Many of the advantages of the NeXTSTEP development
environment are made possible by object-oriented programming.
The basis of the development environment is the Objective C
language, a superset

of standard C that adds a small amount of syntax to the language
to support object-oriented design. Thanks to Objective C,

NeXTSTEP provides a coding model that’s simple yet extensible.

This section discusses some of the fundamentalsnethods. In a sense, the methods surround the
of object-oriented programming and Objective C.data:

It explains how the language lets you take
advantage of the powerful application buildin
blocks supplied by NeXTSTEP, and how to
incorporate object-oriented techniques into y
own applications. 2

o etth;

data

OBJECTS Objects are the basic building blocks of Objective
C applications. Each object encapsulates a
particular area of functionality that the program
needs. The interface to this functionality is
provided by the object’'s methods.

In the Objective C language, ahjectis a
self-contained unit that groups a data structure
(variables) witrmethodsthe functions that affect
or make use of the data.

Typically, an object is regarded as a “black box,”
meaning that a program never directly accesses an
object’s variables. Indeed, a program shouldn't
even need to know what variables an object has in
order to perform its functions. Instead, the
program accesses the object only through its

85

Messages

To invoke one of the object’'s methods, you se
amessagen Objective C, a message expres:
is enclosed in square brackets, like this: ‘\ \

method name argument

A A

r AN N\

[cal | Tabl e val ueFor Key: f et chNane] / /
rec;iver me;sage ~—

The term on the left is the object that receive:
message, theceiver—here it's the HashTable
object that YourCall uses to store records.
Everything on the right is the message itself; it
consists of a method name and any arguments t
method requires. The message received by the
HashTable object above tells it to search for and
return the record for a customer name.

—> Messages

Every object in the network has a separate role to
lay. Some correspond to graphical elements in
fie user interface. The elements that you can drag
from an Interface Builder palette are all objects. In
an application, each window is represented by a
separate object, as is each button, menu item, or

In Objective C, arguments follow colons, which display of text.
are considered part of the method name. If a Applications also divide functionality that doesn't
method has more than one argument—as Form

setStringValue:at: method does, for example—the ave a graphical counterpart on-screeninto a
ng o ’ P'e—N%eries of objects, assigning each one a different
name is broken apart to accept the arguments:

area of responsibility. Four such objects play
[cust omer For m prominent roles in the YourCall program: An
set StringVal ue: NULL at: 0] ; Application object to run the program, a

Thus every argument can be given an idemifyingCallRecord ob_ject to represent each record, a
label within the method name—although HashTable object to store CallRecords, and a

sometimes a label isn't used and the colons stani@/lController object to move data between the
next to each other. (The setStringValue:at: user interface and storage.

message shown above is used by the Each object is a self-contained unit. Just as local
Name field of the Customer Form.) other parts of a program, so too are the variables
and methods of an object. Thus two very different
Program Structure kinqls of.objects might.use Fhe same names for
_ _ o their variables or have identically named methods.
Object-oriented programming is more than Both objects could receive the same message, but

just another way of organizing data and functionseach would respond to it differently, in a way

It permits complex programs to be conceived andhat's appropriate for its role in the application.
constructed using a model that resembles—muchrhe ability of one method to assume

more so than traditional programs—the way we different forms in different objects is referred to as
organize the world around us. An object-orientedpolymorphism

program can be thought of as a network of objects

with well-defined behavior and characteristics, L

objects that interact through messages. Dynamic Binding

Although the purpose of a message is to invoke a
method, a message isn't the same as a function
call. In Objective C, both the message being sent

86 Object-Oriented Programming

and the object to receive that message can be Paste menu command to whatever object controls
selected as the program runs. A run-time procesthe current selection.

finds the method implementation appropriate for
the receiver of the message; it then “calls” this
implementation and passes it the receiver’s data
structure.

