gray.

Method names for the WorldView object will be entered as actions and will appear next to
the printPSCode method. Make sure that Action is selected in the Outlet/Action button
approximately 3/4 of the way down the window. Enter the method name drawHello and
return (or select the Add button). Enter the method name clearHello and return (or select
the Add button). (A colon after the name is not necessary since Interface Builder appends
one if it does not appear.) Now that the method names in the WorldView class are defined
within Interface Builder, we can form the connection between a menu cell and a method
name.

8 ©1990 Adobe Systems Incorporated. All rights reserved.

3.5 Connections
Making a connection between objects simply means that a message is placed in the nib file
that is sent between the objects when the appropriate event is received by the sender at run-
time. In this case, messages will be sent to the WorldView object whenever the
Hello World or Clear items in the menu have been selected.

To make the first connection, hold the control key down while selecting the Hello World
menu cell. A small black square should appear in the center of the cell with a black line
attached. Continue holding the mouse down and move to the WorldView object. As soon
as the mouse nears WorldView, a black line should surround the WorldView and connect
to the existing black line. Release the mouse — the black lines and square should remain.
This action will cause the list of actions or methods within WorldView to appear. We can
then specify which action should be messaged when the menu cell is selected.

The Inspector panel should automatically change to a Connections Inspector with the
drawHello, clearHello and printPSCode appearing in the Actions of Destinations view.
Select the drawHello method and then select the Connect button at the bottom. This will
form the connection between the menu cell and the action so that a message will be sent to
the drawHello method in WorldView when this menu cell is selected. Repeat the same
steps with the Clear menu cell, selecting the clearHello action instead of the drawHello
action.

Note: Make sure that the Connect button is selected or that a return is typed after
choosing the action or else the connection will not take effect.

3.6 Unparsing the WorldView Class
The next step is to have Interface Builder create initial WorldView.h and WorldView.m
files. Move to the Classes in Hello panel and select the WorldView class. Move to the
Operations button and select the Unparse option. Answer Yes to the two prompts. The
first is to confirm the creation of the files and the second is to confirm the inclusion of the
files in the makefile. Now we can save the nib file we have created, hide or quit Interface
Builder and complete the WorldView files.

Connections Inspector

©1990 Adobe Systems Incorporated. All rights reserved. 9

3.7 WorldView Files
Launch the Edit application or another editor and open up the files that Interface Builder
has created, WorldView.h and WorldView.m. The files should appear as below.
Objective-C statements need to be inserted in the files in order to make WorldView
perform its intended operations.

The header file:

WorldView.h

/* Generated by Interface Builder */

#import <appkit/View.h>

@interface WorldView:View
{
}

- drawHello:sender;
- clearHello:sender;

@end

and the implementation file:

WorldView.m

/* Generated by Interface Builder */

#import "WorldView.h"

@implementation WorldView

- drawHello:sender
{
 return self;
}

- clearHello:sender
{
 return self;
}

@end

10 ©1990 Adobe Systems Incorporated. All rights reserved.

WorldView.h
The first step is to modify the interface file, WorldView.h. An instance variable should be
added to keep track of whether we should display “Hello World” or not. Add a BOOL
value and call it DrawHello. Next we need to add a method to the interface file. Actually,
we are not really adding a new method to WorldView. We are overriding an existing
method inherited from the View class. The method to add is drawSelf:: which is
automatically messaged whenever the view is displayed.

- drawSelf:(NXRect *)r :(int) count;

With the addition of comments, the interface file should now look like the following. Save
it and move to WorldView.m.

/*
 * WorldView.h
 *
 * The instance variable, DrawHello, is toggled between YES and NO
 * and indicates whether the "Hello World" message should be
 * displayed in the view.
 */

#import <appkit/View.h>

@interface WorldView:View
{
BOOL DrawHello;

}

- drawHello:sender;
- clearHello:sender;
- drawSelf:(NXRect *)r :(int) count;

@end

WorldView.m
In WorldView.m, the two lines below in bold should be added to the method, drawHello.
The lines should be placed before the return statement.

- drawHello:sender
{
 DrawHello = YES;
 [self display];
 return self;
}

The two lines in bold below should be added to the method, clearHello. The lines should
again be placed before the return statement.

- clearHello:sender
{
 DrawHello = NO;
 [self display];
 return self;
}

©1990 Adobe Systems Incorporated. All rights reserved. 11

The first line of each method toggles the boolean instance variable, DrawHello, between
YES and NO – YES for drawing “Hello World” and NO for not drawing “Hello World”.
The next line messages self (the WorldView object’s own id) and tells it to perform the
method, display. The display method is a method defined in View, a method that
WorldView inherits. Drawing in a view is accomplished by placing the drawing
instructions in the drawSelf:: method, overriding the default drawSelf:: method from
View. This method is not messaged directly; instead, display is messaged which in turn
will message drawSelf::.

