
15

Now that you’ve had a chance to examine
the foundations of NeXTSTEP, it’s time to
see how you go about building applications
on them.

YourCall is an application for use by customer
support representatives to log calls received
on a toll-free hotline. It’s the kind of application
that any company providing telephone
support might need—albeit a very simple version
of one.

As with all NeXTSTEP applications, many
of the components needed to implement the
YourCall application are provided by the
Application Kit. In the steps that follow,
you’ll see how the basic architecture of YourCall

The best way to learn about NeXTSTEP’s benefits is to follow the

development process from start to finish. Here, you’ll see how

NeXTSTEP helps you create programs that closely match user

needs, using a minimum of unique code. You’ll also see how

NeXTSTEP simplifies each step of development from design to

coding to debugging.

is provided by NeXTSTEP. You’ll also see how
many features specific to this application—
including its windows, its
other user interface components, its printing and
faxing capabilities—are added with no
programming effort.

A few of the objects used to implement YourCall
will be designed specifically for this program. The
following steps show that NeXTSTEP provides
well-defined ways to integrate such custom
objects with those provided for you. You’ll see
how the NeXTSTEP programming model
simplifies coding these objects and connecting
them with the rest of your application.

16 Step-By-Step Through a NeXTSTEP Application

STEP 1: DESIGNING THE APPLICATION

The object-oriented approach simplifies both design and programming.
Design is simpler because objects map naturally onto the structure of a
programming task. What’s more, modular design lets you begin programming
without specifying every single procedure and data structure. NeXTSTEP
applications can be implemented by progressive refinement—you can work
out many design details as they’re needed.

The Request

The Customer Support Department wants a simple application—YourCall—
to store customer calls. For every customer phone call received, the department
wants to keep some basic information: customer name, address, and phone, as
well as the customer’s question and the answer. In addition, support
representatives want to use this application to retrieve calls by name. They
want to perform all these operations from a single, simple form.

Program Structure the Traditional Way

As with most application design tasks, the functional requirements of the
YourCall application suggest a program structure:

At the lowest level, the specification from Customer Support suggests a data
representation, a set of containers or records to capture the data for each call.
These representations include fields for each data component of a particular
call, such as customer, question, and answer.

To handle storage and access to these records, the application needs a data
manager. This manager should be able to store and retrieve records in a file,
and look up records by a key value such as customer name.

To move data between the user interface and the data management layers, the
application needs a data transfer or control layer. This layer interprets actions
in the user interface—such as pushing a “Save Call” button—and translates
that action into a request to the data manager.

user interface

data transfer

data manager

data representation

Step 1: Designing the Application 17

Finally, the application needs an easy, intuitive user interface, a simple form
for input and display of call information. This user interface should allow a
support representative to enter and edit the data for a call. The same interface
should be able to retrieve and display call information by customer name. It
should also offer an easy and consistent way for users to initiate these save and
retrieve actions—for example, by clicking buttons with a mouse.

Program Structure the Object-Oriented Way

Through object-oriented design, the specification from Customer Support is
easily captured as distinct objects. Most of these objects are provided by
NeXTSTEP; just two unique object types need to be programmed to
implement objects specific to YourCall.

The basic unit of information that Customer Support wants to capture is a call.
This suggests that each call could be represented by an object—a CallRecord.
These objects are specific to this application, so CallRecord is one of the
custom classes needed by YourCall. (In this example, as in all of NeXTSTEP,
class names are capitalized.)

To manage CallRecords, YourCall needs an object that can store and retrieve
objects by a specific data value—the customer name. HashTable is a basic
storage class provided by NeXTSTEP. A HashTable object can store and
retrieve other objects by key value. Taking advantage of an Objective C feature
known as archiving, a HashTable object can also save and retrieve objects on
disk.

Retrieve

Store

 Call
Record

Call
Record

Call
Record

Data Representation

Retrieve dataStore data

Hash
Table

Data Manager

18 Step-By-Step Through a NeXTSTEP Application

To transfer data between the user interface and the data manager, YourCall
uses a CallController object. This object needs to interact with a variety of
objects, including the TextFields that display data and the Buttons that accept
user input, the HashTable that manages the data, and, through the HashTable,
the individual CallRecords. Because this interaction is unique to YourCall,
CallController is the second custom class defined for this application.

Finally, while the user interface for YourCall is unique, the objects that make
up the interface aren’t. Like nearly all NeXTSTEP user interfaces, YourCall’s
on-screen display can be assembled entirely from objects provided by the
Application Kit through Interface Builder. The main component is a Window,
containing a Form for the customer information, TextFields for the question
and answer, and Buttons that the user clicks to signal to the CallController to
retrieve and save calls. In addition to defining the basic appearance of these
objects, the Application Kit defines standard ways for them to interact with
other objects in an application.

With all these objects described, the picture of the YourCall application
is complete:

Display dataAccept user
input

 Call
Controller

Data Transer

Window

Form

Text
Fields

Buttons

User Interface

Step 1: Designing the Application 19

For every application, including YourCall, NeXTSTEP provides another
fundamental object: the Application object. Like the shaded background of the
illustration, the Application object provides a context for the rest of the objects
in the application. It establishes a connection with the windowing system and
makes sure all objects required by the application are ready when the
application starts. As the application runs, the Application object distributes
events (mouse clicks and keystrokes) to the appropriate objects in the user
interface. The Application object is discussed in detail in “The NeXTSTEP
Application Framework” later in this guide.

Designing the Custom Objects

The next phase of application design is to specify the methods that the custom
objects will use to interact with other parts of the program. This phase doesn’t
involve any programming—it’s simply specifying the names of methods that

Display data

Retrieve data

Retrieve

Store

Store data

Accept user
input

Window

Form

Text
Fields

Buttons

Call
Record

Call
Record

 Call
Controller

Hash
Table

Call
Record

Data Transer

Data Representation

Data Manager

User Interface

20 Step-By-Step Through a NeXTSTEP Application

you will implement later. Once these methods are specified, object-oriented
modularity allows the project manager to divide responsibility for YourCall
among the programming team: one programmer could implement
CallController, while another implements CallRecord and a third works on the
user interface.

For a CallController to intercept user actions and turn them into requests to the
data manager, it must have methods to respond to the two Button objects in the
user interface. The method retrieveCall: will look at the name in the form’s
Name field, request a CallRecord from the data manager for that name, then
display that record in the form. saveCall: will create a new CallRecord for the
information in the form and ask the data manager to save it. (Note that method
names are indicated in bold type, and that the colons are part of the method
names—you’ll see how these colons are used when you get to the actual
coding for YourCall.)

