


S Y S T E M

ADOBE SYSTEMS
I N C O R P O R A T E D

X WINDOW SYSTEM
PROGRAMMER’S
SUPPLEMENT
to the
Client Library
Reference Manual

X Window System Programmer’s Supplement
to the Client Library Reference Manual

January 23, 1990

Copyright 1989-1990 Adobe Systems Incorporated.
All rights reserved.

PostScript and Display PostScript are registered trademarks of
Adobe Systems Incorporated.
X Window System is a trademark of the Massachusetts
Institute of Technology.
*Helvetica is a trademark of Linotype AG and/or its
subsidiaries.

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software
described in this document is furnished under license and may only be
used or copied in accordance with the terms of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated.

Written by Amy Davidson.

1 ABOUT THIS MANUAL

This manual contains information about the Client Library inter-
face to the Display PostScript system implemented as an exten-
sion to the X Window System . We sometimes refer to this ex-

tension as DPS/X. DPS/X is the application programmer’s
means of displaying text and graphics on a screen using the

PostScript language.

1.1 DOCUMENTATION

The system-independent interface for DPS/X is documented in
Adobe’s Client Library Reference Manual. Only extensions to
the interface are discussed here. The dpsXclient.h header file in-
cludes both system-independent and X system-specific
procedures.

Before reading this manual, you should be familiar with the con-
tents of the manuals listed below. This manual also assumes
familiarity with the X Window System.

If you’re new to the PostScript language, you should first read
the following manuals:

• PostScript Language Reference Manual

• PostScript Language Tutorial and Cookbook

• PostScript Language Program Design

Once you’re acquainted with the PostScript language, read the
following manuals:

• PostScript Language Extensions for the Display PostScript
System

• pswrap Reference Manual

• Client Library Reference Manual

• PostScript Language Color Extensions

1 ABOUT THIS MANUAL 1

1.2 WHAT THIS MANUAL CONTAINS

Section 2 briefly introduces the Display PostScript system exten-
sion to the X Window System.

Section 3 introduces concepts that will enable you to write a
simple application, including connecting to the X server; creat-
ing and terminating a context; differences in coordinate systems;
issues of rendering in X versus PostScript language; clipping,
repainting, and resizing; error codes; and user object indices.

Section 4 describes advanced concepts that not all applications
need, including client and server identifiers, encodings, status
events, synchronization, shared resources, and multiple servers.

Section 5 contains tips for the application programmer on files,
fonts, coordinate conversions, and other issues that require spe-
cial attention.

Section 6 describes the X-specific data and procedures found in
the dpsXclient.h header file.

Section 7 describes the X-specific PostScript operators provided
for the Display PostScript extension to X.

Appendix A lists changes to the manual since the previous
version.

Appendix B provides a workaround for cases where X lower-
level software does not permit the normal Client Library error-
handling mechanisms.

1.3 TYPOGRAPHICAL CONVENTIONS

The typographical conventions used in this manual are as fol-
lows:

2 X Window System Programmer’s Supplement / Version of January 23, 1990

Item Example of Typographical Style

file dpsXclient.h

variable, typedef, code fragment ‘cid’, ‘drawable’, ‘ctxt’, ‘x’, ‘y’, ‘DPSContextRec’, ‘XStandardColormap’,
‘enableMask = PSFROZENMASK | PSZOMBIEMASK;’

procedure XDPSCreateSimpleContext

PostScript operator currentXgcdrawable

new term or emphasis ‘‘Protocol errors are generated when....’’

1 ABOUT THIS MANUAL 3

2 ABOUT THE DISPLAY POSTSCRIPT EXTENSION TO X

In order to understand the relationship of the Display PostScript
system to the development of X applications, you should be
familiar with the following concepts:

• The PostScript imaging model allows the application
developer to express graphical displays at a higher level of
abstraction than is possible with Xlib. This improves
device independence and portability. The integration of the
imaging model with X requires consideration of several
issues, including coordinate system conversions (see Sec-
tion 3.3.1), event handling (see Section 4.8), and resource
management (see Section 4.7).

• The PostScript interpreter allows an application to execute
PostScript language code.

• Wrapped procedures allow PostScript language programs
to be embedded in an application as C-callable procedures.

4 X Window System Programmer’s Supplement / Version of January 23, 1990

3 BASIC FACILITIES

The Client Library Reference Manual introduces the facilities
needed to write a simple application program for the Display
PostScript system. This section discusses Display PostScript sys-
tem issues of particular concern in the X Window System en-
vironment, in the following categories:

• Initialization.

• Creating a context.

• Execution of PostScript language code.

• Termination.

3.1 INITIALIZATION

Before performing any DPS/X operations, the application must
establish a connection to the X server. You can connect to the
server by using Xlib’s XOpenDisplay routine or a standard
toolkit’s initialization process. Regardless of how the connection
is established, an X ‘Display’ record will be defined for the con-
nection. Subsequent Display PostScript system operations will
use this ‘Display’ record to identify the server. Once the
‘Display’ record is obtained, the application must create a
‘drawable’ (window or pixmap) for DPS/X imaging operations,
and an X ‘GC’ out of which certain fields are used by DPS/X.
There are a number of facilities in Xlib for creating new win-
dows and ‘GC’s, such as XCreateSimpleWindow and
XCreateGC.

3.2 CREATING A CONTEXT

In DPS/X, a context (as described in the Client Library Refer-
ence Manual) is a resource in the server that represents all of the
execution state needed by the PostScript interpreter to run
PostScript language programs.

A ‘DPSContextRec’ is a data structure on the client side that
represents all of the state needed by the Client Library to com-
municate with a context. A pointer of type ‘DPSContext’ is a
handle to this data structure. When the application creates a con-

3 BASIC FACILITIES 5

text in the interpreter, a ‘DPSContextRec’ is automatically
created for use by the client (except for forked contexts; see Sec-
tion 4.5). The ‘DPSContextRec’ contains pointers to procedures
that implement all of the basic operations that a context can per-
form.

There are two procedures that create both a context in the server
and a ‘DPSContextRec’ for the client. The first,
XDPSCreateSimpleContext, uses the default colormap, and is
adequate for most applications. The second,
XDPSCreateContext, is a more general function that allows you
to specify colormap information. Other procedures for creating
just the ‘DPSContextRec’ — for contexts that already exist in
the server — are covered in Section 4.

3.2.1 Using XDPSCreateSimpleContext

To create a context using the default colormap, call
XDPSCreateSimpleContext:

DPSContext XDPSCreateSimpleContext(dpy, drawable, gc,
x, y, textProc, errorProc, space);

Display *dpy;
Drawable drawable;
GC gc;
int x;
int y;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

The Client Library Reference Manual contains a general discus-
sion of XDPSCreateSimpleContext, but does not discuss the
details that are relevant to X. These details are covered here.

A context is created on the specified ‘Display’ and is associated
with a ‘Drawable’ and ‘GC’ on that ‘Display’. The context uses
the following fields in the ‘GC’ to render text and graphics on
the ‘Drawable’:

6 X Window System Programmer’s Supplement / Version of January 23, 1990

• ‘plane_mask’

• ‘subwindow_mode’

• ‘clip_x_origin’

• ‘clip_y_origin’

• ‘clip_mask’

If the ‘Drawable’ or ‘GC’ is not specified (that is, passed as
‘None’), the context will execute programs correctly but will not
render any text or graphics (it renders to the null device). A valid
‘Drawable’ and ‘GC’ may be associated with such a context at a
later time using the setXgcdrawable operator, documented in
Section 7.

The arguments ‘x’ and ‘y’ are offsets that specify where the
device space origin is relative to the window origin. To place the
device space origin (and thus the user space origin) in the stan-
dard location, pass zero for ‘x’ and the height of the window in
pixels for ‘y’. See the discussion of coordinate systems in Sec-
tion 3.3.1.

The other arguments to XDPSCreateSimpleContext are described
fully in the Client Library Reference Manual. To summarize:
‘textProc’ is a call-back procedure that handles text output from
the context, ‘errorProc’ is a call-back procedure that handles er-
rors reported by the context, and ‘space’ is the private VM that
the context uses for storage. If the space is passed as NULL, a
new space is created.

If all of the arguments are valid and the context is successfully
created in the server, a ‘DPSContext’ handle is returned. Other-
wise, NULL is returned.

XDPSCreateSimpleContext uses the default colormap. A device-
specific number of grays is reserved in the default colormap,
which represents a gray ramp. If the device supports color, an
RGB color cube is also reserved. If a requested RGB color is
found in the color cube or gray ramp, the associated pixel value
is used. Otherwise, the color is approximated by dithering pixel
values from the colormap to give the best possible rendering of
the color.

3 BASIC FACILITIES 7

XDPSCreateSimpleContext may allocate a substantial number of
cells in the default colormap. For example, a typical allocation
for an 8-plane PseudoColor device is 125 cells for the color
cube, representing a 5x5x5 RGB cube. (The gray ramp typically
uses the five grays that form the diagonal of the cube.)
XDPSCreateSimpleContext checks the root window for the
RGB_DEFAULT_MAP property. If the property exists, the
color cells it specifies are used for the context’s color cube. If the
property does not exist, color cells are allocated and the property
is defined. The allocated cells are typically treated as ‘‘read-only
retained’’ so that other DPS/X clients may share the allocated
colors. The advantage of using the color allocation facilities
provided by XDPSCreateSimpleContext is that the application
has available a wide range of colors (many more than the num-
ber of cells), each with a reasonable rendering, without having to
provide for the possibility that colormap allocations may fail.
The disadvantage is that a large number of color cells is al-
located from the default colormap.

3.2.2 Using XDPSCreateContext

To create a context with specific color information, call
XDPSCreateContext:

DPSContext XDPSCreateContext(dpy, drawable, gc, x, y,
eventmask, grayramp, ccube, actual,
textProc, errorProc, space);

Display *dpy;
Drawable drawable;
GC gc;
int x;
int y;
unsigned int eventmask;
XStandardColormap *grayramp;
XStandardColormap *ccube;
int actual;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

The ‘dpy’, ‘drawable’, ‘gc’, ‘x’, ‘y’, ‘textProc’, ‘errorProc’ and
‘space’ arguments for XDPSCreateContext are the same as for
XDPSCreateSimpleContext. The ‘eventmask’ is currently not
implemented and should be passed as zero. The ‘grayramp’ and

8 X Window System Programmer’s Supplement / Version of January 23, 1990

‘ccube’ arguments are pointers to ‘XStandardColormap’ data
structures (defined in the Xutil.h header file). An
‘XStandardColormap’ specifies a colormap, a base pixel value,
and multipliers and limits for red (or gray), green, and blue
ramps. A valid gray ramp is required; ‘ccube’ is optional (may
be passed as NULL). If a color cube is present and is specified
by ‘ccube’, ‘grayramp’ may use pixel values in the color cube in
order to conserve colormap entries. The X colormap resource
specified in the ‘ccube’ and ‘grayramp’ arguments must be iden-
tical. The application must ensure that the specified colormap is
installed — for example, by setting the colormap as an attribute
of the window (using XSetWindowColormap).

The application provides a colormap with a uniform distribution
of colors. The colormap must provide a uniform distribution of
grays (colors where red, green and blue are equal in intensity),
which is described by ‘grayramp’. However, the ‘grayramp’ may
be as simple as two levels: black and white. The colormap may
also contain a uniform distribution of RGB colors arranged as a
color cube, which is described by ‘ccube’. See X reference docu-
ments for details about the ‘XStandardColormap’ data structure.

The argument ‘actual’ can be used to conserve colormap entries
as well as to display pure (non-dithered) colors. If the application
knows which colors it is going to use, or if the number of colors
to be used is relatively few (fewer than the default allocation that
XDPSCreateSimpleContext would use for the device), the
‘actual’ argument can be used. ‘actual’ is a hint about the num-
ber of colors the context is going to request. It is considered a
hint because the server cannot guarantee that the specified num-
ber of colors will be available. The server will reserve the num-
ber of cells specified by ‘actual’ or the number of cells available
in the specified colormap, whichever is less. As the context
makes color requests, colormap entries are defined on a ‘‘first
come, first served’’ basis. For example, suppose ‘actual’ is given
the value 3 and there are at least three cells available. The first
time the context executes setrgbcolor, the requested color will
be stored in the colormap, leaving two more cells reserved by
‘actual’. When the context executes setrgbcolor for a different
color, the second cell reserved by ‘actual’ is used, and so on. The
colors requested by the PostScript language program executed by
the context will be rendered without dithering.

3 BASIC FACILITIES 9

Consider the characteristics of your application when deciding
whether to use XDPSCreateSimpleContext, with its default al-
location of colors, or XDPSCreateContext, with ‘actual’. An ap-
plication may allow the end user to define a variety of colors.
Such an application — a graphics editor, for example — could
use XDPSCreateSimpleContext. On the other hand, an applica-
tion that allows the end user to specify only a few colors — the
foreground and background colors of a performance meter, for
example — should probably use XDPSCreateContext and set
‘actual’ to the number of colors that can be requested by the end
user.

If all of the arguments are valid and the context is successfully
created in the server, a ‘DPSContext’ handle is returned. Other-
wise, NULL is returned.

