
SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
PATH CONSTRUCTION & RENDERING
and the DIAL APPLICATION

Technical Note #5054

March 6, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5054

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Display PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Sys-
tems Incorporated. NeXT, the NeXT logo, Application Kit, Digital Librarian, Interface Builder and
Workspace Manager are trademarks and NextStep is a registered trademark of NeXT, Inc. Objective-
C is a registered trademark of The Stepstone Corp.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

THE DISPLAY POSTSCRIPT® SYSTEM:
PATH CONSTRUCTION & RENDERING
and the DIAL APPLICATION

Technical Note #5054

March 6, 1990
PostScript® Developer Support Group
(415) 961-4111

1. INTRODUCTION

Technical note #5052 describes the use of the single operator calls and wraps to render
paths. This technical note on user paths explores the issue of efficiently rendering paths a
little further. User paths are Display PostScript® system extensions to the PostScript®
language that can be used to render paths. User paths can be invoked by single operator
calls or by wraps and can provide advantages that conventional path construction does not.
Four of the larger benefits of user paths are 1) they are more efficient to interpret and
execute, 2) they provide a convenient way to send an arbitrary path to the server, 3) they
are compact and minimize data transmission when the client and server are on different
machines and 4) they can be cached.

By definition, a user path is a PostScript language procedure that consists entirely of path
construction operators and their corresponding operands expressed as literal numbers.
Another way of saying this is that a user path is a combination of a complete and self-
contained description of a path within user space. A number of Display PostScript system
rendering operators can act on user paths to perform standard PostScript language
operations such as stroking or filling a user path. A user path can be described in two ways,
either as ASCII text or in an encoded format which consists of an array of two elements—
an array of operands and a string of operators.

The Dial application will be used to show six ways of drawing hash marks around the inner
edge of a dial. The first method uses the same line description for all the marks but rotates
the user space each time to render the line at a different angle around the dial. The second
follows a similar approach except that the line description is sent as a user path and then
appended to the current path with the uappend operator. The third method performs
trigonometric calculations on the client side to find the precise coordinates for moveto/
lineto couplings.

The fourth method takes the trigonometric approach one step further by placing the
moveto/lineto path constructions into a single, large user path and then executing one

ustroke operation on the entire user path.1 The fifth approach follows the same steps as the

1. All of the approaches delay the stroking until all of the marks sharing the same characteristics have been
constructed. In addition, the PostScript language operators in the first three approaches are placed into a
bound procedure to eliminate frequent name lookups. The wrap in the last approach is not called frequent-
ly enough to warrant this step. These two lessons are detailed in Technical Note #5052, The Display Post-
Script System, Single Operator Calls vs. Wraps.

SC RRIPTTSOP

©1990 Adobe Systems Incorporated. All rights reserved. 4

fourth except that instead of sending the user path descriptions to the server when drawing
each time, the descriptions are stored in the server at initialization. When drawing the user
path, only the name of the user path is passed to the server instead of the entire user path.

The sixth method uses the NeXT procedure, DPSDoUserPath() to send a user path to the
server. In some cases the execution time is about 20% faster than sending the user path to
the server in a custom wrap (binary encoded numbers are used instead of the normal
number representation format). The primary advantage of DPSDoUserPath() is that it
automatically provides an emulation of user paths and their rendering operators when
printing to devices that do not contain the PostScript language extensions for the Display
PostScript system.

Timing results show that the three methods that calculate the positions of the hash marks
and then place them into user paths are faster than rotating the user space, using uappend
or using a wrap for each moveto / lineto operation. Of the three different ways of drawing
with user paths, retaining the user path in the server is the fastest method. This method of
drawing avoids the overhead of the trig calculations and the transmission time for each
drawing, but this method is only valuable for paths that are drawn frequently and that do
not change. Otherwise, DPSDoUserPath() provides an efficient way to transmit user
paths to the server. Sections that follow will explain these results and also defend some of
the poorer performing methods.

