
NeXT versus Sun: a Comparison of Development Tools February 1992

1

NeXT versus Sun: a
Comparison of
Development Tools

Executive Summary

The tools used for developing applications on
NeXT and Sun systems appear on the surface to be sim-
ilar. Sun has many tools that serve roles similar to their
NeXTstep counterparts. On closer inspection, however,
the Sun tools are quite different.

 Developers using both platforms have found that
Sun tools lack essential, timesaving features. NeXT pro-
vides many features that can be used by applications with
no additional work. Examples of these include standard
dialogs, imaging, color and printer support, and a host of
others. On the Sun these features are difficult (or, in some
cases, impossible) to implement.

Finally, and perhaps most importantly, Sun’s tools are
not object oriented. None of the toolkits are designed to
work with an object oriented version of C. Customization
of Sun’s tools is not done using any known Object-Ori-
ented language. In some cases customization is not possi-
ble.

In addition, interfaces on the Sun are inconsistent and
rudimentary, and perpetuate the notion that UNIX-based
applications are hard to use. NeXTstep Applications are:

• Easy to use
• Richer in features
• More modular and easier to maintain
• Delivered in less time

Booz•Allen & Hamilton, a nationally recognized con-
sulting firm, recently finished a study comparing NeXT-
step to other platforms.1 They found:

Over 82% of the developers and programmers surveyed
ranked NeXTstep higher than other environments they had
used (Sun, Macintosh  , MS-DOS ) in all major areas—
development environment completeness, application
quality, maintainability, and development time. . . .

100% of the respondents with Sun and NeXT workstation
development experience stated that the ease and speed of
development using NeXTstep was better than their
experience with Sun workstations.

1. “Comparative Study, NeXTstep vs. Other
Development Environments,” Booz • Allen &
Hamilton, Inc, 1992

I. Introduction: Development
Architectures

Several common elements exist in all modern
programming environments that are used to develop
applications with graphical user interfaces (GUI): a
window system, a toolkit, and a layout tool.

Window System core functionality required to
display graphics on the screen
and receive events from the
mouse and keyboard.

Toolkit precompiled user interface ele-
ments, including windows,
buttons and sliders.

Layout Tool a program that allows the de-
veloper to prototype the user
interface graphically. The pro-
totype is then written in a form
that the real application can be
built without writing the code
that places the windows and
buttons on the screen.

II. Sun OpenWindows vs. NeXTstep:
Two Different Visions

Sun’s OpenWindows is a combination of two
different windowing systems, one based on MIT’s
X11 Window System with drawing and event rou-
tines which conform to the Xlib protocol; and a sec-
ond system, NeWS , based on the PostScript
language. NeWS provides all of the services pro-
vided by X11, but uses a different protocol. Both the
X11 and NeWS protocols coexist within the Open-
Windows server.

Sun provides a number of user interface and win-
dowing toolkits. These include two X toolkits
[XView  and the Open Look Intrinsics Toolkit
(OLIT)] and the NeWS toolkit (TNT). Sun also sells
a prototyping tool, DevGuide , which generates
code for any of these three toolkits.

Sun’s approach has been to provide a whole col-
lection of discrete tools having very different origins
and supporting a variety of user interfaces, toolkits,
and application development environments. They
have placed greater emphasis on providing variety
than on providing an integrated development archi-
tecture that is designed from conception to aid pro-
grammer productivity. This difference is the crux of

NeXT versus Sun: a Comparison of Development Tools February 1992

2

XView OLIT

X11

Sun OpenWindows

NeWS

TNT

NeXTstep
NeWS

AppKit

Figure 1 Sun and NeXT Window Development Systems

DevGuide InterfaceBuilder

Toolkit(s)

Window System(s)

Layout Tool

Sun NeXT

the difference between Sun’s philosophy and
NeXT’s. The implications resulting from this philo-
sophical divergence are far reaching.

At NeXT we believe today’s application require-
ments are too sophisticated (and user expectations
too advanced) to rely on such a mix-and-match
approach to basic development tools. A shift beyond
the limited toolkits and discrete tools of the ‘80s and
the older procedural models of the ‘70s is needed if
we are to achieve any significant advances in pro-
grammer productivity, end-user functionality and
ease of use.

III. NeXTstep

NeXTstep is an integrated, consistent and com-
plete object-oriented applications development envi-
ronment. Beyond its mechanisms for creating single
stand-alone applications, NeXTstep provides facili-
ties to ensure that all applications developed under
NeXTstep can cooperate with each other. NeXTstep
is not merely a tool for producing applications—it is
an environment in which applications work consis-
tently and work together.

The tools in NeXTstep are tightly integrated.
These tools include a windowing system, an
advanced object-oriented programming language, an
object editor, and an application toolkit. During their
design, NeXT kept these primary goals in mind:
• Reduce substantially the time required to develop

applications. NeXT believes that programmers
should only have to write code that is unique to
their applications.

• Encourage programmers to develop better applica-
tions by providing a rich suite of extensible objects
that easily integrate advanced features such as vid-
eo, sound, interapplications communications, mu-
sic and multi-font text.

• Provide a consistent user interface across all appli-
cations, so all applications easier to learn and use.
And to make developing user interfaces as easy as
using them.

• Provide a single imaging model for drawing to
screen, printer, fax machine, imagesetter, or other
output device.

Reducing Development Time. NeXT built stan-
dard components for all common application func-
tions such as event handling, printing, and file
handling. The routines and User Interface dialogs in
NeXTstep supply all of this.

Enabling Consistent Functionality Through Exten-
sible Objects. A toolkit must be extensible in order to
be truly useful. The toolkit designer must allow for
situations that were not anticipated when the toolkit
was originally conceived. NeXTstep achieves this by
using a fully object-oriented (thus extensible) lan-
guage—Objective C.

NeXTstep’s set of Objective C objects imple-
ment standard kinds of functionality, and allows the
application writer to customize these objects by sub-
classing them. For instance, the standard NeXT Font
Panel allows the user to choose a single font; but if
the developer is writing a program that will compare
two or more font faces, then it is necessary to pick
multiple faces at the same time. In its prebuilt state,

NeXT versus Sun: a Comparison of Development Tools February 1992

3

the standard Font Panel cannot accomplish this. But
a subclass of the Font Panel can provide the multiple
selection capability.

Creative application developers will always need
to provide functionality beyond that anticipated by
the toolkit designer. By allowing subclasses of exist-
ing objects (rather than requiring the creation of new
code), the behavior of the customized objects is guar-
anteed to be consistent—even as those functions
become more advanced. For instance, adding scaling
or rotation, for example, to a standard print panel
extends the capabilities already there within a famil-
iar user framework.

In addition, when the system object is extended,
every application relying on it will inherit its new
capabilities. When NeXT extended the Print panel to
include faxing, every application gained faxing capa-
bility at runtime, without recompiling, via NeXTstep
Objective C’s run-time binding.