A CallRecord contains the fields for a particular call: name, address, phone,
question, and answer. The internal storage for these fields won’t be visible to
the rest of the program. Instead, the methods for setting and retrieving the data
will be. For example, the method setName: will set the customer name to a
particular character string, while the method name will return the name string.
The other methods for setting and retrieving data will have similar names. For
convenience, the data accepted or returned by all of these methods will be
character strings.

Designing the Application: Summary

In this step, you’ve seen how the object-oriented approach maps onto a
programming task, enabling you to specify objects at a high level, then divide
them among a programming team for implementation. Once a program’s
objects, their behavior, and the interfaces for invoking that behavior are
specified, you can turn to project development.

STEP 2: CREATING THE PROJECT

In NeXTSTEP, hands-on application development begins with
Project Builder. This NeXTSTEP application not only manages
project development, it also provides a work center for accessing other

Step 2: Creating the Project 21

application development tools. And it demonstrates some of the powers
of NeXTSTEP available to all applications.

The Workspace Manager‰—which is itself a NeXTSTEP application—
provides a simple way to launch all applications. Applications are represented
in Workspace Manager by icons. To start an application, you simply use the
mouse to double-click an application icon.

Project Builder is located in the directory path /NextDeveloper/Apps. To start
Project Builder, you locate its icon in the Workspace File Viewer, then:

To begin a new project:

When you click OK, Project Builder creates the new project.

40% / 50%

Point to the Project Builder icon and double click

The Project Builder
menu appears

50% / 40%

Point to Project, press the mouse button,
and choose New from the Project menu

Click in the Name field, type the name “YourCall,” then
click OK

22 Step-By-Step Through a NeXTSTEP Application

A project window appears with the title “YourCall.” When it first appears, this
window shows the Files display, the display you use to manage your
application’s component files. The file YourCall.nib displayed there is a user
interface template—in the next step you’ll see how to open this file in Interface
Builder and create an interface from it. Browsing through this display, you can
see other files created for the project by Project Builder, such as
YourCall_main.m (the standard main file required by all C applications), and
a Makefile for building the application. In addition to these files, Project
Builder creates the Project folder, a directory to store all source files and
project management files. The Project folder contains files listed in the Files
display, as well as the project management file used by Project Builder itself,
PB.project.

Creating the Project: Summary

Project Builder provides the starting point for all NeXTSTEP applications.
When you start a project with Project Builder, it automatically creates a project
directory and standard source files for the application. As you add new source
files, Project Builder tracks them for you. In the next step, you’ll see how to
use one of the standard source files to begin developing the user interface.

STEP 3: CREATING THE USER INTERFACE

Interface Builder is a tool for creating user interfaces, creating and editing
objects, and making the connections among objects that enable an object-

45%

Step 3: Creating the User Interface 23

oriented application to work. In this step, you’ll see how to use Interface
Builder for user interface design, and get a glimpse at how to connect objects
in an application.

Interface Builder takes full advantage of the object-oriented NeXTSTEP
environment. As you build a user interface, you work with objects that will be
used by the program. Interface Builder creates these objects for you,
communicates with them to set their values, and stores them so that the
application can retrieve and use them when it starts.

Because it works with “live” objects, Interface Builder lets you test the user
interface without writing a single line of code. You can even give it to a
potential user for trial and comment. You’ll see how this works once the call
form for YourCall has been created in Interface Builder.

Opening the Interface Builder File

To start Interface Builder, double-click YourCall.nib in Project Builder. This
template file, created by Project Builder, is actually an Interface Builder file.
When you double-click the file, Interface Builder launches automatically—
demonstrating how one NeXTSTEP application can communicate with
another to provide cooperative services. When Interface Builder starts, you can
see that the file provides Window and Menu objects. Project Builder
automatically includes these important objects in the user interface file for
every application.

29%

Interface Builder
Palettes window

YourCall menu

YourCall window

Interface Builder
File window

Interface Builder menu

24 Step-By-Step Through a NeXTSTEP Application

Setting Object Attributes

To let you set the attributes of user interface objects and connect them to other
objects, Interface Builder provides an Inspector panel. It is one of the main
ways Interface Builder lets you customize user interface objects provided by
the Application Kit. The Inspector is provided by Interface Builder’s Tools
menu. One use of the Inspector is to rename objects. To rename the YourCall
Window, make sure it’s selected as above, then:

Adding Objects to the Interface

Another standard feature of NeXTSTEP is support for mouse-controlled drag-
and-drop operations within and between applications. For example, a graphic
may be added to a document by pointing to its file icon, pressing the mouse
button, dragging the icon into the document, and releasing.

Interface Builder takes advantage of this capability to let you assemble a user
interface from various objects. Interface Builder’s Palettes window provides
the user interface objects you use to compose your interface: Buttons,
TextFields, Boxes, Sliders, and more. The following steps demonstrate how
you use the Palettes window to drag and drop these components in the user
interface.

40%/40%/
40%

Type “Call Information” in the
Title field

Press Return and the Window name changes

Choose Inspector from
the Interface Builder
Tools menu

Step 3: Creating the User Interface 25

YourCall uses a Form for customer information. To add the Form
to the Call Information Window:

To resize the Form:

40%/ 40%

Point to a Form in the palette, press the mouse button, drag
the Form to the Window, then release

60%

Grab the side handle

Drag it

Release

26 Step-By-Step Through a NeXTSTEP Application

Then, to make five fields in the Form:

To label a field:

Once the Form has been properly laid out, you can box and label it for easier
identification. To do so, select the entire Form (not just a single field), then:

60%

Hold the Alternate key and grab the bottom handle

Drag and release

60%

Double-click the field, then double-click
its title

Type the label and press Return

50%

Choose Group from the Layout submenu

Step 3: Creating the User Interface 27

After editing the title above the grouping box to read “Customer,” you can
proceed with adding the TextFields.

YourCall’s interface needs two TextFields, one labeled “Question” and one
labeled “Answer.” Each should be the same size, and each should be boxed in
a group of its own. Only their titles are different. To add a Question field:

• Drag a TextField (labeled “Text”) from the palette to the interface.

• Choose Group from the Layout submenu to group the field.

• Title the field “Question.”

• Double-click the default entry “Text” and type Command-x to delete.