©1990 Adobe Systems Incorporated. All rights reserved. 5

2. USES

A user path can provide an advantage over conventional path construction in a number of
instances. One instance is when the path is known ahead of time. Instead of creating a wrap
to construct the path, an encoded user path can be used to retain the path in a compact form.
When it comes time for rendering, the user path can be invoked with the desired user path
rendering operator. An example where a user path might be suited for this purpose would
be to retain the descriptions of clock hands. Instead of drawing the hands within a wrap
using moveto’s, lineto’s, curveto’s, etc., a user path could be retained in a static array and
then sent to the server either in a wrap or through single operator calls.

Even if the path is dynamically created, user paths can be a big win. As the Dial application
shows, it is faster to place a large path in a user path on the fly than it is to send the drawing
instructions individually. Graphics applications can make use of this by either retaining a
user path definition for each object or by converting the internal path representation to a
user path immediately before drawing. Since dynamically sized arrays can be sent to the
server, an application can maintain a large buffer for the express purpose of transmitting
user paths to the server.

3. USER PATH DEFINITION

A user path is a path description with the operands in a literal format. User path rendering
operators such as ustroke and ufill take a user path as an argument and perform the
appropriate rendering operation. The example below shows one of the two possible formats
for user path description along with the ustroke operator.

3.1 Path Description
The path description can be represented two ways. The first format, used in the example
above, consists of an ASCII path definition enclosed within brackets, ‘{’ and ‘}’. The
second format is a two part array containing an array or string of encoded numbers and an
string of encoded path construction operators. The operators are executed sequentially with
the operands for the operators taken from the encoded number grouping. The encoded
format provides a compact representation scheme. Below lies the same user path

{
0 0 200 200 setbbox
175 100 moveto
200 100 lineto
100 175 moveto
100 200 lineto
25 100 moveto
0 100 lineto
100 25 moveto
100 0 lineto
} ustroke

User Path with Rendering Operator Result
(ASCII Path Description)

©1990 Adobe Systems Incorporated. All rights reserved. 6

description as above except that the path description is in an encoded format instead of
ASCII format. (The code segment for calculating the trig into a user path at the end of this
note provides an example of the encoded format in C construct form.)

3.2 User Path Construction Operators
The table below provides the allowable path construction operators. The first column lists
the operators, the second column the operands for each operator, the third the
corresponding encoding value for the operator and the fourth column the NeXT literal
definition for the encoding (contained in dpsNeXT.h).

All of the path construction operators should be familiar except for setbbox, arct and
ucache. The ucache operator is optional but should appear as the first operator in the path
description if included. The user path cache is analogous to the font cache in that it retains
the results of interpreting the path. If the PostScript interpreter encounters a user path that
is already in the cache, it substitutes the cached results instead of reinterpreting the path

[
[
0 0 200 200 175 100
200 100 100 175 100 200
25 100 0 100 100 25 100 0

]
<000103010301030103>

] ustroke

User Path with Rendering Operator Result
(Encoded Path Description)

Operators Operands Encoding NeXT Encoding

setbbox llx lly urx ury 0 dps_setbbox
moveto x y 1 dps_moveto
rmoveto dx dy 2 dps_rmoveto
lineto x y 3 dps_lineto
rlineto dx dy 4 dps_rlineto
curveto x1 y1 x2 y2 x3 y3 5 dps_curveto
rcurveto dx1 dy1 dx2 dy2 dx3 dy3 6 dps_rcurveto
arc x y r ang1 ang2 7 dps_arc
arcn x y r ang1 ang2 8 dps_arcn
arct x1 y1 x2 y2 r 9 dps_arct
closepath 10 dps_closepath

User Path Construction Operators and Encodings

©1990 Adobe Systems Incorporated. All rights reserved. 7

definition. Additional processing is required to place the path in the cache so caching
should only be used for paths that are rendered frequently. Although caching works with
translations of user paths, it does not work for rotating and scaling user paths. In these
instances, the path will have to be reinterpreted and recached.

