
107

So far, this discussion has focused on a handful of
the classes that NeXTSTEP has to offer. This
section introduces the broad spectrum of kits and
classes provided with NeXTSTEP.

Each of the sections that follows focuses on a
particular NeXTSTEP kit. These discussions
begin with an overview and class hierarchy of the
kit in question. Subsequent pages highlight the
key classes in the kit and how the functionality
they provide can enhance the applications you
develop.

 NeXTSTEP kits extend the concept of object-oriented

programming

to cover broad functional areas. Each kit supplied with NeXTSTEP

consists of a set of classes developed together to amplify your

programming efforts in a particular area, by providing a complete

framework for you to build on.

108 NeXTSTEP Kit Catalog

Window

NXBitmapImageRep

NXImageRep

NXCursor

Font

FontManager

PrintInfo

NXEPSImageRep

NXCustomImageRep

NXCachedImageRep

Responder
 Application

View

Form

Control

Box

NXSplitView

ScrollView

ClipView

NXColorWell

Panel

FontPanel

PrintPanel

NXImage

Object

PopUpList
Menu

OpenPanel
SavePanel

NXColorPanel

PageLayout

NXBrowser

Matrix

Slider

Button

NXColorPicker

NXColorList

NXDataLink

NXDataLinkManager

NXSelection

Pasteboard

Speaker

Listener

NXJournaler

Cell

NXBrowserCell

ActionCell

FormCell

SliderCell

SelectionCell

MenuCell
ButtonCell

TextFieldCell

NXSpellServer

NXSpellChecker

NXDataLinkPanel

NXHelpPanel

Text

TextField

Scroller

APPLICATION KIT CLASSES

THE APPLICATION KIT

The Application Kit provides the basic framework of a NeXTSTEP application.

This kit includes the Application, Window, and View classes that are the core

components of every NeXTSTEP application. It also offers variety of classes that

extend these classes to ensure greater consistency between NeXTSTEP

applications.

The Application Kit 109

Windows

close button

A window

resize bar

title bar

miniaturize button

content area

Besides its content area, a Window object can also
supply the following:

• A title bar, which displays a title and lets the
user drag the window to a new position

• Buttons in the title bar, which let the user
miniaturize or close the window

• A resize bar, which the user can drag to
change the window’s size and shape

Project Builder provides one window for every
new application. You can drag additional
windows into your application from Interface
Builder’s Palettes window.

Every application has windows—rectangular
areas where information is presented on the
screen. The Window class provides an object-
oriented interface between the process that
supplies the windows (the Window Server) and
your application. Each Window object manages a
single window; your application affects its
windows by sending messages to their
corresponding Window objects.

Each window has a content area, where Views
handle user-generated events (such as mouse
clicks) and draw images. When the user types or
uses the mouse within the content area, the
Window object gets the event and then sends it to
the appropriate View.

110 NeXTSTEP Kit Catalog

Controls

Switches

Radio buttons

A button being pressed

A two-state button, before and after clicking

The Application Kit provides many classes to
help you put controls in your application. Controls
are Views that translate user actions, such as
mouse clicks, into application-specific messages
for other objects. For example, clicking the
Retrieve Call button in Your Call sends a
retrieveCall: message to the CallController object.

The Application Kit provides the following
controls: buttons, sliders, browsers, forms,
text fields, scrollers, and color wells. All controls
are implemented by subclasses of the Control
class.

Buttons are the primary controls for setting a state
or initiating an action. They can assume a variety
of shapes and sizes, such as the switches and radio

buttons shown below. A button has the following
features:

• It has a label, which can include both text and
an icon.

• It’s highlighted or pushed in (or both) while
the user presses it.

• It has either one state or two. A two-state
button changes its label—for example, from
“Start” to “Stop”—after it’s clicked.

A slider is a device that sets a value. The position
of the knob within the slider’s bar indicates the
slider’s current value. Sliders are useful for setting
either continuous or discrete values, between a
minimum and maximum that you specify. A
slider is often paired with a text field that displays
or sets the value shown in the slider.

The Application Kit 111

A browser

knob

bar

A slider

Browsers let users display and select
hierarchically organized data such as directories
and files. The levels of the hierarchy are displayed
in columns.

