
61

As implemented in the previous section, YourCall
offers a good example of basic NeXTSTEP
programming. However, its behavior is very
rudimentary—which makes it the ideal candidate
for some enhancement.

Because of NeXTSTEP’s object-oriented
foundations, it’s easy to add functionality to
an application. NeXTSTEP’s kits add objects for
database access, inter-application
communications, 3D graphics, and more, in a way
that’s consistent with the fundamental features.
Third-party developers also offer objects and kits
that provide useful enhancements. This modular
approach helps programmers who know the basic
paradigms and tools of NeXTSTEP expand their
skills to new domains.

In this section, you’ll see how to use several of the
advanced features of NeXTSTEP:

• You’ll see how the Database Kit simplifies the
development of production applications built

Now that you’ve seen how to develop a simple application in

NeXTSTEP, it’s time to look at some of the more powerful features

available to developers—the Database Kit, custom palettes for

Interface Builder, inter-application services, and inter-application

communication with Distributed Objects.

on commercial database management
systems.

• You’ll see how to add custom palettes to
Interface Builder, letting you reuse your
custom objects graphically.

• You’ll see how NeXTSTEP applications
provide services to one another.

• You’ll also see how Distributed Objects
provide an object-oriented way to implement
peer-to-peer and client-server
communication between applications.

Each of the examples that follows starts with the
simple YourCall application and uses object-
oriented techniques to improve its design and
expand its capabilities. The implementations are
described only briefly; for more details, see the
code listings at the end of this guide.

62 Extending the Advantage

DATABASE ACCESSS WITH THE DATABASE KIT

In contrast with the simple data management scheme in the YourCall
application, most corporate data is maintained on large client-server database
systems such as those from Oracle, Sybase, and other vendors. These systems
offer the flexibility and power to manage complex sets of interrelated data:
customer lists, inventories, payables, receivables, and so on.

Many of these systems offer forms tools and fourth-generation languages
(or 4GLs) to simplify database application development. But the restrictions
presented by such tools frequently diminish their advantages. Forms-based
applications don’t integrate easily with other applications. Most 4GLs don’t
have the flexibility or power of full-featured programming languages. And all
such tools are database-specific. If you change the underlying database
management system, you have to rework all your applications.

The NeXTSTEP Database Kit addresses these and other problems of database
application development.

The Database Kit is fully integrated with NeXTSTEP. Like all NeXTSTEP
applications, your database applications benefit from a consistent user
interface. They share files through the Workspace Manager, services through
the Services menu, and data through the Pasteboard. Under NeXTSTEP,
custom applications have equal footing with commercial applications.

The Database Kit is database independent. You can move applications from
one database management system to another simply by replacing the adaptor
that acts as the interface between the Database Kit and the database server.
Adaptors for Oracle and Sybase are provided with NeXTSTEP, while adaptors
for other databases are available from other vendors.

The Database Kit utilizes a fully-functional programming language. By
integrating Objective C, C++, and ANSI-C, NeXTSTEP gives you a powerful
combination of object-oriented and standard C language programming.

Finally, the Database Kit is integrated with the rest of the NeXTSTEP
development environment. DBModeler is a NeXTSTEP application that
provides a graphical way to model the organization of data in a database.
Through a special Database Kit palette, Interface Builder knows how to
incorporate database models and lets you connect to the underlying database
server. You can even query a database and fill your user interface with actual
data while in Interface Builder’s Test mode.

Because of these features, the Database Kit provides an efficient, consistent
way to develop mission-critical custom applications that access industrial-
strength database management systems.

Database Access with the Database Kit 63

The Entity-Relationship Model

The Database Kit is designed to look at the organization of data as anentity-
relationship model. In such a model, data is organized into fundamental
entities, each entity is defined by its component attributes, and connections, or
relationships, are used to link entities. This model applies equally well to
relational, flat file, hierarchical, and object-oriented databases.