The setbbox operator is required and should immediately follow the ucache operator (or
appear as the first operator if ucache is not used). The setbbox operator requires four
operands which comprise the bounding box enclosing the entire path. The operands specify
the lower left and upper right coordinates of the bounding box and not the NeXT
representation of a rectangle as an origin and followed by a size. All coordinates specified
as operands for successive operators should lie within this bounding box. A rangecheck
error will be generated if they do not. The inclusion of a bounding box reduces the number
of calculations the interpreter must perform and improves performance for rendering the
path.

In this particular case, a bounding box that is closer to the actual bounding box performs
slightly better than a bounding box that is larger but the difference is not too significant.
Increasing the bounding box for the setbbox operator by a thousand points in each direction
for the fourth method of drawing in the Dial application only increased the time of
execution by 4-5 milliseconds off a base time of approximately 200 milliseconds. The
bounding box values, however, can be used by the interpreter to determine whether an
image lies within a clipping region. In these types of cases, a closer approximation to the
actual bounding box can mean the difference between needlessly imaging and not imaging
at all.

The arct operator is a user path replacement operator for arcto. The operators are identical
except that arct does not push any results on the operand stack whereas arcto pushes four
numbers. Because arcto pushes results on the stack it cannot be used in user path
definitions.

©1990 Adobe Systems Incorporated. All rights reserved. 8

4. USER PATH RENDERING OPERATORS

The Display PostScript system extensions to the PostScript language include operators that
interpret and operate on user paths. These operators are listed below.

The operators in the second column are used for hit detection and are discussed in
Technical Note #5057. The operators in the first column, except for uappend, perform the
same functions on a user path that their corresponding operators perform on regular paths.
For example, the ufill operator takes the user path off the operand stack, interprets it and
then paints the area enclosed by the user path with the current color.

The uappend operator interprets a user path definition and appends the result to the current
path in the graphics state. The uappend operator has some overhead associated with it as
one of the times in the examples shows so it should be used with some consideration.

User path rendering operators make a temporary adjustment to the user space by rounding
the origin components to the nearest integer values. This ensures that a single user path
description produces uniform results regardless of its position on the page or display due to
translation of the user space.

4.1 Clipping with a User Path
The table of rendering operators does not include a uclip operator. Clipping with a user path
can be done by using the uappend operator to append the path to the current path and then
the clip operator to clip the current path. The code example below shows this sequence.

newpath <user path> uappend clip newpath

ufill inufill
ueofill inueofill
ustroke inustroke
ustrokepath
uappend

Rendering Operators

©1990 Adobe Systems Incorporated. All rights reserved. 9

5. DIAL APPLICATION

The Dial application draws a dial with hash marks appearing around its inner edge. Hash
marks are optionally drawn at 90, 45, 10 and 1 degree rotations. Six methods are used to
draw the marks. Times are available so that comparisons can be made between the types of
drawing and the number of hash marks drawn. In the code segments shown, the wraps are
shown first followed by their invocations in the DrawView class methods.

In these examples, CLR1 and WID1 are literals for the line color and line width for the
particular type of hash mark highlighted. The values are NX_LTGRAY and 0.5,
respectively. The variable, maxdim, is an instance variable in the DialView class that is the
diameter of the dial. The literal, LEN1, is the scale factor for the hash mark (10.0/11.0) and
DEG1 is the degrees between hash marks (1.0).

©1990 Adobe Systems Incorporated. All rights reserved. 10

5.1 Rotating the User Space
The first method uses the same line description for all the marks but rotates the user space
each time to render the line at a different angle around the dial. The static procedure below
rotates the user space by the specified degree and then calls the wrap to perform the
moveto/lineto. After all the lines have been constructed, the path is then stroked by calling
the PSWStrokePath() with the color and line width settings.

