
95

NeXTSTEP is a multilayered object-oriented
environment designed from the ground up to help
improve programming productivity. Built on the
Mach operating system, NeXTSTEP is made up
of run-time systems and processes, libraries, and
development tools. Together, these resources free
you from much of the complexity of creating
sophisticated and user-friendly applications.

The real key to programming productivity with NeXTSTEP is the

complete application framework provided for you. This

framework, implemented by the Window Server and the

Application Kit, provides the core functionality for any application

and offers useful enhancements that can help make all applications

more powerful.

Project Builder and Interface Builder are
applications that allow you to create, test,
and build graphical, object-oriented programs
quickly and easily. They’re discussed in
“Step-By-Step Through a NeXTSTEP
Application,” earlier in this guide.

NEXTSTEP

3D Graphics

Kit

Application

Kit

Database

Kit

Indexing

Kit

Distributed

Objects

Sound

Kit

Interface Builder

Applications

Window Server

Mach

Project Builder
 Workspace Manager

Objective C

Display PostScript

Tools & Services

System Libraries

Run-Time Systems

and Processes

Operating System

‰

‚

96 The Application Framework

The Objective C language is used to implement
many features of the NeXTSTEP environment.
The Objective C run-time system enables many of
the benefits of object-oriented programming
described in the previous section.

This section focuses on the Window Server and
the Application Kit, two NeXTSTEP components
that cooperate to define the framework of every
NeXTSTEP application.

THE WINDOW SERVER

Because NeXTSTEP’s UNIX-compatible Mach
operating system is fully multitasking, many
applications can be running simultaneously. Each
NeXTSTEP application has one or more windows
associated with it, all capable of drawing their
contents and receiving user events. If each
application were required to manage window
display and event-handling entirely on its own—
as with some systems—the code required would
be very hard to write and maintain.

The Window Server is a process that unifies these
tasks, providing window management, display,

and event-handling for all running applications.
Every application is a client of the Window
Server, getting its information about user actions
from the Window Server, and sending its drawing
instructions to the Window Server.

A window can be thought of as a rectangular
region used to display the graphic output of an
application. Windows are also the focus of user
input. They’re where typing appears, and where
user-interface items the user can manipulate with
the mouse are located.

Window Server windows are low-level entities
with some very rudimentary behavior. They can
be resized, ordered in a certain front-to-back
order, and displayed on the screen, but they don’t
have any user-interface controls, nor do they
respond directly to user actions. The interface to
Window Server windows—both the user interface
and the programming interface—is provided by
the Application Kit through Window objects.

Drawing instructions are sent to the Window
Server in the form of PostScript‚ code. The
Window Server interprets this PostScript code to
render the output of each application to its
windows, or passes it to a printer or other device

APPLICATION DATA FLOW

This figure shows the overall data flow for a typical application that accepts input from the keyboard and mouse
and displays output on the screen.

Window Server Process
Application Process

Events

PostScript

your code
 Application

Kit

objects

PostScript

interpreter

event

dispatcher

The Application Kit 97

for hard-copy output. Because it uses PostScript
for all imaging, NeXTSTEP provides complete
device-independence. The Window Server
ensures that an application’s drawing is always
performed at the highest resolution and using the
broadest spectrum of colors available for a
specific output device.

In addition to rendering images, the Window
Server sends each user keystroke and mouse click
to the appropriate application in the form of an
event. The event includes information about the
type of action the user took, the location of the
cursor, the window where the action occurred, and
various other data. Because NeXTSTEP
applications act primarily in response to events
from the Window Server, they are said to be
“event-driven.”

Several Application Kit classes are designed
specifically to handle the events distributed by the
Window Server. This greatly reduces your
responsibility in creating an event-driven
application. Application Kit objects may take
total responsibility for handling an event from the
Window Server, or they may do some of the event
handling and then send an Objective C message to
one of your own objects. To write an event-driven
application, you simply implement methods that
respond to messages sent from Application Kit
objects.

THE APPLICATION KIT

The Application Kit provides a complete
collection of powerful, flexible classes that
you can use to construct your own applications.
A few of these classes are discussed in detail
in this chapter; a summary of Application Kit
classes can be found in the “Class Summaries”
section.

