
85 

This section discusses some of the fundamentals 
of object-oriented programming and Objective C. 
It explains how the language lets you take 
advantage of the powerful application building 
blocks supplied by NeXTSTEP, and how to 
incorporate object-oriented techniques into your 
own applications.

OBJECTS

In the Objective C language, an object is a 
self-contained unit that groups a data structure 
(variables) with methods, the functions that affect 
or make use of the data.

Typically, an object is regarded as a “black box,” 
meaning that a program never directly accesses an 
object’s variables. Indeed, a program shouldn’t 
even need to know what variables an object has in 
order to perform its functions. Instead, the 
program accesses the object only through its 

Many of the advantages of the NeXTSTEP development 

environment are made possible by object-oriented programming. 

The basis of the development environment is the Objective C 

language, a superset 

of standard C that adds a small amount of syntax to the language 

to support object-oriented design. Thanks to Objective C, 

NeXTSTEP provides a coding model that’s simple yet extensible.

methods. In a sense, the methods surround the 
data:

Objects are the basic building blocks of Objective 
C applications. Each object encapsulates a 
particular area of functionality that the program 
needs. The interface to this functionality is 
provided by the object’s methods.

m ethod

m

et
h
o
d

m
e
th

od

data




86 Object-Oriented Programming  

Messages

To invoke one of the object’s methods, you send it 
a message. In Objective C, a message expression 
is enclosed in square brackets, like this:

The term on the left is the object that receives the 
message, the receiver—here it’s the HashTable 
object that YourCall uses to store records. 
Everything on the right is the message itself; it 
consists of a method name and any arguments the 
method requires. The message received by the 
HashTable object above tells it to search for and 
return the record for a customer name.

In Objective C, arguments follow colons, which 
are considered part of the method name. If a 
method has more than one argument—as Form’s 
setStringValue:at: method does, for example—the 
name is broken apart to accept the arguments:

[customerForm 
      setStringValue:NULL at:0];

Thus every argument can be given an identifying 
label within the method name—although 
sometimes a label isn’t used and the colons stand 
next to each other. (The setStringValue:at: 
message shown above is used by the 
CallController’s clearForm: method to clear the 
Name field of the Customer Form.)

Program Structure

Object-oriented programming is more than 
just another way of organizing data and functions. 
It permits complex programs to be conceived and 
constructed using a model that resembles—much 
more so than traditional programs—the way we 
organize the world around us. An object-oriented 
program can be thought of as a network of objects 
with well-defined behavior and characteristics, 
objects that interact through messages.

argument

[callTable valueForKey:fetchName]

receiver message

method name

Every object in the network has a separate role to 
play. Some correspond to graphical elements in 
the user interface. The elements that you can drag 
from an Interface Builder palette are all objects. In 
an application, each window is represented by a 
separate object, as is each button, menu item, or 
display of text.

Applications also divide functionality that doesn’t 
have a graphical counterpart on-screen into a 
series of objects, assigning each one a different 
area of responsibility. Four such objects play 
prominent roles in the YourCall program: An 
Application object to run the program, a 
CallRecord object to represent each record, a 
HashTable object to store CallRecords, and a 
CallController object to move data between the 
user interface and storage.

Each object is a self-contained unit. Just as local 
variables within a C function are isolated from 
other parts of a program, so too are the variables 
and methods of an object. Thus two very different 
kinds of objects might use the same names for 
their variables or have identically named methods. 
Both objects could receive the same message, but 
each would respond to it differently, in a way 
that’s appropriate for its role in the application. 
The ability of one method to assume 
different forms in different objects is referred to as 
polymorphism.

Dynamic Binding

Although the purpose of a message is to invoke a 
method, a message isn’t the same as a function 
call. In Objective C, both the message being sent 


 



 



Messages




Classes 87 

THE OBJECT-ORIENTED ADVANTAGE

changed from a statically allocated array to a 
dynamically allocated linked list, it would affect every 
part of the application that accesses, adds, or deletes 
elements from the list.

With an object-oriented programming paradigm, the 
application as a whole wouldn’t directly manipulate 
the data structure; rather, that task is entrusted to a 
particular object. Since the application doesn’t directly 
access the data, it can’t introduce inconsistencies. 
Note also that it’s possible to change the 
implementation of the object without breaking other 
parts of the application. For example, the data storage 
method could be changed to optimize performance. 
So long as the object responds to the same messages, 
other parts of the application are unaffected by internal 
implementation details.

m es
sage toadd data

m essage to retrieve
dat

a

data


Object-oriented programming delivers its greatest 
benefits to large and complex programs. But 
its advantages can also be demonstrated with a simple 
data structure such as might be used in 
any application.