NeXTSTEP supports cut and paste operations on any selection: text, graphics,
or other data. In Interface Builder, for example, you can cut and paste user
interface objects. To create an Answer field, copy the Question field by
selecting the grouped field and typing Command-c. Then type Command-v to
paste the copied field in the interface

After repositioning and renaming the second field, you can finish the user
interface. Drag a button from the palette to the window, Alternate-drag to

50%

The Form is grouped

40%

28 Step-By-Step Through a NeXTSTEP Application

stretch it into two buttons, label each button, resize the window, and so on.
When you’re done, the user interface should look like this:

Finally, note that the Call Information window is the main component of a user
interface. It should always be on the screen, and the user shouldn’t resize it.
You can control these aspects of Window behavior from the Inspector. So, with
the Call Information window selected, click the Close and Resize buttons in
the Inspector to turn them off.

40%

40%

Step 3: Creating the User Interface 29

Making Connections in the Interface

In the Application Kit, there are many standard messages that objects can send
to one another as an application runs. For example, both Form and TextField
objects share a standard technique to implement tabbing between text fields
using such messages. When the user presses the Tab key while typing in a
Form or TextField, that object sends a message to another object—an outlet
identified as nextText—telling the outlet object to select its text.

In step 5, you’ll learn how outlets are implemented. For now, you’ll see how to
make the nextText connection with Interface Builder:

Similarly, make a nextText outlet connection from the Question TextField to
the Answer TextField, and from the Answer TextField to the Customer Form.
In Test mode, you’ll see these connections at work.

Now, you can customize the menu for YourCall. The Menus palette comes
with a variety of standard menu items, many of which implement behavior
useful to any application. Other pre-defined features are easy to add by making
simple connections. For example, to add printing:

40%/ 40%

Choose the whole Customer Form, press Control,
and drag to the Question TextField

Double-click the nextText outlet
in the Inspector

30 Step-By-Step Through a NeXTSTEP Application

After editing the item to read “Print...” (the ellipsis indicates that a Print panel
will appear when the user chooses this item):

Note in the inspector that the Window is the target of the Print MenuCell and
that its action is smartPrintPSCode:. You’ll see in the next step exactly how
targets and actions actually work.

Some operations aren’t associated with a specific object until the user actually
uses the program. For example, spell checking should work on the text where
the user is currently typing. The object-oriented featuredynamic binding
allows an application to determine, as it runs, which object should receive a
particular message. In Interface Builder, First Responder is a stand-in for
whatever interface object a user has selected. For example, this would be the
Name field when the user is typing the customer’s name, or the Question field
when the user is typing the customer’s question.

To enable spell-checking, add an item to the Edit menu and label it
“Spelling...,” then:

40%/ 40%

Choose the Menu palette, then drag “Item” to the menu

40%
40%/ 40%

Connect the item to the Window’s icon.

Double-click the smartPrintPSCode: action

Step 3: Creating the User Interface 31

With the connection made, double-click the showGuessPanel: action in the
Inspector. Then save the YourCall.nib file by typing Command-s.

Testing the User Interface

With the user interface laid out, it’s time to test it. Because of NeXTSTEP’s
object-oriented run-time system, Interface Builder has been able to create the
objects making up the user interface as you laid it out. In Test mode, Interface
Builder clears its own windows and panels from the screen and presents the
objects you’ve just created as a working interface. To enter Test mode, you
select Test from the Interface Builder Document menu. As you test, the objects
in your interface send and receive messages, demonstrating both their standard
behavior and features you’ve enabled by simple Interface Builder connections.

As the illustration suggests, Test mode lets you type in the form, tab between
fields, cut and copy text, check spelling, and print or fax the form. Test mode

40%/ 40%

Control-drag from the Spelling... item to the First Responder icon.

29%

32 Step-By-Step Through a NeXTSTEP Application

offers a completely accurate experience of the behavior of objects in the newly
designed user interface, independent of the custom code for the application.

Although you can test the standard NeXTSTEP features while running
YourCall in Test mode, the custom features of the application aren’t
yet available. Saving and retrieving records will be implemented by the yet-to-
be-created CallController and CallRecord classes.

Modifying the User Interface

Let’s say that as they try the interface for their new application, the Customer
Support representatives requests a new feature—a Button to clear the form
without saving. To accommodate such a request:

In addition to this user interface change, implementing this third Button-
controlled feature will require a third CallController method, clearForm:, to
actually remove information from the fields in the form.

Interface Builder versus Screen Painters

It’s important to note that, unlike development tools for other environments,
Interface Builder does not generate code for the user interface. Instead, it
creates and saves the actual objects used by your application, using a facility
known as archiving.

Archiving is a general-purpose Objective C storage feature that allows objects
to be written to and retrieved from files. Interface Builder uses archiving to
save and retrieve the objects in a user interface. In addition to the objects, the
archive includes attributes and connections for those objects. Another use of
archiving is the simple data storage and retrieval mechanism implemented by
YourCall, described in step 6.

When a NeXTSTEP application starts, it unarchives the objects saved
by Interface Builder. This makes Interface Builder more flexible than
any screen painter. To adjust the design of the user interface for a NeXTSTEP
application at any time, you open the archive in Interface Builder, alter the
interface graphically, and save. User interface design is thus independent of
code development.

Another distinguishing feature is that Interface Builder lets you add custom
objects to the user interface through its CustomView. That is, you can create

60%

Drag to resize the Buttons

Alternate-drag to add a third Button, then rename it “Clear Form”

Step 4. Specifying Custom Objects 33

your own user interface objects and install them in your application’s
windows, using a CustomView object as a stand-in. You can also add your own
objects to a user interface using loadable palettes, an Interface Builder feature
described in “Extending the Advantage.”

Finally, Interface Builder provides control over more than the user interface,
by letting you specify and connect objects with no visible presence in an
application—such as the CallController object. This power is demonstrated in
the steps that follow.

Creating the User Interface: Summary

In this step, you’ve seen how Interface Builder lets you create a highly
functional user interface by manipulating standard NeXTSTEP objects with a
mouse-based graphical editor. Through simple connections, these objects can
be “wired up” to provide a menu-based application with many standard
features enabled, including text editing, spell checking, printing, and faxing. In
Test mode, you saw how Interface Builder can actually activate the objects in
the user interface to let them work exactly as they will in your custom
application. In the next steps, you’ll see how Interface Builder extends its
capabilities to the custom objects in your applications.

STEP 4: SPECIFYING CUSTOM OBJECTS

Once the user interface is in place, it’s time to develop the two new types of
objects required to give YourCall its unique behavior: CallController and
CallRecord. In this step, you’ll see how to use Interface Builder to begin
creating objects. But first, let’s take a look at some of the details of how objects
are implemented.

Objects and Classes

It should be clear by now that applications are composed of many different
kinds of objects and often have more than one object of the same kind. For
example, the user interface of YourCall is made up of a Window, a Form, two
TextFields, and several Buttons. All these objects are provided by the
Application Kit. In terms of custom objects, YourCall will have only one
CallController object, but will create a new CallRecord object each time the
user saves call information.

