
153

Action messageThe message that a user interface
control object—such as a Button or Slider—sends
to its target. An action method is implemented by
the target object specifically to respond to this
message as the user manipulates the control.

Archiving A general-purpose Objective C storage
feature that allows objects to be written to and
retrieved from files. Interface Builder uses
archiving to save and retrieve the objects in a user
interface. In addition to the objects, the user
interface archive includes attributes and
connections for those objects. Another use of
archiving is the simple data storage and retrieval
mechanism implemented by YourCall.

Bundles A NeXTSTEP feature for application
resource file management. Bundles provide an

Many of the concepts used in object-oriented programming simply

extend concepts already familiar to most programmers.

Nevertheless, the amount of new terminology encountered by a

programmer new

to object-oriented programming may be daunting. This section

attempts to clarify the meaning of new terms you may have

encountered in this guide. All of these terms are also defined

object-oriented way to access an application’s
resource files, including the user interface archive,
images, and sounds. Bundles also enable
multiple-languages within a single application,
with the user interface text for each language
contained in its own bundle. Bundles free
NeXTSTEP applications from dependence on a
particular file system.

Class A template for a particular type of object.
The class defines both procedures and data for a
particular object type. Much as you can define
types of data structures in procedural
programming, you define classes of objects in
object-oriented programming.

Data encapsulationThe feature of object-oriented
programming that allows access to an object’s

154 Glossary

data only through its procedures. Thus an object’s
data is effectively encapsulated by its procedures.

Database modelThe representation of a particular
database’s entities, attributes, and data used by the
Database Kit.You use the DBModeler application
to create models based on information stored in
the database. When you load the model in
Interface Builder, it automatically creates
Database Kit objects for accessing data in the
database.

DelegateA kind of outlet—specifically, an object
that acts on the behalf of another. As the name
implies, the delegate shares responsibility with the
object it connects to. A number of Application Kit
classes use delegates to let you synchronize the
custom behavior of your application with
standard NeXTSTEP behavior.

Dynamic binding The ability of a program to
set both the message and the object receiving that
message as it runs. This is particularly important
in graphical, user-driven applications, where one
user command—say Copy or Paste—may apply
to any number of user-interface objects.

Entity-relationship model A generic database
model in which data is organized into
fundamental entities, each entity defined by its

pr
ocedure

pro

ce
d
u
re

p
ro
c
e
d

ure

data

E F

C B

D A

B A

C

B

A C

D

Dynamic Binding

component attributes; connections, or
relationships, are used to link entities. This model
applies equally well to relational, flat
file, hierarchical, and object-oriented databases.
The Database Kit is designed to look at the
organization of data as an entity-relationship
model.

Event A signal received by a program to indicate
a particular action, usually a user-generated action
such as a mouse-click or keystroke. In
NeXTSTEP, events are sent as messages to user
interface objects.

Implementation file The source code file that
contains the program code for the class, identified
by the class name and a “.m” (for methods)
extension. The code in the implementation file can
include a combination of Objective C, C, and C++
syntax.

Inheritance The object-oriented feature whereby
a new class acquires the instance variables and
methods of its superclass. Inheritance reduces the
amount of code you write and debug to make
incremental changes.

Glossary 155

Instance Term describing the relationship of
an object to its class. An object belonging to a
specific class is referred to as an instance of
that class.

Instance variable A data item belonging to an
object. A class definition includes a list of instance
variables for its objects. Each object has its own
set of these instance variables. Only the methods
for that object can directly access its instance
variables.

Interface file The source code file that declares
instance variables and methods for a class,
identified by the class name and a “.h” (for
header) extension. This file is referred to as the
interface file in standard C terminology because it
presents the public declaration of the class; it’s
also referred to as the header file. A class’s
interface file is referenced (or imported) by other
code files that send messages to objects of that
class.

MessageCode that tells an object to perform one
of its methods. Sending a message to an object is
analogous to invoking a procedure on a particular
data structure in procedural programming.

