
SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
IMAGE CONSISTENCY at SMALL SIZES
and the CONTROL POINT APPLICATION

Technical Note #5056

July 3, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5056

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Display PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Sys-
tems Incorporated. NeXT, the NeXT logo, Application Kit, Digital Librarian, Interface Builder and
Workspace Manager are trademarks and NextStep is a registered trademark of NeXT, Inc. Objective-
C is a registered trademark of The Stepstone Corp.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
IMAGE CONSISTENCY at SMALL SIZES
and the CONTROL POINT APPLICATION

Technical Note #5056

July 3, 1990
PostScript® Developer Support Group
(415) 961-4111

1. INTRODUCTION

Previous technical notes have looked at variations of drawing lines either randomly or
around a dial. Each variation in these notes is timed and then the results discussed and
compared. This technical note takes a similar approach by using the ControlPoint
application to look at and compare seven different ways to display control points (or any
arbitrary shape).

In this case, however, the issue is not only the display time for each method, but also the
consistency between each of the control points and the device independence of each
method. Control points are typically very small; the ones used in this application are five
points across. At such small sizes, a one pixel variation in how a path maps from user to
device space can have a significant impact on appearance. Steps can be taken to ensure that
control points appear the same but some of these are device dependent. The goal of this
document is to introduce techniques that will not only display a fairly large set of small
images efficiently but also consistently and device independently.

4 ©1990 Adobe Systems Incorporated. All rights reserved.

This technical note looks at seven variations of displaying up to 1000 randomly selected
control points. The control points can be displayed in four different shapes - a filled square,
an open square, a cross and an x. The areas highlighted for each method include the display
time, the algorithm to display x number of points, the control point description, the
consistency between two or more points and the device independence of the point.

The seven approaches used to draw the control points are listed below:

• basic drawing — uses rmoveto’s and rlineto’s within wraps

• rect operations — passes an array of rectangles to the rectfill and rectstroke operators
(only for rectangular control points)

• user paths with cache — represents each control point as a cached user path, translating
to each point location before rendering the path

• user paths — places a set of user path subpaths (one for each control point) into a large
array and then executes a single ufill or ustroke

• compositing a bit map — draws the control point into a bit map and then composites the
image at each control point location

• show — takes advantage of the font caching mechanism by turning the control points
into a Type 3 font program and using the show operator to display the points

• xyshow — same as the previous method except that the xyshow operator is used instead
of show operator

The fastest, simplest to use and most consistent methods are the rect operations and the
xyshow operator. Both methods are significantly faster (by at least a factor of two) than the
other methods. Drawing 500 squares takes approximately 200 milliseconds
using rectfill,
400 milliseconds using xyshow and 1000 milliseconds using the next closest approach,
compositing. The calling sequence for these methods is much simpler and the ability to
display consistent control points across different device resolutions far surpasses the other
methods. For drawing rectangles, the rectfill and rectstroke operators are recommended.
For drawing any other shapes, the xyshow operator is recommended. (The rectstroke
operator is slightly slower than xyshow for a stroked rectangle but the convenience of
rectstroke outweighs the minor performance difference.)

Both methods have a few drawbacks. The rect operators can only be used for rectangular
control points. Circles, stars, crosses and x’s cannot be represented. In addition, both
methods can display only a one color image at a time. If multi-colored control points are
desired, the methods must be repeated with a different color and shape. Compositing is
more than twice as slow as the rect and xyshow operators but allows for multi-colored and
hand-tuned control points. But in doing so, different bitmap images must be used for
different display resolutions.

The other four methods shown, basic drawing wraps, user paths caching, user path
descriptions in large arrays and show operations, are not particularly suited for displaying
a large number of control points. They are poorer in performance and require greater
complexity than the three highlighted in the paragraph above. In addition, these methods
also have problems producing suitable images at extremely small point sizes.

©1990 Adobe Systems Incorporated. All rights reserved. 5

2. CONSISTENCY AND DEVICE INDEPENDENCE

Consistency of rendering and device independence are closely related. Consistency means
that successive instances of the same control point or character or similar object appear the
same regardless of the actual point location in device space. Device independence means
that the same description will produce the same results on different resolution displays. At
low resolutions and at small point sizes, these two issues are paramount. The Type 1 font
format implements a hinting mechanism to produce consistent rasterizations in these
instances. Other techniques outside the Type 1 font algorithms have a similar but reduced
capability for simple renderings.

Lack of consistency in drawing is readily noticeable since it can be seen on a single display.
Lack of device independence is more subtle since it takes two devices with different
resolutions to become apparent. Although device independence in regards to display
images receives little attention at the moment, it is bound to become more and more
important in the future as different displays become available.

In the ControlPoint application, an array is created at initialization time that contains 1000
point locations. These locations are selected to randomly fall at different locations within a
pixel. Since the control points are 5 points or less across, some care must be taken to ensure
that the points are displayed consistently.

In the case of the NeXT MegaPixel display, one way to have the points appear consistently
is to round the control point locations to the nearest integer. This step will work for the
MegaPixel display because the one-to-one mapping from the default user space to device
space. This one-to-one correspondence means that a point location in user space maps to
the same location in device space. Relying on this default mapping, though, is discouraged.
In the first place, scaling or other transformations of the user space will disrupt this
mapping. In the second, other displays, both current and future, will have different
resolutions and different mappings. Casting the drawing to one type of display will produce
problems when the drawing is performed on a different resolution display.

Some PostScript language operators perform a rounding adjustment automatically but
round to device space and not to user space. The rect operators and the character show
operators are two such examples. This rounding to device space produces consistent
rectangles and letters regardless of where the current point falls within a pixel. In the case
of characters, the letters are consistent but not necessarily of good form. The path locations

Inconsistency
(same display, different locations)

Device Dependence
(different displays, same locations)

The same description may produce different
results because of the paths fall at different
locations within a pixel in device space

The different mappings from user space to
device space turns on different pixels.

6 ©1990 Adobe Systems Incorporated. All rights reserved.

may turn on undesired pixels. Type 1 font programs employ hints to constrain the paths and
produce readable characters. Type 3 font programs can incorporate minor adjustments to
produce a similar hinting capability.

The user path operators also round to device space but round the entire drawing and not
each subpath. User path operators such as ufill and ustroke perform a temporary
adjustment to the current transformation matrix by rounding the origin to the nearest device
boundary. This adjustment ensures that multiple renderings of the same path will appear
the same when the paths are placed at different locations by translating the user space. The
method in this technical note that uses the ucache operator to cache a single control point
description benefits from this adjustment. The other user path method, which puts the
control point descriptions into a large array, does not. In this second instance, the change
in position is done explicitly and not through translation. As a result, the subpaths appear
in their original locations.

By the nature of its operation, compositing a bit map aligns the image to pixel boundaries
producing a consistent image. This image, though, is tied to one resolution and is not device
independent.

Another technique to produce an acceptable control point for a single display is to hand
tune the points in the path construction until an acceptable looking control point is
produced. Adjusting the numbers by fractions of points can produce the desired control
point. Problems arise, though, when these numbers are used on a different display with a
different mapping to device space. The numbers for one device may not match another
device and so they produce inexact renderings.