Objects of the same type belong to the same class. To define a class, you write
code that defines the data and procedures for its objects. In this step, we begin
the actual process of defining custom classes for YourCall.

Instance Variables and Methods

Instance variables are the data items belonging to an object. A class definition
includes a list of instance variables for its objects. Each object has its own set

34 Step-By-Step Through a NeXTSTEP Application

of these instance variables. Only an object itself can directly access its instance
variables.

Methods are the procedures implemented by an object. A class definition
includes the code for the methods used by its objects. The code of a method
can implement any functionality, including setting and retrieving the object’s
instance variables, sending messages to other objects, and so on. A method is
invoked by sending a message to an object.

Thus, an object can be thought of as a set of instance variables encapsulated by
methods.

Outlets, Targets, and Actions

For one object to send a message to another, it needs to have a way of
identifying that object. It also needs to know what methods that object can
respond to. Outlets, targets, and actions provide standard ways to provide this
information to objects.

In designing the user interface, you saw how to draw simple graphic
connections between objects to implement tabbing between fields. You
stretched a line from one TextField to the next, then clicked an outlet named
nextText.

In fact, an outlet is an instance variable that one object uses to identify another.
When you connect one TextField as the nextText outlet of another in Interface
Builder, you’re actually setting an instance variable named nextText. When the
user presses the Tab key in one field, that field sends a standard message to its
nextText object, telling that object to begin editing. Similarly, when an object
you design needs to communicate with another object, you provide the
connection by declaring an outlet instance variable.

One special kind of outlet is called a target. NeXTSTEP’s control objects—
Buttons, Sliders, TextFields, MenuCells, and so on—have targets to identify
the objects that they send messages to as the user manipulates them. For
example, the Print MenuCell in the YourCall menu was connected to the
Window object as its target. When the user chooses Print, that MenuCell sends
a message to the Window object, telling it to print itself.

A control interacts with its target by sending it an action message; the action
message tells the target to perform a specific action. In the printing example,
the action is smartPrintPSCode:. The Application Kit’s Window class
implements this method, since it’s common to want a Window to print itself in
response to user action.

m ethod

m

et
h
o
d

m
e
th

od

instance
variables

Step 4. Specifying Custom Objects 35

Together, targets and actions provide a standardized way to connect custom
objects to the user interface. To create an object to respond to a control in the
user interface, you define action methods for it. To connect that object to the
user interface, you make it the target of the appropriate control.

Subclasses and Superclasses

Object-oriented programming provides a technique—subclassing—that
makes it simple to create new classes. To create a subclass, you start with a
class whose behavior is closest to that which you want to implement, then add
new behavior in the form of new methods and instance variables. The new
class is the subclass of the original; the original class is the superclass of the
new. A new class inherits all the methods and instance variables defined for the
superclass. Because of inheritance, the new class by default has exactly the
same behavior as its superclass. A class specification identifies the superclass
and adds methods and instance variables to implement its unique behavior.

In addition to implementing new methods, a class can override methods it
inherits from its superclass. To do so, it includes code for the overridden
method in its class definition. When overriding an inherited method, the new
class can either implement entirely new behavior, or it can keep the original
behavior and expand on it.

Specifying CallController and CallRecord

While the CallController and CallRecord classes were discussed in the design
step, at this point it’s time to see how the implementation details just described
apply to these classes.

First, consider how CallController will use outlets. CallController needs to
interact with objects in the user interface, so that it can access data entered by
the user and display data retrieved from the data manager. To do so, it needs
three outlets—customerForm, questionText, and answerText—corresponding
to the text entry components of the user interface. CallController also needs to
interact with the data manager object (the HashTable) in order to request
storage and retrieval of CallRecords. For this, CallController will use an outlet
named callTable.

Next, consider the actions that CallController needs to implement. The
CallController object will be the target of the three controls in the YourCall
user interface. So, it needs three action methods to respond to these controls:
saveCall: and retrieveCall: from the original specification, and clearForm: for
the requested enhancement.

CallRecord’s task is to store the information for a customer call, so the
CallRecord class needs to define instance variables for each data item. It also
needs methods for setting and retrieving those data items. As a storage object,
CallRecord acts entirely at the behest of other objects in YourCall, so it has no
outlets or actions.

36 Step-By-Step Through a NeXTSTEP Application

Finally, consider the superclasses for CallController and CallRecord.
Both implement very rudimentary, application-specific behavior. As a result,
there’s not much they could inherit—they’ll implement this behavior
themselves. The Object class is the most rudimentary class in Objective C; it’s
the root class for all other classes. As a result, Object is the appropriate class to
use as the superclass for both CallController and CallRecord.

Defining Classes in Interface Builder

Interface Builder provides a simple way to begin defining a class. You can
declare the superclass for your class, specify outlets and actions for your class,
even add objects of your class to the application and connect them to other
objects—all from within Interface Builder. Finally, Interface Builder helps you
start coding custom classes by generating template files for you to work from.

To begin defining the CallController class, you click the Classes suitcase at the
top of the File window shown below, and choose Object in the browser (Object
is the superclass for CallController). Then:

When you enter the new name, the name of the new class in the File window
changes to CallController.

To add an outlet instance variable to CallController, use the Class inspector:

40%/40%

Choose Subclass in the popup list

Type “CallController” in the Inspector
and press Return

Step 4. Specifying Custom Objects 37

Use the same technique to add questionText, answerText, and callTable
outlets. To add action methods to CallController, click the Actions button, and
enter saveCall:, retrieveCall:, and clearForm: actions. When you’re finished,
the inspector shows all outlets and actions for CallController:

Once the CallController class is specified, you can create its template source
files and add them to the project through Interface Builder. The process for
creating source files from an Interface Builder specification is called
unparsing. When the files are unparsed and added to the project, they will be
compiled (if they’ve been updated since the last compile) any time you build
the project.

40%

Click Outlets, type “customerForm”, then click Add Outlets

40%

38 Step-By-Step Through a NeXTSTEP Application

From Project Builder’s File display, you can see that the class is now included
in the project.

Choose Unparse

45%

45%

Click Yes to create the files

45%

Click Yes to add the files to the project

45%

Step 5: Connecting Custom Objects 39

By the same means, you can create a template class specification for
CallRecord, a subclass of Object. This class has neither action methods nor
outlet instance variables, so its behavior will be defined entirely in code that
you write. To recap, the steps are:

• Choose Classes in the Files window.

• Choose Object in the class browser.