For example, in a relational database, an entity corresponds to a table; its
attributes correspond to the table’s columns. A customer table would be one
such entity, while its columns name, street, city, and so on, would be its
attributes.

The simplest data model is a single entity. You can create more complex
models by creating relationships between entities.

Taking the simple example of YourCall, the application really stores two kinds
of data: customer data (name, street, city, state, etc.), and call data (question,
answer). The design of CallRecord clumps these together. But what if one
customer calls several times, while another never calls? To improve storage
efficiency and reduce errors, you’d want to store customers and calls in two
separate entities. The relationship between these two entities would assign a
specific customer to each call. To establish this relationship, you’d include a
common attribute such as customer number in each entity.

Designing YourCall With the Database Kit

YourCall is simple by design. It uses a flat data model and provides only
limited user access to records. Most users would ask that an application like

customer

street
 city
 state
 phone
name

entity

attributes

values

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

customer

street
 city
customerId

call

question
answer
customerId

64 Extending the Advantage

YourCall give them more, such as the ability to browse through customer
records.

Using the Database Kit, this type of feature can be added without a single line
of source code and tested against the actual database in Interface Builder’s Test
mode. Thus the redesign of YourCall is based entirely on the Database Kit,
slightly modifying the original interface but depending on the Kit for all other
functionality.

Designing The Database

At the bottom level, redesign of YourCall requires a database containing the
two entities described above: customer and call. In most companies, the
customer entity would probably exist already, with the attributes customerId,

Database

Adaptor

Database Specific

Database

Kit

Accept user

input

Display data

customer
 call

Database

Server

Database Independent

Database Access with the Database Kit 65

name, street, city, state, and phone (and possibly others). The database entity
call may need to be created with the attributes callId, customerId, topic,
question, and answer. The topic attribute is added to provide a brief summary
of the call, which is useful to identify calls in a browser. The customerId
attribute provides the mechanism for relating the call entity to the customer
entity.

Creating the Data Model

Like CallController in the earlier version of YourCall, the Database Kit
provides a data transfer layer between the database and the user interface in an
application. Unlike the CallController, the Database Kit provides general
purpose transfer layer objects, capable of interpreting a database model and
translating that model into specific Database Kit objects for representing
entities, attributes, and data in the database. So before you create a Database
Kit application, you create a database model with DBModeler.

DBModeler is a NeXTSTEP application for specifying relationships between
entities in a database. DBModeler accesses information in the database to
determine entities and their attributes. It provides this information to the
developer in a graphical way.

DBModeler provides a simple interactive process for modeling relationships
among the entities in a database. To create a relationship, you simply identify
entities and attributes in its Relationship Inspector, then click to connect:

40%

66 Extending the Advantage

In this case, the relationship is on the attribute customerId in both the customer
and call entities. This relationship is used to lookup the calls associated with a
particular customer.

Once a model like this is created, you can use it to help implement the user
interface.

Creating and Testing the User Interface

While the Database Kit is designed to work closely with Interface Builder, the
two are distinct components of NeXTSTEP. However, using Interface
Builder’s custom palettes feature, you can add a set of Database Kit objects to
Interface Builder—while it’s running and without any modification to its code.
You’ll see how to create custom palettes in the next section.

To load a custom palette, you simply choose Load Palettes from Interface
Builder’s Tools menu. The DatabaseKit.palette file is located in the directory
/NextDeveloper/Palettes.

When the palette is loaded, its button appears in the Palettes display. When you
click its button, you see that the palette adds three objects to Interface Builder:

DBModule reads model files into NeXTSTEP applications. DBTableView
implements data browsing. DBImageView presents visual data.

In its Database Kit implementation, the interface for YourCall is modified in a
couple of ways. First, there’s a second window, Call Summary, containing a
pair of DBTableViews to implement customer/call browsing. The master

40%

40%

DBTableView

DBModule

DBImageView

Database Access with the Database Kit 67

browser displays customer name fields, while the detail browser displays call
topic fields. In addition, a Retrieve Calls button is placed in this Window.