NeXTstep combines extensibility with consis-
tency—a winning combination for any developer.

Consistent User Interface. Standard dialogs make
user interfaces inherently consistent, since each appli-
cation is actually running the same code that pro-
vides these services. Every application can call the
same Print Panel. It’s easy for application developers
to program to a common user interface standard, and
less likely that the programmer will create an incon-
sistent interface.

Single Imaging Model. In contrast to Sun’s vari-
ety of imaging libraries (X, NeWS, Pixrect, XGL),
NeXTstep is built on a single imaging model. NeXT-
step uses Display PostScript (co-developed by
NeXT and Adobe) to draw on the screen, rather than
X or NeWS protocol, thus insuring that what is
drawn on the screen is exactly compatible with the
widest range of output devices, from desktop print-
ers to imagesetters.

IV. Overview of NeXT and Sun Toolkit
Functionality

The NeXT Application Kit
NeXT’s toolkit is the Application Kit (App-

Kit). The AppKit is an object-oriented toolkit that is
integrated with NeXT’s object-oriented application
builder: InterfaceBuilder . The AppKit gives devel-
opers several kinds of extensible object-oriented
building blocks:

Windows All user interface objects that
other systems have, plus many
objects having significantly
more functionality. Thus,
NeXT’s standard text object
provides a multi-font text edit-
ing and spell-checking as part
of standard functionality.

Event Handling Objects managing responses to
all keyboard and mouse events.

Media Integration Objects for PostScript on the
screen (View), manipulating
sound (NXSound), video (NX-
LiveVideoView), and printing/
faxing.

Data Exchange Built-in support for industry
standard data formats includ-
ing TIFF, Encapsulated Post-
Script (EPS), JPEG
compressed images, and Mi-
crosoft’s Rich Text Format
(RTF).

Common Dialogs All of the dialogs (and the code
implementing this functional-
ity) common to all applica-
tions: panels to open, select,
and close files, choose fonts,
choose printers, and select col-
ors.

Resources Interfaces to resources avail-
able to the application: the font
objects, NXColor, NXPrinter
and many more.

Interapplication Objects such as Speaker/Lis-
tener and pasteboards that al-
low applications to
communicate with each other,
as well as methods (Services)
that let applications take ad-
vantage of a new application’s
functionality transparently,
without re-compiling.

Printing A complete architecture for
application printing (described
below).

NeXT versus Sun: a Comparison of Development Tools February 1992

4

The Sun Approach
 The most obvious difference between NeXT’s

AppKit and the many Sun toolkits is the lack of a
common, object-oriented foundation. As we will
show in the detailed discussion of toolkits in a later
section, none of the Sun toolkits uses the same
object-oriented language that a programmer might
use to develop the rest of the application.

Sun toolkits simply provide rudimentary user-
interface elements, an event system, and access to
window system resources. Comparing Sun's toolkits
to the AppKit features listed above shows that the
Sun toolkits provide some elements of windows
(user interface objects) and event handling, while
many of the features that are common to modern
applications but are the most difficult to implement—
media integration, data exchange, common dialogs,
resources, and printing—must be designed and
implemented completely by each programmer.

Data Exchange. Sun’s toolkits do not specify
which data types ought to be supported. As a result,
Sun applications typically only allow ASCII text to
be pasted from one application to another, or only
allow files to be dragged in from the FileManager.
Multifont text, graphics, and sound cannot be cut
and pasted between applications. Unlike NeXTstep,
a user working on a graphic in a drawing program
cannot paste the image into a word processing docu-
ment by merely clicking Copy and clicking on the
word processing document, and clicking Paste.

Common Dialogs. Sun’s toolkits do not supply
dialog objects for operations that are common to all
applications. Lacking such standard dialogs forces
each developer to create this code, much of which
may be difficult to implement, for each operation. As
a result, most Sun applications have inconsistent pan-
els for such functionality; and because of the diffi-
culty in creating such functionality, what is provided
is very rudimentary.

Typically the user must remember the pathname,
then type it in completely and correctly when saving
a file—thus reinforcing the perception that all UNIX-
based applications are hard to use. For example, Fig-
ure 2 shows the Save dialog from Sun’s TextEdit edi-
tor on the left. Contrast this with the Save panel
supplied in NeXTstep, shown at the right. In the
NeXT dialog, a hierarchical browser allows the user
to scroll through the filesystem. A type-in field
allows the user to type the filename in, if that is eas-
ier (in this field he only has to type in part of the file-
name—the rest will be completed by the system).

A Sun programmer trying to provide this same
level of consideration for the user faces vastly more
work as he must design, develop, and debug this
code all for himself. In NeXTstep, adding such
advanced ease-of-use functionality is itself easy; in
fact, it is the easiest part of creating applications.

Interapplication Communication. Sun recently
announced it is providing communications between
applications with a separate C library (ToolTalk).
As one would expect in an environment in which
tools are thought of as many separate entities, Sun's
ToolTalk is not integrated with the Sun toolkits. Now
that it's available, some Sun software vendors prom-
ise that their applications may be able to send and
receive ToolTalk calls sometime in the future.

In contrast, NeXTstep provides a uniform mes-
sage architecture, resting on top of its UNIX-compat-
ible Mach operating system. The communications
architecture of Mach was designed to support appli-
cation and object messaging. And on top of Mach,
NeXT has constructed a common messaging proto-
col based on a message sender object (Speaker) and
a message receiver object (Listener). Speaker and
Listener objects, part of every application, have been
part of NeXTstep since its first release.

Figure 2 Sun and NeXT save dialogs

NeXT versus Sun: a Comparison of Development Tools February 1992

5

As a result, all NeXT applications allow other
applications to send them a message to open a file
and display it on the screen (openFile:ok:).

Capability such as this allows programs such as
Digital Librarian , and Lighthouse Design’s Dia-
gram!  to ask external applications to open files and
display data. Since this openFile is the same mes-
sage sent by the Workspace to applications to open
files, all applications that handle files respond to this
message today.

Resources. Although Sun’s font support allows
programmers to access font metrics, no built-in sup-
port shows the programmer exactly which user fonts
are installed and available in the system. To discern
which fonts are on the system, programmers must
check the font directory very carefully, since this
directory also includes several internal system fonts
(e.g., to implement Open Look) that shouldn’t
appear in a list of available user fonts. Once the font
is found, Sun fails to provide prebuilt tools for its
selection or display—the developer must still design,
develop, and debug those panels.

Figure 4 The NeXTstep Font Panel

In contrast, NeXTstep provides the programmer
with Font, FontManager, and Font Panel objects
which give complete information about all fonts
available on the system—as well as prebuilt objects
to select and display them. Figure 4 shows the built-
in Font Panel, that allows the user to pick the family,
typeface, and size from all fonts available on the sys-
tem. The developer does not have to write any code.