Dynamic binding even enables applications to
deal with new kinds of objects, ones that were not
envisioned when the application itself was built.
For example, it lets Interface Builder send
Thisdynamic bindingnakes it easier to structure messages to objects such as DBModule loaded
programs that respond to selections and actionsinto the application by means of custom palettes.
chosen by users at run time. For example, either or

both parts of a message expression—the receiver

and the method name—can be variables whose CLASSES

values are determined by user actions. A simple

message expression can deliver a Cut, Copy, or APplications are composed of many different
kinds of objects and often have more than one

object of the same kind. YourCall, for example,
has three buttons (each a ButtonCell object) and

THE OBJECT-ORIENTED ADVANTAGE

Object-oriented programming delivers its greatest changed from a statically allocated array to a

benefits to large and complex programs. But dynamically allocated linked list, it would affect every
its advantages can also be demonstrated with a simplpart of the application that accesses, adds, or deletes
data structure such as might be used in elements from the list.

any application.

< essade © adg datg

count dataPointer

2 . ‘ ‘ | data

 Sssage tp epreve 382

With procedural programming techniques, the

apph_canoh o litely respons!ble fgr _da}ta . With an object-oriented programming paradigm, the
manipulation. One problem with this is illustrated in application as a whole wouldn't directly manipulate

the picture above: It shows a data structure consistinqhe data structure: rather. that task is entrusted to a

of acount variable and a data pointer. Since the o
. . . . particular object. Since the application doesn't directly
application directly manipulates the data, it has the . . . - .
access the data, it can't introduce inconsistencies.

opportunity to introduce inconsistencies. Here, ithas | " o Dossibletolchangehe

added an item to the data, but has forgotten to " .) . .

. i . implementation of the object without breaking other

mqement 5 EEUG =TS vanaple B iTEEae parts of the application. For example, the data storage

tsr?r” ST G TS T n L .there a'® " method could be changed to optimize performance.
ee. NS ETUE T NS SSeeis TEe e ATt e So long as the object responds to the same message

Uielelte. other parts of the application are unaffected by internal

Another problem is that all parts of the application ~ implementation details.
must have intimate knowledge about the structure of
the data. If the allocation of data elements were

Classes 87

several different menu items (each an individual by alloc. Once allocated and initialized, this new
MenuCell object). record is assigned to the local variable

newRecord.
Objects of the same kind belong to the selaes

When you want a new kind of object, you define aAfter being allocated and initialized, a new object
new class. is a fully functional member of its class with its
own set of variables. The newRecord object has

'g‘ ?_Iai_s dif'n't'ﬁ_n gar; bs_ th(:ulght of _?S atgpz ; all the behavior of any CallRecord object, so it can
efinition for a kind ot object. Tt Specilies the dala o .qjyq messages, store values in its instance

structure that all objects belonging to the class Wi”variables, and do all the other things a CallRecord

have and the methods they W!" use to respond Qg ¢ you need other CallRecord objects, you
messages. Any number of objects can be create reate them in the same way from the same class
from a single class definition. definition

An object-oriented program consists mainly of The Objective C type for an object, regardless of

;:Iacsls fiefm't'ﬁns' The OthgCttS thetprog;am W'|” USSvhat class it belongs to, is id (internally, a pointer
0 dO 1S Work are created at run ime rom class 4, o object’s private data structure). The

definitions (or, if pre-built with Interface Builder, newRecord variable in the code sample above
are loaded at run time from the files where they ar€ uld be declared to be an id:
stored). '

. . . e id newRecord;
A class is more than just an object specification,

however. It can be assigned methods and receiv®bjects can also be more restrictively typed,

messages just as an object can. As such it acts a§@ased on their class. For example, in the actual
class object code, newRecord is typed as a CallRecord object:

One of the primary functions of a classisto create ! | Recor d *newRecor d;

new objects of the type the class defines. For neMReCFEdCal_I Record alloc] init]:
example, the Button class creates new Button

objects and the MenuCell class creates new To take advantage of polymorphism, variables
MenuCells. Objects are created at run time in a that reference objects are often of type id. The
two-step process that first allocates memory for more restrictive typing by class enables the

the instance variables of the new object and thercompiler to perform type-checking in assignment
initializes it. The following code is used in Statements.

CaIIControIIer§ saveCall: method to create a neWThis discussion illustrates the dual nature of
CallRecord object:

a class. In program code, the class defines a type
newRecord = of object. In the run-time system, the class acts as
[[CallRecord alloc] init]; an object itself to receive messages like alloc.