A better solution where possible is to round to device space so as to always align the paths
in the proper place with respect to pixel boundaries. The basic drawing and font methods
show some techniques for doing this. Note that these methods use an algorithmic solution
that is not tied to a particular device. In the case of basic drawing, the rounding is very
expensive — in fact, it doubles the display time. In the case of using a font, the description
is only executed once, and the font machinery caches the resulting image. As a result, the
roundings performed in the character description have no impact on performance.
Rounding to device space, though, should only be used when it is necessary. A case where
this is warranted is for extremely small and exacting images. Larger and infrequently
displayed images will not benefit as much from this exact positioning to device space.

©1990 Adobe Systems Incorporated. All rights reserved. 7

3. THE CONTROLPOINT APPLICATION

The ControlPoint application demonstrates various techniques for drawing small control
point shapes, and measures the speed of each technique. The rest of this note examines how
these techniques were implemented in Objective-C™ on the NeXT computer.

The application creates an array of random locations at which to draw control points at
initialization time. The user can display and time the drawing of a set of 5 to 1000 points.
Four different types of control points can be displayed. Each method uses a different way
to describe the individual control points as well as a different algorithm for displaying the
points. For each of the seven methods addressed, the control point drawing instructions, the
display algorithm and the PostScript language trace (the operations performed by the
server) are listed. A good corollary to using time as an indication of the performance of a
method is to look at the complexity of the source and the size of the trace. The three more
favorable methods have the simplest calling sequence as well as the simplest and smallest
traces. Reducing the amount of information sent to the server reduces both the transmission
time and the processing time.

There are several data structures used by all the methods. The first variable, XYArray, is
an array that holds 2000 coordinate values (randomly selected to fall within the
ControlView, the view that displays the points). Each consecutive pair of numbers
comprise a control point location. It is these values that are sent in the wraps or placed in
the arrays as the point locations for the methods below. An instance variable,
indexOfPoints, provides the starting index into the array. The instance variable,
numberOfPoints, contains the number of points to be displayed. This value is obtained
from the tag of the selected radio button for the No. of Control Points control in the
interface.

Two other arrays are used by some of the methods to send large amounts of data to the
server. The array, XYBuffer, holds any float numbers sent to the server. XYBuffer is used
for the user path methods, the rect method and the xyshow method to send the control point
locations. Another array, OpsBuffer, holds the path construction operators for the user path
method as well as the character values for the xyshow method.

3.1 Basic Drawing
This method displays the control points by making calls to wraps. One call is made for each
point. Four different PostScript language procedures are used, each one describing a
different type of control point. Only the procedure for the current shape is called by the
method.

Below lies the wraps for the control points as well as two procedures to adjust the point
locations to device space, SA and RSA. The PSWSetIndependent() and
PSWSetDependent() wraps activate and deactivate these two procedures. The wraps
themselves are invoked when the device independent button is toggled in the ControlPoint
interface. When the button is selected, the procedures are executed. When the button is not
selected, the dummy procedure, NOP, is executed.

8 ©1990 Adobe Systems Incorporated. All rights reserved.

PostScript language code:

/* This wrap is called in the +new method to define and bind the
 * procedures. The procedures are invoked within another wrap.
 * The first 3 procedures, NOP,SA and RSA, are used to adjust
 * the point positions to consistent locations in device space.
 */
defineps PSWDefsContPts ()

/NOP { } def

/SA { % x y sa x' y'
transform
0.25 sub round 0.25 add exch
0.25 sub round 0.25 add exch
itransform

} bind def

/RSA { %dx dy rsa dx' dy'
dtransform
round exch
round exch
idtransform

} bind def

/BRF{ %X Y
sa moveto -1.5 -1.5 rsa rmoveto 0 3 rsa rlineto
3 0 rsa rlineto 0 -3 rsa rlineto -3 0 rsa rlineto
closepath

} bind def

/BRS{ %X Y
sa moveto -2 -2 rsa rmoveto 0 4 rsa rlineto
4 0 rsa rlineto 0 -4 rsa rlineto -4 0 rsa rlineto
closepath

} bind def

/BX { % X Y
sa moveto -2 -2 rsa rmoveto 4 4 rsa rlineto
0 -4 rsa rmoveto -4 4 rsa rlineto

} bind def

/BC{ % X Y
sa moveto
0 2 rsa rmoveto 0 -4 rsa rlineto
-2 2 rsa rmoveto 4 0 rsa rlineto

} bind def
endps

defineps PSWSetIndependent ()
/sa /SA load def
/rsa /RSA load def

endps

defineps PSWSetDependent ()
/sa /NOP load def
/rsa /NOP load def

endps

©1990 Adobe Systems Incorporated. All rights reserved. 9

Below lies the algorithm used to display the points for this method. This algorithm makes
use of a wrap call, PSWBasic(), that is passed the name of one of the four procedures
above as well as either a fill or stroke painting operator. The procedure name and operator
to use are obtained with the getBasicProc and getBasicOp methods. These methods return
pointers to the character strings of the procedure and the painting operators. The local
variable basicProc will point to either “BRF”, “BRS”, “BX” or “BC”. The local variable
basicOp will point to either “fill” or “stroke”. (Other ways to invoke these procedures are
possible and probably preferred but are not used here in order to use a single approach
across all methods.)

PostScript language code:

defineps PSWBasic(float X, Y; char *Figure, *Op)
X Y Figure Op

endps

C-language code:

/* The drawing will center around the point passed in. */
- drawBasic:(int)cell
{

int i;

char *basicProc, *basicOp;

basicProc = [controlPoint getBasicProc];
basicOp = [controlPoint getBasicOp];
. . .

PSWEraseView();
PSsetlinewidth(0.15);

for (i = indexOfPoints; i < indexOfPoints + (numberOfPoints*2);
 i = i+2)

PSWBasic(XYPoints[i], XYPoints[i+1], basicProc, basicOp);
. . .

return self;
}

10 ©1990 Adobe Systems Incorporated. All rights reserved.

PostScript language trace for 25 points:
(These are the PostScript language operations that are sent to and executed by the server.)

113.72 382.64 BRF fill
335.57 94.79 BRF fill
176.63 84.93 BRF fill
76.77 56.66 BRF fill
71.36 135.61 BRF fill
24.02 82.15 BRF fill
63.11 356.97 BRF fill
215.25 206.47 BRF fill
161.55 30.73 BRF fill
361.98 166.83 BRF fill
54.32 322.76 BRF fill
412.14 395.39 BRF fill
107.63 125.97 BRF fill
333.61 322.91 BRF fill
222.55 154.92 BRF fill
282.94 466.14 BRF fill
400.16 320.25 BRF fill
176.22 403.91 BRF fill
156.44 490.60 BRF fill
61.06 303.79 BRF fill
378.83 421.52 BRF fill
22.02 379.82 BRF fill
318.11 456.69 BRF fill
329.33 125.83 BRF fill
128.72 204.49 BRF fill

Conventional path construction operators are not really recommended for this type of
drawing. As a comparison of the times will show, this is the slowest of all the methods.
There are two reasons for this: each wrap incurs overhead, and the wraps themselves
contain many PostScript operations. These two features combined generate a lot of
unnecessary setup, data formatting and operator execution.

