
SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
USER and GRAPHICS STATE OBJECTS
and the CLOCK APPLICATION

Technical Note #5055

July 3, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5055

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Display PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Sys-
tems Incorporated. NeXT, the NeXT logo, Application Kit, Digital Librarian, Interface Builder and
Workspace Manager are trademarks and NextStep is a registered trademark of NeXT, Inc. Objective-
C is a registered trademark of The Stepstone Corp.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

SC RRIPTTSOP

THE DISPLAY POSTSCRIPT® SYSTEM:
USER and GRAPHICS STATE OBJECTS
and the CLOCK APPLICATION

Technical Note #5055

July 3, 1990
PostScript® Developer Support Group
(415) 961-4111

1. INTRODUCTION

The Display PostScript® system contains a number of features specifically designed to aid
drawing in a display environment. This technical note, with the help of the Clock
application, takes a look at two of these — user objects and graphics state objects.

A user object is an integer identifier of a PostScript language object in the server. User
objects provide a way to refer to objects in the server using integer keys rather than name
keys. Any PostScript language object, such as arrays, strings, dictionaries and gstates, can
be referenced by user objects. User objects are more convenient to store and manipulate in
C-language data structures than PostScript language variable names which have to be
stored as strings or character arrays. This note will focus on managing graphics state objects
and user path descriptions with user objects.

A graphics state, or gstate, is a collection of parameters that determine how a path is
rendered. A graphics state object is a new PostScript language data type that encapsulates
the values of the parameters that make up a graphics state. Graphics state objects provide
more flexibility than the graphics state stack for setting the current graphics state. A
graphics state object can be made the current graphics state by performing a setgstate
operation on the graphics state object whereas the use of the graphics state stack requires
nesting graphics states with gsaves and then reestablishing the topmost graphics state with
each grestore. Graphics state objects allow indiscriminate switching between states.
Graphic state objects can be a performance win for certain uses such as scrolling. They
should be used judiciously, however, since there is some appreciable memory cost
associated with them.

Although these features provide a slight performance advantage over conventional
methods, their primary usefulness is in offering a means to manage objects in the server
more simply. The NeXT print driver provides user object capability so user objects can be
sent to non-Display PostScript interpreters. Graphics state objects are more difficult to
emulate for a print environment. The advantage of graphics state objects is for switching
between states for frequently drawn objects, which is a requirement for drawing on
displays. As a result, graphics state objects should really be used for display purposes and
not within page descriptions.

The Clock application shows three additional drawing techniques — using an offscreen
buffer, storing of the user path descriptions of the clock hands in the server and scaling of
the View object. An offscreen buffer eliminates having to redraw the clock face every tick.
Storing of the user path descriptions in the server eliminates retransmitting the descriptions

4 ©1990 Adobe Systems Incorporated. All rights reserved.

each time a hand is drawn. Scaling of the View object and then redefining the graphics
states for the hands scales the clock hands within the view without having to explicitly scale
each graphics state or each user path description fragment.

Storing user path descriptions in the server was addressed in Technical Note #5054, Path
Construction & Rendering and the Dial Application. This technique can improve
performance by approximately 20% over retransmitting the user paths with each
redrawing. Although the performance difference is not as significant here, the primary
reason they are stored in the server is that it simplifies the drawing invocation. Since the
description of the clock hands do not change, it makes more sense to store them in the
server than to transmit them every time. The Clock application differs from the Dial
Application in that the Clock application uses user objects to refer to the user paths in the
server rather than static character arrays.

2. CLOCK APPLICATION

A simple clock is used to highlight the several techniques discussed in this technical note.

The clock is composed of a view within a window. The view has six visual components —
a clock face, an hour hand, a minute hand, a seconds hand, a seconds hand shadow and an
alarm hand. Almost all the hands have a different offset from the center of the clock face
and a different color and line width attribute. For these reasons, a graphics state is retained
for each hand, except for the alarm. It has the same offset as the hour hand and so it uses

©1990 Adobe Systems Incorporated. All rights reserved. 5

that gstate. Using a graphics state to manage this information eliminates having to translate
each hand before drawing. Although this provides a slight performance gain, its principal
advantage is that it provides a cleaner, more manageable switching between drawing states.

(The alarm hand can be selected and moved around the dial, although implementing the
actual alarm and the voice-activated shut-off has been left as an exercise for the reader.)

Hour hand

Alarm hand

Seconds hand shadow

Seconds hand

Minute hand

6 ©1990 Adobe Systems Incorporated. All rights reserved.