Second, the Call Information window is redesigned slightly. A new text field
is added for displaying and editing the Topic field. Just two buttons are
included in the form, Clear Form and Save Call.

To connect the user interface to a database model, you drag a DBModule
object from the Database Kit palette and drop it in the interface. You then
choose the model to use, and a browser displays that model’s entities,
attributes, and relationships. From this browser, you drag and drop connections
between the attributes in the model and objects in the user interface. For
example, you can place customer names in the master browser in the Call
Summary window:

40%

40%

68 Extending the Advantage

Note that the title of the column in the DBTableView changes to match the
name of the attribute. You can also add attributes to the text fields in the form
using the same drag-and-drop technique:

Once the attributes in the model are connected to the appropriate fields in the
user interface, you can connect the DBModule as the target of buttons in the
interface. As a general purpose transfer object, DBModule offers a number of

40%/ 40%

Drag name from the model browser and drop it in the master DBTableView

Drag name from the inspector and drop it in the Call Information Name field

Database Access with the Database Kit 69

action methods for use in standard database operations. For example,
DBModule has a fetchAllRecords: method to use as the action of the Retrieve
Calls button.

Because the model used by the DBModule is created directly from the
database, Interface Builder can provide live interaction with that database once
the user interface is completely connected. When you put Interface Builder in
Test Mode, clicking a button connected to the DBModule initiates database
access:

40%40%40%

Double-click fetchAllRecords:

Control-drag from Retrieve Call to the YourCall DBModule

40%/40%

Click Retrieve Calls

Log in to the database

70 Extending the Advantage

Once the data is displayed in the form, you can use the various interface
components to browse the data. For example, when you browse through
topics, the data displayed in Call Information changes. When you browse to
another customer, both the topic browser and the Call Information
data change.

This example reiterates the power of Objective C’s dynamic binding feature.
A running application, Interface Builder, creates instances of Database Kit
objects that know how to connect to and retrieve data from the database server.
Those objects then communicate with objects in the user interface to display
data from the server.

Database Kit: Summary

In redesigning YourCall to take advantage of the Database Kit, we created a
powerful version of the application without a single line of code. This example
demonstrates both the power of object-oriented programming and the
flexibility of the Database Kit. Using this kit, you can create client-server
applications even more quickly than with forms tools, while NeXTSTEP
provides both interaction with other applications and the full programming
capabilities of Objective C.

29%

Once you’re logged in, the actual records are displayed

Creating Custom Interface Builder Palettes 71

CREATING CUSTOM INTERFACE BUILDER PALETTES

You’ve seen how Interface Builder lets you add an Application Kit object to
your application by dragging it from the Palettes window. Once in your
application, such an object can be directly manipulated to resize or relocate it,
or to edit its text. In addition, Interface Builder’s Inspector lets you alter many
of the attributes that can’t be set directly—for example, how a button
highlights, or whether a window is resizable.

In the Database Kit example, you saw how Interface Builder can load and use
custom palettes such as the Database Kit palette. Through custom palettes,
Interface Builder extends the techniques of direct access and manipulation to
objects that weren’t anticipated when Interface Builder was designed.

A custom palette is a palette that you or another developer creates; it’s identical
in operation to any of Interface Builder’s standard palettes. A button at the top
of the Palettes window gives access to a custom palette. For example, as a
custom palette object, the Customer Form from YourCall looks like this:

With this custom palette, you can add one or more Customer Forms to an
application in the same way you would add Application Kit objects. Once in
an application window, the Form can be repositioned and resized using the
mouse. Using the Connections Inspector, you can connect the Customer Form
to other objects in the application.

Creating a custom palette is simple; it’s done with the same techniques
as those used to create a standard application. For example, to create a custom
palette containing a Customer Form, you start a new Project Builder project
and specify its type as a Palette project. When the new project opens, you open
the template user interface archive file for the project.