• Choose Subclass from the popup list.

• Type “CallRecord” in the Class inspector.

• Choose Unparse in the Files window.

Note that since CallRecord isn’t part of the user interface, you might create the
CallRecord class specification directly, by creating your own text files.
However, when you use Interface Builder, it not only creates the template
source files, it places them in the appropriate directory and adds them to the
project—ensuring that your class is compiled with the rest of your program.

Also note that if you do create a class specification directly in text files,
Interface Builder can parse these sources to find and display any outlets and
action methods specified. This lets you create a class on your own, then use
Interface Builder to graphically add it to your application.

Specifying Custom Objects: Summary

In this step, you’ve seen how Interface Builder provides ways to add custom
objects to the application model. By declaring the outlets and actions for a
class of objects in Interface Builder, you create “hooks” to connect those
custom objects to the other parts of the application. The next step demonstrates
how to create the actual connections that take advantage of those hooks.

STEP 5: CONNECTING CUSTOM OBJECTS

In step 2, you saw how user interface objects are connected using Interface
Builder. In effect, you wire up the user interface of an application without
writing any code. But Interface Builder recognizes that not all objects in an
application are part of the user interface—and provides ways to connect those
objects as well.

As one such object, CallController provides data transfer between the user
interface and data storage. To do this work, CallController needs to be

40 Step-By-Step Through a NeXTSTEP Application

connected as the target of three Buttons in the user interface. Its retrieveCall:,
clearForm:, and saveCall: action methods are to be invoked when the Buttons
are clicked. Now that the CallController is specified, you can use Interface
Builder to add a CallController object to the application and connect it to the
Buttons.

As a reminder, we still haven’t written a single line of code for CallController.
That comes in the next step. All we’ve done is declare outlet instance variables
and action methods for CallController and had Interface Builder turn those
specifications into template source files. It’s also important to note that
Interface Builder doesn’t generate code to add the CallController object or
make its connections in your application. Instead, it creates a stand-in for
CallController, and archives the stand-in with other objects in the interface
archive file. Later, when YourCall is compiled and run, this stand-in is
automatically replaced by an actual CallController object.

Adding CallController to the Application

Though objects like CallController don’t appear in an application’s user
interface, Interface Builder can represent such objects graphically. An object
belonging to a specific class is referred to as an instance of that class. To add a
CallController instance to YourCall in Interface Builder:

Now you can use the icon to connect this instance of CallController to other
objects in the application.

40%40%40%

Highlight CallController in the File window,
then choose Instantiate

A CallController icon is added

Step 5: Connecting Custom Objects 41

Target-Action Connections

With a CallController icon in the interface, you can connect the Button objects
to their target and establish their action methods. For example, to make
connections between the Retrieve Call Button and the CallController:

Similarly connect the Clear Form Button to CallController’s clearForm:
method and the Save Call Button to CallController’s saveCall: method.

40%40%40%

Click the Button and Control-drag to CallController

Double-click retrieveCall:

42 Step-By-Step Through a NeXTSTEP Application

Outlet Connections

Finally, to access data in the form, CallController needs connections to the
Customer Form, the Question TextField, and the Answer TextField. These are
made by setting CallController’s customerForm, questionText, and
answerText outlet instance variables. Starting with the outlet for the Customer
form:

Similarly, set the Question TextField as CallController’s questionText outlet
and the Answer TextField as CallController’s answerText outlet. The callTable
outlet will be set later in CallController’s code.

This done, the connections in YourCall are complete. Save the YourCall.nib
file again by pressing Command-s.

40%40%40%

Double-click customerForm

Click CallController and Control-drag to the Form
(Be sure to connect to the whole Form as shown,
not just one field)

Step 6: Implementing Custom Behavior 43

Connecting Custom Objects: Summary

In this step, you’ve seen how Interface Builder, working with a simple class
specification, can add instances of that class to your application and connect
them to other objects. This demonstrates the flexibility of NeXTSTEP’s
object-oriented application framework, which provides a number of
standardized connections for custom objects. It also demonstrates how
Interface Builder provides simple, graphical ways to make those connections.
In the next step, you’ll see how to implement the code that takes advantage of
these connections to give an application its unique behavior.

STEP 6: IMPLEMENTING CUSTOM BEHAVIOR

A class definition consists of the code declaring and implementing object
behavior by means of instance variables and methods. A class is defined in two
files, the interface file and the implementation file. When you specify a class in
Interface Builder, it will create templates for both the interface and
implementation files.

The interface file is identified with a “.h” (for header) extension. The interface
file declares instance variables and methods for a class. This file is referred to
as the interface file in standard C terminology because it presents the public
declaration of the class. A class interface file is referenced (or imported) by
other code files that send messages to objects of that class.

The implementation file is identified with a “.m” (for methods) extension. The
implementation file contains the program code for the class. The code can
include a combination of Objective C, C, and C++ syntax.

In this step, you’ll see how to write the actual code for the custom classes of
YourCall. You won’t find all the code here (that’s in the back of the book, for
your reference). What you’ll see should give you a taste of Objective C coding
style and demonstrate how NeXTSTEP continues to support your application
development efforts as you’re coding.

The Syntax of a Message

An Objective C message expression has two components: an object and the
message. Objective C messages use the following syntax:

[receiver methodName:value]

In this example, receiver is the object receiving the message. methodName: is
the name of the method invoked by this message. value is an argument to the

44 Step-By-Step Through a NeXTSTEP Application

method. In this case, the method has just one argument, thus the method name
includes a single colon. Some methods may have no argument (and thus no
colons). Other methods may have several arguments, each preceded by a colon
and frequently a keyword before each colon. You’ll see examples of these
conventions in the code that follows.

Implementing CallRecord

Remember that each CallRecord object is intended to represent an individual
call. The CallRecord class will specify one instance variable for each field of
data for a call; however, that’s an internal implementation detail. More
importantly, CallRecord will specify and implement methods to save and
retrieve that data, such as setName: and name.

CallRecord also needs a way to save and retrieve its objects in a file. Objective
C provides this through its archiving mechanism—the same mechanism used
by Interface Builder to store user-interface objects. Two methods, read: and
write:, are the standard methods for archiving objects. Declared by the Object
class, these methods are overridden by each subclass to enable its objects to be
saved and retrieved.

The read: and write: methods illustrate the power of polymorphism, the object-
oriented feature in which different classes implement the same methods so that
each can respond to the same message in its own way. Polymorphism ensures
consistent behavior among objects of diverse classes. As you’ve seen,
Interface Builder can save Windows, Menus, Forms, TextFields, and other
objects in an archive file because each of their classes implements its own
version of read: and write:.