Printing. NeXT’s AppKit provides an integrated
architecture for printing, based on Display Post-
Script. Because PostScript is a standard imaging
model for printers, all drawing done by application
programs is immediately printable to a wide range of
hardcopy devices. All of the application’s rendering
is based on the same PostScript code—whether to
the screen, printer, or even fax machine.

On top of this elemental Display PostScript
imaging model, the AppKit provides:
• Complete built-in dialogs for selecting a printer

from the printers available on the network and lay-
ing out a page. Sun applications that choose a
printer usually display a panel like that shown in
Figure 3, requiring the user to remember which
printers are available. In networked offices with
many cross-functional teams where workers fre-
quently visit different sites, this interface proves es-
pecially problematic, since users coming from
another site will have no idea which printers are
available locally.
In contrast, NeXT systems show all of the avail-
able printers (as shown in Figure 3), along with an
indication of their type. And using NeXT’s Print-
Manager application, the user can make his printer

Figure 3 Sun and NeXT print dialogs

NeXT versus Sun: a Comparison of Development Tools February 1992

6

available to all users in a local network domain.
Whenever a printer is added to the network, it auto-
matically appears on the Print panel of all applica-
tions running on all machines in that domain.

• Standard NeXTstep Print panel features also in-
clude n-up printing (multiple miniature pages
printed on a single page), print previewing (and
the saving of previewed page images as PostScript
files), and faxing.
To send a fax, the user simply presses the Fax but-
ton included in every application’s Print panel. Af-
ter a fax request is initiated, the panel shown in
Figure 5 appears, allowing the user to select from
a list of commonly used fax numbers. Additional
panels allow the user to choose a fax machine and
fill in a cover sheet.
Such functionality is provided via the AppKit for
every NeXTstep application.

• Complete, built-in dialogs for changing fonts, plus
multifont text objects based on industry-standard
Adobe fonts. Sun's font technology not only lacks
the font management and selection services provid-
ed by NeXT on all applications, but is based on
their own proprietary, nonstandard F3 format.
Thus, Sun documents are not necessarily “what
you see is what you get” when printing to Adobe
PostScript devices.

• Printing is built into all applications. When the
user prints, he simply asks the application to dis-
play various parts of the current document on the
printer, just as it would appear on the screen. The
rendering is sent to a printing context which is
spooled off to the printer chosen by the user
(through the Print panel). Since even complex op-
erations, such as pagination, are managed by the
AppKit's printing routines, printing can often be
added to an application in minutes.

In Sun’s environment, in contrast, much of this
is lacking:
• Most Sun development is done in X, which offers

no printer support. Sun does offer the option of
rendering in NeWS, a PostScript-like language,
but it is printable only on its own Sun NeWS-
Print printers.

• No standard dialogs are provided for choosing
printers or fonts, or for publishing the availability
of printers on a network. Sun uses the /etc/printcap
file, which is different on every system.

• Sun offers no application-based printing. The
application must create a file in the file system,
then issue the appropriate UNIX command.

Figure 5 The NeXTstep FaxPanel

Table 1: NeXTstep versus OpenWindows features

NeXT Sun

Window (user interface) √ √

Event handling √ √

Media integration (rich text, graphics,
sound, video)

√

Standard data exchange formats √

Resources √

Interapplication communication since 1.0 available in
future

Application printing √

Standard panels for choosing printer √

Preview support in every application √

Fax support in every application √

Easily “publish” printers to network √

Font Panel √

Fonts Adobe Sun F3

Imaging model Adobe
PostScript

X, NeWS
PostScript

NeXT versus Sun: a Comparison of Development Tools February 1992

7

V. Layout Tools

Tools to lay out user interfaces graphically are
available from both NeXT and Sun. These increase
programmer productivity in the following ways:
• Layout tools allow programmers to preview the

user interface without wasting time on the run-edit-
compile loop.

• Such tools simplify the process of constructing an
interface so more team members, including non-
programmers, can be involved in the user interface
design.

• These tools improve the overall quality of applica-
tions. As layout becomes easier to change, pro-
grammers can more easily refine applications to
meet the requests of users. In some organizations,
graphic artists lay out the user interfaces—some-
thing that was impossible before the advent of
graphical layout tools.

NeXT’s interface development tool, Interface
Builder, was developed together with the AppKit.
Interface Builder’s design goal is to describe the
interfaces between components (objects) of an appli-
cation. In this sense, the word interface is confusing,
since it does not refer, simply, to user interface com-
ponents. A more accurate name for Interface Builder
might be Object Editor, since Interface Builder
allows the programmer to:
• Create objects, including user interface objects, as

well as other kinds of programming objects that
provide underlying functionality to the application.

• Make connections between any two objects, either
to inform one object of another object’s existence,
or to send messages from one object to another.

• Examine the object hierarchy in the AppKit and
graphically subclass existing objects, producing
appropriate code.

Using Interface Builder
Interface Builder presents the programmer with

a complete palette of all of the AppKit user interface
objects. Figure 6 shows some of the palettes avail-
able in Interface Builder. The palette on the left is a
collection of user interface objects. In addition to
these familiar objects, Interface Builder provides a
standard set of prebuilt menus (shown in the center,
above), a multilevel browser object, and a multifont
scrolling text object (shown on the right).

Within Interface Builder, the programmer can
view the AppKit hierarchy in a window that displays
all of the classes in the application—including all of
the AppKit’s classes. A typical class viewer is shown
in Figure 7. After selecting a class, the programmer
can subclass an object, add instance variables and
methods, and eject the Objective C code for the new
subclass. By double-clicking on the class name,
Interface Builder also allows the programmer to
view the header file for the class.

Figure 7 Interface Builder’s class viewer

Figure 6 Interface Builder Palettes. Programmers can choose from an array of different kinds of palettes like the
ones shown. Choosing one palette reveals its own collection of objects. The programmer then merely drags
relevant objects off the palette and designs the user interface.

NeXT versus Sun: a Comparison of Development Tools February 1992

8

Custom Objects
With the object subclassed, the programmer

may wish to package the object in a form that other
developer drag off the palette and use, just like any
other AppKit object. Interface Builder is unique in
providing this extensible functionality. The program-
mer simply adds a few methods, and packages the
object(s) into a palette. This palette, and the com-
piled code for the underlying objects, can then be dis-
tributed.

This extensibility, the ability to create new pal-
ettes of objects, is a very powerful facility, because it
allows programmers to create many kinds of user
interfaces or other types of objects that can be loaded
into Interface Builder and then accessed out like any

Figure 9 Custom Palettes. This is a palette sold by
Objective Technologies providing a set of graph-making
objects, which are used exactly like AppKit objects, and
are dragged off the palette to be used.

of the NeXT AppKit objects. Using this, a depart-
ment could create database query objects containing
prebuilt query forms for a corporate database.

Since these palettes are distributed as compiled
code, software companies such as Objective Technol-
ogies and RDR can distribute and sell custom pal-
ettes rather than a complete shrink-wrapped product
having fixed functionality. Figure 9 shows a palette
sold by Objective Technologies.