The template file contains one panel which holds the object or objects that will
appear in the Palettes window. To create the interface for the Customer Form
palette, you might repeat the steps in creating the original form. However, you
can also simply open the interface file for YourCall, copy the Customer Form,
then paste it into the palette panel.

40%

72 Extending the Advantage

To build the custom palette, you choose Build from the Project Builder
interface. To place the new palette in Interface Builder, you choose Load
Palette from the Tools menu.

The Customer Form example demonstrates a custom palette object created by
simply grouping several standard Application Kit objects. More typically,
however, you’d put objects you’ve designed on custom palettes to give all
members of the development team access to those objects.

In some cases, you may want to provide an inspector for each class of object
in your palette. Interface Builder lets you supply a custom inspector that offers
text fields, popup lists, scrollers and other means to set attributes for objects in
your custom palettes. For example, the Database Kit palette provides an
inspector for setting number of rows, scroller configuration, and other
attributes of the DBTableView.

In other cases, a palette object may be simple enough that no inspector
is required. Or, you may find Interface Builder’s standard inspectors sufficient
for your needs. For example, since the Customer Form palette uses only
standard Application Kit objects, there’s no need to create an inspector.
Interface Builder will display the correct inspector for each component object
in this custom grouping.

Custom Palettes: Summary

In most programming environments, creating your own user interface devices
is a difficult, time-consuming task. In NeXTSTEP, object-oriented
programming helps you create custom user interface devices easily, either by
collecting and customizing existing objects or by subclassing existing objects
to give them just the new behavior you need. Once you’ve created useful
objects, Interface Builder’s custom palettes make it possible for anyone on
your programming team to reuse them, by graphically adding them to any
application where they may be needed.

40%

Using Inter-Application Services 73

USING INTER-APPLICATION SERVICES

In NeXTSTEP, an application can access services beyond those provided by
its own code. You’ve already seen how the Header Viewer service is made
available from Edit, the text editor that comes with NeXTSTEP. When you
select some text in an Edit document and open Edit’s Services menu, this is
what you might see:

From this menu, the selection can be sent to Header Viewer for lookup
in NeXTSTEP developer documentation or the NeXTSTEP header files. It
can also be sent to the Digital Webster application to get the definition of a
word or phrase, to Mail to be added to an electronic mail message, to the
Workspace Manager to be opened as a file or directory, or to Quotations to be
used to search for quotations containing the text. What makes this form of
inter-application communication even more remarkable is that the client
application (in this case Edit) gains access to these services without needing
any prior knowledge of them. The items in the Services menu are added and
updated by the NeXTSTEP environment.

The Service Client

An application can become a client of the services system by:

• Having a Services item in its menu.

• Having some object within the application register the data types it’s
willing to send to and receive from the service provider. This object must
be able to send data of the specified format when asked to do so by the
services system.

If your application contains a standard NeXTSTEP Text object, the second
requirement is met automatically. A Text object registers the data types it can
send and receive. But even if your application doesn’t use a Text object,
configuring another object to work with the services system is quite
straightforward.

Since YourCall contains several Text objects for data entry and display, it
needs only a Services menu item to participate in the services system.

50%

74 Extending the Advantage

Once this menu item is added, the user can, for example, select the question or
answer in the Call Information Window and send it as electronic mail using the
service provided by the Mail application.

The Service Provider

In NeXTSTEP, an application can make its facilities available to other
applications by advertising a service. The advertised service appears as a
command in the Services menu of other applications. The Application Kit
constructs the entries in an application’s Services menu by matching the types
of data it can send and receive with the types handled by the registered service
providers. For example, if YourCall were configured as a service provider to
look up names and retrieve records in the database, and Edit’s Services menu
would update to contain a command for doing this—say Find Caller.

From Edit—or from any other text editor or word processor—a customer
support representative typing a letter would then be able to instantly access a
specific caller through the Find Caller service:

40%/ 40%

50%

Using Inter-Application Services 75

When the support representative chose Find Caller in the Services menu, the
YourCall application would automatically start, and the record for the
customer would be retrieved and displayed.