Declaring CallRecord

CallRecord.h is the interface file for CallRecord. This file declares instance
variables used and methods coded in CallRecord.m, the implementation file.
Here’s the template interface file provided by Interface Builder:

#import <appkit/appkit.h>

@interface CallRecord:Object
{
}

@end

First, note that a class specification refers to other classes by referring to their
header files in a #import line. The template file provided by Interface Builder
imports the header file appkit/appkit.h, which refers to all classes in the
Application Kit and other core components of NeXTSTEP. Classes created

Step 6: Implementing Custom Behavior 45

with Interface Builder are assumed to need to interact with these NeXTSTEP
components.

Because no instance variables or methods were declared in Interface Builder,
none appear in CallRecord’s template header file. To declare CallRecord, we’ll
add instance variable and method declarations to this file.

The data collected for a call is a set of text fields. Each field can be represented
by an instance variable of the standard C-language type for character strings:
char *. CallRecord has seven of these instance variables: name, street, city,
state, phone, question, and answer.

The methods for setting and getting the data should be consistent from field to
field. For example, the method for setting the customer name field would be
declared as:

- setName:(const char *)theName;

setName: is the method name. The type of the argument is declared as const
char *. The argument name is theName; this name will be used within the code
of the method to refer to the argument.

The argument type, const char *, is consistent with CallRecord’s instance
variables and with the data that can be retrieved from objects in the user
interface. The C-language qualifier const assures that the method can’t change
the character string passed to it.

The method for retrieving this field is declared as:

- (const char *)name;

Here, const char * declares the return type of the method, and name is the name
of the method.

The return type also includes a const qualifier to assure that an object sending
a name message to a CallRecord is given read-only access to the data. The data
is thus protected from outside tampering.

Here is the completed header file for CallRecord containing all instance
variables and method declarations:

#import <appkit/appkit.h>
@interface CallRecord:Object
{
 char *name;

46 Step-By-Step Through a NeXTSTEP Application

 char *street;
 char *city;
 char *state;
 char *phone;
 char *question;
 char *answer;
}

- (const char *)name;
- setName:(const char *)theName;
- (const char *)street;
- setStreet:(const char *)theStreet;
- (const char *)city;
- setCity:(const char *)theCity;
- (const char *)state;
- setState:(const char *)theState;
- (const char *)phone;
- setPhone:(const char *)thePhone;
- (const char *)question;
- setQuestion:(const char *)theQuestion;
- (const char *)answer;
- setAnswer:(const char *)theAnswer;
- read:(NXTypedStream *)theStream;
- write:(NXTypedStream *)theStream;
- free;

@end

Note that because read: and write: are declared in Object, CallRecord’s
superclass, they aren’t required in the header file: CallRecord inherits them.
They’re here by convention to indicate that CallRecord implements its own
version of them. Note also the free method. It’s also inherited from Object, and
overridden by CallRecord to ensure that memory claimed by the instance
variables will be properly freed.

Defining Data Access Methods

CallRecord.m is the implementation file for the CallRecord class.

The methods for adding data to a record use fundamentally the same code.
Here’s the implementation of setName: as an example:

- setName:(const char *)theName
{
 if (theName) {
 name = NXCopyStringBuffer(theName);
 }
 return self;
}

This code uses an if statement to test whether the argument, theName, is valid.
If so, it uses the NeXTSTEP function NXCopyStringBuffer() to copy the
argument and assign the copy to the instance variable name. Note that within
its code, CallRecord can access instance variables such as name directly.

The return value, self, is a variable representing the object receiving the
message. Much as outlets are used to identify other objects, self is used to

Step 6: Implementing Custom Behavior 47

identify an object within its own code. This is useful when an object needs to
send messages to itself. self is the default return value for Objective C methods.

The methods for accessing the data in a CallRecord are even simpler. Here’s
the name method as an example:

- (const char *)name;
{
 return name;
}

This very minimal code simply returns the instance variable—name—as a
constant string.

Defining Data Archiving Methods

CallRecord’s mechanism for storing and retrieving data on disk is
implemented with two methods, read: and write:, inherited from Object. These
methods are part of the standard Objective C archiving facility.

Archiving takes advantage of a NeXTSTEP feature known as typed streams to
store and retrieve objects. A typed stream is a data buffer that contains
information about the data types stored within it; the buffer can be copied in
memory and written to or read from a file using standard typed stream
functions. When storing a set of objects, a typed stream is opened, each object
is sent a write: message to write its instance variables to the typed stream, then
the stream is written to a file and closed. To retrieve, a typed stream is opened
on a file, each object in the file is sent a read: message to read its instance
variables from the stream, then the stream is closed.

The implementation of CallRecord’s write: method is:

- write:(NXTypedStream *)stream
{
 [super write:stream];
 NXWriteTypes(stream, "*******", &name, &street, &city,
 &state, &phone, &question, &answer);
 return self;
}

The sole argument to the write: method is the typed stream for the object to
write itself to. The method implementation begins by sending a write: message
to super. super is a variable which acts as an object of the superclass—Object
in the case of CallRecord. This message ensures that inherited instance
variables are written to the typed stream before variables declared in
CallRecord.

Next, the implementation invokes the NXWriteTypes() function—the
function that actually writes the instance variables to the stream. There are
three types of arguments to this function. stream is the typed stream where the

48 Step-By-Step Through a NeXTSTEP Application

object is being written. The string “*******” is a format string indicating that
the seven instance variables to be archived are character strings. Finally,
&name and subsequent arguments represent the addresses of those instance
variables.

The implementation of the read: method is directly parallel to the
write: method.

Implementing CallController

Now, let’s turn to the implementation of CallController. It’s implemented
through two files—the interface and the implementation file.

The CallController Interface File

Like CallRecord, CallController’s interface and implementation file are
created through Interface Builder. However, in the case of CallController, the
interface file already contains the outlets and actions declared in Interface
Builder. There are a few additions to be made to this basic file, indicated in
bold in the following text:

#import <appkit/appkit.h>
#import "CallRecord.h"

@interface CallController : Object

{
 id customerForm;
 id questionText;
 id answerText;
 id callTable;
 char callFilePath[MAXPATHLEN + 1];
}

- init;
- awakeFromNib;
- clearForm:sender;
- retrieveCall:sender;
- saveCall:sender;
- free;

@end

The instance variable callFilePath is a character array that will be used to keep
track of the file where the CallRecords are stored. The file referenced by this
variable will be opened when the application starts so that records may be read.
It will be opened again, by the saveCall: method, to update the contents of the
file each time a new record is added to the database.