3. USER OBJECTS

In the PostScript language examples shown above, graphics state objects are retained as
user objects. User objects provide an efficient way to refer to PostScript language objects
in the server. The traditional way to refer to objects is to use a key, the key normally being
a name object. Using names to refer to objects is preferred when writing PostScript
language by hand because the dictionary lookup mechanism has been optimized for names.
Referring to objects as names quickly becomes burdensome though when referring to
PostScript objects in the client program. Static character arrays or string literals can be used
and sent as arguments with wraps but this reference system is clumsy when more than a few
objects are used. In addition, this approach does not avail itself to handling dynamically
created objects. User objects provide the means to tag objects with an integer instead of a
name, saving space and providing a system to dynamically name objects.

The example below is taken from the Dial application highlighted in Technical Note #5054.
This example uses static character arrays to refer to user paths in the server. The character
arrays are sent to the server first to define the user path and then again to refer to the user
path when rendering.

PostScript language code:

defineps PSWDefineUserPath (float Pts[Tot_Pts]; int Tot_Pts;
char Ops[Tot_Ops]; int Tot_Ops; char *str)

/str [Pts (Ops)] def
endps

defineps PSWDrawUserPath (char *str)
str ustroke

endps

C-language code:

static char *upath1 = {"upath1"};

PSWDefineUserPath(pts, i, ops, j, upath1);

PSWDrawUserPath(upath1);

The example below shows the sequence used in the Clock application to define the user
paths as user objects. The user path points and operators are stored in one of the client files
as static float array and character arrays. They just as easily could be stored in a section of
a Mach-O segment. For each user path, a point and an operator array are sent to the server
within a wrap and placed on the stack as a single array of two elements. The procedure,
DPSDefineUserObject(), is then used to define the user object. A NULL identifier is
passed as argument prompting the procedure to create a new object identifier. Subsequent
referrals to the user path descriptions employ the user object.

©1990 Adobe Systems Incorporated. All rights reserved. 7

PostScript language code:

defineps PSWSetUpath (float Pts[Tot_Pts]; int Tot_Pts;
char Ops[Tot_Ops]; int Tot_Ops)

[Pts (Ops)]
endps

defineps PSWUpathFill(userobject UPath)
UPath ufill

endps

C-language code:

int upathHour; /* Instance variable, NULL initial value */

PSWSetUpath(ptsHour, sizeof (ptsHour)/sizeof (float),
opsHour, sizeof (opsHour)/sizeof (char));

upathHour = DPSDefineUserObject(upathHour);

PSWUpathStrokeFill(upathHour);

User objects are recommended for gstates, dictionaries, large arrays or strings, user paths
and other objects that are stored in the server and that might be directly invoked from the
client application. User objects can also identify procedures but procedures are usually
called from within wraps. The application programmer might want to keep these as name
objects for clarity and easier management of the code. Items that can be retained in the
server are discussed in a section that follows.

User objects are stored in the userdict dictionary in an array named UserObjects. This
array is defined as read-only and so specific operators, defineuserobject, execuserobject
and undefineuserobject, are available for placing, executing and removing objects in the
array. The defineuserobject operator takes two arguments, a non-negative integer index
and the object to be defined. The object to be defined is placed into the array at the position
specified by the index. If the index already exists, the new object replaces the existing
object. If the index does not exist, then the number of entries in the array is extended to
include the new index. The UserObjects array is created in private VM.

In the NeXT implementation, the defineuserobject operator should not be called directly.
Many Application Kit methods define user objects and integer keys chosen by the
application programmer may overwrite those already used by Application Kit methods.
The NeXT procedure, DPSDefineUserObject(), should be used instead to create a new
identifier. This procedure handles the allocation of new identifiers as well as the recycling
of existing identifiers. A zero should be passed to the procedure to create a new identifier.
The current identifier should be passed to redefine an existing one. When a user object
identifier is assigned to another PostScript language object, the previous object is made
available for garbage collection provided no other references to the object exist. As a result,
the previous object does not need to be explicitly freed with the undef operator.

The user objects for graphics state objects for the hands of the Clock are not redefined.
When the graphics state for a hand changes, the new structure is copied into the old
structure. This can be done because a graphics state is a composite object and the user
object retains a pointer to the structure.

8 ©1990 Adobe Systems Incorporated. All rights reserved.

Below lies the UserObjects array for the Clock application. Entries 0 -13 have been
allocated by Application Kit objects used in the application.

If user object identifiers are passed in single operator and wraps as type userobject, the
Client Library automatically performs an execuserobject on the identifier, eliminating any
need to perform an explicit execuserobject.