In addition, this method has difficulty producing consistent images unless some expensive
adjustment procedures are performed. Without the adjustments, the random location of the
current point within a pixel causes pixel variations across images. The procedures used to
eliminate this problem by rounding to device space produce a consistent and device

(500 points)

Filled Rectangle
Open Rectangle
Cross
X

2896
2217
1797
1852

Basic Drawing

5218
4541
3767
5188

AdjustedNo Adjustment

©1990 Adobe Systems Incorporated. All rights reserved. 11

independent solution, but it is at the expense of performance. Rounding to device space
doubles the display time, a significant factor since this method is already the slowest of the
ones explored.

3.2 User Paths
Although user paths draw much of the focus and recommendation in Technical Note #5054,
Path Construction & Rendering and the Dial Application, they do not perform as well here
as other some of the other methods for drawing control points. User paths are suited for
large, existing paths as well as dynamically created paths. The paths can be retained in a
static array and passed to directly to the server in the first case or translated from the
application data structure to user paths on the fly in the second case. Both instances are very
straight-forward and efficient uses of user paths.

In this note, we look at two cases of user paths. The first makes use of the user path cache
by taking a single description and translating it to each control point location before
rendering. The second places a set of user path descriptions for control points into a large
array and performs a single ufill or ustroke operation (for a large number of control points
several waves are necessary). Both instances fail to provide an acceptable method for
drawing control points both from a performance and an image quality standpoint. Drawing
control points requires that the same description be drawn in a number of places.
Translating to each control point location or stuffing a description for each control point
into an array is not an efficient approach. The amount of data that is sent to the server and
the limited ability to adjust the small sizes to device space makes these two methods less
attractive than some of the others.

Adjusted to Device SpaceNo Adjustment

12 ©1990 Adobe Systems Incorporated. All rights reserved.

User Path Descriptions
Both cases use the same userpath descriptions for the points. These descriptions are stored
as static float and character arrays in one of the application files. The first number in each
array is the number of entries contained in the array. The information from these arrays is
supplemented with other information and placed into other arrays before transmission to
the server. (The supplemental information establishes a current point for these
descriptions.)

C-language code:

static floatptsRectfill[] = {8, -2, -2, 0, 4, 4, 0, 0, -4};
static charopsRectfill[] = {5, dps_rmoveto, dps_rlineto,

dps_rlineto, dps_rlineto, dps_closepath};

static floatptsRectstroke[] = {8, -2, -2, 0, 4, 4, 0, 0, -4};
static charopsRectstroke[] = {5, dps_rmoveto, dps_rlineto,

dps_rlineto, dps_rlineto, dps_closepath};

static floatptsX[] = {8, -2, -2, 4, 4, 0, -4, -4, 4};
static charopsX[] = {4, dps_rmoveto, dps_rlineto, dps_rmoveto,

dps_rlineto};

static floatptsCross[] = {8, 0, 2, 0, -4, -2, 2, 4, 0};
static charopsCross[] = {4, dps_rmoveto, dps_rlineto, dps_rmoveto,

dps_rlineto};

User Path Cache
In this method, a single generic control point is created that is centered around the location
(0,0). The user space origin is then translated to each control point location before
rendering. The operands for the generic user path description – the bounding box, current
point and path values – are placed in XYBuffer. The literals for the ucache, setbbox,
moveto and path construction operators for the same point are placed in OpsBuffer.

In the code segment below, the getUserPtsArray, getUserOpsArray and getUserOp
methods return the addresses of the user path description and the user path rendering
operator. The variable userPtsArray holds the address of one of the four float arrays
above. The variable userOpsArray holds the address of one of the four character arrays
above. The variable userOp points to the character string “ufill” or “ustroke”.
FIGURESIZE is the width and height of the largest control point, 8 points.

The user space is translated by performing a translate that is relative to the last translate
performed. This relative translate is faster than an absolute translate encapsulated within a
gsave/grestore nesting.

©1990 Adobe Systems Incorporated. All rights reserved. 13

PostScript language code:

defineps PSWUserPath (float Pts[Tot_Pts]; int Tot_Pts;
char Ops[Tot_Ops]; int Tot_Ops; char *Op)

[Pts (Ops)] Op
endps

C-language code:

- drawUserCache:(int)cell
{

int i, i_pt, i_op, j;
char *userOp, *userOpsArray;
float *userPtsArray;

userPtsArray = [controlPoint getUserPtsArray];
userOpsArray = [controlPoint getUserOpsArray];
userOp = [controlPoint getUserOp];

. . .
/* Places a user path description for a generic control
 * point into the OpsBuffer and XYBuffer. */
i_op = i_pt = 0;
OpsBuffer[i_op++] = dps_ucache;

XYBuffer[i_pt++] = -FIGURESIZE/2;
XYBuffer[i_pt++] = -FIGURESIZE/2;
XYBuffer[i_pt++] = FIGURESIZE/2;
XYBuffer[i_pt++] = FIGURESIZE/2;
OpsBuffer[i_op++] = dps_setbbox;

XYBuffer[i_pt++] = 0; XYBuffer[i_pt++] = 0;
OpsBuffer[i_op++] = dps_moveto;

for (j = 1; j <= userPtsArray[0]; j++)
XYBuffer[i_pt++] = userPtsArray[j];

for (j = 1; j <= (int) userOpsArray[0]; j++)
OpsBuffer[i_op++] = userOpsArray[j];

. . .
/* Performs an initial translate to the first location
 * and then performs a relative translation thereafter. */
PSgsave();
PStranslate(XYPoints[indexOfPoints], XYPoints[indexOfPoints+1]);

for (i = indexOfPoints; i < indexOfPoints + (numberOfPoints*2);
 i = i+2)

{
PSWUserPath(XYBuffer, i_pt, OpsBuffer, i_op, userOp);
PStranslate(XYPoints[i+2] - XYPoints[i],
 XYPoints[i+3] - XYPoints[i+1]);

}
PSgrestore();
. . .
return self;

}

14 ©1990 Adobe Systems Incorporated. All rights reserved.

PostScript language trace:

113.72 382.64 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
221.85 -287.85 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-158.93 -9.86 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-99.86 -28.26 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-5.41 78.94 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-47.34 -53.45 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
39.09 274.82 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
152.13 -150.5 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-53.69 -175.74 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
200.42 136.10 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-307.66 155.93 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
357.82 72.62 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-304.5 -269.42 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
225.97 196.94 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-111.05 -167.98 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
60.38 311.22 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
117.22 -145.89 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-223.94 83.66 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-19.77 86.69 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-95.38 -186.81 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
317.77 117.73 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-356.82 -41.70 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
296.10 76.86 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
11.22 -330.85 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
-200.61 78.66 translate
[[-4 -4 4 4 0 0 -2 -2 0 4 4 0 0 -4] <0b0001020404040a>] ufill
150.57 131.46 translate

©1990 Adobe Systems Incorporated. All rights reserved. 15

The benefit of the user path cache is offset by performing a translate operation and then
sending a user path description for each control point. As in the basic drawing case above,
a couple server operations are necessary for each control point.