PostScript language code:

defineps PSWDefs()
. . .
/RML { % X1 Y1 X0 Y0 Ang
rotate moveto lineto

} bind def
. . .
endps

defineps PSWRotate_MakeLine(float Ang, X0, Y0, X1, Y1)
X1 Y1 X0 Y0 Ang RML

endps

C-language code:

static void drawRotateLines(clr, wid, startlen, endlen, deg)
float clr, wid, startlen, endlen, deg;

{
int angle;

for (angle = 0; angle < 360; angle += deg)
PSWRotate_MakeLine(deg, startlen, 0, endlen, 0);

PSWStrokePath(clr, wid);
}

- drawRotate
{
. . .
 drawRotateLines(CLR1, WID1, maxdim * LEN1, maxdim, DEG1);
. . .
}

An advantage to this type of drawing is that it can be easier to implement than some of the
others. One static path description can be used for all the drawings within a set. With only
a few paths and rotations, the difference in performance is not significant so it can be an
acceptable method of drawing.

Number of lines 4 8 36 360

Display Time 17 26 67 575

Rotate

©1990 Adobe Systems Incorporated. All rights reserved. 11

5.2 Rotating the User Space and Appending a User Path
The second technique follows a similar approach except that the line description is sent as
an encoded user path and then appended to the current path with the uappend operator. The
uappend operator is used instead of ustroke because uappend only interprets the user path
but does not render it. The ustroke operator renders the path and so it loses the advantages
of delaying the stroking until all the paths have been constructed. In this example, ustroke
would perform about 60% worse than uappend.

PostScript language code:

defineps PSWDefs()
. . .
/RUA { % [Pts (Ops)] Ang
rotate uappend

} bind def
. . .
endps

defineps PSWRotate_UAppend(
float Ang; float Pts[Tot_Pts]; int Tot_Pts;
char Ops[Tot_Ops]; int Tot_Ops)

[Pts (Ops)] Ang RUA
endps

C-language code:

static void drawRotateUserPathLines(
pts, ops, clr, wid, startlen, endlen, deg)

float pts[];
char ops[];
float clr, wid, startlen, endlen, deg;

{
int angle;

pts[0] = pts[4] = startlen;
pts[2] = pts[6] = endlen;
pts[1] = -wid/2;
pts[3] = wid/2;
pts[5] = pts[7] = 0;
PSsetgray(clr);
PSsetlinewidth(wid);
for (angle = 0; angle < 360; angle += deg)
PSWRotate_UAppend(deg, pts, 8, ops, 3);

PSstroke();
}

- drawRotateUserPaths
{
. . .
ops[0] = dps_setbbox; ops[1] = dps_moveto; ops[2] = dps_lineto;
. . .
drawRotateUserPathLines(
pts, ops, CLR1, WID1, maxdim * LEN1, maxdim, DEG1);

. . .
}

©1990 Adobe Systems Incorporated. All rights reserved. 12

The static procedure, drawRotateUserPathLines(), has the same for loop as the first
method except that a user path is sent to the wrap instead of two coordinates. The user path
description simply consists of the setbbox operator followed by the moveto and lineto
operators. The operators are placed in the ops array in drawRotateUserPaths() because
they will not change for all four invocations of the static procedure. The pts array is
populated in the static procedure because the bounding box and the coordinates will vary
according to the width and length of the particular set of lines drawn.

The times for this method are considerably longer than the previous method. One of the
reasons is the overhead that uappend requires. Each hash mark must be appended
separately because of the rotation. User paths are faster than conventional drawing because
they reduce the number of operators that must be interpreted. In this case, the reduction is
not sufficient enough to offset the overhead of uappend.

Does this example show that rotating a user path is a bad idea? For this case, the answer is
yes. For another case the answer might be quite the opposite. For example, let's assume we
had some type of intricate dial or clock hand. In this instance, the size of the path and its
preexistence might justify placing the description in an encoded user path and then rotating
the user space just before rendering the path. In this case, it would not be necessary to
append the hand to the current path with the uappend operator before stroking or filling.
Instead, ustroke or ufill could be called directly. Technical note #5055 will take a further
look at this issue with a description of a clock application that makes use of graphic states,
user objects and user paths defined in the server.

