
7

In this section, you’ll see how the basic features of
NeXTSTEP—individually and in concert—
provide a solid foundation for your programming
efforts.

OBJECT-ORIENTED
PROGRAMMING

“Object-oriented programming” has become
a first rank buzzword within the computer
industry. To understand why, it’s important to cut
through the hype and focus on the problem from
which the object-oriented approach sprang.

In classic procedural programming (used with
COBOL, Fortran, C, and other languages),
programs are made of two fundamental
components: data and code. The data represents
what the user needs to manipulate, while the code
does the manipulation. To improve project
management and maintenance, code is
compartmentalized into procedures. However,

Every NeXTSTEP application is built using the same fundamental

features: object-oriented programming, kits of predefined

functionality, and an object-oriented graphical development

environment.

This proven foundation helps make all NeXTSTEP programs more

robust—and NeXTSTEP programmers more productive.

much of the data is global, and each procedure
may manipulate any part of that global data
directly.

With the procedural approach, the network
of interaction between procedures and data
becomes increasingly complex as an application
grows. Inevitably, the interrelationships become a
hard-to-maintain tangle—spaghetti code.
Procedural programming also leads to nasty, hard-
to-find bugs in which one function inadvertently
changes data that another function relies on.

procedure

data

data

data

data

data

data

procedure

procedure

procedure

8 Foundations of NeXTSTEP

The reasoning behind object-oriented
programming is simple. Just as procedures
compartmentalize code, objects
compartmentalize both code and data.
This results in data encapsulation, effectively
surrounding data with the procedures for
manipulating that data.

Like objects in the physical world, objects in
a program have identifying characteristics and
behavior. For example, an object such as a button
includes the data and code to generate a familiar

pr
ocedure

pro

ce
d
u
re

p
ro
c
e
d

ure

data

appearance on the screen, and a familiar response
to user action.

Similarly, an object representing a database record
both stores data and provides well-defined ways
to access that data.

Using this modularity, object-oriented programs
can be divided into distinct objects for specific
data and specific tasks. Programming teams can
easily parcel out areas of responsibility among
them, agreeing on interfaces to the distinct objects
while implementing data structures and code in
the most efficient way for their specific area of
functionality.

A button object highlights its on-screen representation
when the user clicks

SOME OBJECT-ORIENTED PROGRAMMING TERMINOLOGY

An object is a specific instance of a particular class,
both data and the code to operate on that data. Much
as you create instances of data structures in procedural
programming, you create objects in object-oriented
programming.

A method is a procedure defined for an object by its
class. An object’s methods can operate directly on its
data.

A message tells an object to perform one of its
methods. Sending a message to an object is analogous
to invoking a procedure on a particular data structure
in procedural programming.

While object-oriented programming introduces
new vocabulary to computer programming, much of it
simply restates and extends concepts familiar to most
programmers. As the text illustrates, object-oriented
programming itself simply extends procedural
programming to code and data. Here are some other
object-oriented terms you’ll encounter throughout this
guide.

A class is a template for a particular type of object.
Much as you can define types of data structures
in procedural programming languages such as C and
Pascal, you define classes of objects in object-oriented
programming. The class defines both procedures and
data for a particular object type.

Object-Oriented Programming 9

Data encapsulation and modularity result
in simplified program structure. An object-
oriented program can be thought of as a network
of objects that interact by sending messages to one
another.

Once objects are defined, creating a program is a
matter of creating connections for objects to use
in their interaction. Simpler structure means
simpler debugging, since errant behavior can be
traced directly to the responsible object.

Other important benefits of object-oriented
programming with Objective C include
inheritance, polymorphism, and dynamic binding.

Inheritance lets you define new classes of objects
that build on the behavior of existing classes,
reducing the amount of code you write and debug
to make incremental changes.

Messages

Inheritance
 New

Inherited

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

B

C

A

W
 B

C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Y
 X

Z

A
 B

C

A
 B

C

C
 B
B

A

Polymorphism means that different classes of
objects respond to the same message in their own
ways—effectively increasing program flexibility
while maintaining code simplicity.

Dynamic binding means that both the object
receiving a message and the message that an
object receives can be set within your program as
it runs. This is particularly important in a
graphical, user-driven environment, where one
user command—say Copy or Paste—may apply
to any number of user-interface objects.

Thanks to the object-oriented approach,
NeXTSTEP applications are easier to design,
easier to code, easier to debug, and easier to
update than procedural programs.

 A

 A

 A

Polymorphism

E
 F

C
 B

D
 A

B
 A

C

B

A
 C

D

Dynamic Binding

10 Foundations of NeXTSTEP

KITS OF READY-TO-USE
PROGRAM FEATURES

One guiding principle behind NeXTSTEP is this:
The only way to significantly reduce the time it
takes to write an application is to significantly
reduce the volume of code you have to write.