The Application Kit defines the essential structure
of a NeXTSTEP application. This structure is
characterized by a single Application object, a
Window object for every window the application
needs, and various View objects that subdivide the
territory within windows, that draw the contents

of their territory, and that handle events within that
territory.

Every application based on the Application Kit
consists of a network of Objective C objects—
some provided by the Application Kit, some that
you define as subclasses of Application Kit
classes, and some that you define as subclasses of
other NeXTSTEP classes.

For example, the Application Kit directly
provides most of the objects used in YourCall,
including its Application, Menu, Window, Text,
and Button objects. YourCall has one subclass of
the Object class for its CallController object, used
to transfer data between the user interface and the
database, and another, CallRecord, to represent
call data stored in the database.

Since much of the structure provided for every
NeXTSTEP application by the Application Kit is
embodied in three objects—Application,
Window, and View—it’s useful to understand
examine their behavior in more detail.

The Application Object

Central to every application is a single
Application object, which acts as a coordinator
between the many objects within the application,
between these objects and the Window Server,
and between the application and other
NeXTSTEP applications. The Application object
is created for you automatically at run time if
you construct your application using Interface
Builder.

The Application object retrieves events from the
Window Server and forwards them as messages to
the appropriate objects. By acting in concert with
other Application Kit objects, it greatly simplifies
your responsibilities in writing an event-driven
application.

The Application object can notify another object,
its delegate, of significant happenings pertaining
to the application—such as when the application
is fully initialized and ready to receive events,
when it becomes active (becomes the application
that the user interacts with), when another

98 The Application Framework

application is activated in its place, or when the
user quits the application. These notifications
allow you to execute application-specific code at
the appropriate times.

Window Objects

A Window object provides the basic user interface
to a Window Server window. It enables a window
to move, resize, come to the front of the screen,
and hide automatically in response to the user’s
actions—you don’t have to write the code to
implement this behavior.

A Window object also provides a high-level
programming interface to a Window Server
window. All your application has to do is create a
Window object; the Window Server window is
created automatically through the object. To
programmatically control a window, an
application sends Objective C messages to the
Window object, which interacts with the Window
Server on the application’s behalf.

Like the Application object, a Window object can
have a delegate that is notified of significant
happenings pertaining to the window and can
respond appropriately. For example, the delegate
can be notified when the user moves or attempts to
close the window, and the delegate can dictate
acceptable window sizes when the user resizes the
window. Because the delegate can exercise a
degree of control over one or more windows, you
rarely need to create a subclass of the Window
class in order to get the specific window behavior
your application requires.

The YourCall application is a good demonstration
of the utility of the Window class. It has a full-
featured window that allows normal user
interaction with the application, yet it has virtually
no code devoted to window management.

Views

Views are Application Kit objects that know how
to respond to keyboard and mouse events and that
can output PostScript code in order to draw within
a portion of a window. The window area that a

View can draw within is identified by its frame
rectangle, which specifies the size of the View and
its location.

Unlike a window, which stores and displays
rendered images for an application, a View does
not store an image, but is an entity used to
construct an image. In fact, every Window object
must have one or more View objects that draw the
contents of the window.

The View Hierarchy

Every View maintains a list of subviews, which
are View objects that the View manages. In order
to draw within its area of the window, a View can
output PostScript code itself, or it can simply use
its subviews to draw. Every Window object has
one main View, known as its content view, which
is used, either directly or indirectly, to draw the
entire contents of the window.

The grouping of a Window’s content view,
its subviews, their subviews, and so forth,
is known as the Window’s view hierarchy, and is
important for understanding drawing and event-
handling in NeXTSTEP.

Here’s an example that shows two ways of
looking at a single view hierarchy:

On the left is the structural representation of the
hierarchy. View A has two subviews, B and D, so
View A is said to be the superview of View B and
View D. View B and View D in turn each have a
single subview, View C and View E.

On the right, the same view hierarchy is shown as
it might appear on-screen. View A contains its
subviews, which in turn contain their subviews.
Note that a View “clips” its subviews; in this
illustration only the portion of View C that is
within its superview (View B) gets displayed.

A

B

C

D

E
 C
 D

B

text

text

text

text

text

 text

text

text

E

A

The Application Kit 99

specified in its superview’s coordinate system.
Thus the size and location of a View is relative to
its superview.