A group of related Control objects can be
collected into a single Matrix object. For example,
although the three buttons in YourCall’s interface
might each be placed individually in the interface,
they are instead created as ButtonCells in a Matrix
object. The Matrix object groups related controls
in rows and columns; it also manages the state of
its group. For example, a group of radio buttons is
managed by a Matrix object to ensure that only
one button at a time is highlighted. Although
buttons are among the most commonly grouped
controls, other controls—such as text fields and
scrollers—can be grouped by a Matrix.

The other controls not discussed here are covered
elsewhere in this section. Forms and text fields are

discussed in “Text Handling,” above. Scrollers are
mentioned in “Organizational Views,” below.
Color wells are discussed in “Support for
Choosing Colors,” also below.

Interface Builder’s Palettes window supplies all
the controls. It creates Matrix objects
automatically whenever you duplicate a control
by dragging its edge while pressing the Alternate
key. After creating a control, you can use the
Inspector panel to change certain aspects of the
control’s behavior.

112 NeXTSTEP Kit Catalog

A panel Main menu and an attached submenu

Panels, Menus, and Pop-up Lists

Panels, menus, and pop-up lists are auxiliary
windows that let the user give instructions to
an application.

Panels look like normal windows, but they don’t
contain the main information of the application.
Because any information they contain is only
supplemental, they can save screen space by
disappearing when the user switches to another
application. Although panels are usually used to
get user input, they can also be used to give
information—such as help—to the user. The
Application Kit provides many Panel subclasses
to use for standard panels, such as Font panels,
Save panels, and Print panels. A Panel is used in
YourCall to alert the user when a user name is
needed or when a name isn’t in the database.

Menus are panels that list commands for the
application. The menu commands provide access
to the whole range of the application’s
functionality. NeXTSTEP ensures that only one
application’s menus are visible; the visible menus
for one application automatically disappear when
the user starts working in another application. A
menu consists of a Menu object, which contains a
Matrix object that displays a list of commands.

Pop-up lists let the user choose one option out of
many, just as radio buttons do (see “Controls,”
above). In general, pop-up lists are used instead of
radio buttons when space is limited. Pop-up lists
look a bit like menus, but they’re activated by a
button in a window or panel. When the user
presses the button, the list is displayed. After the

The Application Kit 113

user chooses an item from the list, the button title
changes to the chosen item.

A variation of pop-up lists is the pull-down list,
which is usually used like a menu: to display
commands. A pull-down list’s button title, unlike
the title of a pop-up list, doesn’t change when an
item is chosen. A pop-up or pull-down list
consists of a PopUpList object and a Button
object that is displayed when the list isn’t
showing.

Interface Builder supplies a main menu for each
new application; it also lets you drag panels, menu
items, and pop-up lists into your application. To
put certain standard panels into your application,
you drag a related menu item into your
application’s menu. For example, after you drag a

Font menu item into your application’s menu,
your application automatically gets a Font panel
(along with other functionality). You can create
your own menu items by dragging a general-
purpose menu item into your menu, editing its
text, and then specifying what message that item
should send when clicked.

A pop-up list while choosing after choosing

A pull-down list while choosing after choosing

114 NeXTSTEP Kit Catalog

Text Handling

A TextField

A Form

graphic image
within a text area

Text in a ScrollView

Although it’s possible to customize Text objects,
you might not need to, since Interface Builder’s
Palettes window already provides some of the
most useful text configurations:

• A ScrollView containing a full-featured Text
object, which can be used either for text entry
and editing or for displaying uneditable text.

• A Form, consisting of labeled text fields.
When the user presses Tab, the insertion point
jumps to the next field in the form. (The
YourCall application uses a Form for
displaying customer information.)

• A TextField, which lets a user enter a single
line of data. (YourCall uses TextFields for
Question and Answer text.)

The Text class provides a comprehensive set of
text-handling features, so that you’ll rarely need to
supplement its functionality. Among other things,
a Text object can:

• Display text (in either plain ASCII or Rich
Text Format‚)

• Let the user enter text

• Give the user control of fonts and paragraph
formats

• Let the user cut, copy, and paste text

• Wrap text on a word or character basis

• Display graphic images within text

• Read or write a file

• Provide a spelling checker for the user

• Print displayed text and graphics

different paragraph
styles, different font sizes
and styles

The Application Kit 115

Fonts

A Font panel

Three classes support choosing and displaying
fonts: Font, FontPanel, and FontManager.
Together, these classes let the user specify
the fonts used in your application’s editable Text
objects.