PostScript language code:

defineps PSWUpathFill(userobject UPath)
UPath ufill % An execuserobject is unneccessary

endps

UserObjects

11

12

13

14

15

16

17

18

19

20

21

22

userdict
Dictionary window

gstate

alarm top
userpath

hour hand
gstate

second hand
gstate

minute hand
userpath

hour hand
userpath

second hand
userpath

alarm bottom
userpath

minute hand
gstate

shadow hand
gstate

UserObjects
Array

index

©1990 Adobe Systems Incorporated. All rights reserved. 9

3.1 Printing Issues with User Objects
The NeXT print driver provides user object emulation. The only caveat is that the user
objects must be defined in the page description in order for them to be used. The definition
can occur in one of three sections in the description: the setup section for the document, the
setup section for each page or the script for each page. (Please refer to the Document
Structuring Conventions Specification for a further description of these sections.)

The document setup section is the optimal location for the definitions. This section is
designed to have a global scope. Anything defined in this section can be referenced
throughout the document.

Defining user objects within the page setup section brackets the definitions within the page
level save/restore pairing. Because the page restore removes the definitions, they have to
be defined in the page setup section of every page. (The page level pairing ensures that a
given page can be extracted from the document, combined with the document prologue and
document setup and printed successfully.)

Defining user objects within the page section not only runs into the page level save/restore
pairings but also any downloadable font save/restore pairings. (Placing save/restore
constructs around downloadable fonts reclaims PostScript server virtual memory allowing
for the use of an unlimited number of downloadable fonts.) User objects defined within a
page section would not only have to be redefined for each page but potentially for each set
of downloadable fonts. (Three or more fonts can typically be included within a save/
restore pairing.)

Note: Defining user objects in the prologue creates problems for printing
managers that strip prologues out of files. Some print managers store procedure
sets in printer memory and therefore strip out prologues in order to print faster
and save space.

10 ©1990 Adobe Systems Incorporated. All rights reserved.

4. GRAPHICS STATES

Painting operators such as stroke and fill and character rendering operators such as show
and xyshow cause an image to be transferred to the page or screen. These operators make
use of a number of parameters in deciding what pixels to turn on and which ones to leave
off. This set of these parameters make up what is called a graphics state. The current
graphics state defines the setting in which printing operators execute. A few of these
parameters are the current device, the current transformation matrix (the matrix that maps
positions from user space to device space), the current color, the current line width, the
current point, the current font and even the current path. The table below contains the
complete list of parameters that make up a graphics state and their default values.

device
A set of internal primitives for
rendering graphical objects in a
particular area of raster memo-
ry.
Specified at context creation
time.

transformation matrix
The matrix that maps positions
from user space to device
space.
The default CTM.

path
The path that would be ren-
dered by a fill or stroke opera-
tion.
No presumed value.

clipping path
The path that defines the cur-
rent boundary against which
output is cropped.
The frame rectangle for a Win-
dow or View in the NeXT Ap-
plication Kit.

position
The current position in user
space also know as the current
point.
No presumed value.

font
The set of graphic shapes
(characters) that define the cur-
rent typeface.
No presumed value.

line width
The thickness in user coordi-
nates of lines to be drawn by
the stroke operator.
1.0 in user space coordinates.

line cap
A number that defines the
shape of the endpoints of any
open path that is stroked.
0 - square butt end.

halftone screen
A collection of objects that de-
fine the halftone screen pattern
for gray and color output.
A device-dependent, type 3
halftone dictionary.

color
The color to use during paint-
ing operations. Several differ-
ent color models can be
specified.
0 - Black.

flatness
A number that reflects the ac-
curacy with which curves are
to be rendered. Smaller num-
bers give smoother curves at
the expense of more computa-
tions.
1.0

miter limit
The limit of length of the line
joins for line segments con-
nected at a sharp angle.
1.0

stroke adjustment
A boolean value that deter-
mines whether automatic
stroke adjustment is on or off.
true

*alpha
A value that represents the
amount of transparency the
current color will have.
1.0 - opaque.

*instance drawing mode
A boolean value that deter-
mines whether instance draw-
ing is on or off.
false

*NeXT specific

Graphics State Parameters
(Initial values in italics)

line join
A number that defines the
shape of joints between con-
nected segments of a stroked
line
 0 - mitered joins.

dash pattern
A description of the dash pat-
tern to be used when lines are
rendered by the stroke opera-
tor.