With procedural programming techniques, the 
application is directly responsible for data 
manipulation. One problem with this is illustrated in 
the picture above: It shows a data structure consisting 
of a count variable and a data pointer. Since the 
application directly manipulates the data, it has the 
opportunity to introduce inconsistencies. Here, it has 
added an item to the data, but has forgotten to 
increment the count; the count variable says there are 
still only two data elements when in fact there are 
three. The structure has become inconsistent and 
unreliable.

Another problem is that all parts of the application 
must have intimate knowledge about the structure of 
the data. If the allocation of data elements were 

count
 dataPointer




2


and the object to receive that message can be 
selected as the program runs. A run-time process 
finds the method implementation appropriate for 
the receiver of the message; it then “calls” this 
implementation and passes it the receiver’s data 
structure.

This dynamic binding makes it easier to structure 
programs that respond to selections and actions 
chosen by users at run time. For example, either or 
both parts of a message expression—the receiver 
and the method name—can be variables whose 
values are determined by user actions. A simple 
message expression can deliver a Cut, Copy, or 

Paste menu command to whatever object controls 
the current selection.

Dynamic binding even enables applications to 
deal with new kinds of objects, ones that were not 
envisioned when the application itself was built. 
For example, it lets Interface Builder send 
messages to objects such as DBModule loaded 
into the application by means of custom palettes.

CLASSES

Applications are composed of many different 
kinds of objects and often have more than one 
object of the same kind. YourCall, for example, 
has three buttons (each a ButtonCell object) and 



88 Object-Oriented Programming  

several different menu items (each an individual 
MenuCell object).

Objects of the same kind belong to the same class. 
When you want a new kind of object, you define a 
new class.

A class definition can be thought of as a type 
definition for a kind of object. It specifies the data 
structure that all objects belonging to the class will 
have and the methods they will use to respond to 
messages. Any number of objects can be created 
from a single class definition.

An object-oriented program consists mainly of 
class definitions. The objects the program will use 
to do its work are created at run time from class 
definitions (or, if pre-built with Interface Builder, 
are loaded at run time from the files where they are 
stored).

A class is more than just an object specification, 
however. It can be assigned methods and receive 
messages just as an object can. As such it acts as a 
class object.

One of the primary functions of a class is to create 
new objects of the type the class defines. For 
example, the Button class creates new Button 
objects and the MenuCell class creates new 
MenuCells. Objects are created at run time in a 
two-step process that first allocates memory for 
the instance variables of the new object and then 
initializes it. The following code is used in 
CallController’s saveCall: method to create a new 
CallRecord object:

newRecord = 
      [[CallRecord alloc] init];

The receiver for the alloc message is the 
CallRecord class. The alloc method dynamically 
allocates memory for a new object of the 
receiving class and returns the new object. The 
receiver for the init message is the new 
CallRecord object that was dynamically allocated 

by alloc. Once allocated and initialized, this new 
record is assigned to the local variable 
newRecord.

After being allocated and initialized, a new object 
is a fully functional member of its class with its 
own set of variables. The newRecord object has 
all the behavior of any CallRecord object, so it can 
receive messages, store values in its instance 
variables, and do all the other things a CallRecord 
does. If you need other CallRecord objects, you 
create them in the same way from the same class 
definition.

The Objective C type for an object, regardless of 
what class it belongs to, is id (internally, a pointer 
to the object’s private data structure). The 
newRecord variable in the code sample above 
could be declared to be an id:

id  newRecord;

Objects can also be more restrictively typed, 
based on their class. For example, in the actual 
code, newRecord is typed as a CallRecord object:

CallRecord *newRecord;
newRecord = 
      [[CallRecord alloc] init];

To take advantage of polymorphism, variables 
that reference objects are often of type id. The 
more restrictive typing by class enables the 
compiler to perform type-checking in assignment 
statements. 

This discussion illustrates the dual nature of 
a class. In program code, the class defines a type 
of object. In the run-time system, the class acts as 
an object itself to receive messages like alloc.