The init method, inherited from Object, is used to perform any initialization
required to make an object fully functional—for example, to establish internal
connections with other objects, to set instance variables, and so on. The

Step 6: Implementing Custom Behavior 49

awakeFromNib method is sent to all objects as they are unarchived; in
CallController, this method prepares objects connected to CallController for
user input. The free method, like that for CallRecord, is used to free storage
allocated by CallController.

Initializing the CallController Object

Earlier, you saw how to add an object representing CallController to YourCall
from Interface Builder. When the application starts, the Application object
unarchives the Interface Builder file, allocates an instance of CallController,
then sends that CallController an init message.

As go-between from the user interface to the data storage, CallController
needs to establish connections to both. Connections with the user interface are
made in Interface Builder and archived with the user interface. The connection
with the data manager needs to be made by CallController itself, within its init
method. CallController.m implements the init method as follows.

- init
{
 NXTypedStream *callStream;
 BOOL fileFound;

 [super init];
 fileFound = [[NXBundle mainBundle]
 getPath:callFilePath forResource:"call" ofType:"log"];
 if (!fileFound) {
 strcat(callFilePath,"/call.log");
 }
 callStream =
 NXOpenTypedStreamForFile(callFilePath, NX_READONLY);
 if (callStream) {
 callTable = NXReadObject(callStream);
 NXCloseTypedStream(callStream);
 }
 else {
 callTable =
 [[HashTable alloc] initKeyDesc:"*” valueDesc:"@"];
 }
 return self;
}

This method begins by declaring two local variables. (Local variables, a
standard C feature, can be referenced only within the function or method
where they’re declared.) callStream is used to refer to the stream for reading
the HashTable and its contents. fileFound is a boolean used to test for the
presence of the file in the appropriate place.

The first statement sends an init message to super, which ensures that any
initialization specified for the objects of the superclass will be performed.

YourCall uses a NeXTSTEP feature called bundles to manage its data file. The
NXBundle class provides an object-oriented approach to application resource
file management. Resources files are accessed by bundles rather than file

50 Step-By-Step Through a NeXTSTEP Application

directories. This frees NeXTSTEP applications from dependence on a
particular file system.

A NeXTSTEP application consists of a main bundle (the main directory)
containing resource files and other bundles. The most important application
resource, the executable, is contained in the main bundle. The user interface
archive file is placed in a bundle (or subdirectory) within the main bundle.

The database file, call.log, will be stored in and retrieved from the application’s
main bundle. The init method locates this file and stores its path in an instance
variable callFilePath with the following code.

[[NXBundle mainBundle]
 getPath:callFilePath forResource:"call" ofType:"log"];

This is a compound message statement, and it demonstrates a powerful
shorthand provided by Objective C. Let’s look at the inner message statement
first:

[NXBundle mainBundle]

This simple statement returns an object representing the application’s main
bundle. To that object, the outer part of the statement sends a message
getFile:forResource:ofType:, which requests that the main bundle object find
the path for the file named call.log. If the outer message statement finds the file,
it returns YES and places the full path to that file in the variable callFilePath.
If not, it returns NO and places only the path to the main bundle in the variable.
The return value is assigned to the local variable fileFound.

If the file isn’t found, the code uses a C function, strcat(), to put the full file path
in the variable callFilePath variable. (This path is used by the saveCall: method
to save the callTable in the file.)

The code then attempts to open a typed stream on the file using the function
NXOpenTypedStreamForFile(). If it succeeds, it retrieves the HashTable
object from the file and assigns it to the callTable instance variable using the
NXReadObject() function. This NeXTSTEP function unarchives the
HashTable by invoking its read: method, which in turn invokes read: on each
of the CallRecord objects contained in the table.

If a typed stream can’t be opened on the file, this method allocates and
initializes a new HashTable for use by the CallController.

Step 6: Implementing Custom Behavior 51

Retrieving Data

The retrieveCall: method looks up a CallRecord in the HashTable when the
user enters a name in the Name field and presses the Retrieve Call Button. This
method is implemented using HashTable’s ability to locate a data value by a
particular key item. But how does HashTable implement this ability?

To help answer such questions, NeXTSTEP provides Header Viewer, a tool
for class browsing and access to documentation. Say, for example, you want to
find the HashTable method needed to implement retrieveCall:. You can easily
do so while editing the code file from the Edit application, using the
NeXTSTEP Services facility:

When the Header Viewer window appears, it displays the on-line
documentation for HashTable. You can scan through the documentation to
locate the appropriate method. From the same window, you can also view the
interface file for the HashTable class, and browse other NeXTSTEP classes.

40%40%40%

Highlight the class name

Choose HeaderViewer in the Services
menu

52 Step-By-Step Through a NeXTSTEP Application

Using the HashTable method valueForKey:, the following code implements
CallController’s retrieveCall: method:

- retrieveCall:sender
{
const char *fetchName;
CallRecord *fetchRecord = nil;

fetchName = [customerForm stringValueAt:0];
if (fetchName && strlen(fetchName)) {
 fetchRecord = [callTable valueForKey:fetchName]
 if (fetchRecord){
 [customerForm setStringValue:[fetchRecord street] at:1];
 [customerForm setStringValue:[fetchRecord city] at:2];
 [customerForm setStringValue:[fetchRecord state] at:3];
 [customerForm setStringValue:[fetchRecord phone] at:4];
 [questionText setStringValue:[fetchRecord question]];
 [answerText setStringValue:[fetchRecord answer]];
 [customerForm selectText:self];
 }
 else {
 NXRunAlertPanel("Search Failed", "Customer %s not found",
 NULL, NULL, NULL, fetchName);
 }
 }
else {
 NXRunAlertPanel("Search Failed",
 "Please enter a customer name", NULL, NULL, NULL);
 }
return self;
}

Note first the declaration for this method:

- retrieveCall:sender

Recall that this method is an action method, defined from Interface Builder and
used as the action of the Retrieve Call Button object. The single argument to
this method—and all action methods—is sender. sender identifies the control

45%

Step 6: Implementing Custom Behavior 53

object sending the message. This argument can be used by a receiver such as
CallController to query the control for anymore information it may need. For
example, if the control were a slider, the method could send a message back to
the slider asking for its current position. In this case, no further information is
required. The user’s intentions are made clear by the action of pressing the
Button.

This method declares two local variables. fetchName is a character string for
the name in the form. fetchRecord is a CallRecord used to refer to the record
retrieved from the database.