 A consistent image can be produced because the translation before each point adjusts the
current transformation matrix uniformly. Unfortunately, device independent adjustments
cannot be made to the user path description to produce acceptable images at small sizes.
The user path format limits the description to literal numbers and path constructions
operators. This restricted format precludes any attempt to round the points to device space
with procedures like those used in the basic drawing method above.

A Single Large User Path

In the second case, putting a set of control points as user paths into a large array requires
first placing a moveto operation into the array followed by the path description for the
point. Not only does this method require two large arrays, one for the points and another
for the operators, but it also calls for replicating the same user path descriptions many times
in the arrays. The source code and the PostScript language trace are shown below. The
source is tortuous and the trace large. These two factors alone signal that it is not an
acceptable approach.

The same wrap, PSWUserPath(), used above is used to send the description and rendering
operator to the server. The local variables userPtsArray, userOpsArray and userOp also
point to the same user path descriptions and operators. The bounding box of the user path
is set to the size of the ControlView’s bounds and not to the size of a single control point
because all of the points will be drawn at their absolute locations. A moveto operation is
placed into the user path description for each control point and followed by the description
of the control point. This process is repeated for every control point.

(500 points)

Filled Rectangle
Open Rectangle
Cross
X

1953
1903
1911
1918

User Path with Cache

No Adjustment

(The individual path elements, though
cannot be adjusted because of
the restricted user path format.)

(The user paths start in the
same place in device space
because of the adjustment to
the CTM before each user path
rendering operator.)

16 ©1990 Adobe Systems Incorporated. All rights reserved.

PostScript language code:

defineps PSWUserPath (float Pts[Tot_Pts]; int Tot_Pts;
char Ops[Tot_Ops]; int Tot_Ops; char *Op)

[Pts (Ops)] Op
endps

C-language code:

- drawUserPath:(int)cell
{

int i, i_pt, i_op, j;
char *userOp, *userOpsArray;
float *userPtsArray;

userPtsArray = [controlPoint getUserPtsArray];
userOpsArray = [controlPoint getUserOpsArray];
userOp = [controlPoint getUserOp];

. . .
XYBuffer[0] = bounds.origin.x;
XYBuffer[1] = bounds.origin.y;
XYBuffer[2] = bounds.origin.x + bounds.size.width;
XYBuffer[3] = bounds.origin.y + bounds.size.height;

psBuffer[0] = dps_setbbox;

i = 0; i_pt = 4; i_op = 1;
while (i < numberOfPoints * 2)
{

/*
 * This check sends the array to the server if the array
 °* limit has been reached.
 */
if ((i_pt + userPtsArray[0] > MAX_UPATHPTS) ||

 (i_op + (int) userOpsArray[0] > MAX_UPATHOPS))
{

PSWUserPath(XYBuffer, i_pt, OpsBuffer, i_op, userOp);
i_pt = 4; i_op = 1;

}

XYBuffer[i_pt++] = XYPoints[indexOfPoints + i++];
XYBuffer[i_pt++] = XYPoints[indexOfPoints + i++];
OpsBuffer[i_op++] = dps_moveto;

for (j = 1; j <= userPtsArray[0]; j++, i_pt++)
XYBuffer[i_pt] = userPtsArray[j];

for (j = 1; j <= (int) userOpsArray[0]; j++, i_op++)
OpsBuffer[i_op] = userOpsArray[j];

}
PSWUserPath(XYBuffer, i_pt, OpsBuffer, i_op, userOp);
. . .

return self;
}

©1990 Adobe Systems Incorporated. All rights reserved. 17

PostScript language trace:

[[0 0 423 515 113.72 382.64 -2 -2 0 4 4 0 0 -4 335.57 94.79 -2 -2 0
4 4 0 0 -4 176.63 84.93 -2 -2 0 4 4 0 0 -4 76.77 56.66 -2 -2 0 4 4
0 0 -4 71.36 135.61 -2 -2 0 4 4 0 0 -4 24.02 82.15 -2 -2 0 4 4 0 0
-4 63.11 356.97 -2 -2 0 4 4 0 0 -4 215.25 206.47 -2 -2 0 4 4 0 0 -4
161.55 30.73 -2 -2 0 4 4 0 0 -4 361.98 166.83 -2 -2 0 4 4 0 0 -4
54.32 322.76 -2 -2 0 4 4 0 0 -4 412.14 395.3915 -2 -2 0 4 4 0 0 -4
107.63 125.97 -2 -2 0 4 4 0 0 -4 333.61 322.91 -2 -2 0 4 4 0 0 -4
222.55 154.929993 -2 -2 0 4 4 0 0 -4 282.94 466.14 -2 -2 0 4 4 0 0
-4 400.16 320.25 -2 -2 0 4 4 0 0 -4 176.22 403.91 -2 -2 0 4 4 0 0 -
4 156.44 490.60 -2 -2 0 4 4 0 0 -4 61.06 303.79 -2 -2 0 4 4 0 0 -4
378.83 421.52 -2 -2 0 4 4 0 0 -4 22.02 379.82 -2 -2 0 4 4 0 0 -4
318.11 456.69 -2 -2 0 4 4 0 0 -4 329.33 125.83 -2 -2 0 4 4 0 0 -4
128.72 204.49 -2 -2 0 4 4 0 0 -4]
<0001020404040a01020404040a01020404040a01020404040a01020404040a010
20404040a01020404040a01020404040a01020404040a01020404040a010204040
40a01020404040a01020404040a01020404040a01020404040a01020404040a010
20404040a01020404040a01020404040a01020404040a01020404040a010204040
40a01020404040a01020404040a01020404040a>] ufill

Another notable drawback of this particular method is that there is no way to adjust the
positioning of control points in the array. Unlike the ucache method the appearance of the
control points can be inconsistent because the individual control points do not start in
prescribed locations within device space. The user path rounding is only performed once in
this case and not for each point as in the case above. A wrap could be used to round the
control point location to device space before placement in the array but since this would
add additionally client-server messages (with return arguments) the resulting time would
be unacceptable.

(500 points)

Filled Rectangle
Open Rectangle
Cross
X

849
618
531
607

User Path in a Large Array

No Adjustment

18 ©1990 Adobe Systems Incorporated. All rights reserved.

A less significant item about user paths in a large array is that the subpaths (control points)
are painted or stroked at that same time, that is, they appear on the screen simultaneously.
All the other methods cascade the control points in a continuous procession. This is not a
problem when drawing in a buffered window or when the number of operators are less than
the recommended number per ufill or ustroke. When drawing on the screen in a non-
buffered window and when multiple rendering operators are necessary, the control points
appear in waves. In the ControlPoint application, 1000 points will cause three sets of
points to be displayed with each set containing a few hundred points. The appearance of the
three waves can be disrupting to the eye.

Note: Arrays containing over 2500 points may exceed the path limit in the first
release of the Display PostScript system, resulting in a limitcheck error. As a
result, an upper limit of 2500 points should be placed on user paths arrays used
for display purposes. Applications that make use of the emulation provided by
DPSDoUserPath() to produce Level 1 code should place the limit at 1500 points,
the path limit for Level 1 printers.