Source: The PostScript Language Reference Manual

©1990 Adobe Systems Incorporated. All rights reserved. 11

The NeXT toolkit drawing guidelines instruct that the current graphics state be the same
leaving a View object as when entered except for the color, position, path, font and line
width. Since the display method of a view encapsulates the drawSelf:: message between
gsave and grestore operations, the restoration of the graphics state is automatic when using
display. Any drawing that bypasses the display mechanism needs to take their own
measures to restore the graphics state to its initial state after any drawing. A view will
inherit the graphic state left by any subviews so it is important to make sure the correct
parameters are set before drawing. In addition, a view needs to explicitly set the color,
position, path, font and line width since these parameters are not guaranteed to have a
specific value.

gsave, grestore and the Graphics State Stack

Managing graphics states in devices without graphics state objects is a matter of pushing
and popping graphics states onto and off of the graphics state stack with gsave and grestore
operations. The graphics state stack is appropriate in a printing environment since the
drawing is highly structured. gsaves and grestores isolate major changes in the current
graphics state, with minor changes accomplished by setting and resetting particular
parameters. Most states in a page description are based on the previous state and are used
for only one instance. It makes little sense to initialize them, store them elsewhere and then
install them when needed as is done with graphics state objects. In a page description, it is
most often easier to change the parameters as the drawing proceeds.

Note: In some cases, it is more efficient to use the operand stack to save and reset
previous parameter values than it is to use a gsave/grestore nesting. For example,
a currentlinewidth/setlinewidth could encapsulate a change to the line width
without the need for a gsave and grestore.

currentlinewidth 0.5 setlinewidth stroke setlinewidth

4.1 Graphics State Objects
Changing the parameters in a graphics state is a larger issue in a display environment. Many
graphical objects are drawn repeatedly within the same or different windows with each
object sharing little or no resemblance to other objects. The clipping paths, coordinate
systems and drawing attributes can be quite different from one window or view to another
window or view. It is therefore more efficient to retain graphics states in the PostScript
sever virtual memory for significant and frequently invoked drawing objects. When the
objects are drawn, the graphics state can be installed with one operator instead of having to
store and reset each individual parameter. Graphics state objects offer an attractive
alternative to the gsave, grestore and graphics state stack method of managing graphics
states.

In the NeXT Application Kit, graphics state objects are used principally for Window
objects. These objects often have distinct coordinate systems as well as clipping paths. In
addition, windows reserve space in raster memory. The current device component in the
graphics state serves as the link to this memory. When the gstate is set with a setgstate
operation, the device in the Window object’s gstate is made the current device, installing
the raster memory for the window as the drawing buffer. Using a gstate for a window
provides a very convenient and efficient way to install a coordinate system, a clipping path
and the window’s raster memory.

12 ©1990 Adobe Systems Incorporated. All rights reserved.

Graphics state objects are optional for Views. Since views do not reference raster memory,
they do not benefit from gstates as significantly as windows. The principal reason for using
a gstate for a view is to install a particular graphics state at the time the view is focused
instead of inheriting the state from the previous view. In other words, a graphics state can
be allocated and initialized with a specific set of parameters. When the view is focused, the
parameters in its graphics state are installed as the current parameters. Although more rare,
graphics states can also be used for images within views. This approach is used for the
hands of the clock, making the drawing of each hand easier and slightly faster. Each hand
has a separate translation and color. A graphics state is used to retain these values so that
they do not have to be set explicitly before each hand is drawn.

A graphics state object takes up a couple hundred bytes of virtual memory (with a null
current path) and so there is some appreciable cost to a graphics state object. The gsave,
grestore and the graphics state stack should still be used drawing images that are tightly
connected and share many but not all of the same graphics state parameters. An example is
the display of a group of graphics within a drawing program. Graphics state objects here
are not advised because only a few parameters are likely to change from object to object.
In addition the parameters that do change are likely to change frequently requiring the
resetting of the graphics state object in the server. (Plus, creating a page description that
could be printed to devices without the Display PostScript system extensions requires a
relatively inefficient emulation of the gstate operators.)

Because the path and clipping path are saved in the graphics state, it is important to make
sure these parameters are set to their desired values when the graphics state is defined.
Defining a graphics state with a non-empty path will install the path as the current path
when the graphics state is made the current graphics state. Any subsequent rendering
operator prior to a newpath operator will render that path in the current color, line width,
etc. The same treatment applies to a clipping path. Any non-empty clipping path will clip
subsequent drawing. Although a graphic state object can be used to retain a path, it is not
desirable to use it for this purpose. Using a cached user path or an offscreen buffer is a better
approach for painted paths.