Because each View draws in its own coordinate
system, you can reposition a View within its
superview or window without affecting its
appearance. When you reposition a View, all its
subviews are repositioned with it, since they are
located within the View’s coordinate system—
regardless of the View’s position in its superview,
window, or on the screen.

By default, a View’s coordinate origin is
coincident with the lower left corner of its frame
rectangle. The View class provides methods that
allow you to reposition, scale, or rotate the
coordinate system of any View. Such
transformations don’t affect the position of the
View, but they apply to any drawing done within

One purpose of the view hierarchy is to determine
drawing order and thus which Views appear in
front of others. (Remember, however, that a View
doesn’t have to draw; it could simply leave its
drawing to its subviews.) To draw a Window at the
appropriate times, the system sends a display
message to its content view. All Views have a
display method that draws the View and then
sends a display message to each of its subviews.
This insures that each View in a Window’s view
hierarchy is drawn, and in the proper order. In the
example above, the drawing order would be A,
then B, C, D, and E.

A View’s Coordinate System

Each View maintains its own coordinate system
for all drawing done within the View. The
coordinate system is also used to locate the View’s
subviews. Each View’s frame rectangle is

SCROLLING WITH A CLIPVIEW

In the first picture, View B’s coordinate origin is
75 units below B’s lower left corner. In the second
picture, View B’s y coordinate has been translated by
25 units, so the origin of its coordinate system is 50
units below View B’s lower left corner. Since View C
is displayed within its superview’s coordinate system,
this has the effect of scrolling View C up. View C’s
own coordinate system has not changed, so View C
doesn’t have to make any drawing adjustments.

A

B

C

(0,0)

text text text text

text text

text text text text

text text

(0,75)

C

A

B

(0,0)

text text text text

text text

text text text text

text text

(0,50)

In this example, View A has one subview (View B),
which is a ClipView object. View B in turn has one
subview (View C), which is the View to be scrolled.
Each subview is displayed within its superview’s
coordinate system. Since A’s coordinate system and
B’s position within that coordinate system don’t
change, B doesn’t move. However, B’s coordinate
system does change, so View C will move.

100 The Application Framework

it, and they affect the position of the View’s
subviews.

The Application Kit’s ClipView class provides an
example of how manipulating a View’s coordinate
system can be useful. ClipView objects are used
for scrolling other Views. If you have a View that
knows how to display a large document, you can
make it a subview of a ClipView object in order to
display only a portion of the document on the
screen. You can then send messages to the
ClipView instructing it to translate its own
coordinate system, thus moving its subview and
scrolling the document the subview displays.

Since the document View maintains its own
coordinate system, it doesn’t need to make
any adjustments for drawing based on its scrolled
position on the screen. The document View
doesn’t even need to know that it’s the subview of
a ClipView, nor that it gets moved on-screen. (See
“Scrolling with a ClipView,” previous page)

To further simplify scrolling behavior, the
Application Kit provides the ScrollView class. A
ScrollView object coordinates the display
between a ClipView and Scrollers, interface
objects that allow the user to control scrolling of a
document. The ClipView takes care of scrolling
the document, and the ScrollView takes care of
coordinating the user-interface for scrolling, so
you can focus on the custom code for the
document itself.

EVENT HANDLING

With most other graphical environments, the
programmer must write an event loop that
requests events from the system, and determines
what happened, where it happened, and what to
do about it.

With NeXTSTEP, events are retrieved and
delivered to the correct objects automatically. The
Application object gets an application’s events
from the Window Server and forwards them to the
appropriate Window object. The Window object,
in turn, handles the event if it pertains strictly to

the window, or delivers it to the appropriate View
object.

Events are sent to Views as Objective C messages.
Each event message is named after an event
type—such as keyDown: or mouseDragged:. For
example, Buttons and other controls implement a
mouseDown: method that sends the action
message to the target object when the user clicks
the button in the user interface.

To enable a View to respond to all events
pertaining to it, you simply implement the
methods that respond to messages sent
automatically from the View’s Window object.
For example, if the View must handle mouse-
down events, you implement a mouseDown:
method, and that method is invoked when the user
clicks in the View. You don’t need to write the
code that determines which View to send an event
to, because the Application and Window objects
already do that for you. If the View doesn’t need
to respond to mouse events, you simply don’t
implement the mouseDown: method.