Connections in Interface Builder
Interface Builder supports two types of connec-

tions. The most obvious type is an action which cor-
responds to a callback in a more traditional C
programming environment. A programmer may, for
instance, create a button on a panel that logs the user
onto a database when the button is pressed.

In the example shown in Figure 8, a database
object handles communication between the client
user interface and the host database. Once a connec-
tion is made in Interface Builder between the button
and the database object, all of the appropriate mes-
sages to the database become visible so the program-
mer can select which message will be sent to the
database object when the button is pressed. This
goes beyond the capabilities of other tools, since
here the programmer’s objects are accessed within
Interface Builder, and the messages and methods cre-
ated by the programmer can be accessed with Inter-
face Builder and connected to the appropriate user
interface objects.

Figure 8 Connections in Interface Builder. On the left, setting the action for a button.
On the right, setting the “custNumber” outlet

NeXT versus Sun: a Comparison of Development Tools February 1992

9

Interface Builder also lets the programmer con-
struct new objects and create instance variables.
Instance variables describe the other objects that a
given object can access. An example of this is shown
on the right in Figure 8. Here, the database needs
access to a type-in field that receives input and dis-
plays results. For this the database uses an instance
variable called custNumber which is hooked to the
type-in field. The connection between the instance
variable and the type-in field parallels the two com-
ponents of an object in an object-oriented language:
data and code (or instance variables and methods).

VI. Sun’s DevGuide

Sun’s DevGuide is a user interface layout tool
for all Open Look toolkits. DevGuide can eject code
for all of the three Sun toolkit described earlier.

Using DevGuide
Like Interface Builder, DevGuide presents a pal-

ette of user interface elements to the programmer—
the set of Open Look elements. Immediately one dif-
ference is obvious: all of the Open Look elements
are all delivered on one panel, rather than in separate
functional views. A detailed comparison of Interface
Builder and DevGuide reveals that the similarities
between these tools are superficial. In contrast to
Interface Builder, DevGuide lacks the following
capabilities:

Menus DevGuide allows menus to be created,
but provides no standard, prebuilt
menus like Interface Builder does, such
as Info, Document, Edit, Format, Win-
dows, Services, Font, Text, Find, and
Colors. In NeXTstep, functional menus

contain items, such as font and color
selection, which function as soon as
you pull them off the Interface Builder
palette. These types of functional
menus do not even exist in DevGuide.

Matrix Interface Builder simplifies layout de-
sign by letting you drag any user inter-
face item (such as a button or a field)
into evenly spaced matrices using the
mouse. But in DevGuide, each item
must be laid out and aligned separately.

Browser While Interface Builder includes a
multicolumn browser for navigating
through hierarchical data, DevGuide
(and the Open Look toolkits) only pro-
vide a single-level scrolling list, which
is inadequate for navigating through hi-
erarchies of information, including the
UNIX file system.

Text Both tools provide an editable text
view, but DevGuide only permits
monofont text. NeXTstep provides a
text object that is a complete word pro-
cessor, having rulers, spell-checking,
the ability to read and write Microsoft
Rich Text Format (RTF), and dialogs
and menus that can control all font and
tabs/ruler manipulations.

Palettes DevGuide only allows you to access
the prebuilt interface elements supplied
by Sun, shown in Figure 10. In con-
trast, Interface Builder lets you access
custom palettes that you have either
purchased or created. DevGuide does

Figure 10 The DevGuide main window

NeXT versus Sun: a Comparison of Development Tools February 1992

10

not allow you to access elements that
have been customized or extended.

Code Generation
To facilitate language and toolkit independence,

DevGuide produces code written in an intermediate
language: the Guide Interface Language (GIL). GIL
describes the positions of user interface elements,
and stores the name of an associated callback. This
GIL language can then be converted by a number of
translators into a language (C or PostScript) that is
appropriate for a given toolkit (XView, OLIT, or
NeWS), as shown in Figure 11.

In DevGuide, the programmer lays out the user
interface and assigns callbacks, then the code is
ejected. Generally two separate modules of code are
ejected by the DevGuide translator:

xxx_ui.c C routines that create the user in-
terface designed in DevGuide. This
routine has a single entry point that
creates the elements. Usually the
programmer never touches this file,
which is the equivalent of the Inter-
face Builder nib file except it is
program code rather than a binary
archive.

xxx_stubs.c C routine templates for the call-
backs. This file must be edited by
the programmer.

DevGuide is not integrated with any object-
oriented language, such as Objective C or C++,
although Sun has provided a gxv+ procedure
which ejects C++ code for the user interface
module.

This merely allows the user interface por-
tion—the code that the programmer never modi-
fies—to be in C++. The stubs files—which the
programmer does modify—are ejected by gxv+ in
plain ANSI-C.

Since a single stubs module is created for
each DevGuide file, the modularity of a DevGuide
application is tightly coupled with the DevGuide
files. To break the program into smaller modules,
the programmer must create separate DevGuide
files for each different part of the user interface;
for instance, he would create a DevGuide file for
each window.

DevGuide can force the programmer to create
different files for each window in order to keep
these stub files from growing too large. When you
are trying to design an entire user interface, this
process can be quite confusing.

By forcing the developer to modularize the pro-
gram around the components in the user interface,
DevGuide does not permit functionality to be
grouped into larger logical units. Instead, DevGuide
forces the developer to break up modules based on
user interface boundaries.

In Interface Builder, all of the code that gener-
ates the user interface is placed in the nib file. Call-
back routines consist of methods that can be related
to any number of Objective C objects. A single inter-
face file can contain a number of small objects that

DevGuide

GIL

XView Translator
gxv

TNT Translator
gnt

OLIT Translator
golit

void
my_handler(it
em, value,
event)
Panel_item
item;
intvalue;
Event*event;
{

printf("value

void
my_handler(it
em, value,
event)
Panel_item
item;
intvalue;
Event*event;
{

printf("value

void
my_handler(it
em, value,
event)
Panel_item
item;
intvalue;
Event*event;
{

printf("value

void
my_handler(it
em, value,
event)
Panel_item
item;
intvalue;
Event*event;
{

printf("value

void
my_handler(it
em, value,
event)
Panel_item
item;
intvalue;
Event*event;
{

printf("value

void
my_handler(it
em, value,
event)
Panel_item
item;
intvalue;
Event*event;
{

printf("value

Code

Figure 11 The translation of DevGuide into source code

NeXT versus Sun: a Comparison of Development Tools February 1992

11

handle various aspects of the interface. Or, if it
makes more sense to have the callbacks for a num-
ber of nib files handled by a single object, this too is
possible.