3.3 EXECUTION

This section discusses the following DPS/X issues: coordinate
systems, rendering, clipping, repainting, resizing a window, user
object indices, and errors.

3.3.1 Coordinate Systems

The application must use user space coordinates when communi-
cating with the PostScript interpreter and X coordinates when
communicating with other parts of the X Window System.
Therefore coordinate conversions may be necessary. This section
describes:

• How to specify the device space origin for the window at
context creation time.

• How to convert user space coordinates to X coordinates.

• How to convert X coordinates to user space coordinates.

The PostScript Language Reference Manual describes the coor-
dinate system used by the PostScript imaging model. To sum-
marize: Coordinates are specified in a user-defined space and are
automatically converted to the output device space. The default
user space unit is 1/72 of an inch. The default origin is in the
lower left corner of the page, with X increasing to the right and
Y increasing to the top (upwards).

10 X Window System Programmer’s Supplement / Version of January 23, 1990

Figure 1 shows a linear transformation from user space to device
space by means of the current transformation matrix (CTM).
Note that this transformation is one way only.

Figure 1 User Space and Device Space

CTM
y

x

origin

DEVICE SPACE —
 increases downward.

USER SPACE —
 increases upward.y

y

In PostScript language terminology, the window is the output
device. In DPS/X, the window is treated as a page, with the con-
ventional location of the origin in the lower left corner. The
device space is equivalent to the X coordinate system for the
window, except for the following:

• The device space origin is offset from the window origin.

• Device space is a real number space, whereas the X coordi-
nate system is an integer space.

As described in PostScript Language Extensions for the Display
PostScript System, pixel boundaries fall on integer coordinates in
device space. A pixel is a half-open region, meaning that it in-

3 BASIC FACILITIES 11

cludes half of its boundary points. For any point (x, y) in device
space, let i = floor(x) and j = floor(y), where x and y are real
numbers and i and j are integers. The pixel that contains this
point is the one identified as (i, j), which is equivalent to the X
coordinate for that pixel.

To convert user space coordinates to X coordinates:

1. Convert the user space coordinates to device space coordi-
nates by computing a linear transformation using the cur-
rent transformation matrix (CTM).

2. Compute the X coordinates by applying an additional trans-
lation to the device space coordinates derived in Step 1 to
account for the offset of the device space origin from the
window origin.

Similarly, to convert X coordinates to user space coordinates:

1. Translate the X coordinates to device space coordinates by
applying the offset of the device space origin to the X coor-
dinates.

2. Convert the device space coordinates to user space coordi-
nates by using the inverse of the current transformation
matrix.

See Section 5.3 for examples of coordinate conversions.

Figure 2 illustrates how the device space origin is located in the
window as an offset from the window origin. The ‘x’ and ‘y’
offset values are established at context creation time (see Section
3.2); they can be changed by X-specific PostScript operators
such as setXoffset.

12 X Window System Programmer’s Supplement / Version of January 23, 1990

Figure 2 Window Origin and Device Space Origin

x increasing

y increasing

device space origin (0,0)

X window origin (0,0)

y offset

x offset

The device origin is offset in order to support the method of
scrolling that involves copying areas of the window (as opposed
to shifting a child window under an ancestor). You can put the
device space origin anywhere in the window. Then, as you scroll
the contents of the window, you can offset the origin from its
original position to make coordinate conversions easier. The
default location for the device space origin is in the lower left
corner of the window.

Coordinate conversions are required under the following con-
ditions:

• If you use the PostScript imaging model to render graphics
using coordinates received from X events, the X coordi-
nates must first be converted into user space coordinates.

3 BASIC FACILITIES 13

For instance, if you allow the user to select a line of text in
a text editor, coordinate conversions will be required.

• If X rendering is to be done in the same window as
PostScript language rendering, it may be necessary to con-
vert user space coordinates to X coordinates — for ex-
ample, using XCopyArea to move a graphical object that
was rendered by the PostScript interpreter.

Coordinate conversions are not required under the following
conditions:

• If you use the PostScript imaging model for output only
(rendering text and graphics without user interaction in the
display area), no coordinate conversions are required.
Simply express coordinates in user space. For example,
assuming the default user space, the letter A shown at coor-
dinate ‘x=72, y=72’ will appear upright 1 inch to the right
and 1 inch above the bottom left corner of the window.

• If the only rendering you do in response to X events is with
X primitives, you don’t have to perform coordinate conver-
sions unless you are altering pixels that were rendered by
the PostScript interpreter.

See Section 5.3 for tips on how to efficiently convert X coordi-
nates to user space coordinates and vice versa.

Resizing the window may have an effect on the device space
origin, and thus the offsets to that origin, depending upon the bit
gravity of the window. See Section 3.3.4.

3.3.2 Mixing Display PostScript and X Rendering

X drawing requests and PostScript language code can be sent to
the same drawable. For example, X primitives such as
XCopyArea can be used to move, copy, and change pixels that
have been painted with PostScript language programs.

Interactive feedback, such as selection highlighting and control
points, can be done with X drawing requests. For example, con-
trol points on a graphics object in a graphics editor application
can be displayed with X primitives as follows:

• Copy the pixels that were painted by a PostScript language

14 X Window System Programmer’s Supplement / Version of January 23, 1990

program to a pixmap with several XCopyArea calls. These
pixels will temporarily be obscured by the control points,
so they must be preserved.

• Call XFillRectangle to paint the control points, which may
be grabbed and stretched, rotated, moved, and so on.

Now suppose a control point is moved. A series of mouse events
would be handled as follows:

• Copy the pixels underlying the control point back from the
pixmap, effectively erasing the control point at the original
location.

• Compute the new position of the control point from the
mouse event.

• Copy the pixels at the new location to the pixmap. Call
XFillRectangle to display the control point at the new loca-
tion.

Here are some considerations to keep in mind when mixing X
and Display PostScript system imaging:

• Their coordinate systems are different. See Section 3.3.1
for more information on coordinate systems.

• PostScript language programs run asynchronously with
respect to other X requests. A PostScript language render-
ing request is not guaranteed to be complete before a sub-
sequent X request is executed, unless synchronized. See
Section 4.9 for more information on synchronization.

• X tends to be pixel and plane oriented; graphics operations
that manipulate pixels and planes are necessarily device de-
pendent. The PostScript imaging model deals with abstract
graphical representations (paths) and abstract colors. The
PostScript interpreter tries to give the best rendering pos-
sible for the device. If device independence is important
for your application, use X primitives sparingly, preserving
device independence as much as possible.

3.3.3 Clipping and Repainting

Text and graphics rendered with the PostScript interpreter are
subject to all of the X clipping rules as well as the clipping
defined by the PostScript imaging model.

3 BASIC FACILITIES 15

The default clipping region is the window. When clipping other
than to the default, the following considerations apply:

• If you’re drawing with PostScript language code only, use
the clipping mechanism provided by the PostScript imaging
model. This is sufficient for nearly all applications.

• If you’re also using X primitives and want to clip them as
well as draw using DPS/X, use the clipping specified by the
X ‘GC’.

Exposure events may be handled with a variety of strategies:

• Repaint all graphics for the window.

• Repaint all graphics through composite view clip.

• Repaint selected graphics through composite view clip.

Repainting the entire window is the simplest strategy to imple-
ment and is suitable for simple applications:

• Ignore exposure events with counts greater than zero.

• For exposure events with counts equal to zero, clear the
window and then redisplay all of the text and graphics ob-
jects by executing the PostScript language programs that
describe them.

Though simple to implement, this strategy makes the window
flash or flicker every time it is repainted, which can be distract-
ing.

A somewhat more sophisticated strategy involves making a list
of the rectangles specified in a series of exposure events until a
zero count is detected:

• Create a view clip (see PostScript Language Extensions for
the Display PostScript System) by converting the coordi-
nates of the list of exposure rectangles to user space coordi-
nates and executing rectviewclip with this list.

• Then redisplay all of the text and graphics objects by ex-
ecuting the PostScript language programs that describe
them. Only those areas within the the view clip will ac-
tually be repainted.

This strategy reduces annoying window flicker, but may do more

16 X Window System Programmer’s Supplement / Version of January 23, 1990

work than is necessary since programs describing graphics ob-
jects that are completely clipped are executed anyway.

The most sophisticated technique, perhaps the optimal strategy,
is similar to the one just described:

• Use a list of rectangles from the exposure events to create a
view clip.

• Then, instead of running all of the PostScript language
programs, redraw only those graphics objects whose
bounding boxes intersect the view clip.

This strategy requires that the application keep track of the
bounding boxes and locations of each graphical object, but this
task is usually necessary anyway, particularly for interactive ap-
plications that allow selection and manipulation of objects. User
paths are handy for this purpose (see PostScript Language Ex-
tensions for the Display PostScript System), since they are com-
pact data structures that contain their own bounding box infor-
mation. The list of rectangles obtained from the exposure events
can be enumerated and intersected with the bounding box of
each user path. Bounding box intersection may still result in
some code being executed unnecessarily, but it is a good com-
promise between time spent deciding which graphical objects to
redraw and time spent drawing the objects.

3.3.4 Resizing the Window

When the window is resized, the X server moves the window
bits according to the bit gravity of the window. If the window is
being use for imaging with the PostScript language, the origin of
the device space is also moved according to the bit gravity of the
window; see Section 3.3.1 for a discussion of coordinate
systems. The result of this automatic movement is that the ‘x’
and ‘y’ offsets that were specified when the context was created
(or that were last changed with the setXoffset operator) are
changed. The application may need to keep track of these
changes.

Figure 3 shows the changes to the ‘x’ and ‘y’ offsets for each bit
gravity type.

3 BASIC FACILITIES 17

Figure 3 How Bit Gravity Affects Offsets

Symbol Meaning

oldX original x offset
oldY original y offset
x new x offset
y new y offset
wc Change in window size along the x axis (width)
hc Change in window size along the y axis (height)

Bit Gravity x y

NorthWest oldX oldY
North oldX + wc/2 oldY
NorthEast oldX + wc oldY
West oldX oldY + hc/2
Center oldX + wc/2 oldY + wc/2
East oldX + wc oldY + hc/2
SouthWest oldX oldY + hc
South oldX + wc/2 oldY + hc
SouthEast oldX + wc oldY + hc

ForgetGravity no change no change — appears as if NorthWest
Static oldX + wc oldY + hc

To get the current ‘x’ and ‘y’ offset, use currentXoffset.

3.3.5 User Object Indices

The Client Library provides a convenient and efficient way to
refer to PostScript language objects. Some types of composite or
structured objects, such as dictionaries, gstates, and user paths,
are not visible as data outside the PostScript interpreter; that is,
they cannot be represented directly in any encoding of the lan-
guage, not even in binary object sequence encoding. Instead, an
application must refer to such objects by means of surrogate ob-
jects whose values can be encoded and communicated easily.

18 X Window System Programmer’s Supplement / Version of January 23, 1990

The surrogate objects provided by the Client Library are called
user objects. A user object is simply an integer (‘long int’) that
represents an actual object (of any type) in the interpreter. To
define a new user object, the application must first obtain a user
object index from the Client Library. The procedure
DPSNewUserObjectIndex returns a new user object index. The
Client Library is the sole allocator of new user object indices in
order to guarantee that indices are unique. User object indices
are dynamic and should neither be used as arithmetic values —
for example, don’t add 1 to get the next available index — nor
stored in a file or other long-term storage.

After obtaining a user object index, the application must as-
sociate this index with an actual object: first execute a PostScript
language program to create the object; then use the
defineuserobject operator.

Once a user object has been defined, the application may use
wrapped procedures to manipulate it. User objects may be passed
as input arguments to a wrapped procedure.

User objects are typically employed under the following cir-
cumstances:

• When graphical objects or other application objects are
created dynamically, such as the user path a graphics editor
builds as the user draws an illustration.

• When a user name should not be employed. A user object
is a convenient and efficient substitute for a dynamically
defined user name, which must be passed to a wrap as a
string.

See PostScript Language Extensions for the Display PostScript
System and the pswrap Reference Manual for further discussion
of user objects.

Note that it is the responsibility of the application and any run-
time facilities or support software (such as toolkits) to keep track
of user object definitions. A user object must be defined before it
is used. Unlike user name indices (which are defined automati-
cally by the Client Library), user objects must be defined ex-
plicitly. To assist in keeping track of user object definitions, the
last user object index assigned can be read from

3 BASIC FACILITIES 19

‘DPSLastUserObjectIndex’, which should be treated as read-
only.

In the following example, a hypothetical toolkit implements a
user interface that displays icons for files and programs. The user
interface allows the end user to customize the label of the icon
by changing the text and to specify the font of the label text. The
icon is represented as a PostScript language dictionary.

EXAMPLE
/* A wrapped procedure that defines an icon dictionary. */

defineps New_Icon(long iconIndex; int x,y; long progIndex; char *font, *text)
% Input Arguments:
% iconIndex
% user object index
% provided by application
% x,y coordinates of lower left
% corner or icon
% progIndex
% user object index which
% represents a PostScript
% language program for drawing
% the icon
% font string to be used as a
% font name
% text label for icon

5 dict dup % Create the icon dict.
iconIndex exch defineuserobject % Define the user object for the dict.

begin % Begin the icon dict.
/icon_x x def % Assign x coordinate.
/icon_y y def % Assign y coordinate.
/icon_prog

UserObjects progIndex get % Get and def icon drawing procedure
def % (assumes userdict is on dict stack).