Inheritance

An Objective C class definition doesn’t have to 
specify every method and variable; it can inherit 
from other classes. If there’s a class that does 
almost everything you want, but you need some 
additional features, you can define a new class that 
inherits from the existing class. The new class is 
called a subclass of the original class; the class it 
inherits from is its superclass.



Classes 89 

The new class inherits all its superclass’s 
behavior, so you don’t need to reimplement the 
things that work as you want them to. The 
subclass merely extends the inherited behavior by 
adding new methods and any variables needed to 
support the additional methods. All the methods 
and variables defined for—or inherited by—the 
superclass are inherited by the subclass. (A 
subclass can also alter superclass behavior by 
overriding inherited methods. The technique for 
doing this is discussed later.)

A class can have any number of subclasses, 
but only one superclass. This means that classes 
are arranged in a branching hierarchy, with one 
class at the root. The hierarchy of the principal 
classes used in YourCall is shown below:

Object is the root class of this hierarchy, as it is of 
all Objective C class hierarchies. From Object, 
other classes inherit the basic functionality that 
makes messaging work and enables objects to 
work together. To define a new class that doesn’t 
need to inherit any of the special behavior 
encoded into an existing class, you make it a 
subclass of the Object class.

Inheritance makes it easy to bundle common 
functionality into a single class definition. For 
example, every object that draws on the screen—
whether it draws an image of a button, a slider, a 
text display, or a graph of points—must keep track 
of which window it draws in and where in the 
window it draws. It must also know when it’s 
appropriate to draw and when to respond to a user 

Object


Responder
HashTable
 CallRecord


View
Window
 Application


Menu


Matrix
TextField
 Button


Form


CallController


Control


action. The code that handles all these details is 
part of a single class definition (the View class in 
the Application Kit). The specific work of 
drawing a button, a slider, or a text display can 
then be entrusted to a subclass. 

This not only simplifies the organization of the 
code that needs to be written for an application, it 
makes it easier to define objects that do 
complicated things. Each subclass need only 
implement the things it does differently from its 
superclass; there’s no need to reimplement 
anything that’s already been done. 

What’s more, hierarchical design assures more 
robust code. By building on a widely used, well-
tested class such as View, a subclass inherits a 
proven foundation of functionality. Because the 
new code for a subclass is limited to 
implementing unique behavior, it’s easier to test 
and debug that code. 

Your applications can use subclassing to make 
greater use of objects in the Application Kit. 
When an application needs an object to do 
drawing, it implements a subclass of View. When 
it needs an object that both draws and provides 
simple user interaction, it implements a subclass 
of Control.

Inheritance makes every class easily extensible—
those provided by NeXTSTEP, those you create, 
and those offered by third party vendors. Any 
class can be the superclass for a new subclass. 

Defining a Class

Classes are defined in two parts: One part declares 
its interface, principally the methods that can be 
invoked by messages sent to objects belonging to 
the class, and the other part actually implements 
those methods. The interface is public. The 
implementation is private; it can change without 
affecting the interface or the way the class is used.

The public interface for a class is usually declared 
in a header file that can be included in any 
program that makes use of the class. The 
declaration begins with the directive @interface 
and ends with @end.



90 Object-Oriented Programming  

@interface CallController : Object
/*
 * variable and method declarations
 */
@end

Here the @interface line declares that 
CallController inherits from the Object class; 
Object is the superclass for CallController.

Method declarations serve the same purpose as 
function prototypes. Here are declarations for two 
of CallController’s methods:

- clearForm:sender;
- retrieveCall:sender;

The default argument and return type for a method 
is id. The initial ‘–’ sign indicates that these 
methods are used by objects belonging to the 
class; a ‘+’ precedes methods to be used by the 
class object itself.

The @implementation directive announces the 
start of a class definition.

@implementation CallController
/*
 * method definitions
 */
@end

Method definitions are much like function 
definitions. For example, this is CallController’s 
implementation of the clearForm: method:

- clearForm:sender;
{
[queryText setStringValue:NULL];
[responseText setStringValue:NULL];
[customerForm 
  setStringValue:NULL at:0];
[customerForm 
  setStringValue:NULL at:1];
[customerForm 
  setStringValue:NULL at:2];
[customerForm 
  setStringValue:NULL at:3];
[customerForm 
  setStringValue:NULL at:4];
return self;

}

Note that methods not only respond to messages, 
they often initiate messages of their own—just as 
one function might call another. 