Summary: Comparing Interface Builder and
DevGuide

ESL, a subsidiary of TRW recently completed a
study in which they developed three applications on
both NeXT and Sun platforms.1 Using DevGuide on
Sun and Interface Builder on NeXT, ESL concluded:

It quickly became clear that Interface
Builder and NeXTstep offered a rich and
flexible paradigm. Design sessions on the
NeXT focused on the analytic task and
requirements. Suggestions from users
could be quickly implemented and
modified on the NeXT. DevGuide
provided more limited user interface
options, and the DevGuide interface
limited the interactivity of discussions
with users.

In summary, the NeXT prototyping tools
provided clear insight into the final
appearance of the application early on
and allowed for rapid modifications at
this early stage. The Sun tools, however,
enabled only some aspects of the user
interface features to be prototyped. The
behaviour of other parts of the interface
would not be seen until much later in the
process, when changes were more
difficult.

Using DevGuide, the programmer can:
• Design the user interface and preview it.
• Assign the names of callback routines.

1. “Developing Custom Applications in a Het-
erogeneous Environment: A Comparison of
NeXT and Sun” presented at the NeXT Federal
Expo Technical Conference, Reston VA 5
December 1991.  ESL Incorporated, 1991
all rights reserved. TRW is the mark of TRW
Inc.

• Eject C code
Using Interface Builder, the programmer is able

to:
• Design a user interface, and preview it.
• Assign callback methods, and create the objects

which contain these methods.
• Subclass objects in the AppKit/Objective C hierar-

chy (including non-interface objects).
• View class definitions.
• Define the interfaces between all objects in the ap-

plication.
• Eject Objective C code and a separate binary file

containing the user interface.
• Perform project management tasks, including add-

ing non-user interface modules, TIFF images,
sounds, additional libraries, and allow Interface
Builder to create the Makefile.

• Run Make.
• Using loadable palettes, load custom objects into

Interface Builder and lay them out exactly like pre-
built AppKit objects.

• Enable the creation of a modular, maintainable ap-
plication by allowing the programmer to break the
task into objects that are logical units of functional-
ity, not predetermined user interface boundaries.
DevGuide makes it impossible to design programs
in logical units since modularity is dictated by the
user interface.

These differences are summarized in Table 2.

NeXT versus Sun: a Comparison of Development Tools Feb 1992

12

Table 2: NeXT Interface Builder vs. Sun’s DevGuide

NeXT IB Sun DevGuide

User interface layout √ √

Connections to non-user interface code Object methods C function callback

Creates code Objective C C

Creates Makefile √ √

Built-in menus that work straight off the
palette

√

Ability to make Matrices for user inter-
face elements

√

Project management for all of the pro-
gram’s files: code, images, sounds

√

Integrated with object-oriented language √

Subclassing √

Access to toolkit class definitions √

Customizable palettes √

Integrated with Make √

Allows reasonable modularity √

Multiple modules in one interface √

Single module in multiple interfaces √

NeXT versus Sun: a Comparison of Development Tools February 1992

13

VII.Detailed Discussion of Toolkits

Introduction
This section compares the toolkits available for

Sun's Open Look development with NeXT's AppKit.
Differences are noted in the following areas:
• Programming interface
• Maintainability
• Object-oriented approach
• Acceptance level with the developer community

and commitment of the computer manufacturer

Sun’s Toolkits

On Sun’s OpenWindows, the primary toolkits
used for Open Look development are:

XView Sun’s primary toolkit. Started as Sun-
View (the window toolkit used under
Sun's proprietary window system), it was
later ported to X.

OLIT The Open Look Intrinsics Toolkit, writ-
ten by AT&T. This toolkit was built on
the X Intrinsics, and as such, it resembles
the Motif programming interface. OLIT
is gaining acceptance, primarily among
third-party software developers who
want to create applications that are porta-
ble between Sun’s Open Look and other
machines running Motif.

TNT The NeWS Toolkit, Sun’s newest toolkit.
TNT combines an object-oriented win-
dow interface with the NeWS window
system, which uses an extended Post-
Script language and an imaging model
that can be printed on Sun NeWSPrint
printers. This toolkit has been around in

early versions for sometime, but has not
gained much acceptance for a number of
reasons.

While other toolkits for X Windows are
available from third parties, XView and OLIT rep-
resent most of the development work being done
today on Sun products. In addition, the toolkits
described above are the toolkits supported by
Sun's DevGuide, a tool that can be used to lay out
user interfaces.

Toolkits available for Motif development are
beyond the scope of this paper. Although Sun is the
number one supplier of workstations using Motif,
Sun does not support any of these toolkits, nor does
it support the use of the Motif Window Manager
mwm.

Table 3 describes the support and acceptance
level of these toolkits.

Object-Oriented Approach
At one time or another, Sun has claimed that all

of these toolkits are object oriented—and in one
sense they are. Sun argues that each toolkit contains
user interface elements (objects), and a restricted
calling library that allows the programmer to change

Table 3: Toolkit Support and Acceptance

Toolkit Users

NeXT AppKit Used by all developers and NeXT

XView Primary toolkit Sun uses for product
development

OLIT Almost all third party development is
done in OLIT, due to similarity to Motif

TNT Not widely used by either Sun or
developers.

XView OLIT

Xlib

Sun OpenWindows

NeWS

TNT

NeXTstep

NeWSDisplay PostScript

AppKit

Figure 12 Sun and NeXT Window Development Toolkits.

Toolkit

Imaging/Event Model

NeXTSun

NeXT versus Sun: a Comparison of Development Tools February 1992

14

aspects of these objects. These calling conventions
are referred to as methods (borrowing a term from
object-oriented programming). In addition, the inter-
nal construction of these user interface elements rep-
resent an inheritance tree of objects. The new XView
documentation makes a special point of showing
how these objects are related: a panel is a window
that is a drawable object, and so on. Since these tool-
kits are simply C libraries, however, it’s difficult to
believe they are truly object oriented. If Sun’s claims
were true, all user interface toolkits would be object
oriented.

All user interface toolkits must provide user
interface objects, and they always have a restricted
language to manipulate the attributes of these
objects. Since an inheritance tree is typically used in
the design of such a toolkit, object-oriented program-
ming is ideally suited for the implementation of the
internals of a user interface toolkit.

Of course, the technology used in the internals
of the toolkit is less important than the API pre-
sented to the programmer. Here are a few key ques-
tions to ask about the object-oriented nature of any
toolkit:
• Does the toolkit use the same object-oriented lan-

guage that the programmer might use for the rest
of the code, or does it force the programmer to
learn a different one?

• Is the toolkit aware of the paradigm being used for
nonuser interface objects? In other words, can user
interface objects send messages to nonuser inter-
face objects, and vice versa?

The issue is how well the toolkit is integrated
with traditional object-oriented programming
languages. What language/syntax do the various
toolkits use?

XView uses a C Library instead of a program-
ming language to communicate with user
interface elements. Subclassing is diffi-
cult, involving the creation of a custom
XView Library—so subclassing is rarely
used.

OLIT also uses a C Library. Subclassing is done
with the Widget syntax used in Motif. Al-
though the Widget syntax was designed
to be more extensible than XView, it is
still not a programming language.