/icon_font /font def % Assign label font name.
/icon_label (text) def % Assign label text.
end % End icon dictionary.

endps

/* a wrapped procedure to draw an arbitrary icon */

defineps Draw_Icon(userobject icon)
% Input Arguments:
% icon user object representing
% and icon dictionary.
% Note: since we are going

20 X Window System Programmer’s Supplement / Version of January 23, 1990

% to execute the object,
% we can declare it as
% userobject to pswrap.

icon begin % Gets and execs the user object
% which is a dictionary, begins it.
% Note that there is an implicit
% execuserobject here since icon
% was declared ’userobject’.

gsave
icon_x icon_y translate % Put origin at specified coordinates.

gsave
icon_prog % Draw icon.
grestore

1 setgray
icon_font 10 selectfont % Scale and set icon label font.
0 0 moveto
icon_label show % Show label.
grestore
end

endps

/* C procedure to create and display a new icon */

void MakeNewIcon(x, y, prog, label)
int x, y;
long prog; /* user object defined by application code */
char *label;

{
/* get a new user object index */
long icon = DPSNewUserObjectIndex(); /* client library routine */
char *defaultFontName = GetDefaultFontName();

/* icon is a user object index: define icon user object */
NewIcon(icon, x, y, prog, defaultFontName, label);
/* icon is now a user object: draw it */
DrawIcon(icon);
/* The following procedure call is not defined in this example.

It saves the user object created for the new icon
so that the application can use the user object to refer to the icon. */

SaveNewIconObject(icon);
}

3.3.6 Errors and Error Codes

There are two classes of errors that can occur while using
DPS/X: protocol errors and context errors.

3 BASIC FACILITIES 21

Protocol errors are generated when invalid requests are sent to
the server. The result of receiving a protocol error is that lower-
level facilities in Xlib handle the error and perhaps print a mes-
sage, while the higher-level facilities simply return NULL or do
nothing. The default protocol error handler prints an error mes-
sage and causes the application to exit. The application can sub-
stitute its own error handler for protocol errors, but results are
undefined if the handler returns rather than exiting. (Generally,
an attempt to continue processing after a protocol error results in
incorrect operation of procedures further up in the call stack.)

Context errors can arise whenever a ‘DPSContext’ handle is
passed to a DPS/X procedure or wrap. X-specific error codes are
discussed in Section 6.1.1 on page 43. See the Client Library
Reference Manual for a discussion of the standard Display
PostScript system error codes.

Because of various delays related to buffering and scheduling, a
PostScript language error may be reported long after the C pro-
cedure responsible for the error has returned. Consider the fol-
lowing example:

DPSPrintf(ctxt, "%d %d %s\n", x, y, operatorName);
MyWrap1(ctxt);
MyWrap2(ctxt, &result);

Suppose the string pointed to by ‘operatorName’ did not contain
a valid operator and therefore generated an undefined error. The
error may not be received when DPSPrintf returns. It may not
even be received when MyWrap1 returns. MyWrap2 returns a
result, thereby forcing synchronization, so any errors caused by
the call to DPSPrintf or MyWrap1 will finally be received.

If MyWrap2 is called several statements after MyWrap1, it may
be difficult to figure out where the error originated. However,
you can determine where errors are likely to collect, such as
places where the application and context will be forced into
synchronization, and work backward from there. If you make a
list of synchronization points in your code, say, A, B, C, D, and
so on, an error received at point C must have been generated by
code somewhere between B and C. This will help narrow down
your debugging search.

22 X Window System Programmer’s Supplement / Version of January 23, 1990

A debugging alternative is to have the application check for an
error by forcing synchronization. (The synchronization should be
removed in the final version of the software because of its nega-
tive impact on performance.) For the details of implementing
synchronization, see the section on synchronization in the Client
Library Reference Manual.

Example: This code has been simplified to make the principle
clear; in an actual application, you would probably want to
choose a less verbose means of including the debugging
procedures. Every procedure call that sends PostScript language
code is folloed by a call to ‘DEBUG_SYNC’. If the macro
‘DEBUGGING’ is true, ‘DEBUG_SYNC’ will force the context
to be synchronized; if there are any errors, they will be reported.
If ‘DEBUGGING’ is false, ‘DEBUG_SYNC’ will do nothing.
Note that although a call to ‘DEBUG_SYNC’ after the call to
MyWrap2 would be harmless, it is not needed because MyWrap2
returns a value and is therefore automatically synchronized.

#ifdef DEBUGGING
#define DEBUG_SYNC(c) DPSWaitContext((c))
#else
#define DEBUG_SYNC(c)
#endif

...
DPSPrintf(ctxt, "%d %d %s\n", x, y, operatorName);
DEBUG_SYNC(ctxt);
MyWrap1(ctxt);
DEBUG_SYNC(ctxt);
MyWrap2(ctxt, &result);

3.4 TERMINATION

When an application exits normally, all resources allocated on its
behalf, including contexts and spaces, are automatically freed.
(This actually depends upon the ‘‘close-down mode’’ of the
server.) This is the most typical and convenient method of
releasing resources. However, any storage allocated in shared
VM (such as fonts loaded by the application) remains allocated
even after the application exits.

DPSDestroyContext and DPSDestroySpace are provided to al-
low an application to release these resources without exiting.

3 BASIC FACILITIES 23

This might be needed if, for example, the context and space must
be destroyed and recreated from scratch to recover from a
PostScript language error. These procedures are described in
detail in the Client Library Reference Manual. To summarize,
DPSDestroyContext destroys the context resource in the server
and the ‘DPSContextRec’ in the client. DPSDestroySpace
destroys the space resource in the server and the
‘DPSSpaceRec’ in the client as well as all contexts within the
space, including their ‘DPSContextRec’ records.

Note that closing the ‘Display’ — with XCloseDisplay, for ex-
ample — destroys all context and space resources associated
with that ‘Display’, but does not destroy the corresponding client
data structures (‘DPSContextRec’ or ‘DPSSpaceRec’).

24 X Window System Programmer’s Supplement / Version of January 23, 1990

4 ADDITIONAL FACILITIES

This section describes advanced features of the Display
PostScript extension to the X Window System.

4.1 IDENTIFIERS

DPS/X defines two new server resource types: one for contexts,
and another for spaces. A context or space resource in the server
is defined by an X resource ID (XID).

The client has its own representation of contexts and spaces.
‘DPSContext’ is a handle to a ‘DPSContextRec’ allocated in the
client’s memory. ‘DPSSpace’ is a handle to a ‘DPSSpaceRec’
allocated in the client’s memory.

Applications need not use X resource IDs to refer to contexts or
spaces. Instead, they can pass the appropriate handle to Client
Library procedures.

However, if the resource ID of a context or space is required,
there are routines available for translating back and forth be-
tween handles and IDs.

• XDPSXIDFromContext returns an X resource ID, given a
‘DPSContext’ handle.

• XDPSXIDFromSpace returns an X resource ID, given a
‘DPSSpace’ handle.

• XDPSContextFromXID returns a ‘DPSContext’ handle,
given an X resource ID.

• XDPSSpaceFromXID returns a ‘DPSSpace’ handle, given
an X resource ID.

The PostScript interpreter uses a unique integer, the context
identifier, to identify a context. The context identifier is defined
by the PostScript language and is completely independent of X
resource IDs. The currentcontext operator returns the context
identifier for the current context.

4 ADDITIONAL FACILITIES 25

Note: A context created by an existing context with the fork
operator has no identity other than the context identifier returned
by the fork operator; the forked context has neither an X
resource ID nor a ‘DPSContext’ handle. See Section 4.5 for
more information on forked contexts.

To get the ‘DPSContext’ handle associated with a particular con-
text identifier, call XDPSFindContext. If the client knows about
the specified context, a valid ‘DPSContext’ handle is returned;
otherwise NULL is returned.

There is no direct translation between the PostScript context
identifier and the X resource ID.

If a PostScript context terminates (either by request or as the
result of an error), the resource allocated for it lingers in the
server. The X resource ID for the context is still valid, but the
context identifier is not. Such a context is called a zombie. See
Section 4.2 for a discussion of zombie contexts.

4.2 ZOMBIE CONTEXTS

A context can die in a number of ways, most commonly as the
result of a PostScript language error such as operand stack un-
derflow or use of an undefined name.

If a context is killed, or dies from an error, its server resource
lingers. An X server resource that represents a terminated con-
text is known as a zombie context. Requests made to a zombie
context will fail. The resource associated with a zombie context
may be freed with the DPSDestroyContext procedure. Alter-
natively, the resources will be freed when the ‘Display’ is closed,
typically at application exit.

Any request made to a zombie context will generate a status
event of type ‘PSZOMBIE’. See Section 4.8 for more informa-
tion about status events.

26 X Window System Programmer’s Supplement / Version of January 23, 1990

4.3 BUFFERS

As discussed in the Client Library Reference Manual, buffering
is often used to enhance throughput. For the most part, an appli-
cation need not be concerned with buffering of requests to a con-
text or output from a context. However, facilities are provided to
flush buffers if needed.

All DPS/X requests sent to the server are buffered by Xlib, like
any other X requests. DPSFlushContext (see the Client Library
Reference Manual) will flush any code or data pending for a
context, as well as any X requests that have been buffered. For
portability and performance enhancement, use DPSFlushContext
rather than XFlush if the application has sent code or data to a
context since the last flush.

Streams created by the PostScript interpreter are buffered, in-
cluding the input and output streams associated with a PostScript
execution context. Buffers are automatically flushed as needed.
The automatic flushing is usually sufficient. However, should the
application need to flush output from a context, the flush
operator may be used. Note that wrapped procedures that return
results include a flush operator at the end of the wrap code.

4.4 ENCODINGS

The Client Library Reference Manual discusses the general con-
cept of encodings and conversions. A wrapped procedure always
generates a binary object sequence, which is passed to the con-
text for further processing. Typically, the binary object sequence
is simply passed to the lowest level of the Client Library to be
packaged into a request, without any change to its contents.
However, by setting the encoding parameters of the
‘DPSContextRec’ with the DPSChangeEncoding procedure, the
binary object sequence can be converted to some other encoding
before it is sent or written.

DPS/X supports the conversions shown in Figure 4:

4 ADDITIONAL FACILITIES 27

Figure 4 Encoding Conversions

Conversion Description

binary object sequence to ASCII Makes a binary object sequence readable by humans. The output of wrapped
procedures may be inspected and analyzed. Also useful for generating page
descriptions to be printed. This is the default setting for text contexts. Execu-
tion contexts may also be made to convert binary object sequences to ASCII,
but there is little purpose in doing this.

binary object sequence to binary-encoded tokens
Binary-encoded token encoding is the most compact encoding for the
PostScript language. This conversion is useful for storing code permanently, or
for exchanging code with another application. Either a text context or an
execution context may perform this conversion, but it is mainly used for text
contexts.

binary object sequence with user name indices to binary object sequence with user name strings
This conversion is necessary if the binary object sequence is going to be stored
permanently (for example, on a file) or if the binary object sequence is to be
used by another client or with a shared context (see Section 4.7). User name
indices are created dynamically and are unique only within a single ‘‘instance’’
of the Client Library — for example, in the application’s process address
space. In this case, user names must be represented by strings if they are to be
used outside of the application’s process address space.

binary-encoded tokens to ASCII Binary-encoded tokens read from an external data source such as a file can be
converted to ASCII for human inspection, sent to an intepreter, or stored in a
page description for printing. After the context’s encoding has been set using
DPSChangeEncoding, buffers of binary-encoded tokens can be read and passed
to DPSWritePostScript for conversion. Either a text context or an execution
context can perform this conversion, but it is used mainly for text contexts.

Example 1: To cause a text context to generate binary-encoded
tokens, call:

DPSChangeEncoding(textContext, dps_encodedTokens,
textContext->nameEncoding);

28 X Window System Programmer’s Supplement / Version of January 23, 1990

Example 2: To cause an execution context to convert user name
indices to user name strings, call:

DPSChangeEncoding(context, context->programEncoding, dps_strings);

4.5 FORKED CONTEXTS

The PostScript language allows an existing context to create
another context by means of the fork operator. However, when a
forked context is created, it has no ‘DPSContext’ handle or X
resource ID associated with it (see Section 4.1). This is fine if
 the
application does not need to communicate with the forked con-
text. A context that was forked to do some simple task in the
background may terminate without generating any output. If the
application does need to communicate with a forked context,
both a ‘DPSContext’ handle and an X resource ID must be
created for the context.

To create a resource ID and ‘DPSContext’ handle for a forked
context, call DPSContextFromContextID:

DPSContext DPSContextFromContextID(ctxt, cid, textProc, errorProc);
DPSContext ctxt;
ContextPSID cid;
DPSTextProc textProc;
DPSErrorProc errorProc;

‘ctxt’ specifies the context that created the forked context. In
other words, ‘ctxt’ is the context that executed the fork operator.
‘cid’ is a ‘long int’ that specifies the PostScript context identifier
(not the X resource ID) of the forked context.