Since we will be drawing in WorldView, we need to override the drawSelf:: method.
Insert the method listed below after the clearHello method. The drawing consists of
clearing the previous drawing by filling the view with light gray and displaying “Hello
World” if DrawHello is YES.

- drawSelf:(NXRect *) r: (int) count
{

PSsetgray(NX_LTGRAY);
PSrectfill(

bounds.origin.x, bounds.origin.y,
bounds.size.width, bounds.size.height);

if (DrawHello)
{

PSsetgray(NX_BLACK);
PSmoveto(50.0, 70.0);
PSselectfont("Times-Roman", 40.0);
PSshow("Hello World");

}

return self;
}

Drawing will be done using the single operator calls in the Client Library. These calls are
fine for simple drawing like that found in this example, but more complex drawing should
use the advantages that the pswrap translator provides. Clearing any previous drawing
consists of two operations – setting the gray and filling the view. The bounds structure in
the PSrectfill() call is an instance variable found in the View class that gives the origin,
width and height of the view. PSrectfill() fills the view with the current color in the
PostScript graphics state, light gray. The gray level chosen matches the background of the
window so it doesn’t really matter if the view is smaller than the window.

The next group of lines shows the text “Hello World” in the view if DrawHello equals
YES. The gray level will be set to black and a currentpoint will be specified in the
PostScript graphics state. The PostScript operator, selectfont, establishes the current font
in the graphics state – 40 point, Times-Roman. The show operator displays the string
“Hello World” in the current font at the current point in the current color.

Note: The point (50.0, 70.0) is relative to the lower left corner of the view placed
within the window in Interface Builder. A different point will more than likely be
necessary for a differently sized or differently placed view.

Include the #import <dpsclient/wraps.h> line, add a few comments if desired and then
save the file. The complete file can be found below.

12 ©1990 Adobe Systems Incorporated. All rights reserved.

/*
 * WorldView.m
 *
 * WorldView is a subclass of View. It simply displays and clears
 * a message in the view. The one lesson this example shows is the
 * modification of "drawSelf::" and the call to"display". The method,
 * "drawSelf::", should not be called directly.
 *
 * Rather, "display" should be called. Why? Because display message
 * performs some necessary overhead such as bringing the View into
 * focus by constructing a clipping path around its frame rectangle
 * and making its coordinate system the current coordinate system
 * for the application. The display method then messages drawSelf::.
 * These steps are repeated for each of the View’s subviews.
 *
 * Note: Any instance variables that need to be initialized before
 * the first display should be done in the "new" or "newFrame:"
 * method. In this case, DrawHello is already a null value at its
 * creation so no initialization has to be performed. */

#import "WorldView.h"
#import <dpsclient/wraps.h>

@implementation WorldView

- drawHello:sender
{
 DrawHello = YES;
 [self display];
 return self;
}

- clearHello:sender
{
 DrawHello = NO;
 [self display];
 return self;
}

/* The first two lines clear the view. The remainder display the
 * message in the view. */
- drawSelf:(NXRect *) r: (int) count
{

PSsetgray(NX_LTGRAY);
PSrectfill(bounds.origin.x, bounds.origin.y,

bounds.size.width, bounds.size.height);

if (DrawHello)
{

PSsetgray(NX_BLACK);
PSmoveto(50.0, 70.0);
PSselectfont("Times-Roman", 40.0);
PSshow("Hello World");

}
return self;

}
@end

©1990 Adobe Systems Incorporated. All rights reserved. 13

3.8 Making and Running
The make command can be specified from Interface Builder (in the File submenu) or from
the shell. Typing in make in the shell will make the executable file HelloWorld. (The
application name can be specified in the Project Inspector. It takes by default the name of
the nib file.). Once the make has completed successfully (in other words, once the compiler
errors have been resolved), the application can be launched. (The make option in Interface
Builder creates a debug version of HelloWorld, HelloWorld.debug, for use with the gdb
debugger. It can also be executed outside the debugger.)

Typing HelloWorld in the Shell or double clicking the file in the Workspace Manager will
start the application. The application should work as described in the beginning of this note.