Controls

The Application Kit provides two classes—
Control and Cell—to simplify common event-
handling even further. With a custom View
subclass you must implement the custom
response to events pertaining to your View.
Controls and Cells, however, allow you to specify

Event Handling 101

a target object and a specific action method within
the target object that’s to be invoked in response to
user manipulation.

Examples of Application Kit Controls include
Button (which sends a message when clicked) and
TextField (which sends a message when the user
types the return key). Another subclass of Control
is Matrix, a Control that manages multiple Cells
(which are in essence “lightweight” Controls).
For example, the buttons on the form in the
YourCall user interface are actually multiple
ButtonCells contained in a single Matrix. Each
ButtonCell in the Matrix has its own target and
action.

From within Interface Builder, you can set the
target for any Control or Cell object. Interface
Builder knows what methods are implemented by
the target object, and it lets you select one of the
appropriate methods as the action. For example,
when you hook up a ButtonCell object to its target
and select an action, the target’s action method
becomes the ButtonCell’s response to a mouse
click.

Controls and Cells are useful because they already
implement complete event-handling behavior; all
you have to do is hook them up. For an example
of hooking up objects, see “Step 5: Connecting
Objects in an Application” in the “Step-by-Step
Through a NeXTSTEP Application” section
earlier in this guide.

The Responder Chain

As users work with an application, their focus
shifts from one part of the user interface to
another. For example, as users enters data in
YourCall’s form, they tab from one text field to the
next. When the user performs certain actions—
such as clicking “Spell Checking” in the menu—
a message needs to be sent to the object that the
user has currently selected.

The responder chain is a structure of objects that
keep track of the currently selected object,
enabling one object to respond to an event or other
message if it can, or to forward that message to
another object if it can’t. Several key objects in the

Application Kit (the Application object, Window
objects, and View objects) inherit from the
Responder class, which defines the responder
chain.

Responder objects are linked in a chain that
defines the sequence of objects a message should
be offered to if it can’t be handled by a particular
Responder. The view hierarchy is used by default
to build this chain; if a View doesn’t respond to a
message, it can pass the message to its next
responder, which is its superview.

Each Window object keeps track of its first
responder, the object that shows the current user
selection. In a window with multiple text fields,
it’s typically the text field with the blinking cursor,
the field that the user is currently editing. You
don’t set the first responder, users do; Views make
themselves the first responder in response to a
mouseDown: event.

Many messages are sent to the responder chain.
An example of this is the Cut menu item. When
the user clicks the Cut command, the menu
doesn’t know what object will ultimately respond,
so it sends a cut: message to the first responder of
the current Window.

Each responder in the responder chain is, in turn,
given a chance to act on the message until one
actually does. If the View that’s the first responder
doesn’t want the message, the View above it in the
view hierarchy is given the opportunity to
respond. If that View doesn’t want the message,
its superview is given the opportunity to respond,
and so on. If no View responds, the current
Window, then the Window’s delegate, the
Application object, and the Application object’s
delegate will each in turn get the opportunity to
respond to the message.

The benefit of the responder chain is you
don’t have to explicitly keep track of the receiver
for a message; the Application Kit will keep track
for you and deliver the message to the object the
user has selected.

102 The Application Framework

DRAWING

Most drawing in NeXTSTEP is done with the
PostScript language. PostScript is a rich imaging
language capable of describing any two-
dimensional image. It incorporates operators for
scalable outline fonts, lines, boxes, arcs, Bézier
curves, full color support, and many other
operations. Any PostScript figure can be rotated,
scaled, and clipped to a specified portion of the
output device.

Traditionally, PostScript has been used to describe
the look of the printed page. NeXTSTEP does all
its drawing with PostScript, regardless of where
that drawing is being performed: on-screen, on a
printer, or on a fax modem.

PostScript can describe any arbitrarily complex
drawing. Here’s an example of a figure that’s easy
to create with PostScript, yet would be difficult to
do with most other graphics models. It
demonstrates various rotated figures, an arbitrary
shape filled with a color, the use of iteration to
provide depth and fading to a font, and the use of
a font as a clipping path for a radiant pattern.
These effects were all created entirely with
PostScript code:

The PostScript language is device independent, so
your application has to understand only one
imaging model. Output to a window on the screen
is no different than output to a laser printer, a fax
modem, or a phototypesetter. And because
PostScript is a language, the output of your
application can be saved as an ASCII file and
interpreted by any application or printing device
capable of handling PostScript.