‘textProc’ and ‘errorProc’ are the usual context output handlers.
If ‘textProc’ is NULL, the text handler from ‘ctxt’ is used. If
‘errorProc’ is NULL, the error handler from ‘ctxt’ is used.

DPSContextFromContextID returns a ‘DPSContext’ handle if
‘ctxt’ and ‘cid’ are valid, otherwise it returns NULL.

4 ADDITIONAL FACILITIES 29

Note: Implementation limitations should be kept in mind when
using the fork operator. A context can consume a significant
amount of memory. Furthermore, the total number of contexts
that can be created in a server is relatively small — on the order
of 50 to 100.

Warning: When using forked contexts, plan to use
DPSContextFromContextID to hook up with them for debug-
ging, even if the eventual use of the forked context does not re-
quire that the application communicate with it. If a forked con-
text generates a PostScript language error but there is no
resource ID or ‘DPSContext’ handle associated with it, the appli-
cation will never see the error.

Contexts created by fork exist until they are killed or joined
(using the join operator). A context terminated by the detach
operator, however, goes away as soon as it finishes executing.

4.6 MULTIPLE SERVERS

An application may create contexts on more than one server at
the same time. If this is done, the application must process
events from each server (display) to which it is connected.

In order to support access to multiple servers, DPS/X procedures
take a pointer to ‘Display’ records where appropriate.

4.7 SHARING RESOURCES

Execution contexts and spaces can be identified by their X
resource identifiers. These identifiers can be passed to other
clients to enable sharing of resources.

30 X Window System Programmer’s Supplement / Version of January 23, 1990

Warning: There is no support in the Client Library for main-
taining the consistency of shared resources. In general, applica-
tions should not share resources because of the complexity of
managing them.

If an application needs to share execution context information
with other clients, the shared VM facility and the mutual exclu-
sion operators provided by the PostScript language (lock,
monitor, and so on) may be adequate for that purpose. See
PostScript Language Extensions for the Display PostScript
System.

If these facilities are not adequate, the procedures described in
this section can be used.

XDPSContextFromSharedID and XDPSSpaceFromSharedID are
provided to allow a client to communicate with resources created
by a different client.

For the most part, a ‘DPSContext’ handle created for a shared
resource can be used like any other handle. However, there are
some restrictions. The following list, though not exhaustive,
presents some of the issues related to sharing resources:

• User names in binary encodings of the PostScript language
must be sent as strings. This is because the mapping of
user name indices are not guaranteed to be unique across
clients. The default ‘DPSNameEncoding’ of the
‘DPSContextRec’ created for a shared context is
‘dps_string’. It cannot be changed to ‘dps_indexed’.

• Output from the context, including wrap result values, text,
and errors, is sent only to the context’s original creator, not
to any clients sharing the context. Status events, however,
are sent to clients sharing the context, as specified by the
status event mask (see Section 4.8).

• When DPSDestroyContext or DPSDestroySpace is applied
to a shared context or space, only the client-side data struc-
tures are destroyed. The execution context, the space, and
the resources associated with these objects can be destroyed
only by the creator.

• If the creator destroys resources, any reference to a

4 ADDITIONAL FACILITIES 31

destroyed resource will result in a protocol error, which is
sent to the client sharing the resource.

It is up to the application that allows resource identifiers to be
shared, and the clients sharing those resources, to cooperate and
maintain consistency.

4.8 STATUS EVENTS

At any given time, a context has a specific execution status.
Status events are provided for low-level monitoring of context
status. Most applications won’t need this facility.

Status events can be used to perform the following tasks:

• Send code, using flow control, from the application to a
context.

• Control the suspension and resumption of execution.

• Synchronize PostScript interpreter execution with X
rendering requests.

• Monitor a context to determine whether it is runaway,
‘‘wedged’’ (stuck), or zombie.

A status event is generated whenever a context changes from one
state to another. Status events can be masked in the server so that
uninteresting events are not sent to the client (see
XDPSSetStatusMask). Furthermore, the application will not see
any status events unless it registers a status event handler by call-
ing XDPSRegisterStatusProc. The default is to have no status
events enabled and no status event handler registered.

The procedure XDPSGetContextStatus returns the current status
of a context (as a synchronous reply to a request, not as an
asynchronous event). The status of a context may be one of the
following states:

32 X Window System Programmer’s Supplement / Version of January 23, 1990

‘PSSTATUSERROR’
The context is in a state that is not described by
the other four status values. For example, a con-
text that has been created but has never been
scheduled to execute would return
‘PSSTATUSERROR’ to
XDPSGetContextStatus. No asynchronous status
event will have this value.

‘PSRUNNING’ The context has been running, has code to ex-
ecute, or is capable of being run. Fine point: No
context is running while the server processes re-
quests or generates events, so this value really
means that the context is runnable.

‘PSNEEDSINPUT’
The context is waiting for code to execute, a
condition commonly known as ‘‘blocked on
input.’’

‘PSFROZEN’ The execution of the context has been suspended
by the clientsync operator. A frozen context
may be killed with DPSDestroyContext, inter-
rupted with DPSInterruptContext, or reactivated
with XDPSUnfreezeContext.

‘PSZOMBIE’ The context is dead. The resource data allocated
for the context still exists in the server, but the
PostScript interpreter no longer recognizes the
context.

Except for ‘PSSTATUSERROR’, these status events may be dis-
abled (see below).

If an application is interested in one or more types of status
events, a handler of type ‘XDPSStatusProc’ must be defined.
Two arguments will be passed to the call-back procedure: the
‘DPSContext’ handle for the context that generated the status
event, and a code specifying the status event type. The
XDPSRegisterStatusProc procedure associates a status event
handler with a particular ‘DPSContext’. Each context may have
a different handler.

Once a status event handler is established for the context, the
application should set the status event masks for the context by
calling XDPSSetStatusMask. The symbols for the mask values
are:

4 ADDITIONAL FACILITIES 33

• ‘PSRUNNINGMASK’

• ‘PSNEEDSINPUTMASK’

• ‘PSZOMBIEMASK’

• ‘PSFROZENMASK’

A mask is constructed by applying a logical OR of the mask
values to the appropriate mask; for example,

enableMask = PSRUNNINGMASK | PSNEEDSINPUTMASK;

sets the bits that indicate interest in the ‘PSRUNNING’ and
‘PSNEEDSINPUT’ status event types. A 1-bit means interest in
that type; a 0-bit means ‘‘no change’’ or ‘‘don’t care.’’

The context can handle a given status event type in one of three
ways:

• If the application wants to be notified of the event every
time it occurs, the event should be enabled.

• If the application never wants to be notified of the event,
the event should be disabled.

• If the application wants to be notified of only the next
occurrence of the event, the event should be set to next.

The application defines the method of handling each status event
type by setting bits in three masks: ‘enableMask’, ‘disableMask’,
and ‘nextMask’.

Call XDPSSetStatusMask to set the masks. Note that a particular
bit may be set in only one mask. Bits set in the ‘nextMask’ en-
able the events of that type. When the context changes state, an
event is generated. If its type is specified in the ‘nextMask’, the
application is notified of the event and all subsequent events of
that type are automatically disabled.

Example: An application currently has ‘PSNEEDSINPUT’ and
‘PSRUNNING’ enabled and all other types disabled. It now
wants to be notified of every transition to ‘PSFROZEN’ and
‘PSZOMBIE’ and only the next transition to ‘PSNEEDSINPUT’.
The masks would be contructed as follows:

34 X Window System Programmer’s Supplement / Version of January 23, 1990

enableMask = PSFROZENMASK | PSZOMBIEMASK;
disableMask = PSRUNNINGMASK;
nextMask = PSNEEDSINPUTMASK;

XDPSSetStatusMask(ctxt, enableMask, disableMask, nextMask);

Even though the previous setting for ‘PSNEEDSINPUT’ was en-
abled, ‘PSNEEDSINPUT’ need not be disabled in order to
change the treatment of this event to ‘‘next only.’’

See Section 4.9 for details on how the ‘PSFROZEN’ status event
can be used.

4.9 SYNCHRONIZATION

As discussed in Section 3.3.2, X rendering primitives and
PostScript language execution may, in most cases, be intermixed
freely. However, in some situations PostScript language execu-
tion needs to be synchronized with X.

See the Client Library Reference Manual for a discussion of the
general requirements for synchronization. To summarize, you
can synchronize either by calling wraps that return results or by
calling DPSWaitContext. Enforced synchronization is expensive
and should be used only when absolutely necessary.

Example: Suppose a previewer application displays a page of
text and graphics that is represented by a PostScript language
page description in a file. The user interface of the application
may require the entire page to be imaged to a pixmap before it is
realized on the physical display. The application reads the
ASCII-encoded PostScript language code from the file and sends
it to the server with the DPSWritePostScript procedure. The con-
text executes the code as it is received, and renders to the pix-
map.

If the file contains only one page, and the page description is
simple, the application knows that the pixmap is complete when
it has read to the end of the input file and called
DPSWaitContext. It may now call XCopyArea to copy the pix-
map to the application display window.

4 ADDITIONAL FACILITIES 35

However, if the file contains more than one page, the application
cannot know when the rendering to the pixmap is complete. If it
calls XCopyArea too soon, the context may not have finished
drawing. As a result, an incomplete image will be displayed on
the screen.

There are two main strategies for handling situations such as the
one described above: waiting and freezing. The first is applicable
if the application has sufficient knowledge of the content of the
PostScript language code to know where the beginning and the
end are located. The second is used only if the application has no
reliable knowledge of the code content.

4.9.1 Waiting

Causing the context to wait is appropriate when the PostScript
language code to be executed has a known structure. This is true
in either of the following circumstances:

• The application has complete control of the code to be ex-
ecuted. That is, it uses wrapped procedures, single-
operator procedures, or dynamically generated code frag-
ments such as user path descriptions. No code comes from
external sources such as end-user input.

• The application reads external files with a known structure
that can be parsed and understood, such as PostScript lan-
guage page descriptions that are compliant with Adobe
Systems Document Structuring Conventions.

Most applications that require synchronization fall into one of
the two categories described above. In both cases, the application
knows exactly how much PostScript language code needs to be
sent for a complete display. In these cases, the application sends
the code and then forces all code to be executed, either with
DPSWaitContext or as a side effect of calling a wrap that returns
a value. When either of these procedures returns, the application
knows that all rendering is done and that other X requests can
now be sent.

4.9.2 Freezing

36 X Window System Programmer’s Supplement / Version of January 23, 1990

Freezing a context is appropriate if the application has insuf-
ficient knowledge of the completeness of the PostScript language
code to be executed. This can happen if an end user is allowed to
enter arbitrary PostScript language programs (for instance, in an
interactive interpreter executive) or if an input file lacks a well-
defined structure.

In this case, the input must contain an executable name that the
application has defined. For example, the showpage operator ter-
minates each page in a page description file. The application can
take advantage of this, as shown in the following example.

Example: The application has defined showpage to execute an
operator that will notify the application that the page is done.
The clientsync operator fulfils this function:

/old_showpage /showpage load def
/showpage {old_showpage clientsync} bind def

When clientsync is executed, the context is put into the
‘PSFROZEN’ state, and a ‘PSFROZEN’ event is generated. The
application must have enabled the ‘PSFROZEN’ event and regis-
tered a handler for that context; see Section 4.8 for more infor-
mation on status events. The handler may then set a flag indicat-
ing that the image in the pixmap is complete. The next time the
application goes around its main loop, it can test the flag and call
XCopyArea.

A frozen context can still receive interrupts.
DPSInterruptContext will interrupt a context whether it is frozen
or not.

4 ADDITIONAL FACILITIES 37

5 PROGRAMMING TIPS

This section contains tips for to help you program applications
that use the Display PostScript system extension to the X Win-
dow System.

5.1 DON’T USE XIFEVENT

Don’t call XIfEvent in your application. This routine will cause
events that were generated and queued by an execution context
to be processed repeatedly (once for each call to XIfEvent) with-
out being dequeued. This may result in wrap results or text out-
put being erroneously duplicated or may cause false status events
to be reported. Use XCheckIfEvent instead.

This restriction may not apply to future implementations of Xlib.

Warning: If your toolkit uses XIfEvent, you may see the er-
roneous effects described above even though your application
does not use XIfEvent directly.

5.2 INCLUDE FILES

Include the dpsXclient.h header file when compiling DPS/X ap-
plications. This header file includes the required header files
described in the Client Library Reference Manual, dpsclient.h
and dpsfriends.h.

Include dpsops.h if your application uses single-operator
procedures with explicit contexts.

Include psops.h if your application uses single-operator
procedures with implicit contexts.

Include dpsexcept.h if your application uses exception handling
as defined in the Client Library Reference Manual.

38 X Window System Programmer’s Supplement / Version of January 23, 1990

5.3 COORDINATE CONVERSIONS

The code examples in this section demonstrate an efficient
method of doing coordinate conversions. (For an introduction to
coordinate system issues, see Section 3.3.1.)