The Services Table

An application advertises its service through a text table that’s incorporated
into its application bundle. This table lists the protocol that other applications
must use in communicating with the service provider. For example, YourCall
might have this table:

Message: lookupName
Port: YourCall
Executable: YourCall
Send Type: NXAsciiPboardType
Menu Item: Find Caller

40%/ 40%

76 Extending the Advantage

The table specifies the message an application must send YourCall to use its
service, the name of the inter-application communication port to be used for
messages, the name of the application’s executable file, the data type that
YourCall expects to find on the pasteboard when it receives a request for its
service, and the title of the menu item to be added to client applications’
Services menus.

The Services Delegate

YourCall, as described so far, needs a few small modifications to handle
service requests. At startup, it needs to identify an object that will handle
service requests. In addition, that service handler needs to be able to respond
to the message advertised in the table described above. Implementing these
modifications requires the use of delegates.

A delegate is a kind of outlet—specifically, an object that acts on the behalf of
another. As its name implies, the delegate shares responsibility with the object
it is associated with. A number of Application Kit classes use delegates to let
you synchronize the custom behavior of your application with standard
NeXTSTEP behavior. In implementing a service provider such as YourCall,
you need to identify two delegates, the services delegate and the application
delegate.

The services delegate is an object within the service-providing application
that’s responsible for receiving service request messages. In YourCall, it’s the
object that will handle the lookupName message. You establish the services
delegate by sending the message:

[[NXApp appListener] setServicesDelegate:self];

This line of code nests two message expressions. The first message goes to
NXApp (a global variable that identifies an application’s Application object)
requesting its Listener object. A Listener object monitors the application’s
interapplication-communication port (the one advertised in the services table
listed above) and relays service messages to the services delegate. The second
message, setServicesDelegate:, goes to this Listener, asking it to establish
self—the object sending the message—as the services delegate.

To process a services request, the services delegate needs to be established
early, after the application starts, but before the user interface is displayed. The
application delegate is provided to let your code respond to significant events
in the lifetime of an application, such as starting, quitting, and becoming active
or inactive. To make sure the service delegate registers its services early in the
life of the application, it needs to become the application delegate and it needs
to implement an appDidInit: method to actually register the service.

Inter-Application Communication with Distributed Objects 77

Subclassing CallController

The best way to implement a service provider version of YourCall is to create
a subclass of CallController—CallService. CallService inherits all the
behavior of CallController, and implements the two new methods required to
act as a service provider. An instance of CallService replaces the
CallController instance in YourCall’s Interface Builder file.

To register itself as the services delegate, a CallService object needs an
appDidInit: method. The Application object sends this message to its delegate
just before the application begins accepting user-generated events. CallService
uses the code above in its appDidInit: method to set itself as the service
delegate.

Another new method, requestCall:userData:error:, is included in CallService
to respond to a service request from another application. This method reads
name data from the pasteboard, places that data in the name field in the
customerForm, then sends a retrieveCall: message to self.

The code for CallService is listed and described in detail in the code listings at
the end of this guide.

Inter-Application Services: Summary

All NeXTSTEP applications can participate in the Services system, both to
take advantage of services provided by others and to offer services to others.
NeXTSTEP provides simple hooks for taking advantage of this feature;
connecting your applications to the NeXTSTEP Services framework requires
just a few simple modifications to any application.

INTER-APPLICATION COMMUNICATION
WITH DISTRIBUTED OBJECTS

Many kinds of mission-critical applications need to be able to share
data or functionality, especially those deployed in large, networked
office environments. In the last section, you saw how NeXTSTEP applications
can share services among one another. At the beginning of this section, you
saw how to use the Database Kit to create client applications that access and
share data in a central database server application. These represent the two
ends of the spectrum of interapplication communication.