The first line of code sends a message to the customerForm requesting the
string in its first field—Name—and assigns the return value in the variable
fetchName (by C language convention, the index of the first field is 0).

fetchName = [customerForm stringValueAt:0];

If the field contains an entry, this method searches for the corresponding
CallRecord in the callTable, using the valueForKey: method located with
Header Viewer:

fetchRecord = [callTable valueForKey:fetchName]

If the search finds a record, the subsequent code queries that record for its data
and places it in the form. The code that performs this question and display
again illustrates the use of a message within a message:

[customerForm setStringValue:[fetchRecord street] at:1];

The inner message statement gets the street stored in the CallRecord. This
return value is passed as an argument to Form’s setStringValue:at: method,
placing the street in the second field of the Form. After all data is placed in the
form, the first field (Name) is selected with the code:

[customerForm selectText:self];

The last few lines of code offer alternative interaction with the user. If no name
appears in the form, or if no record is found for the name, the method displays
attention panels to indicate the situation. In both cases, displaying the attention
panel requires just one line of code. For example, if no name is entered, this
code is invoked:

NXRunAlertPanel("Search Failed",
 "Please enter a customer name", NULL, NULL, NULL);

The attention panel provided by this function is a standard part of the user
interface, used by many NeXTSTEP applications. The NXRunAlertPanel()
function enables you to customize the message and the buttons displayed by
the panel.

54 Step-By-Step Through a NeXTSTEP Application

When the application executes this function, it automatically stops and waits
until the user clicks the OK button, then continues. Features such as this help
ensure that your applications share a common interface and consistent
behavior with other NeXTSTEP applications.

CallController’s saveCall: method uses similar code to create a new
CallRecord, copy the data from the form to the record, place the record in the
HashTable, and write the HashTable to the call.log file.

Implementing Custom Behavior: Summary

In this step, you’ve had a brief glimpse of the code used to implement an
Objective C class. Perhaps more important than the coding details presented
here are two general points. First, Objective C syntax presents a
straightforward yet flexible style for creating object-oriented code. Second,
NeXTSTEP continues to support your development efforts as you code, by
providing program functionality such as archiving, bundles, and attention
panels, and programming tools such as Header Viewer. In the final step, you’ll
see how other NeXTSTEP tools help you complete your application
development tasks.

STEP 7: BUILDING AND DEBUGGING THE APPLICATION

Once the custom code is implemented for YourCall, the final step in the
development cycle is to make and debug the application. Project Builder’s
project management features and NeXTSTEP’s collection of application
development tools are designed to help you in the process of putting the
finishing touches on your applications.

Adding an Application Icon

As you’ve seen, an application’s icon is a standard part of its user interface.
Icons represent applications in the Workspace Manager, providing the user
with a consistent way to start NeXTSTEP applications.

The NeXTSTEP Icon Builder application lets you create the icon for an
application. Once it’s created, you associate an icon with the application by
dragging the file into the Application Icon well in the Project Builder
Attributes display.

45%

Step 7: Building and Debugging the Application 55

Building the Application

As part of its project management facilities, Project Builder maintains
the Makefile containing information on how to build your application from its
sources. When Project Builder builds your application, it uses this file and the
standard UNIX make program to build the components of your application.
The make program compiles the project’s code files and links them into the
executable file. It also copies other resource files—such as the user interface
archive file—to the appropriate places in the application.

As your application builds, Project Builder shows compiler and linker progress
messages in its Build display, and provides an interactive way to track and edit
any coding errors:

45%

40% 40%

Click an error message in
the Build display

Edit starts and highlights the line containing the error

56 Step-By-Step Through a NeXTSTEP Application

Once your application compiles successfully, Project Builder helps you run
and debug it.

Debugging the Application

NeXTSTEP’s text editor and debugger are integrated with Project Builder to
facilitate setting break points, stepping through the application, and tracking
down bugs. Using Project Builder’s Debug feature, you can run the program
interactively, trace errors, and make code fixes. To set a break point, you open
the source code file, then:

With breakpoints set, you can then run the application, stepping through the
source code in Edit. The GDB control panel lets you set multiple breakpoints,
examine the program stack, check variable assignments, and perform other
debugging tasks.

Other Development Tools

In addition to Project Builder and Interface Builder, NeXTSTEP provides a
variety of applications to help you create, debug, and tune your program.

40% 40%

With the code fixed, you can recompile successfully

40%50% 40%

Click Gdb in
Edit Click Break At

Click on a break point

Step 7: Building and Debugging the Application 57

 AppInspector

AppInspector lets you browse through a running application’s objects,
examine the variables belonging to each one, and look at data represented in
those variables. Since outlets (connections to other objects) are among an
object’s variables, AppInspector enables you to examine the entire network of
interconnected objects belonging to an application. Using AppInspector, you
can be sure that the objects are connected through the correct outlets, and that
their other variables are set to the correct values.

Performance Tuning Tools

Graphical programs on multitasking platforms place high demand on the
facilities of the CPU and operating system. Given this demand, NeXTSTEP
provides of tools and techniques for enhancing the performance of an
application.

MallocDebug helps achieve optimum memory use by letting you look
at exactly how an application uses memory. ProcessMonitor provides ways of
inspecting a number of internal details of program operation. For better
performance from the virtual memory manager, a link editor feature known as
link optimization lets you place code in the executable file so that the most
frequently accessed procedures are located near one another.

“NeXT Development Tools” later in this guide provides more on tuning a
NeXTSTEP application.

Running the Application

When all the details are in place and the application is built a final time,
YourCall is ready to use. Like all other NeXTSTEP applications, it’s
represented in the Workspace Manager by its icon. All you have to do is
double-click to start it:

58 Step-By-Step Through a NeXTSTEP Application

Building and Debugging: Summary

NeXTSTEP provides an interactive environment for building and debugging
your custom applications. Project Builder manages source files and gives fast
access to those files when code fails to compile correctly. The debugger and
text editor cooperate to provide a quicker find-fix-compile cycle. Other
NeXTSTEP development tools give insights into the internal workings and
performance of your applications. Thanks to these tools, NeXTSTEP helps
you create robust, high performance applications.

SUMMARY

This discussion has presented a guided tour of the process of putting together
a NeXTSTEP application. As you’ve seen, NeXTSTEP simplifies application
development in a number of ways.

29%

Summary 59

• Interface Builder provides a graphical approach to assembling the
components of an application, while Project Builder provides a control
center for source file management and project development.

• The Application Kit offers building blocks that simplify the process of
creating your custom applications.

• Object-oriented programming helps you define custom behavior with a
minimum of unique code.

The next section of this guide takes the simple YourCall application and
enhances it in several ways, demonstrating both the extensibility of the object-
oriented programming model and the advanced functionality provided by
NeXTSTEP.