At initialization, and immediately after any user space transfor-
mation has been performed (for example, after scale, rotate, or
setmatrix), the application should execute PostScript language
code to get the CTM (current transformation matrix), the inverse
of the CTM, and the current origin offset. The following
wrapped procedure will return these values:

defineps PSWGetTransform(DPSContext ctxt | float ctm[6], invctm[6];
int *xOffset, *yOffset)

matrix currentmatrix dup ctm
matrix invertmatrix invctm
currentXoffset yOffset xOffset

endps

Call the PSWGetTransform wrap as necessary, saving the return
values in storage associated with the window:

DPSContext ctxt;
float ctm[6], invctm[6];
int xOffset, yOffset;

PSWGetTransform(ctxt, ctm, invctm, &xOffset, &yOffset);

To convert an X coordinate into a user space coordinate, perform
the following calculations:

#define A_COEFF 0
#define B_COEFF 1
#define C_COEFF 2
#define D_COEFF 3
#define TX_CONS 4
#define TY_CONS 5
int x, y; /* X coordinate */
float ux, uy; /* user space coordinate */

x -= xOffset;
y -= yOffset;
ux = invctm[A_COEFF] * x + invctm[C_COEFF] * y + invctm[TX_CONS];
uy = invctm[B_COEFF] * x + invctm[D_COEFF] * y + invctm[TY_CONS];

To convert a user space coordinate into an X coordinate, perform
the following calculations:

5 PROGRAMMING TIPS 39

x = ctm[A_COEFF] * ux + ctm[C_COEFF] * uy + ctm[TX_CONS] + xOffset;
y = ctm[B_COEFF] * ux + ctm[D_COEFF] * uy + ctm[TY_CONS] + yOffset;

The equations listed above have the following limitations:

• X coordinates must be positive. Otherwise, use the floor
function to avoid the implicit truncation that happens when
floating-point values are assigned to integers.

• Beware of round-off error. Incorrect coordinates may be
computed in either direction.

5.4 FONTS

The filenameforall operator can be used to obtain a list of the
fonts available to the server. See PostScript Language Exten-
sions for the Display PostScript System for a description of
filenameforall. Use the pattern ‘(%font%*)’ to generate a list of
fonts. The font file names may be sent back as ASCII text and
processed with a customized text handler, or they may be stored
in an array and then accessed one at a time by calling a wrapped
procedure.

Outline fonts are resources. Like any other resource, there’s no
guarantee that a given font will be present on any particular serv-
er. The application must be written to deal with a findfont or
selectfont operator that fails because it can’t find the font. It is
possible to redefine findfont and selectfont so that they sub-
stitute some default font when the requested font is not available.
Indeed, the default definition of findfont in a given environment
may already do this.

5.5 PORTABILITY ISSUES

Portability issues may arise under any of the following situa-
tions:

• Converting an existing X application to use the DPS/X ex-
tension.

• Porting a non-X window system application to use the
DPS/X extension.

• Writing a portable application that uses the DPS/X exten-
sion.

40 X Window System Programmer’s Supplement / Version of January 23, 1990

A major factor in portability is device independence. The DPS/X
extension enhances the device independence of X applications
by providing flexibility with respect to color, resolution, and
fonts.

5.5.1 Color

Use PostScript operators such as setrgbcolor rather than X
primitives to draw with color. The PostScript interpreter will
provide the best rendering possible for the device. The Display
PostScript system can produce a variety of halftone patterns
representing gray values or colors, so that one color can be seen
against the background of another color even on a monochrome
device. Contrast this with the rendering facilities of the X Win-
dow System, where a request for any color other than white on a
monochrome device will give you black.

DPS/X color rendering is device independent. Here’s how
DPS/X handles color requests:

• On a monochrome device, you’ll get a dithered (halftone)
pattern of black and white pixels. For example, if you ask
for red by specifying ‘1 0 0 setrgbcolor’, you’ll get some
halftone gray pattern composed of black and white pixels;
this pattern will be distinct from other ‘‘colors’’.

• On a grayscale device you’ll get a halftone pattern using
gray levels; this offers greater distinction among ‘‘colors.’’

• On a color device (4-plane, 8-plane, and so on), you’ll get
the requested color if it’s one of those predefined for the
context; otherwise you’ll get a dithered pattern of RGB
pixels that approximates the color.

• If you’ve allocated solid colors beyond those predefined for
the context, you’ll get a non-dithered color just as you
would with X (subject to the same restrictions).

• A color request will never simply fail.

X Window System color rendering, on the other hand, is device
dependent:

• On a monochrome device, a request for any color will give
you black. There’s no way to differentiate between ‘‘pink’’
and ‘‘olive green,’’ as there is with DPS/X.

5 PROGRAMMING TIPS 41

• On a color device, you’ll get the color you requested only if
there’s space in the colormap or the device is a TrueColor
device.

• A color request can fail, and there’s no recourse except to
try requesting a different color.

5.5.2 Resolution

The Display PostScript extension offers you device indepen-
dence with respect to resolution.

In DPS/X, positions and extents are specified with resolution-
independent units such as points. An inch is always an inch.
Window elements will always have the same absolute size,
regardless of the device.

In the X Window System, positions and extents are specified in
units of pixels. The size of a pixel depends on the device. One
inch may be 75 pixels on one display and 100 pixels on another
display. This causes strange distortions of size when creating
windows on various display devices.

5.5.3 Fonts

In the X Window System, you can’t rely on the availability of a
given point size/typeface combination. If you request 9-point
Helvetica, for example, and that point size is not available, you
must make another request.

The Display PostScript extension gives you added flexibility
with respect to fonts:

• You can have any point size as long as the typeface is
present. If you request a size that’s not available, DPS/X
generates it for you.

• The typeface can be rendered in any rotation or two-
dimensional transformation.

42 X Window System Programmer’s Supplement / Version of January 23, 1990

6 X-SPECIFIC DATA AND PROCEDURES

This section describes the system-specific data types and
procedures for DPS/X.

6.1 DATA STRUCTURES

Data structures defined in the dpsXclient.h header file are
described below.

6.1.1 Extended Error Codes

The following error codes for the X Window System are in ad-
dition to those described under ‘DPSErrorCode’ in the Client
Library Reference Manual:

‘dps_err_invalidAccess’
An attempt was made to receive output from a
context created by another client. Contexts send
their output only to the original creator. If the
application tries to get output from a context
created by another client — for example, by
calling a wrap that returns a result — this error
is reported.

‘dps_err_encodingCheck’
An attempt was made to change name or
program encoding to unacceptable values. This
error can occur when changing name encoding
for a context created by another client or a con-
text created in a space that was created by
another client. Such contexts must have string
name encoding (‘dps_strings’).

‘dps_err_closedDisplay’
An attempt was made to send PostScript lan-
guage code to a context whose ‘Display’ is
closed.

‘dps_err_deadContext’
An attempt was made to get output from a zom-
bie context (a context that has died in the server
but still has its X resources active).

6 X-SPECIFIC DATA AND PROCEDURES 43

6.1.2 Status Event Masks

The status event types supported in DPS/X are shown in Figure
5. The first column shows the status event type that is reported
by the server. The second column shows the associated single-bit
status mask values that can be combined with logical OR to set a
context’s status mask. The third column describes the status
event.

Figure 5 Status Events

Status Event Mask Value Status Description

PSRUNNING PSRUNNINGMASK Context is runnable.
PSNEEDSINPUT PSNEEDSINPUTMASK Context needs input to continue running.
PSZOMBIE PSZOMBIEMASK Context is dead, but its X resources remain.
PSFROZEN PSFROZENMASK Context was frozen by PostScript language

program.
PSSTATUSERROR — Could not reply to status request.

For more information on status events, see Section 4.8.

6.1.3 Types and Global Variables

DPSLastUserObjectIndex
long int DPSLastUserObjectIndex;

‘DPSLastUserObjectIndex’ is a global variable containing the
last user object index assigned for this application. This variable
should be treated as read-only. For more information about user
object indices, see DPSNewUserObjectIndex and Section 3.3.5.

44 X Window System Programmer’s Supplement / Version of January 23, 1990

XDPSStatusProc typedef void (*XDPSStatusProc)(/*
DPSContext ctxt,
int code */);

This is a procedure type for defining the call-back procedure that
handles status events for the client. The procedure will be called
with two parameters: the context it was registered with and the
status code derived from the event. For more information about
status events, see XDPSRegisterStatusProc and Section 6.1.2.

6.2 PROCEDURES

This section contains descriptions of the system-specific
procedures in the dpsXclient.h header file, listed alphabetically.

DPSChangeEncoding
void DPSChangeEncoding(ctxt, newProgEncoding, newNameEncoding);

DPSContext ctxt;
DPSProgramEncoding newProgEncoding;
DPSNameEncoding newNameEncoding;

DPSChangeEncoding changes one or both of the context’s en-
coding parameters. See the Client Library Reference Manual for
definitions of ‘DPSNameEncoding’ and
‘DPSProgramEncoding’. Supported conversions are described in
Figure 4 on page 28.

6 X-SPECIFIC DATA AND PROCEDURES 45

DPSContextFromContextID
DPSContext DPSContextFromContextID(ctxt, cid, textProc, errorProc);

DPSContext ctxt;
ContextPSID cid;
DPSTextProc textProc;
DPSErrorProc errorProc;

DPSContextFromContextID creates a ‘DPSContextRec’ and
returns a ‘DPSContext’ handle for a forked context; it returns
NULL if it is unable to create these data structures.

The application must call this procedure before attempting to
communicate with a forked context. DPSContextFromContextID
creates the client-side data structures for the context and associ-
ates them with the server-side structures previously created by
the fork operator. ‘cid’ is the context identifier (of type ‘long
int’) that is assigned to the forked context by the PostScript inter-
preter. ‘ctxt’ is the handle of the context that created the forked
context; its ‘DPSContextRec’ will be used as a model for the
‘DPSContextRec’ of the forked context, as described below.

If a ‘DPSContextRec’ has already been created for ‘cid’, its
handle is returned by DPSContextFromContextID. Otherwise, a
new context record is created according to the following rules:

• If supplied, the ‘textProc’ and ‘errorProc’ arguments are
used for the forked context.

• If ‘textProc’ or ‘errorProc’ are NULL, the missing values
are copied from the ‘DPSContextRec’ of ‘ctxt’.

• The chaining pointers for the forked context are set to
NULL.

• All other fields in the new ‘DPSContextRec’ are copied
from ‘ctxt’.

46 X Window System Programmer’s Supplement / Version of January 23, 1990

DPSCreateTextContext
DPSContext DPSCreateTextContext(textProc, errorProc);

DPSTextProc textProc;
DPSErrorProc errorProc;

DPSCreateTextContext creates a text context and returns its
‘DPSContext’ handle. When this handle is passed as the argu-
ment to a Client Library procedure, all input to the context is
passed to ‘textProc’. If the input is PostScript language in a bi-
nary encoding, the input is converted to ASCII encoding before
being passed to ‘textProc’. ‘errorProc’ is used to report any er-
rors (such as ‘dps_err_nameTooLong’) resulting from convert-
ing binary encodings to ASCII encoding. ‘textProc’ is respon-
sible for dealing with errors resulting from handling the text,
such as file system or I/O errors.

DPSDefaultTextBackstop
void DPSDefaultTextBackstop(ctxt, buf, count);

DPSContext ctxt;
char *buf;
unsigned count;

DPSDefaultTextBackstop is the text backstop procedure
automatically installed by DPS/X. Since it is of type
‘DPSTextProc’, you may use it as your context ‘textProc’. The
text backstop procedure writes text to stdout and flushes stdout.

6 X-SPECIFIC DATA AND PROCEDURES 47

DPSDestroyContext
void DPSDestroyContext(ctxt)

DPSContext ctxt;

DPSDestroyContext is as defined in the Client Library Reference
Manual, except as it pertains to shared contexts.

Both the client and the server are affected by this procedure. On
the client side, DPSDestroyContext destroys the
‘DPSContextRec’. On the server side, it destroys the PostScript
execution context and the X resource associated with it. After a
call to DPSDestroyContext, the ‘DPSContext’ handle for ‘ctxt’ is
no longer valid.

If the context is a shared context (that is, a ‘DPSContextRec’
allocated for a context created by another client), only the
‘DPSContextRec’ is destroyed; the interpreter context and
resource are unchanged.

For text contexts, DPSDestroyContext destroys the
‘DPSContextRec’.

DPSDestroySpace
void DPSDestroySpace(spc)

DPSSpace spc;

DPSDestroySpace is as defined in the Client Library Reference
Manual except for shared spaces.

For spaces created by the client, this procedure destroys the
space and the X resource associated with it. PostScript execution
contexts that use this space are also destroyed, along with their X
resources and ‘DPSContextRec’ records. Finally, the
‘DPSSpaceRec’ is destroyed.

If the space is a shared space (a ‘DPSSpaceRec’ allocated by
another client), the space and the X resource are not destroyed.
Only the ‘DPSSpaceRec’ is destroyed, along with any
‘DPSContextRec’ records for contexts associated with this
space. See Section 4.7 for a discussion of shared resources.

If the client that created the space destroys it and there are other
clients sharing it, the space is destroyed and the sharing clients
will experience unpredictable results.