TNT uses an Object-Oriented language,
NeWS PostScript.

Why is this important? Because it's easier for
the programmer to learn only one set of techniques
for extending objects. Functionality can be migrat-
ed from user interface objects into non-user inter-
face objects when it’s more logical to do so. This all
creates an environment where program modules are
broken up into logical, reasonable, designed pieces.
The resulting code is better designed and more
readable, and thus more maintainable. Maintaining
software is the most expensive part of the software
business.

Figure 13 illustrates the complete object-ori-
ented nature of NeXTstep. On a NeXT computer,
all programming can be done using Objective C
and C++ objects. Since the user interface objects

NeXT

Figure 13 A typical NeXTstep application is composed entirely of objects.

NeXT versus Sun: a Comparison of Development Tools February 1992

15

of the AppKit are simply Objective C objects,
they are extended using Objective C subclassing
(as the Custom UI Object in Figure 13 on the pre-
vious page illustrates). All of the engine code—
the portion of the application that’s independent
of the user interface—can be coded in either
Objective C or C++. And all interactions between
objects in the programmer’s code and either the
AppKit or other applications are merely object-ori-
ented messages, not C Library calls.

How Well Integrated are the Sun Toolkits
With Object-Oriented Techniques?

On Sun, toolkits are not written using object-ori-
ented technology. The interface between the pro-
grammer’s code and the toolkit consists of a set of C
function calls, illustrated in Figure 14.

XView and OLIT use C function callbacks to
communicate with other modules within the applica-
tion. These toolkits contain no notion of sending a
message to a given object. This flat namespace of C
functions causes large programs to have problems
with modularity and maintainability (spaghetti code).

The NeWS Toolkit is similar: a callback is per-
mitted to be a PostScript procedure. This can be a
call to a method in a PostScript object, or it can send
a token back to the C client (which effectively allows
for a C language callback). There is no support for
object-oriented C callbacks in TNT.

Interfaces between the objects in the program-
mer's engine code can be messages, and code can be
added to the DevGuide C stubs module so messages
can be sent to these objects—but all other transac-
tions are simply C Library calls. The interface to the
NeWS Toolkit, as well as access to other applica-
tions through ToolTalk, is all done using C, not an
object-oriented language.

Customization
As illustrated Figure 14, the Sun Toolkits extend

objects not through Objective C or C++ subclassing,
but through techniques unique to each toolkit.
XView lets the programmer supply a custom XView
C Library, OLIT allows the developer to write Cus-
tom Widgets, and TNT uses PostScript, rather than
Objective C, subclassing.

In addition, none of the Sun toolkits allows cus-
tomized objects to be used with the layout tool,
DevGuide.

The difficulty of customizing makes the idea of
component software, where a third party sells cus-
tom user interface elements or a department creates a
set of standard user interface elements, very unattrac-
tive using these toolkits. In contrast, a number of
firms are doing just this for NeXT.

Sun

Figure 14 On the Sun, only the programmer’s own code can be objects, the rest of the application is a mixture of C
language modules and custom widgets.

NeXT versus Sun: a Comparison of Development Tools February 1992

16

NeXT’s AppKit
Background

NeXT’s AppKit is a complete object-oriented
application framework that provides everything com-
mon to applications, including:
• A complete environment for Printing.
• Standard dialogs for most of the standard func-

tions needed by applications, such as opening and
saving files, choosing colors and fonts, printing,
and faxing.

• Built-in support for TIFF and EPS standards, in-
cluding imaging files on the screen as well as on
the printer.

• A scrolling text object that reads and writes Mi-
crosoft RTF files. This object is almost a complete
word processor, and includes all of the user inter-
face required to change the font, manipulate ruler
settings, etc.

• Methods for interapplications messaging, includ-
ing standard messages recognized by all applica-
tions.

• Support for standard pasteboards for exchanging
data between applications, including ASCII, multi-
font text, TIFF, and sound.

Programming Interface
NeXT’s AppKit is based on the Objective C lan-

guage. All user interface elements (such as buttons
and windows) are implemented as Objective C
objects. This means that the syntax used to create the
other objects in a program is the same syntax used to
manipulate AppKit objects.

Let’s look at a simple example of this. Objective
C denotes a message by putting it in square brackets
([]). The message new is sent to a class to generate a
new instance. In the code below, an AppKit listener
object is generated; then a delegate is assigned to be
a new instance of my own custom class called
MyObject.

id listener = [Listener new];
[listener setDelegate:[MyObject new]];

Although this is a very simple demonstration of
the subject, it does illustrate another point also: since
the AppKit is built on an object-oriented language, it
is built to take advantage of objects. In the example
above, an AppKit object was sent a message that set
its “delegate” object. The AppKit objects will send a
variety of status messages to their delegate objects.

To accomplish this in a non-object oriented system,
you would have to set a callback function for each of
these status changes. AppKit gains these advantages
easily through its object-oriented approach:
• A single call sets up an object (delegate) which is

informed of all status changes
• Setting up a plethora of callback functions is miss-

ing all of the modularity that is a key advantage of
object-oriented systems.

This approach also offers the possibility of a
richer protocol. For instance, the delegate for a Text-
Field receives messages when the text is about to
change, after it changes, after each key stroke, and
when the user is finished with the field.

Feature Set
One of the most distinguishing features of App-

Kit are the built-in standard dialogs, which exist for
all aspects of functions such as printing, file opera-
tions, and choosing fonts and colors. For example,
here is the code for a program that wishes to show
the user a dialog for saving a file:

id save = [SavePanel new];
char resultFile[MAXPATHLEN];

[save runModalForDirectory:aDirectory
name:””];

strcpy(resultFile, [save filename]);

The resulting panel is shown on the left of Fig-
ure 15 as it would actually look on the user's screen.
All of the setup of this SavePanel was accomplished
with four lines of code, yet this is a relatively sophis-
ticated object: capable of reading the contents of the
filesystem, allowing for incremental file completion,
etc. All of this is so easy on NeXT, while the same is
very difficult on Sun. NeXT achieves a richer and
more consistent application, implemented with
fewer lines of code to be maintained.

While the panel on the left was a standard Save-
Panel, the panel on the right side shows a slightly
modified version of the same SavePanel. Here the
programmer needed to let the user specify the format
in which the file would be saved: Draw, EPS, or
TIFF. The AppKit allowed the programmer to attach
additional controls to the standard dialogs by merely
adding an Accessory View with the radio buttons
shown. The programmer was thus able to give the
user finer control over the operation, while keeping
the same overall appearance within the application.

NeXT versus Sun: a Comparison of Development Tools February 1992

17

Customizability
The AppKit provides a number of ways to cus-

tomize behavior. Here are some of the ways that
AppKit objects can be modified to suit a particular
application:

Subclassing all AppKit objects can be subclassed,
since they are simply Objective C ob-
jects. Subclassed objects can com-
pletely replace some methods, or add
some functionality and call the meth-
od in the original superclass.