Many mission-critical applications may benefit from functionality somewhere
between these two. You may need to create several applications that work
together more directly than through NeXTSTEP’s Services feature. Or you
may need to create client-server applications that operate outside the realm of
commercial database management systems. In any case, NeXTSTEP
Distributed Objects provide the answer—a simple, object-oriented way to
implement customized communications between applications.

78 Extending the Advantage

Distributed Objects

Using Distributed Objects, applications provide services to clients (or between
peers) by vending objects. Once an application starts and registers a server
object, other applications can request connections to the server, in essence
creating local versions of that server object. A client application uses the local
proxy object to communicate with the server object, sending messages to its
proxy as though it were the server object.

Note that while client-server terminology is used to describe this relationship,
applications may establish any number of communications links using
Distributed Objects, with no constraints as to which is the server and which are
the clients for any given link. Thus peer applications may interact through a
central server application, through networks of client-server relationships, or
through some combination of models.

Protocols

To use Distributed Objects, an application needs to know the messages it can
send to the remote object through its local proxy. The standard way to make an
object’s methods available to others is through the class interface (.h) file.
However, most applications are created and compiled as separate, stand-alone
applications. An organization implementing a server application may not want
to make all the server object’s methods and instance variables public to
developers of client applications. Instead, they may want to publish a short list
of methods specifically intended for client interaction. In addition, a server
may want to receive objects from a client that respond to a particular set of
methods. Thus it’s useful to be able to specify certain methods that an object
must implement without fully specifying the object.

Objective C provides a mechanism, protocols, by which such method
declarations can be made public. In the example that follows, you’ll see how
protocols can be used to specify methods for client-server interaction.

Designing YourCallClient and YourCallServer

The original YourCall application is an ideal candidate for redesign with
distributed objects. Any number of customer support representatives might
need to access call data at the same time. Each of them would run the client
application on their desktop computer. The server application could be run on
any NeXTSTEP system in the office, since Distributed Objects are fully
network capable.

As a client-server pair, the original application divides logically in two, as
shown in the following diagram:

Inter-Application Communication with Distributed Objects 79

Call

Record

Call

Record

Server Application

Call

Server

Call

Provider

Proxy

Hash

Table

Call

Client

Call

Provider

import

publish

Call

Record

Distributed Objects

h
h

CallData

h
h

Client Application

80 Extending the Advantage

YourCallServer implements the parts of CallController that set up and interact
with the HashTable database. The class created to fill this role is called
CallServer—a subclass of CallController. The server also implements the
CallRecord class, much as in the original YourCall application. Both
CallServer and CallRecord remain hidden from the client application. In their
place, the server application publishes two protocols, CallProvider and
CallData.

The CallData protocol specifies all the methods for accessing the data for a
call—name, setName and similar methods. CallRecord conforms to the
CallData protocol. The CallProvider protocol declares three methods for
accessing the service: lookupCall:, newRecord, and storeCall:. lookupCall: is
specified to accept a character string representing a name from the client-side
and return an object conforming to the CallData protocol to the client.
newRecord is specified to provide an object conforming to the CallData
protocol for the client to fill with call data. storeCall: is specified to accept an
object conforming to the CallData protocol from the client for storage by the
server. CallServer conforms to the CallProvider protocol.

YourCallClient implements the user interface and establishes a connection to
the server. The class created to transfer data between the user interface and the
server is called CallClient. It keeps all the methods and most of the instance
variables of the original CallController. However, instead of having a callTable
instance variable, it has a callProvider instance variable to refer to the proxy
for the server object implementing the CallProvider protocol. Another change
is in the code for the methods that save and retrieve records; these methods
interact with the proxy rather than the HashTable.