3.9 Common Problems
• Selecting a menu item does nothing.

Make sure the menu item is connected to the appropriate method within Interface
Builder. A return has to be typed or the Enter button selected after the method has been
selected in order for the connection to take effect. Connecting the objects and then
selecting the method is not enough. Also, make sure the two methods entered in the
Class Inspector have the same spelling as those in the WorldView.h and WorldView.m
files.

• The string “Hello World” is either clipped or does not appear.

The point, (50.0,70.0), may not position the text in the correct spot. Continue reading and
then try making some adjustments to the coordinate point.

4. TECHNICAL NOTES

4.1 View
Aside from introducing Interface Builder, the primary purpose of this exercise is to
introduce drawing in a view. A View is an object in the Application Kit that provides a
structure for drawing on the screen (and for handling mouse and keyboard events). All the
drawing that is done on the screen is done using View objects. The Windows, Panels,
Buttons and TextFields either contain View objects or are subclasses of View. Windows
and Panels contain View objects. Buttons and TextFields are subclasses of Views.

4.2 Window
The Window object in HelloWorld contains two views, a frame view and a content view.
The frame view consists of the border, the title bar and the resize bar. The content view
consists of the area inside the border and bars. The frame view is private to all but the
window and should not be altered by an application. The content view is public. It can
contain other views and can even be replaced by another view. In HelloWorld, the content
view is kept as a subview of the window and WorldView is made a subview of the content
view.

14 ©1990 Adobe Systems Incorporated. All rights reserved.

4.3 Coordinate System
The Display PostScript system uses the Cartesian coordinate system to specify location on
the screen. The origin is originally at the lower left of the screen. The positive Y axis is to
the top and the positive X axis is to the right. Each point is equal to approximately 1/92 of
an inch on the NeXT computer. An important feature to note is that the origin can be moved
to another location. As a result, instructions that are used in one location can be used in
another simply by moving or translating the origin of the coordinate system. For example,
consider the drawing of two identical buttons. Only one set of PostScript language
instructions needs to be used to describe the look of the buttons. Their different positions
can be accomplished by translating the origin.

The same concept applies to views as well. A View has a width and a height and a position
on the screen. It also has its own coordinate system so that drawing within the view is
relative to the view only and not to its position on the screen or within a window. The origin
for the view is its lower left corner. The instance variable, bounds, contains the origin of
the view which is usually the point (0.0, 0.0) and the width and height of the view. It is these
values, bounds.origin.x, bounds.origin.y, bounds.size.width and bounds.size.height,
that are passed to PSrectfill().

The display of Hello World includes a call to PSmoveto() with the point (50.0,70.0). This
point is roughly an inch up and half an inch to the right of the view's bottom left corner.
Note that the origin when we are drawing is the lower left of the view and not the lower left
of the window. By default, a view sets a clip path around the dimensions of its frame.
Anything that is outside the frame does not get shown. As a result, moving to a point of

(0.0,0.0)

View

(0.0,0.0)

x-axis

y-
ax

is

©1990 Adobe Systems Incorporated. All rights reserved. 15

(50.0, -30.0) and performing the PSshow()would not display any text. Likewise, the point
(-90.0, 110.0) would show only a portion of the text. In the diagram below, the text in white
is what would not be shown due to the clipping region of the view.

4.4 Messaging Display
To draw in a view, the drawSelf:: method in the view subclass must be overridden. The
actual execution of the drawing, however, must be accomplished by sending a message to
the display method and not drawSelf::. In the Hello World example, both drawHello and
clearHello message the display method. This method is found in the View class and
performs necessary overhead for drawing in the view. The display method first brings the
view into focus which means that a clipping path is created around its frame rectangle and
the view’s coordinate system is installed as the current coordinate system in the PostScript
language graphic state. (The coordinate system is covered in more detail in Technical Note
#5053.) After the view has been brought into focus, display messages the drawSelf::
method. Then, display messages are sent to all of the subviews. Any view that has its
subviews do all the drawing does not need to override drawSelf::. The display message of
the superview will message all its subviews.

5. SUMMARY

Almost all drawing on the NeXT computer is performed within a subclass of a View class.
The methods provided in the View class handle much of the overhead for drawing. The
actual drawing should be placed in the drawSelf:: method of the subclass. This method
should not be called directly. Instead, display should be messaged which in turn will
message drawSelf::.

Only the most basic issues involved in drawing within a view have been touched in this
note. The material here is sufficient to understand the concept of drawing in a view. The
NeXT documentation, however, contains more detailed information.

Hello World

Hello World

llo World

(50.0, 70.0)

(50.0 -30.0)

(-90,0, 110.0)

WorldView

(0.0, 0.0)

Not drawn to scale

Hello World