When you create an application, there are almost
always standard features you need. For example,
an application with a graphical user interface is
usually built around the framework of an event
loop. The event loop is the code that receives user-
generated events—mouse clicks, keystrokes—
and invokes procedures in response to those
events. Other standard features required by
applications include text editing, file opening and
saving, and data exchange with other applications.

In most programming environments, you have to
recode these standard features each time you

create a new application. But the NeXTSTEP
environment provides kits of ready-to-use objects
that implement exactly those features required by
most applications.

NeXTSTEP’s Application Kit‰ is a set of objects
that implement common features such as event
handling, window management, text editing, file
management, cutting and pasting between
applications, and more. The goal of the
Application Kit is to limit your programming task
to designing the user interface and coding your
application’s unique features.

In addition to the Application Kit, NeXTSTEP
includes other object-oriented kits and libraries
that provide useful features. For example, objects
in the Database Kit‰ provide access to industry-

THE APPLICATION KIT: ESSENTIAL FEATURES FOR ANY APPLICATION

• Font selection

• Color selection

• Image handling for TIFF, EPS, RIB, and
custom formats

Interapplication Communication Features

• Standard pasteboard for text, fonts, images,
paragraph formats and tab settings, and more

• Custom pasteboards for application-specific
data types

• Dynamic data links between documents to enable
automatic updates as sources are edited

• Mouse-controlled drag and drop of text, images,
and other data within and between applications

• Dynamic Services menu that lets applications
perform useful operations on one another’s data

To reduce the amount of new code you write for each
application, NeXTSTEP’s Application Kit
implements a number of common features useful
to any application.

Graphic User Interface Framework

• Event-handling mechanism for mouse, keyboard,
system, and custom events

• Window management

• Buttons, sliders, text fields, and other standard user
interface components

Standard Program Features

• Text editing and formatting

• Printing and faxing from any document

• File management

• Spell-checking

Graphical Development Environment 11

standard databases from Oracle, Sybase, and
other vendors. The Indexing Kit provides objects
that can index text and other data for quick access
by key values. The 3D Graphics Kit‰ lets you add
3D imaging to an application with minimum
effort.

Ready-to-use kits demonstrate the power of
object-oriented programming and minimize the
time and effort required to code a NeXTSTEP
application.

GRAPHICAL DEVELOPMENT
ENVIRONMENT

With its object-oriented programming model and
standard application framework, NeXTSTEP

provides an ideal platform for easy-to-use
programming tools. Two tools—Project Builder
and Interface Builder‰—are used to create your
application and manage its source files. A third
tool, Header Viewer, provides quick, object-
oriented access to developer documentation and
system header files. Together, these tools simplify
and expedite application development.

NEXTSTEP KITS AND LIBRARIES: A WIDE RANGE OF ENHANCED FEATURES

• File system management, text parsing, and
query processing

Distributed Objects

• Object-oriented model for peer-to-peer and client-
server application development.

• Simplifies network-wide interapplication
communication

3D Graphics Kit

• Photorealistic and Interactive RenderMan‰
3D graphics

• Fully integrated with NeXTSTEP for display,
printing, and faxing

In addition to the Application Kit, NeXTSTEP offers
other object-oriented kits and libraries to enhance
program functionality.

Database Kit

• Fast, efficient development of client-side
applications fully integrated with other NeXTSTEP
applications

• User interface objects for data display, formatting,
and editing

• Includes adaptors for ORACLE‚ and SYBASE‚
servers

Indexing Kit‰

• Fast, indexed access to a variety of data types: text,
objects, files, images, and others

12 Foundations of NeXTSTEP

Project Builder is a graphical tool for project
management and source file control. As you
create your application, Project Builder keeps
track of the required resources. When you need to
build your application, Project Builder compiles
only those source files that have been updated,
using the UNIX-standard make program. And as
your project is compiled, Project Builder provides
a status update, displays warnings and error
messages, and gives instant access to source files
for quick error correction.

Project Builder also provides a convenient way to
access other application development tools,
including Interface Builder, the text editor, the
compiler, the debugger, and others.

Interface Builder actually serves three main
purposes. First, it’s an interactive design tool for
composing windows, text fields, buttons, and
other objects making up a NeXTSTEP user
interface. Second, it’s an object editor that lets you
specify objects and their behavior. Third, it’s an
object “connector” that lets you graphically stitch
together the network of objects that makes up a
NeXTSTEP application. Additionally, Interface
Builder provides an interactive Test mode that lets
users try out and comment on the user interface as
it develops.

Graphical Development Environment 13

Header Viewer is a NeXTSTEP development tool
designed to support the specific requirements of
object-oriented coding. Header Viewer provides
class browsing, query and search for specific
classes and methods, and easy access to the
system headers and developer documentation for
all NeXTSTEP kits.

Thanks to the power provided by these
tools—and the power of the underlying
programming model—NeXTSTEP offers a more
direct route from design to deployment than other
environments.