A good example of graphics state objects in action is when scrolling. The movement of the
scollbar must coincide with the scrolling of the text or graphic. This is done by quickly
swapping between the Scroller and the ClipView. A graphics state object is used for the
ClipView which allows the quick installation of the clipping path and the coordinate
system with a single operation. This installation provides a critical performance advantage
over creating the clipping path and making the coordinate system adjustments individually.

©1990 Adobe Systems Incorporated. All rights reserved. 13

4.2 Allocating Graphics States in Views
The default instance of a view does not have a graphics state but one can be allocated with
the allocateGState method of the View class. If a graphics state is specified, it is installed
as the current graphics state during the lockFocus message. If no graphics state is specified,
then the window’s graphics state is installed and then adjusted to reflect the view’s
coordinate system and clipping path.

Below lies the PostScript language operations sent to the server for a custom view
contained in a window. (These instructions are sent within methods of the View class. They
do not need to be sent by the application developer.) The view object has set the clipping
to YES but has not allocated a graphics state. The lockFocus method performs a gsave and
then installs the window’s graphics state as the current graphics state. (The Application Kit
stores the gstate in the server as a user object.) A clipping path is installed around the
bounds of the view and then the user space is translated to the lower left of the view’s
bounding box. The flushgraphics and grestore operator following the drawing
instructions is invoked in the unlockFocus method.

PostScript language trace:

gsave
11 execuserobject setgstate
52 38 302 152 rectclip
52 38 translate

< drawing instructions placed within drawSelf:: would appear here >

flushgraphics
grestore

In the case where a view allocates a graphics state, the PostScript language instructions
would look like those below. The view’s graphics state is installed, which in this instance
is stored as user object 20, instead of the window’s graphics state. No clipping path or
translation occurs because these values are a part of the graphics state object.

PostScript language trace:

gsave
20 execuserobject setgstate

< drawing instructions would appear here >

flushgraphics
grestore

14 ©1990 Adobe Systems Incorporated. All rights reserved.

4.3 Initializing a View’s Graphics State
If many of the graphics state parameters differ from those inherited upon focusing, the view
should consider allocating a graphics state object and initializing the graphics state
parameters. (The key word here is frequently. A graphics state object will produce little
benefit for an infrequently drawn view.) Regardless of whether or not a graphics state is
allocated, any changes made to the graphics state in the course of drawing are not saved
unless the graphics state is redefined with a currentgstate operation. (Of course, only the
view’s gstate should be redefined. The window’s gstate should be left alone.)

The parameters of a graphics state object can be initialized with a two step process. The
first step is to override the initGState method in the View class. The appropriate single
operator or wrap calls to configure the graphics state parameters should be placed in this
method. The second step is to allocate the graphics state. This can be done by invoking the
notifyToInitGState method with a YES argument and then allocating a gstate by
messaging the allocateGState method.

The message to notifyToInitGState method causes the initGState method to be invoked
when a gstate is created. A gstate is created when it is first needed which is usually when
the view is next displayed. The example below shows the sequence of steps to initialize a
graphics state. The PostScript language trace that results is generated from a combination
of the View methods and the single ops placed in the initGState method.

C-language code:

/*
 * Called next time the view lockFocuses after
 * receiving the notifyToInitGState message
 */
- initGState
{
 PSsetlinewidth(2.0);
 PSsetgray(0.5);
 PSsetlingjoin(2);

 return self;
}

/*
 * (placed either in the newFrame: method or
 * in some other initial method)
 */
 [self notifyToInitGState:YES];
 [self allocateGState];

PostScript language trace:

gstate
19 exch defineuserobject
2.0 setlinewidth
0.5 setgray
2 setlinejoin
19 execuserobject currentgstate pop

©1990 Adobe Systems Incorporated. All rights reserved. 15

In the trace, the gstate operator creates a gstate object. The second line defines the gstate
as a user object. The next three lines set the gstate parameters (the results of the single
operator or wrap calls in the initGState method). The last line copies the new gstate into
the old gstate structure. The user object identifier points to the same structure as before so
the user object does not need to be redefined. The pop removes the gstate left on the stack
from the currentgstate operation.

Redefining a view’s graphics state object is a matter of locking the focus to the view,
changing the gstate parameters (by making single operator or wrap calls), copying the
current gstate into the old gstate structure with the currentgstate operator, removing the
gstate from the stack with the pop operator and then unlocking the focus. These steps
produce the same trace as above except that the old graphics state is installed as the current
graphics state and not allocated anew. The source code and the PostScript language trace
are provided below.