48 X Window System Programmer’s Supplement / Version of January 23, 1990

DPSNewUserObjectIndex
long int DPSNewUserObjectIndex();

DPSNewUserObjectIndex returns a new user object index. The
Client Library is the sole allocator of new user object indices.
The application should not attempt to compute them from a
previously obtained index. Because user object indices are
dynamic, they should not be used as numeric values for com-
putation or saved in long-term storage such as a file. See Section
3.3.5 for more information on user object indices.

XDPSContextFromSharedID
DPSContext XDPSContextFromSharedID(dpy, cid, textProc, errorProc);

Display *dpy;
ContextPSID cid;
DPSTextProc textProc;
DPSErrorProc errorProc;

XDPSContextFromSharedID creates a ‘DPSContextRec’ for a
context that was created by another client.

‘cid’ specifies the context. (‘cid’ is the context identifier assigned
by the PostScript interpreter, not the X resource ID.) ‘dpy’ is the
‘Display’ that both clients are connected to. ‘textProc’ and
‘errorProc’ are the context text and error handlers for the shared
context. For information on sharing resources, see Section 4.7.

XDPSContextFromXID
DPSContext XDPSContextFromXID(dpy, xid);

Display *dpy;
XID xid;

XDPSContextFromXID gets the context record for the given X
resource ID on ‘dpy’. It returns NULL if ‘xid’ is not valid.

6 X-SPECIFIC DATA AND PROCEDURES 49

XDPSCreateContext
DPSContext XDPSCreateContext(dpy, drawable, gc, x, y, eventmask,

grayramp, ccube, actual, textProc, errorProc, space);
Display *dpy;
Drawable drawable;
GC gc;
int x;
int y;
unsigned int eventmask;
XStandardColormap *grayramp;
XStandardColormap *ccube;
int actual;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

XDPSCreateContext creates a context with a customized color-
map; it returns NULL if there is any error.

‘dpy’, ‘drawable’, ‘gc’, ‘x’, ‘y’, ‘textProc’, ‘errorProc’, and
‘space’ are the same as for XDPSCreateSimpleContext.
‘eventmask’ is reserved for future extensions and should be
passed as zero.

The colormap specified in ‘grayramp’ and ‘ccube’ must contain
a range of uniformly distributed colors. ‘grayramp’ specifies the
factors needed to compute a pixel value for a particular gray
level. ‘grayramp’ is required. ‘ccube’ specifies the factors
needed to compute a pixel value for a particular RGB color.
‘ccube’ is optional; if it is passed as NULL, rendering will be
done in shades of gray. The colormap specified in ‘ccube’ must
be the same as the one specified in ‘grayramp’. ‘actual’ specifies
the upper limit of the number of additional RGB colors the appli-
cation plans to request, beyond those specified in ‘ccube’ and
‘grayramp’.

The following restrictions apply:

• ‘drawable’ and ‘gc’ must be on the same screen.

• ‘drawable’ and ‘gc’ must have the same depth ‘Visual’.

• If the ‘drawable’ is a ‘Window’, any colormaps specified
must have the same ‘Visual’.

• ‘grayramp’ must be specified, ‘ccube’ is optional, both
must be valid.

50 X Window System Programmer’s Supplement / Version of January 23, 1990

See Section 3.2 for additional information on creating a context.

XDPSCreateSimpleContext
DPSContext XDPSCreateSimpleContext(dpy, drawable, gc,

x, y, textProc, errorProc, space);
Display *dpy;
Drawable drawable;
GC gc;
int x;
int y;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

XDPSCreateSimpleContext creates a context with the default
colormap; it returns NULL if there is any error.

The procedure creates a context associated with ‘dpy’,
‘drawable’ and ‘gc’. ‘x’ and ‘y’ are offsets from the ‘drawable’
origin to the PostScript device space origin in pixels.

‘textProc’ points to the procedure that will be called to handle
text output from the context. ‘errorProc’ points to the procedure
that will be called to handle errors reported by the context.
‘space’ determines the private VM of the new context. A NULL
space causes a new one to be created.

The following restrictions apply:

• ‘drawable’ and ‘gc’ must be on the same screen.

• ‘drawable’ and ‘gc’ must have the same depth ‘Visual’.

See Section 3.2 for additional information on creating a context.

XDPSFindContext DPSContext XDPSFindContext(dpy, cid);
Display *dpy;
long int cid;

XDPSFindContext returns the ‘DPSContext’ handle of a context
given its context identifier, ‘cid’. It returns NULL if the context
identifier is invalid.

6 X-SPECIFIC DATA AND PROCEDURES 51

XDPSGetContextStatus
int XDPSGetContextStatus(ctxt);

DPSContext ctxt;

XDPSGetContextStatus returns the status of ‘ctxt’. This proce-
dure does not alter the mask established for ’ctxt’ by
XDPSSetStatusMask. For information on status events, see Sec-
tions 4.8 and 6.1.2.

XDPSRegisterStatusProc
void XDPSRegisterStatusProc(ctxt, proc);

DPSContext ctxt;
XDPSStatusProc proc;

XDPSRegisterStatusProc registers a status event handler, ‘proc’,
to be called when a status event is received by the client for the
context specified by ‘ctxt’. The status event handler may be
called by Xlib any time the client gets events or checks for
events.

‘XDPSStatusProc’ replaces the previously registered status
event handler for the context, if any. ‘proc’ handles only status
events generated by ‘ctxt’; if the application has more than one
context, XDPSRegisterStatusProc must be called separately for
each context.

52 X Window System Programmer’s Supplement / Version of January 23, 1990

XDPSSetStatusMask
void XDPSSetStatusMask(ctxt, enableMask, disableMask, nextMask);

DPSContext ctxt;
unsigned long enableMask, disableMask, nextMask;

XDPSSetStatusMask sets the status mask for the context:

• ‘enableMask’ specifies status events for which continuing
notification to the client is requested.

• ‘disableMask’ specifies status events for which the client
does not want to be notified.

• ‘nextMask’ specifies status events for which the client
wants to be notified of the next occurrence only. Setting
‘nextMask’ is equivalent to setting ‘enableMask’ for a
status event and, after being notified of the next occurrence,
setting ‘disableMask’ for that event.

A given status event type may be set in only one of the three
status masks. If an event is set in more than one mask, a protocol
error (‘Value’) is generated and the context is left unchanged.
For more information on status events, see Sections 4.8 and
6.1.2.

XDPSSpaceFromSharedID
DPSSpace XDPSSpaceFromSharedID(dpy, sxid);

Display *dpy;
SpaceXID sxid;

XDPSSpaceFromSharedID creates a ‘DPSSpaceRec’ for the
space identified by an X resource ID, ‘sxid’, that was created by
another client. ‘dpy’ is the ‘Display’ that both clients are con-
nected to. XDPSSpaceFromSharedID returns NULL if ‘sxid’ is
not valid.

XDPSSpaceFromXID
DPSSpace XDPSSpaceFromXID(dpy, xid);

Display *dpy;
XID xid;

XDPSSpaceFromXID gets the space record for the given X
resource ID on ‘dpy’. It returns NULL if ‘xid’ is not valid.

6 X-SPECIFIC DATA AND PROCEDURES 53

XDPSUnfreezeContext
void XDPSUnfreezeContext(ctxt);

DPSContext ctxt;

XDPSUnfreezeContext notifies a context that is in the
‘PSFROZEN’ state to resume execution. Attempting to unfreeze
a context that is not frozen has no effect.

XDPSXIDFromContext
XID XDPSXIDFromContext(Pdpy, ctxt)

Display **Pdpy;
DPSContext ctxt;

XDPSXIDFromContext gets the X resource ID for the given con-
text record and returns its ‘Display’ in the location pointed to by
‘Pdpy’. ‘Pdpy’ is set to NULL if ‘ctxt’ is not a valid context.

XDPSXIDFromSpace
XID XDPSXIDFromSpace(Pdpy, spc);

Display **Pdpy;
DPSSpace spc ;

XDPSXIDFromSpace gets the X resource ID for the given space
record and returns its ‘Display’ in the location pointed to by
‘Pdpy’. ‘Pdpy’ is set to NULL if ‘spc’ is not a valid space.

54 X Window System Programmer’s Supplement / Version of January 23, 1990

7 X-SPECIFIC POSTSCRIPT OPERATORS

This section describes the X-specific PostScript operators for the
Display PostScript system extension to the X Window System.
The operators are organized alphabetically by operator name.
Each operator description is presented in the following format:

operator operand operand ... operand operator result ... result1 2 n 1 m

Detailed explanation of the operator.

ERRORS:
A list of the errors that this operator might execute.

At the head of an operator description, operand through1
operand are the operands that the operator requires, withn
operand being the topmost element on the operand stack. Then
operator pops these objects from the operand stack and con-
sumes them. After executing, the operator leaves the objects
result through result on the stack, with result being the top-m m1
most element.

The notation ‘–’ in the operand position indicates that the
operator expects no operands; a ‘–’ in the result position in-
dicates that the operator returns no results.

Error conditions include the following:

rangecheck Invalid match: Either the ‘drawable’ and ‘gc’
have different depths or they don’t have a
‘Visual’ that matches the colormap associated
with the context.

stackunderflow
Not enough operands on the operand stack.

typecheck Invalid X resource ID.

undefined The device associated with the context is not a
display device.

7 X-SPECIFIC POSTSCRIPT OPERATORS 55

clientsync – clientsync –

The clientsync operator synchronizes the application with the
current context. clientsync notifies the current context to stop
executing, sets the context status to ‘FROZEN’, and causes a
‘PSFROZEN’ status event to be generated. To resume execution,
call the XDPSUnfreezeContext procedure.

For an example of the use of clientsync, see Section 4.9.2.

currentXgcdrawable – currentXgcdrawable gc drawable x y

The currentXgcdrawable operator returns the X ‘gc’,
‘drawable’, and offset from the origin of the ‘drawable’ to the
device space origin for the current context. Results returned by
this operator can be input to setXgcdrawable.

ERRORS:
undefined

currentXgcdrawablecolor – currentXgcdrawablecolor gc drawable x y colorinfo

The currentXgcdrawablecolor operator is similar to the
currentXgcdrawable operator, except that it also returns an
array of 12 integers describing the color cube, gray ramp, and
other color variables used for the context. The ‘colorinfo’ array,
described in Figure 6, has the following form:

[maxgrays graymult firstgray maxred redmult maxgreen greenmult
maxblue bluemult firstcolor colormap actual]

56 X Window System Programmer’s Supplement / Version of January 23, 1990

Figure 6 The ‘colorinfo’ Array

Value Description

‘maxgrays’ Maximum number of gray values. Equivalent to
‘red_max’ field of ‘XStandardColormap’ for
‘GrayScale’ colormaps.

‘graymult’ Scale factor to compute gray pixel. Equivalent to
‘red_mult’ field of ‘XStandardColormap’ for
‘GrayScale’ colormaps.

‘firstgray’ First gray pixel value. Equivalent to
‘base_pixel’ field of ‘XStandardColormap’ for
‘GrayScale’ colormaps.

‘maxred’ Maximum number of red values. Equivalent to
‘red_max’ field of ‘XStandardColormap’.

‘redmult’ Scale factor to compute color pixel. Equivalent
to ‘red_mult’ field of ‘XStandardColormap’.

‘maxgreen’ Maximum number of green values. Equivalent
to ‘green_max’ field of ‘XStandardColormap’.

‘greenmult’ Scale factor to compute color pixel. Equivalent
to ‘green_mult’ field of ‘XStandardColormap’.

‘maxblue’ Maximum number of blue values. Equivalent to
‘blue_max’ field of ‘XStandardColormap’.

‘bluemult’ Scale factor to compute color pixel. Equivalent
to ‘blue_mult’ field of ‘XStandardColormap’.

‘firstcolor’ First color pixel value. Equivalent to
‘base_pixel’ field of ‘XStandardColormap’.

‘colormap’ The colormap that these pixel values are al-
located in.

‘actual’ The upper limit of additional RGB colors, as in
the ‘actual’ argument to XDPSCreateContext.

ERRORS:
undefined

7 X-SPECIFIC POSTSCRIPT OPERATORS 57

currentXoffset – currentXoffset x y

The currentXoffset operator returns the ‘x’ and ‘y’ coordinates
representing the offset from the origin of the ‘drawable’ to the
device space origin for the current context. This operator returns
a subset of the variables returned by currentXgcdrawable. Its
result values can be input to setXoffset.

ERRORS:
undefined

setXgcdrawable gc drawable x y setXgcdrawable –

The setXgcdrawable operator sets the X ‘gc’, ‘drawable’, and
offset from the origin of the ‘drawable’ to the device space
origin for the current context. The specified values override any
existing values.

To temporarily change the values specified for setXgcdrawable,
execute gsave before the operator and follow it with grestore.

ERRORS:
rangecheck stackunderflow typecheck undefined

setXgcdrawablecolor gc drawable x y colorinfo setXgcdrawablecolor –

The setXgcdrawablecolor operator changes ‘gc’, ‘drawable’,
‘offset’, and ‘colorinfo’ for the context. The ‘colorinfo’ argument
is described under currentXgcdrawablecolor.