The Font class provides an efficient, object-
oriented interface to PostScript fonts. Each Font
object records a font’s name, size, and style. One
Font object is created for each PostScript font
used in an application, regardless of how many
documents use the font.

The FontPanel lets the user preview fonts and
change the font of any selected text. The actual
changes are made by sending conversion
messages to a FontManager object.

The FontManager is the center of activity for font
conversion. It accepts font conversion messages

(usually from the Font menu or the Font panel)
and changes the font of the currently selected text.

To create FontManager and FontPanel objects,
just drag a Format or Font menu item from
Interface Builder’s Palettes window into your
application. Font objects are created
automatically whenever your application uses
a new font.

116 NeXTSTEP Kit Catalog

Support for Printing

A Print panel A Page Layout panel

Three classes provide support for printing in
NeXTSTEP: PrintInfo, PageLayout, and
PrintPanel. Each application that prints has a
PrintInfo object that keeps track of information
needed for a certain print job. The PrintInfo object
gets its information from PageLayout and
PrintPanel objects. The illustrations below show
the panels that PageLayout and PrintPanel use to
request information from the user.

PageLayout and PrintPanel differ in the scope of
the information they keep. A PageLayout object
usually keeps information about a particular
document; this information is used for both
displaying and printing the document. A
PrintPanel object, on the other hand, doesn’t
remember anything about particular documents—
it keeps track only of the current print job.

Besides printers, PrintPanel also supports fax
modems. Clicking the Print panel’s Fax button

brings up a Fax panel, which gathers the
information necessary for faxing.

You can easily add support for printing to your
application. To get a PageLayout object, just drag
a Format menu from Interface Builder’s Palettes
window into your application’s menu. (The
Format menu includes a Page Layout command
that brings up the Page Layout panel.) PrintPanel
and PrintInfo objects are automatically created
when your program sends a print message to a
View or Window in your application.

Because every visible object already knows how
to display itself, you don’t have to do any
additional work to make it print or fax itself. This
is one of the advantages of using the PostScript
language for all imaging.

The Application Kit 117

File Management

An Open panel A Save panel

The SavePanel and OpenPanel classes help
manage files in an application. Specifically,
they query the user for the name of a file to save or
open.

OpenPanel and SavePanel can restrict the types of
files they display. You specify these types in a list
of filename extensions such as “.tiff” and “.eps”.
OpenPanel and SavePanel also provide typing
shortcuts; for example, pressing Command-space
completes a partially specified filename.
OpenPanel can also let the user open multiple files
at once.

SavePanel takes care of many details of writing
files, such as:

• Adding a particular filename extension if
the user specifies a name without the
proper extension

• Asking for confirmation if the user tries to
change the document’s name to that of an
existing file

• Creating new directories if the user specifies
non-existent directories in the file path
(after confirming that the directories should
be created)

• Alerting the user if a file or directory couldn’t
be created

Interface Builder supplies default menu items for
opening and saving documents. After dragging
these menu items into the application, you
associate them with code that you write to handle
opening and saving your application’s documents.
In this code, you create SavePanel and OpenPanel
objects and write to or read from the file whose
name they obtain from the user.

118 NeXTSTEP Kit Catalog

A composite image

Images

The NXImage and NXCursor classes help you
use images in your application. NXImage objects
manage general-purpose images for you.
NXCursor objects are more specialized: They let
you determine which image the Window Server
displays for the cursor.

Each NXImage object contains one or more
representations of a single image, but doesn’t
render any of them until you tell it to. Each image
can be drawn to a View or to another image. An
image can be created from:

• Encapsulated PostScript code (EPS)

• Bitmap data in Tag Image File Format (TIFF)

• RenderMan Interface Bytestream code (RIB)
for photoreal 3-dimensional rendering

• Raw bitmap data

• PostScript code in an object that’s designated
to do the drawing

NXImage manages an image by:

• Reading image data from a file or other
source. Bitmaps can be created from
uncompressed bitmap data or from data that
uses Lempel-Ziv Welch, PackBits, or JPEG
compression.