The receiver for the alloc message is the
CallRecord class. The alloc method dynamically |nheritance

allocates memory for a new object of the o o 1
receiving class and returns the new object. The AN Objective C class definition doesn’t have to

receiver for the init message is the new specify every method and variable; it can inherit

CallRecord object that was dynamically allocatedT0m other classes. If there’s a class that does
almost everything you want, but you need some

additional features, you can define a new class that
inherits from the existing class. The new class is
called asubclas®f the original class; the class it
inherits from is itsuperclass

88 Object-Oriented Programming

The new class inherits all its superclass’s action. The code that handles all these details is
behavior, so you don't need to reimplement the part of a single class definition (the View class in
things that work as you want them to. The the Application Kit). The specific work of
subclass merely extends the inherited behavior bgrawing a button, a slider, or a text display can
adding new methods and any variables needed tthen be entrusted to a subclass.

support the additional methods. All the methods
and variables defined for—or inherited by—the
superclass are inherited by the subclass. (A
subclass can also alter superclass behavior by
overriding inherited methods. The technique for
doing this is discussed later.)

This not only simplifies the organization of the
code that needs to be written for an application, it
makes it easier to define objects that do
complicated things. Each subclass need only
implement the things it does differently from its
superclass; there’s no need to reimplement

A class can have any number of subclasses, anything that's already been done.

but only one superclass. This means that classes ,) _ _
are arranged in a branching hierarchy, with one What's more, hierarchical design assures more

class at the root. The hierarchy of the principal rObUS(‘; clode. By :]) U|Id|\r;g ona Wllad‘laly us_se: ' \{vell-
classes used in YourCall is shown below: tested class such as View, a subclass inherits a

proven foundation of functionality. Because the
Object new code for a subclass is limited to
implementing unique behavior, it's easier to test

and debug that code.
HashTable Responder CallRecordallContro.

Your applications can use subclassing to make
Window View Application greater use of objects in the Application Kit.
When an application needs an object to do
drawing, it implements a subclass of View. When

Menu Control) . .
it needs an object that both draws and provides
, , simple user interaction, it implements a subclass
TextField Matrix Button
of Control.
Form Inheritance makes every class easily extensible—

o Lo .. those provided by NeXTSTEP, those you create,
Obiject is the root class of this hierarchy, as it is of

. _ , , and those offered by third party vendors. Any
all Objective C class hierarchies. From Object, asq can be the superclass for a new subclass.
other classes inherit the basic functionality that
makes messaging work and enables objects to
work together. To define a new class that doesn'Defining a Class
need to inherit any of the special behavior
encoded into an existing class, you make it a
subclass of the Object class.

Classes are defined in two parts: One part declares
its interface, principally the methods that can be
invoked by messages sent to objects belonging to

Inheritance makes it easy to bundle common the class, and the other part actually implements
functionality into a single class definition. For ~ those methods. The interface is public. The
example, every object that draws on the screen—mplementation is private; it can change without
whether it draws an image of a button, a slider, aaffecting the interface or the way the class is used.
text display, or a graph of points—must keep trac
of which window it draws in and where in the
window it draws. It must also know when it's
appropriate to draw and when to respond to a useg

k‘I'he public interface for a class is usually declared
in a header file that can be included in any
rogram that makes use of the class. The
eclaration begins with the directive @interface
and ends with @end.

Classes 89

@nterface Call Controller :
/*
* variabl e and nethod decl arations

hj ect

}

Note that methods not only respond to messages,

*/ they often initiate messages of their own—just as
@nd one function might call another.

Here the @interface line declares that
CallController inherits from the Object class;
Object is the superclass for CallController.

Method declarations serve the same purpose as
function prototypes. Here are declarations for two
of CallController's methods:

- cl ear For m sender;
- retrieveCall:sender;

The default argument and return type for a method
is id. The initial — sign indicates that these
methods are used by objects belonging tothe «
class; a ‘+' precedes methods to be used by the
class object itself.

The @implementation directive announces the
start of a class definition.

@ npl emrentation Call Controller

This example also points out two important
differences between functions and methods:

A method can refer directly to the receiving
object’s variables. (Here the clearForm:
method refers to the CallController's
queryText, responseText, and customerForm
instance variables.) There’s no extra syntax
for accessing variables or passing the object’'s
data structure. The language keeps all that
hidden.

A method can also refer to the receiving
object as self. This variable makes it possible
for an object, in its method definitions, to send
messages to itself. (Here the method uses self
to return the id of the receiver—the standard
return value for Objective C methods.)