ERRORS:
rangecheck stackunderflow typecheck undefined

setXoffset x y setXoffset –

The setXoffset operator sets the default origin for the user space
of the current context. This operator is a subset of
setXgcdrawable.

ERRORS:
stackunderflow undefined

58 X Window System Programmer’s Supplement / Version of January 23, 1990

setXrgbactual red green blue setXrgbactual bool

The setXrgbactual operator attempts to allocate a new entry in
the context’s colormap. It takes three floating-point numbers be-
tween 0.0 and 1.0 to specify the RGB color, as with setrgbcolor.
The operator returns true if the color was successfully allocated
in the colormap; it returns false if the color cannot be allocated
or if an error occurs.

Executing setXrgbactual is a way of ensuring that the color you
request is actually allocated, not dithered. Colors specified by
setXrgbactual do not count against the number of ‘actual’
colors that are allocated automatically; see Section 3.2.2.
setXrgbactual may be called even if the context was created
with ‘actual’ set to zero.

setXrgbactual does not change the graphics state in any way; to
paint with the specified color, execute setrgbcolor.

ERRORS:
stackunderflow typecheck undefined

7 X-SPECIFIC POSTSCRIPT OPERATORS 59

60 X Window System Programmer’s Supplement / Version of January 23, 1990

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT

Changes to the X Window System Programmer’s Supplement to
the Client Library Reference Manual from the document dated
August 17, 1989, are noted in the paragraphs below.

An example error handler program for advanced error handling
has been provided in Appendix B.

The discussion of the X colormap resource has been clarified,
including discussions of the use of XDPSCreateSimpleContext,
the ‘actual’ parameter in XDPSCreateContext, and the
setXrgbactual operator.

The section on scan conversion has been removed. For infor-
mation on this topic, please refer to PostScript Language Exten-
sions for the Display PostScript System.

Numerous additional amplifications and corrections have been
made.

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 61

62 X Window System Programmer’s Supplement / Version of January 23, 1990

B ADVANCED EXCEPTION HANDLING

This appendix contains an example error handler procedure that
can be used when DPSDefaultErrorProc, the default error hand-
ler described in the ‘‘Example Error Handler’’ appendix of the
Client Library Reference Manual, is not appropriate. The infor-
mation in this appendix is not required by most programmers.

Note: In general, you can’t use exception handling with X be-
cause lower levels of software, such as Xlib, are not prepared to
handle exceptions or to have control taken away from them. Un-
der certain conditions, however, you can work around the limita-
tions of the lower-level software. Note that workarounds may be
implementation dependent. The example in this appendix is a
workaround designed to be as general as possible.

Here is a brief review of how the default error handler works.
The application installs the resynchhandleerror error procedure
for the context and establishes an exception handler using the
mechanism described in the Client Library Reference Manual.
When a PostScript language error occurs, DPSDefaultErrorProc
is invoked. It calls RAISE to raise an exception, allowing the
application’s exception handler to intercept the error and attempt
error recovery.

DPSDefaultErrorProc, while sufficient for most DPS/X applica-
tions, may not be suitable in cases where all procedures in the
call stack must complete execution. The root of the problem is
that DPSDefaultErrorProc returns control directly to the
application’s error handler at the top of the calling stack, bypass-
ing all of the procedures in between, including any Xlib
procedures that were called. This can result in loss of Xlib state.
Because the default error handler does not allow Xlib procedures
to terminate gracefully, it is unsafe for the context’s client-side
error procedure to raise exceptions when there are Xlib
procedures on the call stack. In this case, a different error-
handling mechanism must be used.

The example below shows an instance in which
DPSDefaultErrorProc cannot safely be used.

B ADVANCED EXCEPTION HANDLING 63

DURING
while (fgets(linebuf, LINEBUF_LEN, psFile) != NULL)

DPSWritePostScript(c, linebuf, strlen(linebuf));
DPSWaitContext(c);

HANDLER
if (((DPSContext) Exception.Message == c) &&

(Exception.Code == dps_err_ps))
DPSResetContext(c);

END_HANDLER

In this example, the code between ‘DURING’ and ‘HANDLER’
attempts to read a PostScript language program from the psFile
stream and pass the text of the program to a context for execu-
tion. It sends the entire program and waits until its execution is
complete. If an error occurs, the ‘HANDLER’ clause is invoked.
The handler attempts to reset the context and allow it to continue
execution.

The error-handling strategy used in this example can fail if the
context receives PostScript language code with an error in it. If
Xlib processes output from the context while a previous request
to the context remains incomplete because of a full X server re-
quest buffer, an X protocol error will result. The sequence of
events that leads to this error is explained below.

If output from the context includes an error message, the Client
Library calls the context’s error procedure. Any error procedure
that calls RAISE to raise exceptions, including
DPSDefaultErrorProc, will cause all the Xlib stack frames to be
unwound before returning control to the application’s
‘HANDLER’ code. Since the Xlib procedure that was composing
a request to the context was not allowed to complete, the
application’s X Display structure is left in an inconsistent state.
When the application calls DPSResetContext, a ‘‘reset context’’
protocol request is sent to the context that reported the error, but
the X server interprets this request as part of the data of the pre-
vious (incomplete) request. Subsequent messages from the appli-
cation appear as garbage to the server, which rejects them as
protocol errors.

64 X Window System Programmer’s Supplement / Version of January 23, 1990

B.1 DEFERRED ERROR HANDLING EXAMPLE

The following example employs a mechanism that buffers errors
in a queue, thus deferring them so that the application can handle
them synchronously, when it is safe and convenient to do so.

ERRDeferredErrorProc implements the part of the mechanism
that buffers errors; the sample program specifies this procedure
as the context’s error procedure in the call to
XDPSCreateSimpleContext. ERRDeferredErrorProc is called by
the Client Library whenever an error is detected.

The sample program sends PostScript language code from an in-
put file to a context for execution. The application’s handling of
errors queued by ERRDeferredErrorProc is separated in time
from recognition of those errors by the Client Library; error han-
dling is deferred until convenient to the application. After each
DPSWritePostScript call in the ‘while’ loop, the application calls
ERRErrorsPending to determine whether execution of any
previously sent PostScript language code has resulted in an error.
If ERRErrorsPending returns true, the application calls
ERRProcessErrors to process the pending error.
ERRProcessErrors does not dictate a particular way the appli-
cation should handle errors. It simply provides a mechanism that
allows the application to implement its own error-handling
scheme by means of a call-back procedure that is called for each
error dequeued. In this example, the call-back procedure
(ErrorCallbackProc) calls ERRPrintErrorMsg to display a for-
matted error message on the standard output. ErrorCallbackProc
then determines whether the error was ‘dps_err_ps’. If so, con-
trol is returned to the application, which attempts to reset the
context. If the error was not ‘dps_err_ps’, ErrorCallbackProc
exits, causing the application to terminate abnormally.

B.1 DEFERRED ERROR HANDLING EXAMPLE 65

/* This program creates a context and passes it PostScript code read from
 a
user-specified file. If a PostScript error occurs, a message is printed
 and
the program continues with the next specified file. Any other errors
 result
in abnormal termination.

This program is a simplified example that illustrates the use of
the deferred error-handling mechanism. A "real-world" application of this
type would probably use a "clientsync / status event" type of synchronization
rather than DPSWaitContext. */

#include <stdio.h>
#include "dpsclient.h"
#include "dpsexcept.h"
#include "errprocsample.h"
#ifdef XDPS
#include "dpsXclient.h"
#endif XDPS

char resyncString[] = "resyncstart\n";
char initString[] = "clear cleardictstack\n";

/* Forward declarations */

void Error();
int ErrorCallbackProc();

main()
{

#define LINEBUF_LEN 512
char linebuf[LINEBUF_LEN];
int len;
DPSContext c;
Display *dpy;
FILE *psFile;

dpy = XOpenDisplay(NULL);
if (dpy == NULL)

Error("Can’t open display");

c = XDPSCreateSimpleContext(dpy, None, None, 0, 0,
DPSDefaultTextBackstop, ERRDeferredErrorProc, NULL);

if (c == NULL)
Error("Can’t create DPS context");

/* Set up context so it can recover after an error */
DPSWritePostScript(c, resyncString, strlen(resyncString));

while (1) {
printf("File containing PostScript Code: ");
scanf("%s", linebuf);
if ((psFile = fopen(linebuf, "r")) == NULL)

66 X Window System Programmer’s Supplement / Version of January 23, 1990

Error("Unable to open input file");
DPSWritePostScript(c, initString, strlen(initString));
while (fgets(linebuf, LINEBUF_LEN, psFile) != NULL) {

len = strlen(linebuf);
linebuf[len] = ’\n’; linebuf[len+1] = ’\0’;
DPSWritePostScript(c, linebuf, len + 1);
if (ERRErrorsPending())

break;
}

if (! ERRErrorsPending())
/* Wait for context to complete if no errors yet */
DPSWaitContext(c);
/* Test for errors again -- they may have been queued by DPSWaitContext
 */

if (ERRErrorsPending()) {
(void) ERRProcessErrors(ErrorCallbackProc,

(unsigned long) dps_err_ps);
DPSResetContext(c);
}

}

}

/* Print an error message and exit if the error was not
the one expected */

int ErrorCallbackProc(err, expected)
ERRQueueEntry *err;
unsigned long expected;
{
ERRPrintErrorMsg(err);
if ((DPSErrorCode) expected != err->errorCode)

exit(2);
return(0);
}

void Error(msg)
char *msg;
{
printf("sample: %s\n", msg);
exit(2);
}

The procedures and data structures whose names start with
‘‘ERR’’ are part of the deferred error-handling package that is
described below.

B.1 DEFERRED ERROR HANDLING EXAMPLE 67

B.2 ERROR HANDLER INTERFACE

The header file described in this section, errorproc.h, defines the
procedures and data structures that comprise a deferred error-
handling mechanism.

A listing of the errorproc.h header file follows.

/* errorproc.h */

/* Structure containing all relevant information about a Client
Library-generated error. This structure serves as a header
for a potentially larger structure; some errors require
additional information for optimal processing. In those cases,
the ’arg1’ element points to the additional information,
which is appended to the entry header. See the Client Library
Reference Manual for information on the structure of such
additional information. */

typedef struct _t_ERRQueueEntry {
struct _t_ERRQueueEntry *next;
DPSContext ctxt;
DPSErrorCode errorCode;
long unsigned int arg1, arg2;
} ERRQueueEntry;

/* Queue of deferred error entries */

extern ERRQueueEntry ERRQueueHead;

typedef int (*ERRCallBackProc)(/* ERRQueueEntry *error;
unsigned long userArg */);

extern void ERRDeferredErrorProc(/* DPSContext ctxt; DPSErrorCode errorCode;
long unsigned int arg1, arg2; */);

extern int ERRPrintErrorMsg(/* ERRQueueEntry *error; */);

extern int ERRProcessErrors(/* ERRCallBackProc proc; long int procArg; */);

#define ERRErrorsPending() (ERRQueueHead.next != NULL)

The header file is described in the paragraphs that follow.

‘ERRQueueEntry’ is a structure that contains information about
errors of type ‘DPSErrorCode’. This structure serves as a header
for a potentially larger structure; some errors require additional
information for optimal processing. In those cases, the ‘arg1’
element points to the additional information, which is appended

68 X Window System Programmer’s Supplement / Version of January 23, 1990

to the entry header. See DPSErrorProc in the Client Library Ref-
erence Manual for information on the structure of such addi-
tional information.

‘ERRQueueHead’ is the head of a queue of deferred error
entries of type ‘ERRQueueEntry’.

‘ERRErrorsPending’ is a macro that tests whether any errors
need processing. It yields true if ERRProcessErrors should be
called.

ERRCallBackProc is the call-back procedure passed to
ERRProcessErrors. The call-back procedure is passed an
‘ERRQueueEntry’ pointer and an optional argument supplied by
the caller of ERRProcessErrors. This argument is uninterpreted
by ERRProcessErrors. The call-back procedure returns a
boolean indicating whether ERRProcessErrors is to continue
processing pending error entries. If it returns true, processing
continues.

ERRDeferredErrorProc is the ‘DPSErrorProc’ to be specified as
the error handler for a context. Unlike DPSDefaultErrorProc,
this procedure does not call RAISE to raise an exception. Instead,
it encapsulates the relevant error information in an
‘ERRQueueEntry’ and puts this error structure on the queue of
error entries waiting to be processed by ERRProcessErrors.

ERRPrintErrorMsg is the default ‘ERRCallBackProc’ called
from ERRProcessErrors. It formats an error message from the
information in the error queue entry passed to it. The error mes-
sage is then passed to the application’s text backstop procedure.
ERRPrintErrorMsg always returns true, allowing
ERRProcessErrors to continue to handle pending error entries.