• Keeping one or more representations of the
same image. For example, an NXImage
object might have an EPS representation and
two TIFF representations (such as 2-bit gray
scale and 12-bit color) of the same image.

• Choosing the representation that’s
appropriate for any given display device, such
as the screen, a fax modem, or a printer. For
example, when displaying to a monochrome
screen, an NXImage object will choose a 2-
bit gray-scale representation over a 12-bit
color representation. The chosen
representation is cached in an off-screen
window.

• Copying the image from the off-screen cache
to where it’s needed, using a flexible, efficient
imaging technique known as compositing.

The Application Kit 119

NXImage objects are useful for rendering images
that will be drawn more than once or that you
want to keep multiple representations of.

NXImage also handles transparency. For
example, in the car on the facing page the side
windows are semi-transparent. When the car is
composited over the text, NXImage allows the
text to show through the windows.

Unless you design a cursor, you probably won’t
have to deal with NXCursor objects at all—
NeXTSTEP’s default handling of the standard
cursors is adequate for many applications. For
custom cursor images or specialized cursor
handling, however, you need to use the NXCursor
class.

Each cursor image is contained in a separate
NXCursor object. The Application Kit provides
two ready-made NXCursor objects: the I-beam
cursor, which is displayed over editable or
selectable text, and the standard arrow cursor. A
third standard cursor, the spinning wait cursor, is

displayed automatically by the system, so it has
no global NXCursor object. You can make your
own cursor design (cross hairs, for example) and
put it in an NXCursor object.

One way to make an NXCursor object the current
cursor is to send a set message to that object.
Another way of setting the cursor is to send a
message to a View, telling the View to use a
particular NXCursor object whenever the cursor
is inside a specified rectangle.

Standard arrow cursor

I-beam cursor

120 NeXTSTEP Kit Catalog

Support for Choosing Colors

A Colors panel A color well

NXColorPanel and NXColorWell provide the
standard user interface for selecting color in
an application.

NXColorPanel lets the user preview and specify
colors in any of the following modes:

• Color wheel

• Slider (including RGB, CMYK, and HSB
color model sliders)

• Custom palette (loads a TIFF image for the
user to choose colors from)

• Custom color lists, including a list of
PANTONE‚ Colors for calibrated color
selection

In any mode, the user can also capture a color
from anywhere on the screen.

The user can keep frequently used colors in a row
of swatches along the bottom of the Colors panel.
These swatches remain constant between
applications. For example, if a user adds a color
swatch in one application and then starts up a

second application, the Colors panel in the second
application displays the same color swatches as in
the first application, including the new color
swatch.

The user can set the color of a selection by
dragging a swatch from the Colors panel into a
color well associated with the item. (The Text
object also lets users set text colors by dragging
directly into a selection.) A color well, which is
provided by an NXColorWell object, is a control
for setting and displaying a single color value. For
example, a drawing program might provide two
color wells: one for setting the color of the
selected graphic’s outline, and one for the color of
its fill.

To get a Colors panel, just drag a Colors menu
item from Interface Builder’s Palettes window
into your application. A Colors panel is also
available in any application using color wells—
just double-click the border to display the panel.
Interface Builder’s Palettes window also has a
color well that you can drag into your application.

The Application Kit 121

Organizational Views

A split view before and after dragging the divider

Views in a box

scroller

A document in a ScrollView

The Application Kit has three classes for
organizing Views within a window: Box,
ScrollView, and NXSplitView.

A Box object provides a box that surrounds one or
more Views, grouping them both visually and
programmatically. The box can have a title.

A ScrollView object is useful when a View might
be too big to fit in the space available. By putting
the View inside a ScrollView object, you
determine how much of the View is visible. The
user can then manipulate scrollers to determine
exactly which part of the View is visible. The
ScrollView object doesn’t actually do the
scrolling—it works by coordinating the actions of
a ClipView object and two Scroller objects. The
ClipView object clips off the parts of the View that
aren’t being displayed. The Scroller objects let the
user see and change the position of the View in the
ScrollView.

An NXSplitView object lets you display two
Views in a fixed amount of vertical space, while

giving the user the option of determining how
much of each View should be shown. The two
subviews in an NXSplitView are separated by a
horizontal bar called the divider. When the user
moves the bar, one subview gets smaller and the
other gets larger, but the sum of their heights
remains the same.