C-language code:

[self lockFocus];
 PSsetlinewidth(0.5);
 PSsetgray(0.25);
 PSsetlingjoin(1);
 PScurrentgstate([self gState]);
 PSpop();
[self unlockFocus];

PostScript language trace:

gsave
19 execuserobject setgstate
0.5 setlinewidth
0.25 setgray
1 setlinejoin
19 execuserobject currentgstate
pop
grestore

16 ©1990 Adobe Systems Incorporated. All rights reserved.

4.4 Multiple Graphics States
The View class can have only one graphics state. A subclass of View can store additional
gstates as instance variables. The subclass of View in the Clock application uses four
gstates to maintain the origins, color and line widths for each hand. (The rotations are
passed to the wrap and are performed after the gstate is installed but before the path is
rendered.) The coordinate systems of the gstates are translated to the center of the dial plus
some offset to provide depth to the clock hands. The scale is the same as the view’s scale.
Scaling the view with the scale method and then redefining the gstates for the hands
captures the scale of the view in the scale of the gstates. This technique takes the place of
either scaling each gstate separately or scaling the points of the user paths.

The section below, taken from the Clock application, defines the graphics states. This step
is done at initialization and whenever the window is resized (resizing triggers a scaling of
the view and a redefinition of the graphics states). The steps described in the previous
section are not used to initialize the graphics states. These steps initialize the graphics state
for the view and not the graphics states for the hands. Also, defining the graphics states does
not occur within the newFrame: method. The view’s window does not exist at the time of
the newFrame: method and so a lockFocus message would not install a graphics state to
use as a basis. The definition of the graphics states occurs after the view has been installed
in a window. (A subclass of Application creates a ClockView object, installs it in a
window and then calls the method to define the graphics states.)

C-language code:

/* Initialize the user object identifiers to be zero. When passed
 * to DPSDefineUserObject(), a unique user object identifier will
 * be assigned.
 */
+ new
{ self = [super new]; . . .
 gstateHour = gstateMin = gstateSec = gstateShad = 0; . . .
 return self;
}

/* Create a gstate and define a user object for it if one does not
 * exist already. If a gstate does, then copy the new gstate into
 * the old structure. No need to redefine the user object because
 * it still refers to the same structure. (This only takes place
 * in the case of a composite object such as an an array.) The
 * PSpop() pops the result of PScurrentgstate() off of the stack.
 */
static int definegstate(gstate, offsetx, offsety, color, linewidth)
 int gstate;
 float offsetx, offsety, color, linewidth;
{
 PSgsave(); PSWSetGstate(offsetx, offsety, color, linewidth);
 if (!gstate) {
 PSgstate(); gstate = DPSDefineUserObject(gstate);
 } else {
 PScurrentgstate(gstate); PSpop();
 }
 PSgrestore();
 return gstate;
}

©1990 Adobe Systems Incorporated. All rights reserved. 17

/* Called at initialization (after the view has been installed
 * in a window) and when the window is resized (invoked in the
 * sizeTo:: method of ClockView).
 */
- defineGStates
{
 NXPoint center;

 center.x = floor(bounds.size.width/2);
 center.y = floor(bounds.size.height/2);

 . . .
 [self lockFocus];
 . . .
 gstateHour = definegstate (gstateHour, center.x, center.y,
 CLRHANDS - 0.2, LNWIDHANDS);

 gstateMin = definegstate(gstateMin, center.x + OFFSETHANDSX,
 center.y + OFFSETHANDSY, CLRHANDS - 0.2, LNWIDHANDS);

 gstateSec = definegstate(gstateSec,
 center.x + (2 * OFFSETHANDSX),
 center.y + (2 * OFFSETHANDSY),
 CLRSECOND, LNWIDSECOND);

 gstateShad = definegstate(gstateShad,
 center.x + (2 * OFFSETHANDSX) + OFFSETSHADX,
 center.y + (2 * OFFSETHANDSY) + OFFSETSHADY,
 CLRSHADOW, LNWIDSECOND);
 [self unlockFocus];
 return self;
}

4.5 Printing Issues with Graphics States Objects
Unlike the Clock application, most applications will want to create a page description to be
used for printing. As a result, any application that uses graphic states within a page
description will need to create an external representation of a graphics state. One example
is to store the values of the parameters in an array. When defining a graphic state object,
the current graphic state parameters would be placed into the array. When setting a graphic
state object, the values in the array would be taken out of the array and made the current
graphic state parameters.

Any emulation scheme for graphic state objects has the same problems as the emulation of
user objects when used in a page description. The location of the definition within the page
description sections can have certain repercussions depending on the presence of any save/
restore pairings. Any definition that occurred within a save/restore pairing would not exist
after the execution of the restore.