3.3 Rectangle Operations
The Display PostScript language rectangle operators, rectfill and rectstroke, provide the
fastest and simplest method of those studied. The drawback is that this method can only be
used for control points that have rectangular shapes. In the ControlPoint application, this
method is made unavailable whenever the control point is a cross or an x. When rectangles
are to be displayed, though, these operations should be used.

The arguments for the rectangle operations can take three forms, four numbers describing
a single rectangle or an array or encoded number string describing an arbitrary number of
rectangles. Examples are shown below.

x y width height rectfill
numarray rectfill
numstring rectfill

The first form above performs the equivalent of:

gsave
newpath
x y moveto
width 0 rlineto
0 height rlineto
width neg 0 rlineto
closepath
fill
grestore

Providing an array of rectangles for the rectangle operations is much faster than calling
operators multiple times for much the same reasons that user paths are faster than
conventional drawing. Only one single operator call or wrap is necessary for displaying a
large number of rectangles minimizing the number of PostScript language operations that
are executed. Whenever possible, multiple rectangles, even different sized rectangles,
should be combined into a single operation. When the array of rectangles is replaced by
individual calls to rectfill, the processing time triples from approximately 300 milliseconds
to 1000 milliseconds for 500 rectangles. RECTOFFSET and RECTSIZE have values of
2 and 4 respectively.

©1990 Adobe Systems Incorporated. All rights reserved. 19

PostScript language code:

defineps PSWRectDraw (float XYScratch[j]; int j; char *rectOp)
XYScratch rectOp

endps

C-language code:

/*
 * Here we have to calculate the offset from the center because
 * rectfill starts drawing at the location passed in.
 */
- drawRectOp:(int)cell
{

int i, j;

char *rectOp;

rectOp = [controlPoint getRectOp];

. . .
for (i = indexOfPoints, j = 0;

i < indexOfPoints + (numberOfPoints*2); i = i+2, j = j+4)
{

/* Draw the rectangles if the array limit has been reached */
if (j+3 > MAX_RECTPTS)
{

PSWRectDraw (XYBuffer, j, rectOp);
j = 0;

}

XYBuffer[j] = XYPoints[i] - RECTOFFSET;
XYBuffer[j+1] = XYPoints[i+1] - RECTOFFSET;
XYBuffer[j+2] = RECTSIZE;
XYBuffer[j+3] = RECTSIZE;

}
PSWRectDraw (XYBuffer, j, rectOp);
. . .

return self;
}

PostScript language trace:

[111.72 380.64 4 4 333.57 92.79 4 4 174.63 82.93 4 4 74.77 54.66 4
4 69.36 133.61 4 4 22.02 80.15 4 4 61.11 354.97 4 4 213.25 204.47 4
4 159.55 28.73 4 4 359.98 164.83 4 4 52.32 320.76 4 4 410.14 393.39
4 4 105.63 123.97 4 4 331.61 320.91 4 4 220.55 152.92 4 4 280.94
464.14 4 4 398.16 318.25 4 4 174.22 401.910 4 4 154.44 488.60 4 4
59.06 301.79 4 4 376.83 419.52 4 4 20.02 377.82 4 4 316.11 454.69 4
4 327.33 123.83 4 4 126.72 202.49 4 4] rectfill

Note: The NextStep C functions, NXRectFill() and NXRectFillList(), are not
used in this example because corresponding RectStroke functions are not
available.

20 ©1990 Adobe Systems Incorporated. All rights reserved.

Also note: A limit of 500 rectangles per rectfill or rectstroke invocation is
recommended. The rectstroke operator produces limitcheck errors in the first
release of the Display PostScript system when passed an array of 600 or more
rectangles. In addition, the Client Library generates overflow errors with arrays
larger than 8000 entries. As a result, the rectfill operator can handle at most 2000
rectangles. For these reasons, 500 is a sufficiently large but suitable upper bound
for both operators.

3.4 Compositing
The next method shown composites a bitmap of a control point at each control point
location. Although more than twice as slow as xyshow, compositing provides an advantage
that the xyshow does not: multi-colored control points can be used without having to render
the control point multiple times. The other two methods require a separate invocation for
each color.

The ControlPoint application uses a Bitmap object to hold the image of the control point.
When the control point is first drawn in the bitmap, the bitmap is first painted over with a
white color and a transparent alpha. The control point is then imaged into the bitmap. The
transparent alpha of the bitmap allows the portions of the drawing background covered by
the bit map but not covered by control point to show through. The basic drawing method is
used to draw the control point in the bitmap. The variable basicProc points to the name of
the drawing procedure in the server while basicOp points to either “fill” or “stroke”.

C-language code:

- drawBitMap:bitMapId
{

[bitMapId lockFocus];
PSgsave();

PSsetalpha(0.0); /* Transparent */
PSsetgray(NX_WHITE);
PSrectfill(0, 0, FIGURESIZE, FIGURESIZE);
PSsetalpha(1.0); /* Opaque */
PSsetgray(NX_BLACK);
PSWBasic(FIGURESIZE/2, FIGURESIZE/2, basicProc, basicOp);

PSgrestore();
[bitMapId unlockFocus];

return self;
}

(500 points)

Filled Rectangle
Open Rectangle
Cross
X

289
587
–––
–––

Rectangle Operations

©1990 Adobe Systems Incorporated. All rights reserved. 21

Once the control point has been imaged, the only step required to display a point is to
composite the bitmap at the point’s location. An offset should be used so that the center and
not the lower left or upper left corner of the bitmap lies on the point location. The source
and the trace for this method are listed below:

C-language code:

- drawComposite:(int)cell
{

int i;
NXPoint point;

[controlPoint drawBitMap:bitMap];

. . .
for (i = indexOfPoints; i < indexOfPoints + (numberOfPoints*2);

 i = i+2)
{

point.x = XYPoints[i] - FIGUREHALFSIZE;
point.y = XYPoints[i+1] - FIGUREHALFSIZE;
[bitMap composite:NX_SOVER toPoint:&point];

}
. . .

return self;
}

PostScript language trace:

0 0 8 8 17 execuserobject 109.72 378.64 2 composite
0 0 8 8 17 execuserobject 331.57 90.79 2 composite
0 0 8 8 17 execuserobject 172.63 80.93 2 composite
0 0 8 8 17 execuserobject 72.77 52.66 2 composite
0 0 8 8 17 execuserobject 67.36 131.610 2 composite
0 0 8 8 17 execuserobject 20.02 78.15 2 composite
0 0 8 8 17 execuserobject 59.11 352.97 2 composite
0 0 8 8 17 execuserobject 211.25 202.47 2 composite
0 0 8 8 17 execuserobject 157.55 26.73 2 composite
0 0 8 8 17 execuserobject 357.98 162.83 2 composite
0 0 8 8 17 execuserobject 50.32 318.76 2 composite
0 0 8 8 17 execuserobject 408.14 391.39 2 composite
0 0 8 8 17 execuserobject 103.63 121.97 2 composite
0 0 8 8 17 execuserobject 329.61 318.91 2 composite
0 0 8 8 17 execuserobject 218.55 150.92 2 composite
0 0 8 8 17 execuserobject 278.94 462.14 2 composite
0 0 8 8 17 execuserobject 396.16 316.25 2 composite
0 0 8 8 17 execuserobject 172.22 399.91 2 composite
0 0 8 8 17 execuserobject 152.44 486.60 2 composite
0 0 8 8 17 execuserobject 57.06 299.79 2 composite
0 0 8 8 17 execuserobject 374.83 417.52 2 composite
0 0 8 8 17 execuserobject 18.02 375.82 2 composite
0 0 8 8 17 execuserobject 314.11 452.69 2 composite
0 0 8 8 17 execuserobject 325.33 121.83 2 composite
0 0 8 8 17 execuserobject 124.72 200.49 2 composite

22 ©1990 Adobe Systems Incorporated. All rights reserved.