With Interface Builder, it’s easy to put Views into
Box and ScrollView objects and to manipulate the
Views. An NXSplitView object requires a little
more care: You specify its position and size by
direct manipulation in Interface Builder, and then
you programmatically connect its subviews.

122 NeXTSTEP Kit Catalog

The Help System

NeXTSTEP also provides a standard way to
implement context-sensitive, application-specific
help for your programs.

The NXHelpPanel class provides a consistent
user interface for help. Using a book metaphor,
the help panel presents information that’s
accessible in a variety of ways. A table of contents
and index help users look up and access help by
browsing through topics. Hypertext-style links
enable quick jumps between related topics. The
backtrace mechanism lets users flip back through
previous information. Interface Builder provides
ways to connect the help system to the controls
and fields in an application’s user interface to
more closely match user needs.

NeXTSTEP supports help text development
through the Edit text editor. Using Edit, you can
create text containing both images and hypertext-
style links. Support for multilingual help text is
provided through NeXTSTEP’s bundles facility.

NeXTSTEP tools provide additional aid in adding
help to your application. Project Builder will
automatically create a directory for your help text
through its Add Help Directory menu. Interface
Builder lets you add a standard Help item to your
application’s menu. This standard menu item
automatically incorporates NeXTSTEP’s generic
help on a variety of operations, such as using a
mouse, printing, faxing, saving a file, and so on.

A Help panel

The Application Kit 123

Spell Checking

While NeXTSTEP offers a standard spell
checking service for most text editing
applications, it also provides ways to implement
customized spell-checking services. This
mechanism can be used to implement language-
specific and technology-specific spell-checking
services. It’s implemented with a combination of
classes and protocols.

The NXSpellChecker class provides a standard
panel that’s used for spell-checking in all
applications. The NXSpellServer class provides a
way for you to register a spell-checking service
and make it available in the spelling panel.

A spell-checking service is usually a small
application whose sole purpose is to provide spell

checking—although it’s possible for another
application, such as a word processor, to provide
its spell checking machinery to other applications
through such a service. The Application Kit
provides several protocols that a spell-checking
service can implement in order to perform spell
checking.

A Spelling Checker panel

124 NeXTSTEP Kit Catalog

Drag and Drop

The Application Kit’s dragging protocols let your
application accept data and documents created in
other applications through a simple drag-and-drop
user interface. These protocols also enable your
applications to send their data to other
applications running in NeXTSTEP.

The dragging protocols include methods to be
implemented by a dragging source view, and a
dragging destination view. The

NXDraggingSouce protocol lets you specify an
image to represent the data being dragged and the
behavior of your application after dragging is
complete. The NXDraggingDestination protocol
provides ways to accept data being dragged in and
incorporate that data into a document. The
Application Kit also implements methods that
provide information about a dragging session,
such as source application, destination
application, and so on.

Dragging an image file from the Workspace into Edit

The Application Kit 125

Workspace Inspectors

Another set of NeXTSTEP protocols provides
you with the ability to implement inspectors for an
application’s documents. Inspectors are used by
the Workspace Manager to let users “peek” at the
contents of a file without actually opening the
document and starting the application.

An Attributes Inspector panel An Image Inspector panel

126 NeXTSTEP Kit Catalog

THE DATABASE KIT

The Database Kit answers a major challenge in custom application development:

getting information from large databases to the desktop in the most useful form

possible. By providing data access within NeXTSTEP’s object-oriented

application framework, this kit improves database programmer productivity and

ensures that database applications mesh seamlessly with other applications.

DBBinder

DBExpression

DBQualifier

Object

DBDatabase

DBRecordStream
 DBRecordList

DBFormatter

Responder

DBModule

DBValue

DBImageView

View

Control

ScrollView
DBTableView

DBTextFormatter

DBImageFormatter

DBEditableTextFormatter

DBFetchGroup

DBAssociation

DBTableVector

DATABASE KIT CLASSES

The Database Kit 127

The Database Kit provides a layered approach to
data access, enabling applications to choose the
level of data manipulation they wish to
implement.

The Interface Layer

The top level of the Database Kit—the level that
conceals the most detail from application
developers—consists of classes that can be used
to construct an application solely within Interface
Builder. An application can be built on this layer
with no source other than its .nib file.