Because of the memory management issues and performance issues relating to the
suggested emulation scheme, graphic state objects are not recommended for use within
page descriptions. The gsave/grestore approach is a much more desirable paradigm for
managing graphic states when printing.

18 ©1990 Adobe Systems Incorporated. All rights reserved.

5. OFFSCREEN BUFFER

In the Clock application, the clock face is only drawn at initialization and whenever the
window is resized. Instead of drawing directly into the view, the application draws the
clock face into an offscreen buffer. For each tick, the offscreen bitmap is first composited
into the window and then the hands are drawn atop the image in the window. The clock uses
a window with a buffered backing so the window is not flushed onto the screen until all the
drawing has been completed.

©1990 Adobe Systems Incorporated. All rights reserved. 19

C-language code:

/* Invoked at initialization and whenever the window is resized.
 * The frame size of the view is used instead of the bounds
 * size because the bounds size does not reflect the correct
 * size after scaling relative to an outside object.
 */
- drawFace
{
. . .
 if (bitmapId)
 {
 [bitmapId getSize:&bmapsize];
 if (bmapsize.width < frame.size.width ||
 bmapsize.height < frame.size.height)
 [bitmapId resize:frame.size.width :frame.size.height];
 }
 else
 {
 bitmapId = [[Bitmap newSize:frame.size.width
 :frame.size.height type:NX_NOALPHABITMAP] setFlip:NO];
 }
. . .
 [bitmapId lockFocus];
 /* Draw the Clock Face. */
 [bitmapId unlockFocus];
. . .
 return self;
}

/* Invoked whenever the clock is drawn. Again the frame
 * size is used because it provides the correct size
 * from the bitmap’s point of view, regardless of the
 * scale of the view.
 */
- drawSelf:(NXRect *)r :(int)count
{
. . .
 NXRect cRect;

 cRect.origin = bounds.origin;
 cRect.size = frame.size;
. . .
 [bitmapId composite:NX_COPY fromRect:&cRect
 toPoint:&bounds.origin];
. . .
 return self;
}

It would be impractical to use an offscreen buffer to hold a simple image like a rectangle
because a rectfill is a very simple and efficient operation. Offscreen buffers are
recommended for complex images that remain unchanged for a considerable amount of
time. The clock face takes approximately 6/10 of a second to draw a 400 by 400 point
image. Since it remains the same unless the window is resized, it makes sense to draw it
into an offscreen buffer and then composite it into the window before drawing the hands.

20 ©1990 Adobe Systems Incorporated. All rights reserved.

(The NeXT programming guidelines recommend using NX_NOALPHABITMAP
wherever possible instead of NX_UNIQUEBITMAP and NX_ALPHABITMAP in order
to reduce space requirements.)

Offscreen buffers for the hands are not appropriate because the hands are rotated. Since
bitmaps cannot be rotated easily, an offscreen buffer would be necessary for every position
of every hand. This comes out to a total of 219,720 buffers. Storing the user paths
descriptions for the hands in the server provides the optimal solution to imaging the hands.

5.1 Printing Issues with Offscreen Buffers
Bitmaps can be printed using the image operator but they are limited to the resolution of
the screen. The highest quality results can be obtained for each device by directly executing
the PostScript language operators that image the page. Offscreen buffers are a technique
that should only be used for performance purposes during interactive display, not for the
printing process.

6. STORING DATA IN THE SERVER

Deciding what items make good candidates for storing in the server is really a matter of
judgement. The structure of gstates and dictionaries are not visible outside the server so
they must reside in the server. Any application that makes extensive use of gstates and
dictionaries might consider user objects as a way to allow for smoother management of
these objects.

In addition to PostScript language objects, data structures such as arrays, strings and user
paths can be retained in either the client or the server. The determination comes down to
several factors – the size of the structure, the frequency of its execution, the number of
times the structure changes and the client-server network transmission overhead. In most
cases, these structures do not belong in the server. But in some cases, it may make sense to
store the data in the server rather than to keep passing it from the
 client.

The hands of the clock are a good example of objects that can be retained in the server. The
hands have moderately sized descriptions, are called repeatedly and do not change. Once
the client has sent the descriptions to the server, the client has no other need for the
descriptions. Calling a wrap to draw the user path and passing in the appropriate user object
identifier is the only subsequent responsibility for the client. Interactive applications such
as drawing applications or word processors, though, might find little use for storing data in
the server because its data changes too frequently to be worth managing identical copies in
both the server as well as in the client.