5.3 Calculating the Trigonometry
The third method performs trigonometric calculations on the client side to find the precise
coordinates for moveto/lineto couplings.

PostScript language code:

defineps PSWDefs()
. . .
/ML { % X1 Y1 X0 Y0
moveto lineto

} bind def
. . .
endps

defineps PSWMakeLine(float X0, Y0, X1, Y1)
X1 Y1 X0 Y0 ML

endps

Number of lines 4 8 36 360

Display Time 22 40 114 1059

Rotate/User Paths

©1990 Adobe Systems Incorporated. All rights reserved. 13

C-language code:

static void drawTrigLines(clr, wid, x, y, startlen, endlen, deg)
float clr, wid, x, y, startlen, endlen, deg;

{
int angle;

for (angle = 0; angle < 360; angle += deg)
PSWMakeLine(x + (float) cos(angle * RADIANS) * startlen,

y + (float) sin(angle * RADIANS) * startlen,
x + (float) cos(angle * RADIANS) * endlen,
y + (float) sin(angle * RADIANS) * endlen);

PSWStrokePath(clr, wid);
}

- drawTrig
{
. . .

drawTrigLines(CLR1, WID1, viewcenter.x, viewcenter.y,
maxdim * LEN1, maxdim, DEG1);

. . .
}

The times given by this method show little real advantage over the first method, rotation of
a static path description, except when rendering a large number of hash marks. This
comparison says that rotating the user space has some overhead associated with it but that
it is not too significant at low frequencies. A disadvantage of this example is that it can
begin to get a bit complex. This test case uses one of the simplest paths possible, a single
line segment. A path with multiple line segments and curves and arcs could be difficult to
process. Unless the performance advantage outweighs the complexity, rotating the user
space might be preferred over calculating the positions on the client side.

Number of lines 4 8 36 360

Display Time 13 21 73 500

Trigonometry

©1990 Adobe Systems Incorporated. All rights reserved. 14

5.4 User Paths
The fourth method takes the trigonometric approach one step further by placing the
moveto/lineto path constructions into a single, large user path and then executing ustroke.
In this case, the array is populated on the fly and then sent to a wrap with a dynamic index
size. A static description for each set of hash marks could just as well be retained as a user
path in static arrays eliminating the need for the for loop and the calculations. The ease of
calculating the marks around the dial, however, makes it more convenient to calculate the
points in a loop than it does to save the user paths.

PostScript language code:

defineps PSWUStroke(
float Color, Width; float Pts[Tot_Pts]; int Tot_Pts;

char Ops[Tot_Ops]; int Tot_Ops)
Color setgray Width setlinewidth
[Pts (Ops)] ustroke

endps

C-language code:

static void drawTrigUserPathLines(
pts, ops, clr, wid, x, y, startlen, endlen, deg)

float pts[];
char ops[];
float clr, wid, x, y, startlen, endlen, deg;

{
int i , j, angle;

i = 4; j = 1;
for (angle = 0; angle < 360; angle += deg)
{
pts[i++] = x + (float) cos(angle * RADIANS) * startlen;
pts[i++] = y + (float) sin(angle * RADIANS) * startlen;
ops[j++] = dps_moveto;

pts[i++] = x + (float) cos(angle * RADIANS) * endlen;
pts[i++] = y + (float) sin(angle * RADIANS) * endlen;
ops[j++] = dps_lineto;

}
PSWUStroke(clr, wid, pts, i, ops, j);

}

- drawTrigUserPaths
{
pts[0] = bounds.origin.x;
pts[1] = bounds.origin.y;
pts[2] = bounds.origin.x + bounds.size.width;
pts[3] = bounds.origin.y + bounds.size.height;
ops[0] = dps_setbbox;
. . .
drawTrigUserPathLines(

pts, ops, CLR1, WID1, viewcenter.x, viewcenter.y,
maxdim * LEN1, maxdim, DEG1);