/*
* net hod definitions
*
/
@nd

Method definitions are much like function
definitions. For example, this is CallController’s
implementation of the clearForm: method:

- cl ear For m sender;

{

[queryText setStringVal ue: NULL];
[responseText set StringVal ue: NULL] ;

[cust orrer Form

set StringVal ue: NULL at:
[cust omer Form

set StringVal ue: NULL at:
[cust orrer For m

set StringVal ue: NULL at:
[cust orrer Form

set StringVal ue: NULL at:
[cust omer Form

set StringVal ue: NULL at:
return self;

90 Object-Oriented Programming

0];
115
2];
3]

4],

Because the default return value for a message is
an id (usually self), messages can frequently be
nestedresulting in code that's compact and easy
to read:

newRecord =
[[Call Record alloc] init];

In this example, the object returned by alloc
becomes the receiver for the init message.

Overriding a Method

A subclass can not only add new methods to

the ones it inherits, it can also replace an inherited
method with a new implementation. No special
syntax is required; all you do is reimplement the
method.

For example, if its superclass had a clearForm:
method, CallController’s version would override

the inherited version. Any CallController object USING AN OBJECT-ORIENTED
would use the new method, rather than the KIT
inherited one. The new method would also be

inherited by CallController subclasses. When you write an object-oriented program, you

rarely do it from scratch. There are almost always
Overriding methods doesn't alter the set of class definitions available that you can use. All
messages that an object can receive; it alters theyou need are the class interface files, a library with
method implementations that will be usedto compiled versions of the class implementations,
respond to those messages. As mentioned earlieind some documentation.
this ability of each class to implement its own
version of a method is referred to as
polymorphism.

In NeXTSTEP, groups of object-oriented classes
are organized as kits. Each kit provides a complete
framework for a particular functionality, with

It's also possible to extend an inherited method, specific behavior organized in well-defined

rather than replace it outright. This is done by classes. The Application Kit, for example,
overriding the method but including the old provides classes that implement basic application
version in the new implementation. structure and that provide “glue” to connect your
custom objects to an application. In addition, the
Application Kit provides a variety of ready-to-use

write: method that archives Object’s single . :)
. : application features, with classes for everything
instance variable to a typed stream. However, a -) .

from editing text and managing windows to

CallRecord must also save the instance Variable?nteractin with the pasteboard
that it declares in order to store the data for a 9 P '

record in the archive. Other kits offer similar frameworks. The Database

. Kit implements, in a vendor-independent wa
The CallRecord class therefore implements a new, . P C . P . Y.
. . . , Objects for accessing data in commercial database
version of write:, but incorporates the superclass’s : .)
.) management systems. The Indexing Kit provides
version through a message to super:

standardized behavior for organizing and

For example, the CallRecord class inherits a

- write: (NXTypedStream *) st ream accessing text and other large, heterogeneous data
{ _ items. In addition, there are smaller groupings of
[super write:strean; objects that provide widely used functionality,
NXW it eTypes(stream y "1
WakrEREET grame such as the “common classes” like HashTable,
&street, &city, Storage, and List for data manipulation.
&state, &phone, .. .
&query, & esponse); When you use the Application Kit and other
return self; components of NeXTSTEP, you are in effect
} building your application in partnership with the

super is a special receiver in the Objective C ~ Programmers at NeXT. Kit classes are supported
language. It indicates that an inherited method PY NeXT and are continually improved with each
should be performed, rather than one defined in "W release. Its likely that most of the objects in
the current class. After the message to super is YOUr application will come from Kit classes. Only
sent, the CallRecord object has written the two of the classes shown earlier in this section in
instance variable it inherits from Object to the ~ the inheritance hierarchy for YourCall—

stream. The NXWrite Types() function then writes CallController and CallRecord—were actually

the instance variables that are unique to the defined in that application. The rest were provided

Using an Object-Oriented Kit 91

Implementing Methods response to a request for services, while its

delegate provides access to the service.
No matter how many ready-made classes there are

or how much of a program framework the Delegation can eliminate the need to define a
Application Kit provides, you must write code to subclass of a complex class, such as Application.
do the things that are unique to your application. The delegate receives messages notifying it of
The task is to fit your pieces with the pieces that significant happenings in the other object—for
are already provided. example, when text is edited, a file needs to be

. . . opened, or a window becomes the one the user is
Because you will be developing classes in the working in—and it responds appropriately.

gogtext of eI;(_istinIg clasg defini:ir(l) nds, 3/ou’|| dt Application-specific code is thus confined to
Ind yourselfimplementing methods to respond (v 45 defined for the delegate, rather than

mesl_sa?_es sent :{0?] otther %arts'tof t_?e it subclass methods that override methods in the
application—parts that you don't write yourself. complex class.