D
ra

w
in

g i
s t

he tr
ue test of art.

 J.-A.-D. I ngres
 17

80
-1

86
7

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing

PostScript and C are different languages, so
you can’t put pure PostScript code directly into C
source code files. However, NeXTSTEP includes
a complete library of C functions that correspond
to single PostScript operators. In addition, a utility
program called pswrap converts (“wraps”) pure
PostScript code into C functions that
your program can call—enabling you to
implement arbitrarily complex drawing code
within your applications.

Adding to the two-dimensional drawing
capabilities of the PostScript language, the
3D Graphics Kit provides NeXTSTEP
applications with the ability to create
photorealistic three-dimensional images using the
RenderMan‚ language. The 3D Kit’s N3DCamera
class is a View subclass that integrates
RenderMan and PostScript drawing. N3DCamera
uses the Quick RenderMan‰ renderer for fast
interactive drawing on-screen and the
Photorealistic RenderMan‰ renderer for output to
higher resolution devices. The 3D Graphics Kit
thus maintains the unified imaging model
provided in two-dimensional drawing by
PostScript.

When Do Views Draw?

The Application Kit provides two
mechanisms that Views use to draw. Views
present their standard appearance to the user
through proactive drawing. They indicate
their response to user events through
reactive drawing.

Reactive drawing is done in direct response to the
user’s actions; for example, a Button uses reactive
drawing to highlight itself when the user clicks.
It’s usually performed by an event message such
as mouseDown:. (It can also be done at regular
time intervals for an animation effect.)

Proactive drawing is used to draw the View when
it’s first presented to the user, and to redisplay it
when it’s scrolled, or when its window is resized.
It’s also used to construct an image of the View in
order to print it. When a View’s contents
change—for example, when the user edits text—
the image presented through proactive drawing

Messages Between Applications 103

will change. Every subclass of View must
implement the drawSelf:: method to draw itself
proactively.

It’s important to note how drawSelf:: is used. It’s
invoked automatically by the Application Kit; a
View doesn’t need to know when or why it’s being
asked to draw itself. The View simply produces a
PostScript description of its current contents. The
Application Kit takes responsibility for directing
that output to the correct place; the Window
Server takes responsibility for making sure that
output is produced at the correct resolution and
color values for the device producing the image.

MESSAGES BETWEEN
APPLICATIONS

As you’ve seen, an object-oriented program
consists of a network of objects that interact by
sending messages to one another. NeXTSTEP
extends this model so that messaging between
objects in separate applications works exactly like
messaging between objects within an application.
Using the messaging facilities built into the Mach
operating system, NeXTSTEP implements
several types of object-oriented interapplication
communication, each tailored to a specific area of
application interaction:

• The Pasteboard class implements
NeXTSTEP’s extensible cut/copy/paste
mechanism.

• ObjectLinks let users assemble documents
from multiple sources that automatically
update to reflect changes in their source
components.

• Drag and drop protocols define a simple,
graphical user interface for data sharing
between applications.

• Interapplication Services enable applications
to offer their facilities to other applications
through a standard, context-sensitive menu.

• The Distributed Objects system provides a
general mechanism for implementing peer-

to-peer and client-server communications
between applications.

With these facilities, NeXTSTEP extends object-
oriented benefits to a higher level. Just as a
network of objects interacts to create powerful
applications, a network of NeXTSTEP
applications can interact to give users even greater
power and control.

The Pasteboard

The Application Kit’s Pasteboard class allows
easy transfer of data both within an application
and between applications. Pasteboard objects give
applications access to the pasteboard server, a
centralized data server shared by all applications.

An application can use different pasteboards in
the server to cut and paste different types of
unrelated data: for example, one pasteboard can
be used to cut and paste text, another to cut and
paste font types, and a third for paragraph
formatting information. Each pasteboard is
represented by its own Pasteboard object, and
each one can store multiple representations
of related data. For example, the selection
pasteboard could store both a PostScript
description and a bitmap representation of
an image. When an application puts several
different representations of data on a pasteboard,
other applications are able to select the richest
data type they support for pasting.

Object Links

Object Links extend the Pasteboard’s
cut/copy/paste mechanism to let applications
share data dynamically. Object Links are designed
to support documents assembled from a variety of
sources—reports from a database application,
graphics from a spreadsheet, text from a word
processor.