. . .
}

©1990 Adobe Systems Incorporated. All rights reserved. 15

The resulting times of a user path is significantly faster for drawing as little as 60 lines. The
benefit is derived from the elimination of interpreter loop overhead during the path
construction. User paths combine a restricted data format with an optimized rendering
pipeline to eliminate much of the data manipulation that path construction operators such
as moveto and lineto perform. For drawing 8 hash marks, the total processing time is not
large enough to produce a noticable difference between user paths and moveto/lineto
wraps. For 48 hash marks, however, user paths represent a time savings of almost 30% over
the other method (100 milliseconds versus 70 milliseconds). Unlike the previous method,
using user paths to reduce the number of operators greatly outweighs the complexity of
performing the trigonometry.

5.5 User Path Retained in the Server
This method is almost identical to the previous method except that the user paths for each
type of hash mark are created and stored in the server when DialView is instantiated. When
drawing the hash marks, only the names of the user paths are sent to the server instead of
the user paths themselves. For drawing 360 hash marks, this method has about a 45% time
savings over calculating the trig and sending the user paths each time. Storing user paths in
the server is an attractive option for drawing objects that appear frequently.

PostScript language code:

defineps PSWDefineUserPath(
float Pts[Tot_Pts]; int Tot_Pts;
char Ops[Tot_Ops]; int Tot_Ops; char *str)

/str [Pts (Ops)] def
endps

defineps PSWDrawUserPath (float Color, Width; char *str)
Color setgray Width setlinewidth
str ustroke

endps

Number of lines 4 8 36 360

Display Time 12 16 49 245

User Paths

©1990 Adobe Systems Incorporated. All rights reserved. 16

C-language code:

/* This definition is for the name of the user path array in */
/* the server. A user object could have been used as well. */
static char *upath1 = {"upath1"};

/* Calculate the start and end points and place in user path */
/* format. Send the user path to the server and define it in */
/* the server. */

static void setupTrigUserPath(
pts, ops, x, y, startlen, endlen, deg, upathname)

floatpts[]; charops[];
float x, y, startlen, endlen, deg;
char*upathname;

{
int i , j, angle;

i = 4; j = 1;
for (angle = 0; angle < 360; angle += deg)
{
pts[i++] = x + (float) cos(angle * RADIANS) * startlen;
pts[i++] = y + (float) sin(angle * RADIANS) * startlen;
ops[j++] = dps_moveto;
pts[i++] = x + (float) cos(angle * RADIANS) * endlen;
pts[i++] = y + (float) sin(angle * RADIANS) * endlen;
ops[j++] = dps_lineto;

}
PSWDefineUserPath(pts, i, ops, j, upathname);

}

/* This method is messaged from the newFrame method at object */
/* instantiation. The user paths are created and then defined */
/* in the server. */

- setupUserPaths
{
pts[0] = bounds.origin.x;
pts[1] = bounds.origin.y;
pts[2] = bounds.origin.x + bounds.size.width;
pts[3] = bounds.origin.y + bounds.size.height;
ops[0] = dps_setbbox;
setupTrigUserPath(pts, ops, viewcenter.x, viewcenter.y,

maxdim * LEN1, maxdim, DEG1, upath1);
. . .
return self;

}

/* This is the method to draw the user path. It simply sends */
/* the line color and width as well as the name of the user */
/* path in the server. */

- drawTrigUserPathsServer
{

PSWDrawUserPath(CLR1, WID1, upath1);
. . .
}

©1990 Adobe Systems Incorporated. All rights reserved. 17

 .

5.6 DPSDoUserPath()
In this method of drawing, the user path is sent to the server with the NeXT procedure,
DPSDoUserPath(). The calling sequence for this procedure is shown below. (The NeXT
documentation should be referred to for the complete specification.)

void DPSDoUserPath(
void *coords, int numCoords, DPSNumberFormat numType,
char *ops, int numOps, void *bbox, int action)

The coords argument is a pointer to an array of coordinate points with numCoords
identifying the number in the array. The numType argument specifies the type of the
numbers used in the data string – the three identifiers available are dps_float, dp_long and
dps_short. The ops argument is a pointer to a character array or string containing the user
path construction operators with the numOps argument identifying the number of operators
in the array or string. The bbox argument is a pointer to a four element number array that
contains the values for the setbbox operator. The action argument is an identifier for a user
path rendering operator. Examples are dps_ufill and dps_ustroke.