Although your code implements the methods, it

won'tinitiate any messages to invoke them. MuchSometimes an object will simply forward a

of the task of writing object-oriented programs is message it receives to its delegate. Thus it's
simply implementing methods that respond to possible for an application to implement a
system-generated messages. response to the message in a class definition

. for the delegate, rather than in a subclass of the Kit
For example, although CallRecord implements 8.|ass

read: method for unarchiving its instance

variables, the code of YourCall never invokes thatDelegation is often used to coordinate a group of
method. Instead, the application unarchives the objects. A single object can act as the delegate for
data by invoking a function NXReadObjects() on several other objects, even objects belonging to
a HashTable. Through this function, the different classes. Since the delegate is notified of
HashTable in turn sends each of the objects it significant happenings in all the objects it is the
contains a read: message. Allyou need dois delegate for, it can take appropriate action to keep
implement the application-specific method to its objects synchronized.

respond to these messages. o _
Application Kit classes must be used by many

different applications, so it makes sense for the Kit
Delegation to adopt a strategy that assigns application-
specific code to a delegate. If you want any of your
own classes to be reusable in other applications, it
may make sense for you to adopt the same
strategy.

One way to have the code you write “fit” an
object-oriented kit is to develop subclasses of kit
classes, as described above. Another way is to
define classes for objects that have a special
relationship to kit objects. The most general type
of relationship is for your object to accept Categories and Protocols
responsibilities delegated to it by the kit object.

Thedelegateacts on behalf of the other object and In addition to subclassing and delegation, you can
thus can extend or modify its behavior expand an object and make it fit with other classes

using two Objective C mechanisms: categories
In the discussion of inter-application services in and protocols.
“Extending the Advantage,” you saw how the

Application object requires a delegate to) .

implement a service. The Application object defined by other implementors—ior exa.mple.,

implements the basic mechanism for initiating theYOU Can add methods t.o the classes defined in the
NeXTSTEP software kits. The added methods are
inherited by subclasses and are indistinguishable

Categories provide a way to extend classes

92 Object-Oriented Programming

at run-time from the original methods of the class.To understand how to use these object-oriented
Categories can also be used as a way to distributechniques when writing an application for

the implementation of a class into groups of NeXTSTEP, you need to learn more about the
related methods and to simplify the managemenprogram framework it provides for event-driven
of large classes where more than one developer @pplications. The next section discusses this
responsible for components of the code. framework and the facilities provided by the

p I id decl ¢ Application Kit and other components of
rotocols provide a way to declare groups o NeXTSTEP.

methods independent of a specific class—
methods which any class, and perhaps many
classes, might implement. Protocols declare
interfaces to objects, leaving the programmer free
to choose the implementation most appropriate to
a specific class. Protocols free method
declarations from dependency on the class
hierarchy, so they can be used in ways that
subclasses and categories cannot.

One use of protocols is to allow a concealed object
to identify its interface to others. This use is
illustrated in the Distributed Objects discussion in
“Extending the Advantage.” There, the server
application publishes a protocol, CallProvider,
that it conforms to. The client application need
only know about the protocol in order to send the
appropriate messages to the server.

Protocols are also useful for declaring methods
that other objects must implement, without
specifying the exact implementations. For
example, the CallData protocol specified methods
for retrieving and setting data in a record, without
specifying their implementation. NeXTSTEP
provides a number of such protocols. For
example, the spell-checking protocols enable
other developers to implement spell-checking
objects that can plug into the Application Kit's
Text object.

Summary

Subclasses of existing classes, methods that
respond to system-generated messages, delegates,
categories, protocols—these are all mechanisms
you can use to adapt the code you write to the
framework provided by NeXTSTEP (and to adapt
the classes provided with NeXTSTEP to the

needs of your application).

Using an Object-Oriented Kit 93