DBTableView is a user interface device for
displaying scrollable data browsers. A single table
view can be used to display data from one or
several entities. Multiple table views can be used
to implement master-detail browsing. When
browsing data, other objects in the interface are
automatically synchronized to the data selected in
a table view.

DBImageView lets your applications display
graphic data from a database (or any other
source): employee photos, illustrations, or other
visuals. Like DBTableView, DBImageView can
be used in any NeXTSTEP application, whether
or not it’s based on the Database Kit.

The interface layer also provides several classes
for formatting data, including
DBImageFormatter, DBTextFormatter, and
DBEditableFormatter.

An image view and a table view

DBModule is mostly a convenience class; its role
is to connect with objects in the user interface and
dispense messages to the appropriate access layer
objects as the interface is manipulated. To do this
work, DBModule makes use of other interface
layer objects, including DBFetchGroup,
DBRecordList, and DBAssociation. These
classes provide the actual mechanism for
accessing the data and synchronizing its display in
the user interface.

The Access Layer

The core component of the access layer is
DBDatabase. An object of this class can be
thought of as representing the database server by
managing the connection to the server and by
mediating data transactions between the server
and other objects. The DBDatabase object
interprets a model created with the DBModeler
application, using information in the model to
create and configure instances of other access
layer classes. These classes, DBRecordList,
DBExpression, and DBValue, are used to
represent the contents of database entities.

Database Adaptors

Adaptors insulate Database Kit applications from
database management system specifics. With the
proper adaptors, a Database Kit application could
work with data stored in ORACLE, SYBASE, or
any other data management system.

Since the Database Kit provides full access to the
database, programmers need not write code to
interact with the adaptor layer. NeXTSTEP
provides adaptors for the ORACLE and SYBASE
database management systems; third party
vendors provide adaptors for other database
servers.

128 NeXTSTEP Kit Catalog

IXStoreDirectory

IXBTree

IXBTreeCursor
 IXPostingCursor

Object

IXStore

IXStoreBlock

IXStoreFile

IXFileFinder

IXFileRecord

List

IXAttributeParser

IXAttributeReader

IXPostingSet

IXRecordManager

IXWeightingDomain

IXLanguageReader

IXPostingList

IXAttributeQuery

INDEX KIT CLASS

THE INDEXING KIT

The Indexing Kit is a set of classes for managing data, especially the large

amounts of data characteristic of information-intensive applications: document

control systems, library search and retrieval systems, and so on. The Indexing Kit

is able to efficiently store and retrieve a wide variety of data types, including text,

sound, images, and Objective C objects.

The Indexing Kit 129

The Indexing Kit is divided into several layers, to
let programmers choose the level of detail that
best suits the needs of a particular project.

Storage Management

The basis of the Indexing Kit is the IXStore and
IXStoreFile classes.IXStore is a fast, transaction-
oriented, compacting storage allocator.
IXStoreFile is a file-oriented subclass of IXStore.
IXStore’s transaction model supports access by
multiple users and provides a tracking mechanism
to ensure data integrity. The upper layers of the
Indexing Kit build on this storage by adding data
typing and specialized access and retrieval
mechanisms.

Associative Access

Classes in this layer—IXBTree and
IXBTreeCursor—provide facilities for flexible
storage and associative retrieval of values by key.
IXBTree provides the basic storage mechanism,
organizing untyped blocks of storage by key
value. The keys for accessing this storage can be
strings, floating-point numbers, or other values,
including complex structures. IXBTreeCursor
provides the mechanism for traversing the data in
an IXBTree. Using multiple IXBTreeCursors, a
data manager can perform searches on multiple
keys and allow shared access to data by multiple
users.

Data Management

The Indexing Kit’s data management layer
provides access to structured data.
IXRecordManager objects can maintain groups of
objects, each of which represents an individual
record. IXRecordManager builds and maintains
indexes of these objects, based on the values they
return in response to a specified message. As
objects are added to the IXRecordManager, they

are automatically indexed appropriately. The
IXRecordManager provides fast and space-
efficient object storage and retrieval, using either
Indexing Kit protocols or standard Objective C
archiving.

File System Searching

The IXFileFinder and IXFileRecord classes
implement a simple mechanism for accessing the
UNIX file system. IXFileFinder treats files in the
file system as records. Its indexing facilities, based
on IXRecordManager, enable fast access to
specific system files. An IXFileFinder can be
configured to ignore specific files or file types, or
particular subdirectories within the target
directories. In addition to its indexing facilities,
IXFileFinder supports whole and partial word
searches by literal strings and regular expressions.