The composite operator takes the graphic state object of the image as one of its arguments.
In the case above, the graphic state object is stored as a user object. The 17 execuserobject
serves to retrieve the graphic state object and place it on the stack. User objects and graphic
state objects are covered more thoroughly in Technical Paper #5057, User and Graphic
State Objects and the Clock Application.

Since each control point requires a separate single operator call and one PostScript
language operator, composite, the cumulative overhead of the calls accounts for the
reduced performance in comparison to the rect operations and xyshow.

The limitation of this method is that it is highly device dependent. A bitmap is only suitable
for one resolution. Whereas the other types of control point renderings are infinitely
scalable, a bitmap does not scale particularly well, especially when the amount of data is
small. As a result, if the size of a control point changes then a new image is necessary. The
ControlPoint application draws the control point in the bitmap object using the basic
drawing technique. This is acceptable since just like the font, the control point is rendered
only once. In the case of the font, the control point image is stored in the font cache. In the
case of the bitmap, the image is stored in the bitmap.

A TIFF file could also be stored in the .nib file for use as a control point image. If a TIFF
file is used then a separate image is necessary for each device resolution. Drawing into the
bitmap can reduce the amount of device dependence. While the bitmap is still tied to one
resolution, the drawing is not. A multi-colored control point bitmap could be created very
quickly with a font or other drawing technique.

3.5 show and xyshow
The next two methods makes use of the font machinery to cache and display points. In each
case, the character description is executed once, when the character is first displayed. Each
subsequent display uses the description stored in the font cache. The font cache machinery
can render characters quickly. Printing a character that is already in the font cache is up to
a thousand times faster than scan converting it from the character description in the font.

The font cache does not retain color information. It stores the data as a mask. As a result,
the color or gray should not be set in the character descriptions. Changes in color should be
produced by changing the current color or gray in the current graphic state before invoking
the show (or xyshow) operator. If multi-colored control points are desired, show operator
should be repeated with a change in color or gray appearing between invocations, or a
bitmap object should be used with the composite operation.

(500 points)

Filled Rectangle
Open Rectangle
Cross
X

1178
1166
1167
1172

Compositing

©1990 Adobe Systems Incorporated. All rights reserved. 23

The font description used for the show and xyshow operators does not appear in the code
segments below but is covered in a separate section that follows. The getChar method
returns the character that corresponds to the current control point. The selectFont method
selects and scales the font. (FONTSIZE has a value of 5.) The PSgsave()/PSgrestore()
nesting preserves the previous font.

show
The show operator is not recommended because each character requires a separate wrap to
execute a moveto and a show operation. Control points do not appear together and so only
a single character can be rendered per show operator. The font caching mechanism
provides some benefit, but the advantage is offset by the overhead that each wrap incurs as
well as the processing time required for each operator.

 PostScript language code:

defineps PSWShow (float X, Y; char *Char)
 X Y moveto (Char) show

endps

C-language code:

- drawShow:(int)cell
{

int i;
char fontchar[2];

fontchar[0] = [controlPoint getChar];
fontchar[1] = 0;
[controlPoint selectFont:FONTSIZE];

. . .
PSgsave();

for (i = indexOfPoints; i < indexOfPoints + (numberOfPoints*2);
i = i+2)

PSWShow(XYPoints[i], XYPoints[i+1], fontchar);
PSgrestore();
. . .

return self;
}

24 ©1990 Adobe Systems Incorporated. All rights reserved.

PostScript language trace:

113.72 382.64 moveto (a) show
335.57 94.79 moveto (a) show
176.63 84.93 moveto (a) show
76.77 56.66 moveto (a) show
71.36 135.61 moveto (a) show
24.02 82.15 moveto (a) show
63.11 356.97 moveto (a) show
215.25 206.47 moveto (a) show
161.55 30.73 moveto (a) show
361.98 166.83 moveto (a) show
54.32 322.76 moveto (a) show
412.14 395.39 moveto (a) show
107.63 125.97 moveto (a) show
333.61 322.91 moveto (a) show
222.55 154.92 moveto (a) show
282.94 466.14 moveto (a) show
400.16 320.25 moveto (a) show
176.22 403.91 moveto (a) show
156.44 490.60 moveto (a) show
61.06 303.79 moveto (a) show
378.83 421.52 moveto (a) show
22.02 379.82 moveto (a) show
318.11 456.69 moveto (a) show
329.33 125.83 moveto (a) show
128.72 204.49 moveto (a) show

xyshow
The xyshow operator, however, works very well for displaying control points. This
operator takes a string of characters followed by an array or encoded number string of point
displacements. The number of operations are minimal; in the case of the ControlPoint
application, a single xyshow operation is used. The size of the data structures necessary for
xyshow are smaller than those for either the rect operator method or the user path method.
Only one character and two points are necessary to describe the control point for xyshow
whereas the rect operators need four points per control point and the user path description
at least two points for each path construction operator plus an entry for the operator itself.

(500 points)

Show

Filled Rectangle
Open Rectangle
Cross
X

1123
1124
1131
1140

1151
1120
1166
1128

AdjustedNo Adjustment

©1990 Adobe Systems Incorporated. All rights reserved. 25

The array passed to the xyshow operator contains the displacements relative to the
previously placed character and not the absolute location of the character. The first two
numbers in the array are the positions of the second character offset from the positions of
the first. A current point must be established before executing the xyshow operator. This
relative positioning means that when a control point is moved, not only does the relative
position for that point change, but also the relative position for the point immediately
following as well.

PostScript language code:

defineps PSWXYShow(float X, Y; char *CharString;
float XYCoords[j]; int j)

X Y moveto (CharString) XYCoords xyshow
endps

C-language code:

- drawXYShow:(int)cell
{

int i, j;
char fontchar;
fontchar = [controlPoint getChar];

/*
 * Place the characters into the character string for xyshow.
 * Terminate the string with a NULL character.
 */
for (i = 0; i < numberOfPoints; i++)

OpsBuffer[i] = fontchar;
OpsBuffer[i] = 0;

[controlPoint selectFont:FONTSIZE];

. . .
PSgsave();

/* Calculate the displacement from the previous character. */
for (i = indexOfPoints+2, j = 0;

i < indexOfPoints + (numberOfPoints*2); i++, j++)
XYBuffer[j] = XYPoints[i] - XYPoints[i-2];

/*
 * Provide a dummy set of displacements for the move after
 * the last character has been shown.
 */
XYBuffer[j++] = 0;
XYBuffer[j++] = 0;

/* Establish a current point and they execute the xyshow. */
PSWXYShow(XYPoints[indexOfPoints], XYPoints[indexOfPoints+1],

OpsBuffer, XYBuffer, j);
PSgrestore();

. . .

return self;
}

26 ©1990 Adobe Systems Incorporated. All rights reserved.