The Protocols

The CallData protocol is published by YourCallServer and the server’s
CallRecord class conforms to this protocol. It specifies all the methods for
accessing the data in a call:

@protocol CallData
- (const char *)name;
- setName:(const char *)theName;
- (const char *)street;
- setStreet:(const char *)theStreet;
- (const char *)city;
- setCity:(const char *)theCity;
- (const char *)state;
- setState:(const char *)theState;
- (const char *)phone;
- setPhone:(const char *)thePhone;
- (const char *)question;
- setQuestion:(const char *)theQuestion;
- (const char *)answer;
- setAnswer:(const char *)theAnswer;
@end

Note that the argument and return types in the protocol are exactly the same as
originally specified for CallRecord. This protocol is included in the source

Inter-Application Communication with Distributed Objects 81

directories for both client and server, in the file calldata.h. In its version of the
file CallRecord.h, YourCallServer uses the code in bold to conform to the
CallData protocol:

#import <appkit/appkit.h>
#import "callData.h"

@interface CallRecord:Object <CallData>
{
char *name;
char *street;
char *city;
char *state;
char *phone;
char *question;
char *answer;
}

- read:(NXTypedStream *)theStream;
- write:(NXTypedStream *)theStream;
- free;

@end

The methods in the CallData protocol no longer need to be declared in the
CallRecord interface (.h) file. They’re assumed to be implemented because of
the <CallData> declaration in the interface line.

The CallProvider protocol is specified as:

#import "callData.h"

@protocol CallProvider
- (id <CallData>)lookupCall:(char *)fetchName;
- (id <CallData>)newRecord;
- storeCall:(id <CallData>)theRecord;
@end

The type declaration id <CallData> specifies that the lookupCall: and
newRecord methods return objects conforming to the CallData protocol;
similarly, storeCall: accepts an object conforming to this protocol. This
declaration is included in the source directories for both applications, in a file
callProvider.h.

82 Extending the Advantage

Retrieving a Record

When the YourCallServer application is started, its CallServer object
initializes the HashTable containing the CallRecords, then identifies itself as
the object being vended by the application.

When the user starts the YourCallClient application, its CallClient object
requests a proxy for a CallProvider object, with the code:

- init
{
 [super init];
 callProvider =
 [NXConnection connectToName:"CallDataServer"];
 return self;
}

Then, as the user enters data in the form and manipulates the buttons, the client
interacts with the server. For example, to implement record retrieval,
CallClient’s retrieveCall: method is modified slightly from that of
CallController, as indicated in bold type.

- retrieveCall:sender
{
 const char *fetchName;
 id <CallData> fetchRecord = nil;

 fetchName = [customerForm stringValueAt:0]; // name
 if (fetchName && strlen(fetchName)) {
 fetchRecord = [callProvider lookupCall:fetchName]
 if (fetchRecord){

 /*... display the data in the form ... */

 }
 else {
 /* attention panel */
 }
 }
 else {
 /* attention panel */
 }
 return self;
}

The change to the code for looking up a record on the client side is very simple.
Rather than requesting the data from the HashTable, it requests it from the
callProvider proxy. The CallServer method invoked in this line, lookupCall:,
is a simple one-liner:

- (id <CallData>)lookupCall:(char *)fetchName
{
 return [callTable valueForKey:fetchName];
}

Summary 83

As you can see, this server method simply uses the HashTable valueForKey:
method to find the record requested by the client. It uses a standard C return
statement to pass the retrieved object back to the client. You’ll find more
complete listings of the client-server code in the code listings at the end of this
guide.

Distributed Objects: Summary

As this example demonstrates, Distributed Objects make it easy to implement
interoperating applications. Messaging between applications is exactly like
messaging between objects within an application. This example also
demonstrates how protocols let servers and clients coordinate their behavior
while hiding implementation details.

SUMMARY

This section has demonstrated a number of ways in which NeXTSTEP can be
used to enhance your mission-critical custom applications, improve access to
data, provide communication between applications, and make the code you’ve
already written and debugged easily reusable.

The rest of this guide provides a deeper discussion of object-oriented
programming and NeXTSTEP, revealing the framework they provide for
applications like YourCall—and for the more sophisticated applications that
you will write.