Text Parsing

The text parsing layer of the Indexing Kit is useful
for providing fast, indexed access to large bodies
of text. The text parsing layer can also be used to
manage multiple text documents in cooperation
with lower layer components of the Indexing Kit.
Two classes, IXAttributeParser and
IXAttributeReader, provide the mechanism for
indexing the contents of a text file based on word
frequency or other attributes.

Query Processing

At the top level, the IXAttributeQuery class, with
the Indexing Kit’s query language, provides
access to data through simple query expressions.
Using IXRecordManager and IXFileFinder
facilities, an IXAttributeQuery object can accept a
query language string and return objects matching
the query.

130 NeXTSTEP Kit Catalog

THE 3D GRAPHICS KIT

The 3D Graphics Kit provides photoreal and interactive rendering of 3-

dimensional scenes, seamlessly integrating the display and printing of 3D images

with the standard PostScript capabilities of NeXTSTEP. Using 3D Kit objects, it’s

easy to implement complex graphing and data modeling, 3D component design

and testing, and photorealistic animation.

N3DShape

Object

NXImageRep
 N3DRIBImageRep

N3DRotator

N3DContextManager

Responder

View

Window
 Panel

N3DCamera

N3DRenderPanel

N3DMovieCamera

N3DLight

N3DShader

3D GRAPHICS KIT CLASSES

The 3D Graphics Kit 131

Drawing and Printing

The N3DCamera class provides the basic mech-
anism for drawing on the screen and printing to
the printer. As a subclass of the Application Kit’s
View class, the N3DCamera class performs both
2D (PostScript) and 3D (RenderMan) drawing
from its drawSelf:: method.

The N3DMovieCamera class extends the
N3DCamera class by adding methods for creating
3D animation sequences. Like its superclass,
N3DMovieCamera can be used both for
interactive and photoreal rendering of scenes.

Modeling

The N3DShape class provides a basic architecture
for spatial organization of 3D models. By
subclassing N3DShape and incorporating code to
render the RenderMan image primitives, you can
create specific components of a 3D model.

Lighting

The N3DLight class provides control over various
RenderMan-standard lighting features. You can
set spot lights, flood lights, point lights, and
ambient lights, adjust their intensity, and set their
color and other attributes.

3D Object Manipulation

The N3D Rotator class provides an easy-to-
implement “virtual sphere” for rotating objects in
3D space.

Ambient Light

Distant Light

Point Light

Spot Light

132 NeXTSTEP Kit Catalog

COMMON CLASSES

A handful of classes come with the NeXTSTEP run-time system for the Objective

C language. They include, most prominently, the Object class, which defines the

basic functionality inherited by all objects. The other common classes are useful

for creating objects to manage data of various kinds.

HashTable

NXBundle

Storage

Object

NXStringTable

List

COMMON CLASSES

Common Classes 133

Object is the root of almost all classes. Classes
inherit certain basic abilities from Object, such as
allocating and freeing space for each object,
copying objects, and testing for the ability to
respond to a message.

The Storage class provides dynamically allocated
storage of arbitrary data. Essentially an object-
oriented dynamic array, this simple class provides
methods for adding, listing, counting, and
removing data from its storage.

The List class provides a dynamically-sized array
of Objective C objects. Along with its storage and
retrieval methods, List provides a mechanism for
sending the same message to all the objects it
contains.

HashTable associates two items of data—a key
and a value. The values it stores can be of any C or
Objective C type, including objects. HashTable
provides a convenient and efficient way to store
and access unordered data by key value. One
example of using a HashTable for object storage
and access is found in the YourCall application
described in “Step-By-Step Through a
NeXTSTEP Application.”

NXStringTable is a HashTable subclass that
associates two character strings: a key and a value.
By using an NXStringTable object to store your
application’s character strings, you can reduce the
effort required to adapt the application to different
language markets.

NXBundle is an object that corresponds to a
directory where program resources are stored.
The directory “bundles” a set of resources, and
NXBundle makes those resources available to an
application. NXBundle is used to implement
features such as multilingual application
development and application-specific help.