Delegates many AppKit objects have delegates
that offer some level of control over
them. A delegate is a separate object
that is notified when an AppKit ob-
ject changes its state. Delegates can
modify the way an AppKit object be-
haves without subclassing it. This is
one of the unique features of the
NeXT system.

Accessory as illustrated above, an Accessory
View can modify any standard panel
to give it additional controls.

Services offers a way for programs to embed
functionality into other programs
without prior knowledge. It is possi-
ble to buy a third-party shrink-
wrapped program and add a feature
to it without changing the program.
You merely write a program that ac-
cepts input via a pasteboard (ASCII,
Rich Text Format, EPS, TIFF, or
Sound) and return another paste-

board with the result. Through Ser-
vices, your new functionality is
added to the menu of other programs
without their being changed. This
makes it possible to write a grammar-
checking algorithm, or any program
that accepts and returns these
datatypes. One developer (HSD)
wrote an optical character recogni-
tion system that could produce edit-
able ASCII text from any incoming
fax or TIFF file.

XView

The XView consists of C function calls with a
large number options. XView uses attribute-
value lists to specify these options. The lists
contain a set of pairs: the name of the option
and the requested setting. You don’t need to
mention any options unless you are changing
them from their default setting. Using attribute-
value lists and defaults, XView avoids the
problem that some user interface toolkits have
had with functions requiring large numbers of
positional parameters that are hard to
remember. Here is an example of how you
would create a slider in XView:

Figure 15 Examples of NeXT SavePanels. On the right is the standard SavePanel.
 On the right a SavePanel with an Accessory View added

NeXT versus Sun: a Comparison of Development Tools February 1992

18

 slider = xv_create(controls,
PANEL_SLIDER,
PANEL_LABEL_STRING, "Send:",
PANEL_SLIDER_END_BOXES, FALSE,
PANEL_SHOW_RANGE, FALSE,
PANEL_SHOW_VALUE, FALSE,
PANEL_MIN_VALUE, 0,
PANEL_MAX_VALUE, 20,
PANEL_TICKS, 0,
PANEL_NOTIFY_PROC, sl_changed,
NULL);

In XView programming, user interface
elements are created and then C function
callbacks are associated with them. A slider
may have a callback associated with an action
such as the user moving it to select a new value.
Each element may have one or more of these
handlers. The handlers are passed relevant
information about the user action that caused
them to be called.

Feature Set
The biggest deficiency in XView (as with all of

the Sun toolkits) is its lack of standard dialogs.
XView has many of the base user interface elements
that the AppKit has, but a few of the sophisticated
elements of the AppKit are either missing or are
present in a rudimentary form. For instance, XView
has a scrolling list, where the AppKit has a multi-
level browser. In the ESL study, the XView scrolling
list was found lacking, causing the ESL developers
to start from the very beginning:

For example, the NeXT version was
initially able to display sample
HyperNotes FileBins (the contents
display used a standard NXBrowser
object), while the Sun developers could
only later create a custom canvas based
object to display FileBin contents (the
standard XView Scrolling List was too
limited in functionality).

The AppKit text object is another clear example.
ESL had problems implementing its own Hyper-
Notes information system on XView:

On the NeXT, the standard text object
easily provided necessary features like
the display of glyphs within the text (for
Link and Highlight icons) and multiple

fonts and colors (to emphasize
highlighted regions). This functionality
was not provided by the Sun XView
textsw object. An ESL developer spent
approximately two months to extend the
Sun text object so that it could provide
the basic icon and highlighting
capabilities.

To summarize XView:
• XView lacks many of the features of the AppKit—

features which make delivering a product-quality
product easy with the AppKit and difficult with
XView.

• XView offers none of the customization capabili-
ties mentioned in the previous section for the App-
Kit, since subclassing and delegation require an
object-oriented language, and XView doesn't use
one. Accessory Views require built-in dialogs,
which are lacking in XView; and Services require
exchanging multimedia data via standard paste-
board types, also lacking in the Sun system.

The Open Look Intrinsics Toolkit (OLIT)
OLIT's interface, called the Intrinsics, is the

same interface that Motif and many other X Win-
dows toolkits use. Developed at MIT, the Intrinsics
consist of a number of C calls that allow access to a
Widget Set.

A Widget is a piece of code that defines a user
interface element. The actual Widget is coded as
Xlib drawing calls, and a Widget syntax defines how
various events are handled.

On the positive side, OLIT has the same func-
tions that Motif has, such as XtCreateManagedWid-
get(). Motif programmers only need to pass the
different Widgets to these functions. The intrinsics
style is different from that of XView, in that arg-lists
are constructed with XtSetArg rather than with
attribute-value lists. The result is quite similar to
XView: user interface items are created, and C call-
backs are associated with them, as shown here:

Arg wargs[2];
...
XtSetArg(wargs[n], XtNsliderMin, 0);
XtSetArg(wargs[n], XtNsliderMax, 20);
w = XtCreateManagedWidget(name,

sliderWidgetClass,
 parent, wargs, 2);
XtAddCallback(w, XtNsliderMoved,

sl_changed, data);

NeXT versus Sun: a Comparison of Development Tools February 1992

19

Like XView, OLIT uses defaults to reduce the
number of different options that need to be supplied
by the programmer. And like XView, OLIT’s text
view only allows a single font to be used at any time,
and does not have facilities for embedding graphics.

Feature Set
OLIT elements are slightly different in both

appearance and operation from those in XView.
Users will find that OLIT draws elements differently
than XView. OLIT uses the keyboard to operate
switches that can be manipulated only with a mouse
under XView. The result is a different look: some
controls are painted a different color to indicate they
have the keyboard focus. Even in feel they are dis-
similar because the keyboard is handled differently.

In Open Windows version 2.0, cut and paste
operations between XView and OLIT applications
did not work. The new version 3.0 fixes this, so now
applications written in any of the Sun toolkits should
be able to cut and paste ASCII text between each
other.

Conclusion
All of the analyses of XView are valid for OLIT

also. More third party companies are using OLIT
than XView, so it is felt to be of a higher quality than
XView; but the feature set is not actually appreciably
different. Both toolkits use the C function callback
style, and both lack advanced features such as a mul-
tifont text view or a hierarchical browser.

The only difference is that applications written
in OLIT will look and work slightly different than
the system tools, which are all written in XView.

The NeWS Toolkit
The NeWS Toolkit is different from these other

toolkits in that it is written completely in PostScript.
PostScript is a powerful, flexible interpreted lan-
guage, and to it Sun has added object-oriented sup-
port. TNT uses the PostScript dictionaries as objects
and classes, and a single operator: send has been
added.