This example also points out two important 
differences between functions and methods:

• A method can refer directly to the receiving 
object’s variables. (Here the clearForm: 
method refers to the CallController’s 
queryText, responseText, and customerForm 
instance variables.) There’s no extra syntax 
for accessing variables or passing the object’s 
data structure. The language keeps all that 
hidden.

• A method can also refer to the receiving 
object as self. This variable makes it possible 
for an object, in its method definitions, to send 
messages to itself. (Here the method uses self 
to return the id of the receiver—the standard 
return value for Objective C methods.)

Because the default return value for a message is 
an id (usually self), messages can frequently be 
nested, resulting in code that’s compact and easy 
to read:

newRecord = 
   [[CallRecord alloc] init];

In this example, the object returned by alloc 
becomes the receiver for the init message.

Overriding a Method

A subclass can not only add new methods to 
the ones it inherits, it can also replace an inherited 
method with a new implementation. No special 
syntax is required; all you do is reimplement the 
method.

For example, if its superclass had a clearForm: 
method, CallController’s version would override 



Using an Object-Oriented Kit 91 

the inherited version. Any CallController object 
would use the new method, rather than the 
inherited one. The new method would also be 
inherited by CallController subclasses.

Overriding methods doesn’t alter the set of 
messages that an object can receive; it alters the 
method implementations that will be used to 
respond to those messages. As mentioned earlier, 
this ability of each class to implement its own 
version of a method is referred to as 
polymorphism. 

It’s also possible to extend an inherited method, 
rather than replace it outright. This is done by 
overriding the method but including the old 
version in the new implementation.

For example, the CallRecord class inherits a 
write: method that archives Object’s single 
instance variable to a typed stream. However, a 
CallRecord must also save the instance variables 
that it declares in order to store the data for a 
record in the archive.

The CallRecord class therefore implements a new 
version of write:, but incorporates the superclass’s 
version through a message to super:

- write:(NXTypedStream *)stream
{
  [super write:stream];
  NXWriteTypes(stream,
  "*******", &name,
  &street, &city,
  &state, &phone,
  &query, &response); 
  return self;
}

super is a special receiver in the Objective C 
language. It indicates that an inherited method 
should be performed, rather than one defined in 
the current class. After the message to super is 
sent, the CallRecord object has written the 
instance variable it inherits from Object to the 
stream. The NXWriteTypes() function then writes 
the instance variables that are unique to the 
stream.

USING AN OBJECT-ORIENTED 
KIT

When you write an object-oriented program, you 
rarely do it from scratch. There are almost always 
class definitions available that you can use. All 
you need are the class interface files, a library with 
compiled versions of the class implementations, 
and some documentation.

In NeXTSTEP, groups of object-oriented classes 
are organized as kits. Each kit provides a complete 
framework for a particular functionality, with 
specific behavior organized in well-defined 
classes. The Application Kit, for example, 
provides classes that implement basic application 
structure and that provide “glue” to connect your 
custom objects to an application. In addition, the 
Application Kit provides a variety of ready-to-use 
application features, with classes for everything 
from editing text and managing windows to 
interacting with the pasteboard. 

Other kits offer similar frameworks. The Database 
Kit implements, in a vendor-independent way, 
objects for accessing data in commercial database 
management systems. The Indexing Kit provides 
standardized behavior for organizing and 
accessing text and other large, heterogeneous data 
items. In addition, there are smaller groupings of 
objects that provide widely used functionality, 
such as the “common classes” like HashTable, 
Storage, and List for data manipulation. 

When you use the Application Kit and other 
components of NeXTSTEP, you are in effect 
building your application in partnership with the 
programmers at NeXT. Kit classes are supported 
by NeXT and are continually improved with each 
new release. It’s likely that most of the objects in 
your application will come from Kit classes. Only 
two of the classes shown earlier in this section in 
the inheritance hierarchy for YourCall—
CallController and CallRecord—were actually 
defined in that application. The rest were provided 
by NeXTSTEP.



92 Object-Oriented Programming  

Implementing Methods

No matter how many ready-made classes there are 
or how much of a program framework the 
Application Kit provides, you must write code to 
do the things that are unique to your application. 
The task is to fit your pieces with the pieces that 
are already provided.

Because you will be developing classes in the 
context of existing class definitions, you’ll 
find yourself implementing methods to respond to 
messages sent from other parts of the 
application—parts that you don’t write yourself. 
Although your code implements the methods, it 
won’t initiate any messages to invoke them. Much 
of the task of writing object-oriented programs is 
simply implementing methods that respond to 
system-generated messages.