ERRProcessErrors is called by the application when it is ready
to handle any pending errors queued by ERRDeferredErrorProc.
It removes as many pending error entries from the error queue as
is allowed by the call-back procedure; the actual processing of
each error entry is left to the call-back procedure passed as an
argument to ERRProcessErrors. An argument to be passed to the
call-back procedure is also provided, allowing the application to
specify the disposition of an error without having to manage the
error entry queue. If ERRProcessErrors is called with a NULL

B.2 ERROR HANDLER INTERFACE 69

call-back procedure, ERRPrintErrorMsg is substituted. In other
words, the default action is to print an error message. If the call-
back procedure returns false, ERRProcessErrors returns im-
mediately to the caller, potentially leaving unprocessed entries
still on the error queue. ERRProcessErrors returns true if any
errors were processed; it returns false if no error entries were
found on the queue.

B.3 ERROR HANDLER IMPLEMENTATION

A sample implementation of the previously defined error-
handling mechanism follows. The error handler procedure below
is similar to the one provided in the ‘‘Example Error Handler’’
appendix of the Client Library Reference Manual, except that
this one doesn’t call RAISE.

/* errprocsample.c */

#include <stdio.h>
#include <strings.h>
#include <malloc.h>
#include "dpsclient.h"
#include "dpsexcept.h"
#include "errprocsample.h"
#include "dpsXclient.h"

/* ===== PUBLIC VARIABLES ===== */

/* Queue of error entries is headed by a dummy entry that
acts as an anchor */

ERRQueueEntry ERRQueueHead = { NULL };

/* ===== PUBLIC PROCEDURES ===== */

void ERRDeferredErrorProc(ctxt, errorCode, arg1, arg2)
DPSContext ctxt;
DPSErrorCode errorCode;
long unsigned int arg1, arg2;
{
ERRQueueEntry *entry, *e;
int objLen = 0;

/* Some error codes have extra data associated with them to
help identify the problem. In each case, ’arg1’ points to
this extra data. Determine the byte length of the data
(sometimes ’arg2’ but not always). */

70 X Window System Programmer’s Supplement / Version of January 23, 1990

switch (errorCode) {
case dps_err_ps:

objLen = ((DPSBinObj) arg1)->length;
break;

case dps_err_nameTooLong:
objLen = arg2;
break;

case dps_err_resultTagCheck:
objLen = arg2;
break;

case dps_err_resultTypeCheck:
objLen = sizeof(DPSBinObjRec);
break;

default:;
}

/* Allocate a queue entry large enough to hold all the normal
error stuff plus any auxilary data associated with the
error. Fill in the generic entries. If extra data exists,
copy it and make the ’arg1’ element in the entry header
point to the newly copied data. */

entry = (ERRQueueEntry *) malloc(sizeof(ERRQueueEntry) + objLen);
if (entry == NULL)

exit(2);

entry->ctxt = ctxt;
entry->errorCode = errorCode;
entry->arg2 = arg2;
if (objLen > 0) {

char *to = (char *) entry + sizeof(ERRQueueEntry);
bcopy((char *) arg1, to, objLen);
arg1 = (long unsigned int) to;
}

entry->arg1 = arg1;

/* Enqueue the new entry */

for (e = &ERRQueueHead; e->next != NULL; e = e->next);
e->next = entry;
entry->next = NULL;

} /* ERRDeferredErrorProc */

int ERRPrintErrorMsg(error)
ERRQueueEntry *error;
{
DPSContext ctxt = error->ctxt;
DPSErrorCode errorCode = error->errorCode;
long unsigned int arg1 = error->arg1;
long unsigned int arg2 = error->arg2;

B.3 ERROR HANDLER IMPLEMENTATION 71

char m[100], str1[100], str2[100];
char *prefix = "%%[Error: ";
char *suffix = "]%%\n";

DPSTextProc textProc = DPSGetCurrentTextBackstop();

if (!textProc)
return(1);

switch (errorCode) {
case dps_err_ps: {

char *buf = (char *)arg1;
DPSBinObj ary = (DPSBinObj) (buf+DPS_HEADER_SIZE);
DPSBinObj elements;
char *error, *errorName;
int errorCount, errorNameCount;

Assert((ary->attributedType & 0x7f) == DPS_ARRAY);
Assert(ary->length == 4);

elements = (DPSBinObj)(((char *) ary) + ary->val.arrayVal);

errorName = (char *)(((char *) ary) + elements[1].val.nameVal);
errorNameCount = elements[1].length;
(void) strncpy(str1, errorName, errorNameCount);
str1[errorNameCount] = ’\0’;

error = (char *)(((char *) ary) + elements[2].val.nameVal);
errorCount = elements[2].length;
(void) strncpy(str2, error, errorCount);
str2[errorCount] = ’\0’;

(void) sprintf(m, "%s; OffendingCommand: %s", str1, str2);
break;
}

case dps_err_nameTooLong:
(void) strncpy(str1, (char *) arg1, (int) arg2);
str1[arg2] = ’\0’;
(void) sprintf(m, "User name too long; Name: %s", str1);
break;

case dps_err_invalidContext:
(void) sprintf(m, "Invalid context: 0x%lx", arg1);
break;

case dps_err_resultTagCheck: {
unsigned char tag = *((unsigned char *) arg1+1);
(void) sprintf(m, "Unexpected wrap result tag: %d", tag);
break;
}

case dps_err_resultTypeCheck: {
unsigned char tag = *((unsigned char *) arg1+1);
(void) sprintf(m, "Unexpected wrap result type; tag: %d",
 tag);
break;

72 X Window System Programmer’s Supplement / Version of January 23, 1990

}
case dps_err_invalidAccess:

(void) sprintf(m, "Invalid context access.");
break;

case dps_err_encodingCheck:
(void) sprintf(m, "Invalid name/program encoding: %d/%d.",

(int) arg1, (int) arg2);
break;

case dps_err_closedDisplay:
(void) sprintf(m, "Broken display connection %d.", (int) arg1);
break;

case dps_err_deadContext:
(void) sprintf(m, "Dead context 0x%lx.", arg1);
break;

default:
(void) sprintf(m, "Unknown error code: %d, context: %lx, arg 1, 2: %lx %lx",

errorCode, ctxt, arg1, arg2);
}

(*textProc)(ctxt, prefix, strlen(prefix));
(*textProc)(ctxt, m, strlen(m));
(*textProc)(ctxt, suffix, strlen(suffix));
return(1);

} /* ERRPrintErrorMsg */

int ERRProcessErrors(proc, procArg)
int (*proc)();
long int procArg;
{
ERRQueueEntry *error;
int foundError = 0;

if (proc == NULL)
proc = ERRPrintErrorMsg;

error = ERRQueueHead.next;
while (error) {

int cont;
foundError = 1;
ERRQueueHead.next = error->next;
cont = (*proc)(error, procArg);
free((char *) error);
if (!cont)

break;
error = ERRQueueHead.next;
}

return(foundError);
} /* ERRProcessErrors */

B.3 ERROR HANDLER IMPLEMENTATION 73

Index

actual 9 DPSLastUserObjectIndex 44
advanced facilities 25 DPSNewUserObjectIndex 19, 49

dpsops.h 38
basic facilities 5 DPSPrintf 22
blocked on input 33 DPSResetContext 64
buffers 27 DPSWaitContext 35, 36

DPSWritePostScript 28, 35, 65
clientsync 33, 37 dpsXclient.h 1, 38, 43, 45
clientsync 56
clipping 15 encoding conversions 27
color 41 encodings 27
connecting to the X server 5 ERRCallBackProc 69
context identifier 25 ERRDeferredErrorProc 65, 69
conversions 39 ERRErrorsPending 69
conversions, encoding 27 error conditions 55
coordinate conversions 39 error handler, code example 65
coordinate systems 10 errorproc.h 68
creating a context 5, 49, 51 errors 21
currentcontext 25 ERRPrintErrorMsg 69
currentXgcdrawable 57 ERRProcessErrors 69
currentXgcdrawable 56 ERRQueueEntry 68, 69
currentXgcdrawablecolor 57 ERRQueueHead 69
currentXoffset 18 example of error handler 65
currentXoffset 58 examples 6, 8, 20, 22, 28, 29, 34, 37, 39

exception handling, advanced 63
debugging 30, 38 execution of PostScript language code 10
detach 30 exposure event 15
DPS/X 1
DPSChangeEncoding 27, 28, 45 facilities, basic 5
dpsclient.h 38 filenameforall 40
DPSContextFromContextID 29, 30, 46 files
DPSCreateTextContext 47 dpsclient.h 38
DPSDefaultErrorProc 63, 69 dpsexcept.h 38
DPSDefaultTextBackstop 47 dpsfriends.h 38
DPSDestroyContext 23, 26, 31, 33, 48 dpsops.h 38
DPSDestroySpace 23, 31, 48 dpsXclient.h 1, 38, 43, 45
DPSErrorCode 68 errorproc.h 68
dpsexcept.h 38 psops.h 38
DPSFlushContext 27 Xutil.h 9
dpsfriends.h 38 findfont 40
DPSInterruptContext 33, 37 flush 27

75

fonts 40, 42 rotate 39
fork 26, 29, 30, 45
forked contexts 29 scale 39
freezing 36 scrolling 13

selectfont 40
grestore 58 setmatrix 39
gsave 58 setrgbcolor 41

setXgcdrawable 7, 56
header files 38 setXgcdrawable 58

setXgcdrawablecolor 58
identifiers 25 setXoffset 12, 17, 57
implementation 70 setXoffset 58
include files 38 setXrgbactual 59
initialization 5 sharing resources 30
interface 68 showpage 37
interrupts 37 stackunderflow error 55

status event handler 52
join 30 status event masks 44

status events 32
lock 30 status mask, setting 52

synchronization 35
masks, status event 44
monitor 30 termination 23
multiple servers 30 tips for appplication programmers 38
MyWrap1 22 transformations 39

typecheck error 55
Notes 26, 29, 63

undefined error 55
offset 13 user object indices 18, 48
operator 55 user_object_indices 44

portability issues 40 waiting 36
PostScript identifier 25 Warnings 30, 38
procedures 43 window, resizing 17
programming tips 38
psops.h 38 XCheckIfEvent 38

XCloseDisplay 24
RAISE 64, 69 XCopyArea 14, 35, 36, 37
rangecheck error 55 XCreateGC 5
rectviewclip 16 XCreateSimpleWindow 5
registering a status event handler 52 XDPSContextFromSharedID 31, 49
rendering 14 XDPSContextFromXID 25, 49
repainting 15 XDPSCreateContext 8, 51, 56
resizing the window 17 XDPSCreateSimpleContext 6, 7, 51, 65
resolution 42 XDPSFindContext 26, 51
resource ID 25 XDPSGetContextStatus 32, 33, 52
resources, sharing 30 XDPSRegisterStatusProc 32, 33, 52
resynchhandleerror 63 XDPSSetStatusMask 32, 33, 34, 51, 53

76 INDEX January 23, 1990

XDPSSpaceFromSharedID 31, 53
XDPSSpaceFromXID 25, 53
XDPSStatusProc 45
XDPSUnfreezeContext 33, 54, 55
XDPSXIDFromContext 25, 54
XDPSXIDFromSpace 25, 54
XFillRectangle 15
XFlush 27
XID 25
XIfEvent 38
XOpenDisplay 5
XSetWindowColormap 9
Xutil.h 9

zombie contexts 26

77

Contents

1 About This Manual 1

1.1 Documentation 1

1.2 What This Manual Contains 2

1.3 Typographical Conventions 2

2 About the Display PostScript Extension to X 4

3 Basic Facilities 5

3.1 Initialization 5

3.2 Creating a Context 5

3.2.1 Using XDPSCreateSimpleContext 6

3.2.2 Using XDPSCreateContext 8

3.3 Execution 10

3.3.1 Coordinate Systems 10

3.3.2 Mixing Display PostScript and X Rendering 14

3.3.3 Clipping and Repainting 15

3.3.4 Resizing the Window 17

3.3.5 User Object Indices 18

3.3.6 Errors and Error Codes 21

3.4 Termination 23

4 Additional Facilities 25

4.1 Identifiers 25

4.2 Zombie Contexts 26

4.3 Buffers 27

4.4 Encodings 27

4.5 Forked Contexts 29

4.6 Multiple Servers 30

4.7 Sharing Resources 30

4.8 Status Events 32

4.9 Synchronization 35

4.9.1 Waiting 36

4.9.2 Freezing 36

5 Programming Tips 38

5.1 Don’t Use XIfEvent 38

5.2 Include Files 38

5.3 Coordinate Conversions 39

5.4 Fonts 40

5.5 Portability Issues 40

5.5.1 Color 41

5.5.2 Resolution 42

iii

5.5.3 Fonts 42

6 X-Specific Data and Procedures 43

6.1 Data Structures 43

6.1.1 Extended Error Codes 43

6.1.2 Status Event Masks 44

6.1.3 Types and Global Variables 44

6.2 Procedures 45

7 X-Specific PostScript Operators 55

A Changes Since Last Publication Of This Document 61

B Advanced Exception Handling 63

B.1 Deferred Error Handling Example 65

B.2 Error Handler Interface 68

B.3 Error Handler Implementation 70

Index 75

iv

List of Figures

Figure 1: User Space and Device Space 11

Figure 2: Window Origin and Device Space Origin 13

Figure 3: How Bit Gravity Affects Offsets 18

Figure 4: Encoding Conversions 28

Figure 5: Status Events 44

Figure 6: The ‘colorinfo’ Array 57

v