PostScript language trace:

113.720001 382.649994 moveto
(aaaaaaaaaaaaaaaaaaaaaaaaa)
[221.85 -287.85 -158.93 -9.86 -99.86 -28.26 -5.41 78.94 -47.34 -53.45
39.09 274.82 152.13 -150.5 -53.69 -175.74 200.42 136.10 -307.66
155.93 357.82 72.62 -304.5 -269.42 225.97 196.94 -111.05 -167.98
60.38 311.22 117.22 -145.89 -223.94 83.66 -19.77 86.69 -95.38 -186.81
317.77 117.73 -356.82 -41.70 296.10 76.86 11.22 -330.85 -200.61 78.66
0 0] xyshow

Unlike rectfill or rectstroke, xyshow can display different characters with a single
operation. Two different types of control points can be drawn just by including different
characters in the string that is passed to xyshow.

In both cases, the consistency between images is handled by the font machinery. Each
character is positioned at the same point within device space. This ensures that the same
image is produced regardless of the user space point chosen. The font in the ControlPoint
application employs the same procedure used in the basic drawing method to round the path
placement to device space. This procedure provides device independence without
sacrificing performance (the font cache reduces the number of times the description is
executed). This approach is fine for the simple character descriptions that are employed.
Applications that use more elaborate characters might want to consider the Type 1 font
format. The section below contains details on the character descriptions used.

(500 points)

xyshow

Filled Rectangle
Open Rectangle
Cross
X

481
482
483
483

482
483
480
488

AdjustedNo Adjustment

Adjusted to Device SpaceNo Adjustment

(Consistency handled by
the font machinery.)

©1990 Adobe Systems Incorporated. All rights reserved. 27

4. CREATING A TYPE 3 FONT

The most significant part of this approach is to create a font of control points. The section
below shows the font used in the application briefly explaining each section. The PostScript
Language Reference Manual (the Red Book) and the PostScript Language Tutorial and
Cookbook (the Blue Book) provides a detailed explanation of font dictionaries as well as
several examples of creating or modifying font programs. These books should be referred
to for more detailed information in this area. The font used in the example is a Type 3 font.
A Type 1 font program can be created, incorporating hints to accommodate small point
sizes and low resolutions. A description of this format is available in the Adobe Type 1 Font
Format specification.

Each font program contains a number of key-value pairs. Some of these are used by the font
machinery and must adhere to the correct semantics. Others are optional and user-
definable. Each font must have the following keys: FontMatrix, FontType, FontBBox
and Encoding. In addition, each font must have a procedure called BuildChar whose job
it is to render the character for the encoding vector passed to it. Below lies the font
definition for the four control points.

defineps PSWDefineFont(char *fontname)
8 dict dup begin
/FontName /fontname def
/FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [-500 -500 500 500] def
/Encoding 256 array def

0 1 255 {Encoding exch /.notdef put} for
Encoding

dup (a) 0 get /Rectfill put dup (b) 0 get /Rectstroke put
dup (c) 0 get /Ximage put (d) 0 get /Crossstroke put

/CharProcs 5 dict def
CharProcs begin

/.notdef { } def
/Rectfill {

-300 -300 sa moveto 0 600 rsa rlineto
600 0 rsa rlineto 0 -600 rsa rlineto
closepath fill

} def
/Rectstroke {

-400 -400 sa moveto 0 800 rsa rlineto
800 0 rsa rlineto 0 -800 rsa rlineto
closepath stroke

} def
/Ximage {

-500 -500 translate
1000 1000 scale
5 5 true [5 0 0 5 0 0]
{<88 50 20 50 88>} imagemask

} def
/Crossstroke {

0 400 sa moveto 0 -800 rsa rlineto
-400 0 sa moveto800 0 rsa rlineto stroke

} def
end

28 ©1990 Adobe Systems Incorporated. All rights reserved.

/BuildChar { % font dict, char code
500 0 -500 -500 500 500 setcachedevice
exch begin

true setstrokeadjust
Encoding exch get
CharProcs exch get
exec

end
} def
end
/fontname exch definefont pop

endps

4.1 Required Keys

FontMatrix is the matrix that describes the mapping of the character to the user coordinate
system. Just as the user space uses a matrix to map to device space, a font program uses a
matrix to map to user space. This process avoids having to scale the character descriptions
in order to scale the font. If a 10 point font is desired, the matrix is scaled by 10. If 12 point
font is desired, the matrix is scaled by 12. (The font matrix is either scaled by the scalar
argument passed to scalefont or is concatenated by the matrix argument passed to
makefont.

Most font programs, including the one in the ControlPoint application, use a FontMatrix
of [0.001 0 0 0.001 0 0] and define the characters in terms of a 1000 unit character
coordinate system. In other words, a character is drawn with the idea that 1000 points in the
character coordinate system will equal 1 point in a 1 point font and 2 points in a two point
fonts. In the font for the control points, the characters are centered at the point (0, 0) and
extends to the left and bottom as well as to the right and top. This centers the character on
the current point when the character is drawn. The use of a 1000 unit coordinate system is
part historical and part regimented. The Type 1 font format employs a number encoding
scheme to reduce the amount of space necessary to store integer values between -1131 and
1131. Working with a 1000 unit coordinate system allows for a suitable drawing range
while still taking advantage of the compact number representation. Type 3 font programs

©1990 Adobe Systems Incorporated. All rights reserved. 29

do not employ this encoding scheme but most choose to use the same FontMatrix for
uniformity purposes. The diagram below shows the mapping that occurs to the
ControlPoint font which has a font matrix of [.001 0 0 .001 0 0] and a fontsize of 5.

The FontType indicates where the information for the character description is to be found
and how it is represented. The font type for a user-defined font should be set to 3. The
FontBBox gives the lower left and upper right coordinates for the bounding box that
contains all the characters were they to be imaged at the same point. The font machinery
uses this array for setting clipping paths and making caching decisions. The values in the
FontBBox should be accurate if they are non-zero.