For example, although CallRecord implements a 
read: method for unarchiving its instance 
variables, the code of YourCall never invokes that 
method. Instead, the application unarchives the 
data by invoking a function NXReadObjects() on 
a HashTable. Through this function, the 
HashTable in turn sends each of the objects it 
contains a read: message. All you need do is 
implement the application-specific method to 
respond to these messages.

Delegation

One way to have the code you write “fit” an 
object-oriented kit is to develop subclasses of kit 
classes, as described above. Another way is to 
define classes for objects that have a special 
relationship to kit objects. The most general type 
of relationship is for your object to accept 
responsibilities delegated to it by the kit object. 
The delegate acts on behalf of the other object and 
thus can extend or modify its behavior.

In the discussion of inter-application services in 
“Extending the Advantage,” you saw how the 
Application object requires a delegate to 
implement a service. The Application object 
implements the basic mechanism for initiating the 

response to a request for services, while its 
delegate provides access to the service. 

Delegation can eliminate the need to define a 
subclass of a complex class, such as Application. 
The delegate receives messages notifying it of 
significant happenings in the other object—for 
example, when text is edited, a file needs to be 
opened, or a window becomes the one the user is 
working in—and it responds appropriately. 
Application-specific code is thus confined to 
methods defined for the delegate, rather than 
subclass methods that override methods in the 
complex class.

Sometimes an object will simply forward a 
message it receives to its delegate. Thus it’s 
possible for an application to implement a 
response to the message in a class definition 
for the delegate, rather than in a subclass of the Kit 
class.

Delegation is often used to coordinate a group of 
objects. A single object can act as the delegate for 
several other objects, even objects belonging to 
different classes. Since the delegate is notified of 
significant happenings in all the objects it is the 
delegate for, it can take appropriate action to keep 
its objects synchronized. 

Application Kit classes must be used by many 
different applications, so it makes sense for the Kit 
to adopt a strategy that assigns application-
specific code to a delegate. If you want any of your 
own classes to be reusable in other applications, it 
may make sense for you to adopt the same 
strategy. 

Categories and Protocols

In addition to subclassing and delegation, you can 
expand an object and make it fit with other classes 
using two Objective C mechanisms: categories 
and protocols. 

Categories provide a way to extend classes 
defined by other implementors—for example, 
you can add methods to the classes defined in the 
NeXTSTEP software kits. The added methods are 
inherited by subclasses and are indistinguishable 



Using an Object-Oriented Kit 93 

at run-time from the original methods of the class. 
Categories can also be used as a way to distribute 
the implementation of a class into groups of 
related methods and to simplify the management 
of large classes where more than one developer is 
responsible for components of the code. 

Protocols provide a way to declare groups of 
methods independent of a specific class—
methods which any class, and perhaps many 
classes, might implement. Protocols declare 
interfaces to objects, leaving the programmer free 
to choose the implementation most appropriate to 
a specific class. Protocols free method 
declarations from dependency on the class 
hierarchy, so they can be used in ways that 
subclasses and categories cannot. 

One use of protocols is to allow a concealed object 
to identify its interface to others. This use is 
illustrated in the Distributed Objects discussion in 
“Extending the Advantage.” There, the server 
application publishes a protocol, CallProvider, 
that it conforms to. The client application need 
only know about the protocol in order to send the 
appropriate messages to the server. 

Protocols are also useful for declaring methods 
that other objects must implement, without 
specifying the exact implementations. For 
example, the CallData protocol specified methods 
for retrieving and setting data in a record, without 
specifying their implementation. NeXTSTEP 
provides a number of such protocols. For 
example, the spell-checking protocols enable 
other developers to implement spell-checking 
objects that can plug into the Application Kit’s 
Text object. 

Summary

Subclasses of existing classes, methods that 
respond to system-generated messages, delegates, 
categories, protocols—these are all mechanisms 
you can use to adapt the code you write to the 
framework provided by NeXTSTEP (and to adapt 
the classes provided with NeXTSTEP to the 
needs of your application). 

To understand how to use these object-oriented 
techniques when writing an application for 
NeXTSTEP, you need to learn more about the 
program framework it provides for event-driven 
applications. The next section discusses this 
framework and the facilities provided by the 
Application Kit and other components of 
NeXTSTEP.