©1990 Adobe Systems Incorporated. All rights reserved. 21

7. SCALE

The Clock application scales the view in which the hands reside in order to scale the hands.
The coordinate systems for the hands are based on the coordinate system of the view. As a
result, the scale of the view is captured in the redefinition of the graphics state for each
hand.

The coordinate system of a View object can be altered with the scale::, moveTo:: and
rotate: methods available in the View class. These methods have the same effect on the
current transformation matrix in the graphics state object of the view or window as a scale,
translate and rotate operation would when performed with a wrap or single op call.
Instead of redefining the graphics state to incorporate the new CTM, a matrix is
concatenated to the CTM after the graphics state has been installed through a lockFocus
message.

Note: These methods change the graphics state relative to its present state.
Doubling the scale of a view that has been scaled to one half its scale will return
the view to its initial scale. As a result, some instance variables may be needed or
some ratios made between the frame size and the bounds size in order to return to
an absolute scale.

The code segment below shows how the scale:: method is used to distort the clock without
having to distort each element in the clock. Resizing a window also resizes the content
view, which in this case is the ClockView. Because of this action, it is possible to override
the sizeTo:: method in the View class and insert a message to the scale:: method. When
the window resizes, not only will the ClockView resize but also it will also scale in order
to fill the entire content region. This approach replaces either scaling each graphics state
individually or scaling the user path descriptions.

22 ©1990 Adobe Systems Incorporated. All rights reserved.

C-language code:

/* The width and height arguments make up the
 * new frame size. The xframe variable holds the
 * previous size. The ratio of the two provides the
 * new scale.
 */
- sizeTo:(NXCoord)width :(NXCoord)height
{
 NXRect xframe;
 . . .
 xframe = frame;
 [super sizeTo:width :height];

 if (window)
 {
 [self scale:width/xframe.size.width:height/xframe.size.height];
 [self drawFace];
 [self defineGStates];
 }

 return self;
}

The sizeTo:: method sizes both the frame and the bounds instance variables while the
scale:: method just scales the bounds. As a result, when the window is made smaller, the
sizeTo:: makes the frame and the bounds smaller but the scale:: returns the bounds to its
previous size. Whenever the scale:: method is used, care should be taken to use the correct
dimensions relative to a particular object. For resizing the bitmap for the clock face, the
frame size is used but for moving to the center of the view, the bounds size is used. The
frame size should be used by external objects to obtain the unaffected dimensions while
the bounds size should be used by the view internally to reflect the scale of its coordinate
system.

The HitDetection application covered in Technical Note #5057, HitDetection and
Zooming, uses the scale:: method of the view to allow zooming.

7.1 Printing Issues with Scaling the Coordinate System
Printing a scaled view will print a scaled image. Applications that make use of a scaled or
rotated view for the sake of magnifying and unmagnifying a page or rotating a page will
have to set the graphics state of the view to its default scale before rendering a normal sized
and scaled image.

©1990 Adobe Systems Incorporated. All rights reserved. 23

8. SUMMARY

User objects and graphics state objects are useful for managing objects within a display
environment. A user object is an integer identifier to a PostScript language object. The
traditional way to refer to objects is with a name key. Names are easy to manage in
PostScript language code but are cumbersome when used in C-language code. User objects
provide a system to create and manage integer keys for objects. The procedure,
DPSDefineUserObject(), should be used instead of using the PostScript operator,
defineuserobject, directly. This procedure manages the creation of user objects on an
application wide basis. Some Application Kit objects define user objects and so
DPSDefineUserObject() prevents the application developer from overwriting existing
identifiers.

A graphics state defines the context for graphic operators such as fill, stroke and show. A
graphics state object is a graphics state stored in virtual memory. A graphics state object
can be installed as the current graphics state by using the setgstate operator, circumventing
the usual graphics state stack operations. A graphics state is very useful for windows and
other items that reserve raster memory because they allow an efficient way to install the
raster memory as the current imaging buffer. Graphics states can be beneficial for views
and other images that 1) require different graphics state parameter settings than the
previously drawn view or image and 2) are frequently focused. Allocating and initializing
a graphics state for a view will install the initialized parameters in the current graphics state
when the view is focused. A graphics state can perform a similar function for an image
within a view.

Offscreen buffers, storing data in the server and scaling a view object are other techniques
that are useful in a display environment. Imaging into a bitmap and then compositing the
image onto the screen eliminates having to redraw the image with each display. Storing
frequently drawn and unchanging user paths in the server means that the data is sent only
once and not each time the path is drawn. Scaling the view instead of each image provides
an easy way to globally scale a drawing with composite images.