The Encoding entry is an array of 256 names that map the character codes to the procedure
names. An application or a computer system may change a font’s encoding vector to match
the requirements of the application or system. The index into the array is the character code.
The entries of the array are procedure names for the characters. Therefore, juggling the
entries changes the encodings. In the ControlPoint font, the character codes for a, b, c and
d are used for the control points. The procedure names for the control points are placed in
these locations of the encoding vector array. The /.notdef procedure name is placed in all

1000
800
600
400
200
0

-200
-400
-600
-800
-1000

-1
00

0
-8

00
-6

00
-4

00
-2

00 0 20
0

40
0

60
0

80
0

10
00

60
58
56
54
52
50
48
46
44
42
40

Character Description: Drawing in User Space:

-400 -400 moveto
0 800 rlineto
800 0 rlineto
0 -800 rlineto
closepath

/ControlPointsFont
5 selectfont
50 50 moveto
(b) show

Font Space User Space Device Space

Font Matrix
*

fontsize

Current Transformation
Matrix

40 42 44 46 48 50 52 54 56 58 60

30 ©1990 Adobe Systems Incorporated. All rights reserved.

the other locations. Each character name has a procedure by the same name in the
CharProcs dictionary. The /.notdef procedure is used as a place holder for unused
characters.

The elements of the string that are passed to the show and xyshow operators are treated as
character codes. The character codes are used as indices into the Encoding array to obtain
a procedure name. The procedure name is then looked up in the CharProcs dictionary and
its value executed. The setcachedevice in the BuildChar procedure above sets the
dimensions of the font cache and the setstrokeadjust turns on stroke adjustment. Stroke
adjustment is off by default when building a Type 3 font character.

4.2 Optional Keys
Optional keys typically used in font software are: FontName, PaintType, Metrics,
StrokeWidth, FontInfo, UniqueID, CharStrings and Private. The ControlPoint font
only includes the FontName entry. This name is separate from the name used to define the
font and is provided for information only. The interpreter uses the name passed to it in the
definefont operation to identify the font.

UniqueID provides a unique identifier for the system to use to identify characters that have
already been created and cached. The font machinery uses this ID to operate more
efficiently across applications. Each font program that uses a UniqueID should have a
different value. Font programs that have a UniqueID will be cached across jobs while fonts
that do not have a UniqueID will only be cached for the immediate jobs. UniqueIDs that
are not unique may inadvertently cause incorrect characters to appear. Adobe Systems
Incorporated maintains a registry of UniqueId numbers. The font used in the ControlPoint
application is localized to one application and relatively trivial so a UniqueID is not
employed.

CharProcs Dictionary
(ControlPoint Font)

/.notdef

/Rectfill

/Rectstroke

/Ximage

/Crossstroke

95

96

97

98

99

100

101

/.notdef

/.notdef

/Rectfill

/Rectstroke

/Ximage

/Crossstroke

/.notdef

Encoding Array
(ControlPoint Font)

{ }

{. . .}

{. . .}

{. . .}

{. . .}

/BuildChar { % font dict, character code
500 0 -500 -500 500 500 setcachedevice
exch begin

true setstrokeadjust
Encoding exch get
CharProcs exch get
exec

end
} def

©1990 Adobe Systems Incorporated. All rights reserved. 31

5. Printing Issues

The focus of this note and the ControlPoint application has been the display of control
points on the screen. The techniques used here can just as easily be used to display an
arbitrary number of objects as part of an application. An example would be to display stars
within a star map. Such an application would more than likely want to be able to image to
a printer. Only two methods would be able to print without any adjustments, drawing with
basic operators and using the show operator. The PostScript language instructions
produced by these methods are compatible with all PostScript language interpreters.

User paths, rect operations and the xyshow operator need emulation procedures for
interpreters that do not contain the Display PostScript extensions. In the case of user paths,
the NeXT procedure, DPSDoUserPaths(), automatically provides emulation for printing.

The emulation for the rect operations are included in the NeXT print driver but are shown
below for reference purposes.

PostScript language code:

/__NXDoRectOp {
1 index type /arraytype eq {
exch aload length
dup 2 add -1 roll exch
4 idiv}
{ 1 } ifelse
{5 1 roll
newpath 4 2 roll moveto 1 index 0 rlineto
0 exch rlineto neg 0 rlineto closepath
dup cvx exec
} repeat pop

} __NXbdef
/rectclip {/clip __NXDoRectOp newpath} __NXbdef
/rectfill {gsave /fill __NXDoRectOp grestore} __NXbdef
/rectstroke {gsave /stroke __NXDoRectOp grestore} __NXbdef

The emulation for the xyshow operator shown below is not contained in the NeXT print
driver and so it must be made a part of the prologue by the application. The Adobe
PostScript language compatibility guidelines prescribe that only complete emulations may
be assigned the actual operator name. Partial emulations should be given a separate and
distinct name. Since this emulation does not handle encoded number strings and as a result
is not complete, the name xys is used. This name should be used in place of xyshow. The
procedure assigned to xys is selected conditionally. The xyshow operator is assigned if the
xyshow operator exists. The emulation is assigned if xyshow does not exist. The code
segment below shows this sequence.

32 ©1990 Adobe Systems Incorporated. All rights reserved.

PostScript language code:

/_xyshowemulation {
0 1 3 index length 1 sub {

currentpoint
2 index 5 index exch 1 getinterval show
moveto
2 mul dup 2 index exch get exch 1 add 2 index exch get rmoveto

} for
pop pop

} bind def

/xyshow where {
pop
/xys /xyshow load def

}{
/xys /_xyshowemulation load def

} ifelse

The compositing technique cannot be used for printing. Although it is possible to use the
image and imagemask operators to transfer a bitmap to the page, these approaches are not
recommended. With the image operator, the entire bit map will appear as if drawn with
opaque ink. Everything that is under the dimensions of the bitmap would be obscured. The
imagemask will allow transparency but the resulting image will be limited by the amount
of sample data. In most cases, the image will be of poorer quality than if constructed as a
path.

©1990 Adobe Systems Incorporated. All rights reserved. 33

6. SUMMARY

Small and frequently drawn objects present display problems that larger objects do not
share. At sizes less than 10 points, variations in how a path falls within a pixel can have a
dramatic effect on the appearance of the object. As a result, a technique for displaying a
large number of these objects must not only be fast but must reproduce the objects to be
exactly alike. Basic drawing techniques can achieve this consistency but at a high price in
terms of performance. User paths are poor candidates because their restricted data format
does not allow any positional adjustment to an object. Compositing provides a clean and
consistent approach but at the cost of device dependence. Different resolution or different
size objects need separate bitmaps.

The two methods that are recommended are the rectfill and rectstroke operators and the
xyshow operator. Rectfill and rectstroke operators are limited to rectangles and xyshow
requires that the objects be converted into a font. Nevertheless, these operators provide the
most efficient and consistent display of small images. Rectfill and rectstroke require no
overhead such as wraps, user path or character descriptions and are very fast, especially
when passed arrays of rectangles. Xyshow uses the font cache to quickly blit the stored
image onto the page or display. Both methods provide a mechanism that automatically
adjusts the position of the object thereby producing the same image regardless of the actual
mapping to device space.

(500 points)

User
 Path
Cache

Filled Rectangle

Open Rectangle

Cross

X

2896

2217

1797

1852

1953

1903

1911

1918

Basic
Drawing

Rect
Ops

849

618

531

607

289

587

–––

–––

Large
User
Path

Compositing

1178

1166

1167

1172

xyshow

1123

1124

1131

1140

481

482

483

483

Show

Summary of Times
(without adjustments)