Here’s an example of TNT PostScript code to
create a slider that ranges over the numbers from 0
through 20:

 % Make a slider.
/slider framebuffer /new ClassHSlider

send def

 % Turn on the end boxes.
true /setendboxes slider send

 % start out with a range of 0..20
0 20 /setrange slider send

The slider is created by sending the
message “/new” to ClassHSlider, and supply-
ing a number of arguments on the stack, the
result is stored in the PostScript variable slider.
After the slider is created, messages can be sent
to it, above the range of values is set. Notice
that the syntax is in reverse order (like the rest
of PostScript):

<args ...> object send

TNT sliders range over float values by default
(while XView sliders only range over integers). The
programmer can make the slider send only integers
by setting a normalizer procedure, which is a piece
of PostScript (shown in braces below). In this case,
the procedure truncates the float value:

 % Make values integers.
{ round cvi } /setnormalizer slider send

It is possible to write a complete program in
NeWS PostScript. In fact, that’s the way most of the
demo applications shipped by Sun with Open Win-
dows were written. Most complete applications, how-
ever, will require some access to C. To enable this,
Sun provides the CPS, which is an interface between
a PostScript program and a C program, much like
the DPS wrap concept. In addition, Sun as added
Wire Service to TNT, a library that implements an
XView-like notifier for TNT programs. Wire Service
allows events on the PostScript side to trigger C func-
tion calls on the client side.

UI Written in TNT PostScript

C Interface Written with CPS and the Wire
Service library

A TNT program consists of some PostScript
code that is loaded into the server by a C program.
A special syntax is used to create C interfaces
which cause the C program to initiate functions in
the window server. In addition, user interface ele-
ments in the server must inform the C program
when something occurs, such as when the user
presses a button.

Maintainability
Unfortunately, PostScript was never intended to

be a language in which large applications would be
written. The Reverse Polish notation is hard to read

NeXT versus Sun: a Comparison of Development Tools February 1992

20

and maintain. Since the language is not compiled,
there are the obvious performance problems. For rea-
sons such as these, NeXT decided to use a C-based
language (Objective C) as the basis for the window-
ing system of the AppKit. NeXT uses PostScript
only to draw on the screen, and uses C drawing func-
tions for most operations so the programmer is not
forced to program directly in PostScript.

Security and Robustness
Implementing objects as dictionaries exposes all

instance variables (and methods) for reading and
writing. Programmers can easily manipulate TNT
internal data structures, thus causing not only their
own but also other programs to crash, since the TNT
base classes are shared between all applications and
are changeable at runtime. TNT is also delivered in
source code form, and is loaded into the server at
runtime.

Summary of TNT:

• User interface code is written in a completely dif-
ferent language than the rest of the application.

• PostScript was never intended to be used as a pro-
gramming language for large programs.
The resulting code is difficult to read, and thus
hard to maintain.

• Exposing this much of the client-server connection
to the programmer adds an unnecessary level of
complexity to TNT programs.

Summary of Toolkit differences
A summary of differences between the Sun tool-

kits and the NeXT AppKit is shown on Table 4.

Table 4: Sun Toolkits versus NeXT AppKit

NeXT
AppKit Sun XView Sun OLIT Sun NeWS

Extension language Obj C XView Internal Widget PostScript

Uses same extension language as rest of
code

√

Integrated with object oriented C √

Display custom objects in layout tool √

Primary tool for vendor √ √

Primary tool for third parties √ √

Standard dialogs √

Support for TIFF and EPS √

Multifont text support (RTF) √ 3.0 Library

Delegates √

Services (ability to add features to pro-
grams without prior knowledge)

√

NeXT versus Sun: a Comparison of Development Tools February 1992

21

VIII.Conclusion

Sun’s tools seem, at first glance, to be similar to
their NeXTstep counterparts. When you go through
the checklist of tools (e.g., a window system, a tool-
kit, and a layout tool), Sun has a product for each of
these.

The differences become apparent, however,
when the programmer attempts to produce a real
application with the tools. Here the Sun tools fail.

The ESL team’s experience when they deployed
the applications written for both Sun and NeXT are
typical. They found:

Analysts received one half to one full day
of training before receiving their new
workstation. This training went very
smoothly on the NeXT—users learned
how to operate the NeXT environment
quickly, and became rapidly proficient
using ESL applications. On the Sun, it
took longer for the analysts to
understand how to manipulate the
OpenWindows environment. Analysts
also had more trouble learning to use the
custom applications. In part, this was
because the tools were less polished and
debugged. As a result of this training
experience, the Sun delivery was delayed
by several weeks to solve some of the
problems encountered.

Within the same amount of time, the NeXT
team at ESL deployed an application that was
judged to be richer in features, more polished, and
more bug-free. The Sun applications lacked niceties
such as multiple fonts, and were delayed due to bugs
found during initial deployment. Since the two teams
were given the same amount of time to complete
their projects, ESL’s study found that:

Developers found the NeXT development
environment more supportive of complex
tasks. The completed applications were
generally of higher quality on the NeXT,
and users found the NeXT easier to begin
using.

Summary
• The Sun toolkits are lower quality, less robust, and

lack essential time-saving features.
• None of the Sun toolkits contain standard dialogs

for opening and saving files, choosing fonts and
colors, or any of the other dialogs that are part of
the NeXT AppKit. Thus significant amount of ex-
tra time must be spent developing (and debugging)
applications on Sun.

• The Sun product lacks an application-based print-
ing architecture. Every application must write its
own dialogs to access available printers, and pagi-
nate, then generate the PostScript for itself, and
spool the result off the printer. NeXT does all of
this for the application, and provides the ability to
fax and preview on-screen with no extra work.

• Applications written in NeXTstep are usually rich-
er in features such as image handling and multi-
font capability due to the almost automatic nature
with which these are implemented with the App-
Kit.

Finally, and perhaps most importantly, the Sun
environment completely lacks an object-oriented
base:
• None of its toolkits are constructed for use with an

object-oriented C language.
• DevGuide does not allow program modules to be

designed logically, since it enforces module breaks
on user interface boundaries.

• Customization of toolkit elements is difficult, and
requires a completely separate language than the
rest of the application uses.

• DevGuide does not support hooking user interface
elements to code objects (written in an object-ori-
ented language) in the rest of the application.

• By not supporting the loading of customized tool-
kit elements, DevGuide makes it impossible to lay
out these custom objects. In Interface Builder, cus-
tom objects written by anyone else (another depart-
ment or another company) can be used by the
programmer, and treated as though they were
NeXT AppKit objects.

 1992 NeXT Computer, Inc. All r ights reserved.
NeXT, the NeXT logo, NeXTstep, Application Kit, Digital Libr-
arian, Interface Builder and Workspace Manager are trademarks
of NeXT Computer, Inc. PostScript and Display PostScript are
registered trademarks of Adobe Systems, Inc. Helvetica is a regis-
tered trademark of Linotype AG and/or its subsidiaries. Sun and
NFS are registered trademarks of Sun Microsystems, Inc. UNIX
is a registered trademark of UNIX Systems Labs. All other
trademarks mentioned belong to their respective owners.