Note: The bbox argument should describe the bounding box of the user path
 by
specifying the lower left and the upper right coordinates of the bounding box. This
representation is different from the NeXT rectangle scheme of an origin and
followed by a size.

Number of lines 4 8 36 360

Display Time 10 15 36 128

User Paths Retained in the Server

©1990 Adobe Systems Incorporated. All rights reserved. 18

C-language code:

/* Calculate the start and end points and place in user path */
/* format. Send the entire user path at once using the */
/* DPSDoUserPath() call. */

static void drawDPSUserPathLines(
pts, ops, clr, wid, x, y, startlen, endlen, deg, bbox)

floatpts[];
charops[];
float clr, wid, x, y, startlen, endlen, deg;
floatbbox[4];

{
int i , j, angle;

i = j = 0;
for (angle = 0; angle < 360; angle += deg)
{
pts[i++] = x + (float) cos(angle * RADIANS) * startlen;
pts[i++] = y + (float) sin(angle * RADIANS) * startlen;
ops[j++] = dps_moveto;

pts[i++] = x + (float) cos(angle * RADIANS) * endlen;
pts[i++] = y + (float) sin(angle * RADIANS) * endlen;
ops[j++] = dps_lineto;

}

PSsetgray(clr);
PSsetlinewidth(wid);

DPSDoUserPath(pts, i, dps_float, ops, j, bbox, dps_ustroke);
}

- drawDPSUserPaths:(int) cell;
{
floatbbox[4];
. . .
bbox[0] = bounds.origin.x;
bbox[1] = bounds.origin.y;
bbox[2] = bounds.origin.x + bounds.size.width;
bbox[3] = bounds.origin.y + bounds.size.height;
. . .
drawDPSUserPathLines(

pts, ops, CLR1, WID1, viewcenter.x, viewcenter.y,
maxdim * LEN1, maxdim, DEG1, bbox);

. . .
. . .
}

For drawing 360 hash marks, sending the user path with DPSDoUserPath() is
approximately 20% faster than using a custom wrap. The reason for the difference is that
DPSDoUserPath() places the coordinate points into binary encoded number arrays. The
server can process this number representation more efficiently than a non-encoded array.

©1990 Adobe Systems Incorporated. All rights reserved. 19

In addition, DPSDoUserPath() automatically provides an emulation of user paths. This is
necessary for printing to devices that do not contain the PostScript language extensions for
the Display PostScript system.

6. SUMMARY

The main conclusion that can be drawn from the examples in the Dial application is that
user paths can have a large performance improvement for certain types of paths. These
types of paths can include large paths or preexisting ones. The benefit arises from the
elimination of the interpreter from the path construction.

Defining the user path in the server can be an efficient way to draw items that appear
frequently. The NeXT AppKit procedure call, DPSDoUserPath(), is useful because it
provides an easy and highly efficient way to send user paths to the server and because it
provides a user path emulation for printing. This emulation is necessary for printing to
devices that do not contain the PostScript language extensions for the Display PostScript
system.

The table below displays times, in milliseconds, for drawing hash marks using the six
methods in the Dial application.

The examples that show slower results should not necessarily be discounted. For types of
drawing different from that shown with the dial, these methods might be preferred.

Number of lines 4 8 36 360

Display Time 13 18 42 190

DPSDoUserPath()

Method (# lines) 4 8 36 360

Rotate 17 26 67 575
Rotate/Uappend 22 40 114 1059
Trigonometry 13 21 73 500
User Paths 12 16 49 245
User Paths in Server 10 15 36 128
DPSDoUserPath() 13 18 42 190

Times from the Dial Application