Object Links provide a simple programmatic
interface to inter-document communication.
LinkManager objects provide the mechanism for
interapplication communication between
documents. When the user cuts or copies data

104 The Application Framework

from a document, the LinkManager puts a
reference to the origin document and application
on the Pasteboard. When the user performs a
Paste and Link operation in another document, the
receiving document both accepts the data and
registers the linked selection and its source. You
simply create a LinkManager for each document,
and the manager handles this for you.

Through the Link panel, Object Links also
provide a simple user interface for link
management.

Users can choose to update linked data manually
or dynamically. They can open the source
document and application from the destination
document, or they can break the link so that the
destination is no longer updated when the source
is modified.

Drag and Drop

The dragging protocols let your application
accept data and documents created in other
applications and send data and documents to other
applications, through a simple “Drag And Drop”
user interface. The dragging protocols provide
ways to define the types of data your documents
accept and receive, and the image to represent
document-specific data types your application can
share.

Providing Services to Other Applications

As demonstrated in “Extending the Advantage,”
any application can provide services to others by
means of a dynamically-updated, context-
sensitive menu. Any application can take
advantage of services provided by other
application through this same menu. No

application needs to know in advance what
services will be available in order to use them.
Instead, applications simply identify the data type
they’re currently working with—ASCII text,
PostScript, TIFF images, and so on—and the
Services menu offers the appropriate services.

To provide services to other applications, an
application registers the pasteboard data types it’s
willing to receive and return in order to provide its
services. Other applications, service clients, are
then periodically queried as to the types of data
they are willing to place on, and receive from, the
pasteboard.

For example, an optical character recognition
(OCR) application could make its services
available to change bitmap images into editable
ASCII text. A menu item for the OCR application
would then be created in every application that has
a Services menu and can place bitmap images on
the pasteboard and receive ASCII text in return.
When the user selects an image in a client
application, the OCR menu item is enabled.

If the user clicks the OCR command, the image is
copied to the pasteboard and pasted into the OCR
application. The OCR application converts the
image to ASCII text and places the text back on
the pasteboard. The text is then pasted into the
client application, replacing the bitmap.

Once a service-providing application registers
itself with the services system, its services are
available to all NeXTSTEP applications. This
extends the usefulness of applications you create,
and enables your application to take advantage of
the features of other NeXTSTEP applications
automatically. To the user, it appears that the
service is simply built into every application.

The Distributed Objects System

The Distributed Objects system provides a
messaging model between objects in different
applications that’s exactly the same as that
between objects within a single application. Using
Distributed Objects, applications share Objective

Summary 105

C objects, even among applications running on
different machines across a network.

In the Distributed Objects system, an application
initiates a communication process by registering
an object offering to communicate. Other
applications respond to that offer by requesting
access to the registered object. When access is
granted, the requestor simply sends messages to
that object. On both sides of this dialogue, the
syntax for the interaction is exactly like standard
Objective C messaging.

The Distributed Objects system is particularly
useful in developing cluster applications—
closely related applications designed to work
together, but coded and deployed individually.
Cluster applications help you balance short-term
demand with long term goals; they let you
develop applications that implement the most
needed functionality first, then extend that
functionality by adding new applications to the
cluster. The Distributed Objects system is also
useful in implementing applications that let users
on a network work cooperatively on a single
document.

SUMMARY

The purpose of the NeXTSTEP development
environment is to allow you to write rich,
functional applications as easily as possible. You
don’t spend your time coding an interface,
because Interface Builder does it for you. You
don’t need to write low-level event-handling code;
you simply define responses to events your
application receives as Objective C messages.
You don’t write a text engine, because the
Application Kit supplies a powerful object for text
entry and editing. You don’t rewrite your
application to do printer output, because the
device-independent PostScript drawing that goes
to the screen is equally suitable for producing
printed output. You don’t create special
mechanisms for making applications work

together, because NeXTSTEP provides those
mechanisms for you.

In short, your efforts in writing a NeXTSTEP
application are limited to those parts of the
application that are actually unique. You don’t
spend a lot of time recreating work that has
already been done or fighting the limitations of a
confining software architecture.

Finally, because NeXTSTEP supplies you with an
object-oriented development environment, your
own code will tend to be both robust and reusable,
thereby maximizing your long-term productivity.