Method A procedure defined for an object by
its class. An object’s methods implement any

Inheritance New

Inherited

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

B

C

A

W B

C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Y X

Z

A B

C

A B

C

C BB

A

functionality, including setting and retrieving the
object’s instance variables, sending messages to
other objects, and so on. A method is invoked by
sending a message to an object. An object can be
thought of as a set of instance variables
encapsulated by methods.

Modularity In object-oriented programming, the
ability to divide applications into distinct objects
for specific data and specific tasks. Like objects in
the physical world, objects in a program have
identifying characteristics and behavior. For
example, a user interface object such as a button
has both an appearance on the screen and a well-
defined programmatic response to user action.
Modular structure means simpler debugging,
since errant behavior can be traced directly to the
responsible object.

Object A single programming component,
combining both code and data. Another way of
looking at an object is as a specific instance of a
particular class. Much as you create instances of
data structures in procedural programming, you
create objects in object-oriented programming.

Object-oriented program A network of objects
that interact by sending messages to one another.
In NeXTSTEP, the basic network of an object-
oriented program is defined for you. To create a
unique application, you simply create objects that
implement your unique behavior and plug them
into the existing network.

m ethod

m

et
h
o
d

m
e
th

od

instance
variables

156 Glossary

Outlet An instance variable that one object uses
to identify another. For example, when you
connect one TextField as the nextText outlet of
another in Interface Builder, you’re actually
setting an instance variable named nextText.
When the user presses the Tab key in one field,
that field sends a standard message to its nextText
object, telling that object to begin editing.
Similarly, when an object you design needs to
communicate with another object, you provide the
connection by declaring an outlet instance
variable.

Overriding In a subclass, changing the behavior
of an inherited method by supplying new code for
that method. When overriding a method, the
subclass can either implement entirely new
behavior, or it can keep the original behavior and
expand on it.

Messages

Procedural programs Programs made up of
two fundamental components: data and code. The
data represents what the user needs to manipulate,
while the code does the manipulation. To improve
project management and maintenance, code is
compartmentalized into procedures. However,
most data is global, and each procedure may
manipulate any part of the data directly.

Polymorphism The ability of different classes
of objects to respond to the same message in their
own ways. Polymorphism effectively increases
program flexibility while maintaining code
simplicity.

procedure

data

data

data

data

data

data

procedure

procedure

procedure

 A

 A

 A

Polymorphism

Glossary 157

Protocol An Objective C mechanism for
declaring methods outside the context of a
particular class. Protocols are used to conceal the
class implementing a particular method from
others; for example, in distributed objects a server
application publishes a protocol to describe
methods that its vended object responds to.
Protocols are also used to specify methods that
must be implemented by a particular kind of
object; for example, to work with the NeXTSTEP
Text object, an object that performs spell checking
must conform to NeXTSTEP’s spell checking
protocols.

Proxy In the Distributed Objects system, an
object created and used by the client application
as a stand-in for an object in the server.

SubclassA class created from another class. To
createthe new class, you start with a class whose
behavior is closest to that which you want to
implement, then create the subclass by adding
new methods and instance variables. The new
class is the subclass of the original; the original
class is the superclass of the new. A new class
inherits all the methods and instance variables
defined for the superclass.

Superclass(see Subclass)

Target A special kind of outlet used by
NeXTSTEP control objects—Buttons, Sliders,
TextFields, MenuCells, and so on—to identify the
objects that they send action messages to as the
user manipulates them.

Typed stream A NeXTSTEP data buffer type that
includes information about the data types stored

within it. A typed stream can be copied in
memory and written to or read from a file using
NeXTSTEP’s typed stream functions. The object
archiving facility takes advantage of typed
streams to store and retrieve objects. When storing
a set of objects, a typed stream is opened, each
object is sent a write: message to write its instance
variables to the typed stream, then the stream is
written to a file and closed. To retrieve, a typed
stream is opened on a file, each object in the file is
sent a read: message to read its instance variables
from the stream, then the stream is closed.

Unparsing The process for creating template
source files from a class specification created in
Interface Builder.

158 Glossary

